高电压技术复习要点
高电压技术重点复习大纲
高电压技术重点复习大纲一、引言高电压技术作为电气工程中的重要分支,涉及电力系统、电气设备以及电力传输等方面。
本文将针对高电压技术的重点知识进行复习梳理,帮助读者系统化地理解和掌握该领域的核心概念和理论。
二、高电压技术概述1. 高电压技术的定义和应用范围2. 高电压的基本概念和表示方法3. 高电压技术的主要问题和挑战三、高电压绝缘技术1. 绝缘材料的种类和特性2. 绝缘材料的选用和制备3. 绝缘破坏与击穿机理4. 绝缘水平的评定和试验方法四、高电压设备与技术1. 高电压断路器的结构和工作原理2. 高电压变压器的类型和特点3. 高电压绝缘子的种类和应用4. 高电压电缆的敷设和维护五、高电压输电与配电技术1. 高电压输电线路的设计和选型2. 高电压变电站的布置和运行方式3. 高电压配电系统的组成和保护措施4. 高电压输配电中的功率损耗和电压稳定性问题六、高电压安全与环境保护1. 高电压安全工作的重要性和基本原则2. 高电压事故的预防和应急处理3. 高电压对环境的影响及其治理方法七、高电压技术的新发展1. 高电压技术的新理论和方法2. 高电压技术在可再生能源中的应用3. 高电压技术与智能电网的融合八、总结与展望通过对高电压技术的重点知识的复习,我们可以对该领域的核心概念和理论有较为深入的理解。
面对未来高电压技术的发展,我们应不断学习创新,以推动电气工程的进步和发展。
以上为高电压技术重点复习大纲,通过对各个知识点的梳理和总结,旨在帮助读者更好地掌握和理解高电压技术的核心内容。
有关详细内容和具体的公式推导等细节,建议读者参考相关教材和资料进行进一步学习。
祝愿读者在高电压技术的学习中取得优异的成绩!。
《高电压技术》复习纲要
《高电压技术》复习纲要第一篇 高电压绝缘及试验第一章 电介质的极化、电导和损毁高压(HV ):10~220kV 超高压(EHV ):330~750kV 特高压(UHV ):1000kV 及以上电介质中的能量损耗:在电场的作用下,电介质由于电导引起的损耗和有损极化(如偶极子极化、夹层极化等)引起的损耗,总称为电介质的损耗。
介质损耗角 δ 为功率因数角 φ 的余角,其正切 tg δ 又可称为介质损耗因数,常用百分数(%)来表示。
定义δ 为介质损失角,是功率因数角ϕ 的余角 介质损失角正切值tg δ ,如同εr 一样,取决于材料的特性,而与材料尺寸无关,可以方便地表示介质的品质1-4电介质电导与金属电导的本质区别?电介质电导主要为离子式电导,即电解式电导;金属电导主要为自由电子电导。
R 3i 3 CI 2 RI 2 3I 1I CRIItg =δ第二章 气体放电的物理过程气体的电离形式:碰撞电离:气体放电中,碰撞电离主要是电子和气体分子碰撞而引起的 在电场作用下,电子被加速而获得动能。
当电子的动能满足如下条件时,将引起碰掩电离光电离:光辐射引起的气体分子的电离过程称为光电离 热电离:因气体热状态引起的电离过程称为热电离 负离子的形成:有时电子和气体分子碰撞非但没有电离出新电子,反而是碰撞电子附着分子,形成了负离子表面电离:气体中的电子也可能是从金属电极的表面电离出来的(逸出功:从金属表面电极表面逸出电子需要一定的能量,通常称为逸出功)汤逊气体放电理论:汤逊理论认为,当pS 较小时,电子的碰撞电离和正离子撞击阴极造成的表面电离起着主要作用,气隙的击穿电压大体上是pS 的函数 流注气体放电理论:认为电子碰撞电离及空间光电离是维持自持放电的主要因素,并强调了空间电荷畸变电场的作用汤逊理论适用于均匀电场,流注理论适用于不均匀电场巴申曲线:假设S 保持不变,当P 增大时,电子的平均自由行程缩短了,相邻两次碰撞之间,电子积聚到足够动能的几率减小了。
高电压技术-复习要点-超全总结-涵盖习题
作业(第一部分)简答题:第2、3、4章1.简述气体电离的4种方式。
P102.什么是电子崩及电子崩的条件P15-P173.汤逊放电理论与流柱理论的共同点和不同点,以及各自的适用范围。
P17-P19。
4.巴申定律的公式表达及巴申曲线的两个结论。
P17-P185.提高气体间隙抗电强度的方法。
P42-P446.简述防绝缘子污闪的4种方法。
P56-P57第5章1.简述电介质极化的5种基本形式。
P59+空间电荷极化、夹层极化2.介质的介电常数和相对介电常数的概念。
P58-593.什么是固体介质的热击穿。
P664.什么是固体介质的电击穿。
P655.影响固体击穿的4个主要因素。
P65-P69(电压、电场均匀程度、受潮、累积效应)6.什么是固体介质的热老化。
P73第6、7章1.简述绝缘缺陷的两种类型。
P752.简述绝缘试验中的非破坏性试验和耐压试验。
P753.简述绝缘电阻的吸收比及其测量结果对判断绝缘状态的作用。
P75-P774.简述局部放电测量的作用。
P845.简述工频交流耐压试验的作用。
P92-97(作用是:能够有效地发现导致绝缘电气强度降低的各种缺陷,尤其对局部性缺陷的发现更为有效。
)6.简述直流耐压试验与交流耐压试验比较的优点。
P1007.简述直流高压测量的两种方法。
P106-P1118.简述冲击电压试验的作用。
P1019.简述测量冲击电压的三种方法。
P111-P116论述题:第2、4章1.借助作图,阐述汤逊自持放电及条件。
P14-P182.借助作图,阐述气体放电的极性效应(以棒-板间隙为例)。
P23-P253.阐述污闪放电过程。
P53-544.借助画图,阐述介质损耗角正切测量原理。
P80-81第5、6章1.借助公式推导,阐述绝缘的吸收现象。
P75-P772.借助公式推导,阐述介质损耗角正切。
P613.借助电路图阐述局部放电的脉冲电流法测量。
P84(三种基本回路及原理)作业(第二部分)简答题:第8章1.简述单根均匀无损传输线的波阻抗与波速表达式,以及物理量意义。
高电压技术复习
高电压技术复习《高电压技术》复习一.气体的绝缘强度了解气体放电的一般现象和概念;理解持续电压作用下均匀电场气体放电理论、不均匀电场中的气体放电特性;理解冲击电压下的气体放电特性;了解大气条件对气隙击穿电压的影响,掌握提高气隙击穿电压的具体措施。
1.基本概念自持放电:不需其它任何外加电离因素而仅由电场的作用就能维持的放电称为自持放电。
非自持放电:必须借助外加电离因素才能维持的放电则称之为非自持放电。
电晕放电:当所加电压达到某一临界值时,在靠近两个球极的表面出现蓝紫色的晕头,并发出“咝咝”的响声,这种局部放电现象称为电晕放电。
极性效应:在极不均匀电场中,高场强电极的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。
50%冲击击穿电压(U50%):用间隙击穿概率为50%的电压值来反映间隙的耐受冲击电压的特性。
汤逊放电理论和流柱理论的异同以及各自的适用范围:汤逊放电理论:当外施电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,则到达阳极并进入阳极的电子数为ea个(α为一个电子在电场作用下移动单位行程所发生的碰撞游离数;为间隙距离)。
因碰撞游离而产生的新的电子数或正离子数为(ea-1)个。
这些正离子在电场作用下向阴极运动,并撞击阴极.若1个正离子撞击阴极能从阴极表面释放r个(r为正离子的表面游离系数)有效电子,则(ea-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(ea-1)=1。
它的适用范围:汤逊理论是在低气压、Pd较小的条件下在放电实验的基础上建立的。
Pd过小或过大,放电机理将出现变化,汤逊理论就不再适用了。
通常认为,Pd>200cm·mmHg时,击穿过程将发生变化,汤逊理论的计算结果不再适用,但其碰撞电离的基本原理仍是普遍有效的。
高电压技术复习重点
高电压技术复习重点绪论1、输电电压一般分为高压,超高压,特高压。
高压指35~220kv,超高压指330~1000kv,特高压指1000kv及以上。
高压直流通常指±600kv及以下的直流输电电压,±600kv以上的称为特高压直流。
2、电介质的极化:通常电介质显中性,但是如果其处于电场中,则电荷质点将顺着电场方向产生位移。
极化时电介质内部电荷总和为零,但会产生一个与外施电场方向相反的内部电场。
3、流过介质中的电流可以分为三部分:纯电容电流分量,吸收电流,电导电流。
4、电介质损耗:处于电场中的绝缘介质,必然会存在一定的能量损耗,而这些由极化、电导等所引起的损耗就称为介质损耗。
5、介质损耗来源①由介质电导形成的漏电流在交变电压下具有有功电流的性质,由它所引起的功率损耗称为介质电导损耗;②由介质中与时间有关的各种极化过程所引起的损耗。
第一章1、电离方式可分为热电离,光电离,碰撞电离。
2、汤逊放电理论的适用范围:汤逊理论是在低气压、pd较小的条件下在放电实验的基础上建立的。
pd过小或过大,放电机理将出现变化,汤逊理论就不在再适用了。
3、电晕放电现象:在极不均匀场中,当电压升高到一定程度后,在空气间隙完全击穿之前,小曲率电极附近会有薄薄的发光层。
4、电晕放电的危害:①引起功率损耗②形成高频电磁波对无线电广播和电视信号产生干扰③产生噪声。
对策:采用分裂导线。
利用:①净化工业废气的静电除尘器②净化水用的臭氧发生器③静电喷涂。
5、下行的负极性雷通常可分为三个阶段:先导放电,主放电和余光。
6、提高气体击穿电压的措施:①电极形状的改进。
②空间电荷对原电场的畸变作用。
③极不均匀场中屏障的作用。
④提高气体压力的作用。
⑤高真空和高电气强度气体SF6的采用。
7、污闪:绝缘子表面污物受潮变成导电层,引发局部放电并发展成闪络。
8、污闪发展过程:①污秽层的形成②污秽层的受潮③干燥带形成与局部电弧产生④局部电弧发展成闪络。
高电压技术总结复习资料
一、填空和概念说明1、电介质:电气设备中作为绝缘运用的绝缘材料。
2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。
3、击穿电压:击穿时对应的电压。
4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。
5、耐电强度:电介质在单位长度上或厚度所承受的最大平安电压。
6、游离:电介质中带电质点增加的过程。
7、去游离:电介质中带电质点削减的过程。
8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。
9、光游离:中性分子接收光能产生的游离。
10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。
11、强场放射:电场力干脆把电极中的电荷加入电介质产生的游离。
12、二次电子放射:具有足够能量的质点撞击阴极放出电子。
13、电晕放电:气体中稳定的局部放电。
14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。
16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最终产生主放电的过程时间。
17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。
18、沿面放电:沿着固体表面的气体放电。
19、湿闪电压:绝缘介质在淋湿时的闪络电压。
20、污闪电压:绝缘介质由污秽引起的闪络电压。
21、爬距:绝缘子表面闪络的距离。
22、极化:电介质在电场的作用下对外呈现电极性的过程。
23、电导:电介质在电场作用下导电的过程。
24、损耗:由电导和有损极化引起的功率损耗。
25、老化:电力系统长期运行时电介质渐渐失去绝缘实力的过程。
26、汲取比:t=60s和t=15s时的绝缘电阻的比值。
27、过电压:电力系统承受的超过正常电压的。
28、冲击电晕:输电线路中由冲击电流产生的电晕。
29、雷暴日:一年中听见雷声或者望见闪电的天数。
30、雷暴小时:一年中能听到雷声的小时数。
31、地面落雷密度:每平方公里每雷暴日的落雷次数。
高电压技术复习重点
高电压技术复习材料碰撞电离处在电场中的带电粒子在电场力的作用下沿电场方向作加速运动并积累能量,当具有足够能量的带电粒子与气体分子碰撞产生的电离.介质损耗电介质的功率损耗简称介质损耗,一种是由电导引起的损耗,另一种是由某些极化引起的损耗.波阻抗电压波与电流波的比值称为波阻抗.绕击雷电绕过避雷线的保护范围而击于导线. 雷击跳闸率指折算到40个雷电日和100km 的线路长度下因雷击引起的线路跳闸次数. 耐雷水平雷击线路但尚不致引起绝缘闪络的最大雷击电流峰值.汤森理论和流注理论的基本观点适用范围汤森理论的基本观点:电子的碰撞电离是气体放电时电流倍增的主要原因,而阴极表面的电子发射是自持放电的重要条件.缺陷:有局限性,特别对δd较大时气隙放电的许多特点无法解释.流注理论的基本观点: (1)以汤森理论的碰撞电离为基础,强调空间电荷对电场的畸变作用,着重于用气体空间的光电离来解释气体放电通道的发展过程.(2)放电从起始到击穿并非碰撞电力连续量变的过程,当初始电子崩中离子数达到108以上时,要引起空间光电离这样一个质的变化,此时由光子造成的二次崩向主崩汇合而成流注.(3)流注一旦形成,放电就转入自持.汤森理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,两者的过度值为pd=26.66kpacm. 附:巴申定律:据自持放电条件可以退得均匀电场中间隙的自持放电起始电压或击穿电压与有关影响因素的关系:V0=f(Pd) P:气压d:极间电压液体电介质的击穿特性: 两种击穿形式:电击穿(在电场作用下,阴极上由于强电场发射或热发射出来的电子产生碰撞电离形成电子崩,最后导致击穿)和由气泡或其他悬浮杂质导致的热击穿(气泡击穿理论:1)用”小桥”理论论述.工程用液体电解质中含有杂质,水分和气体,实质是液体中的气体被击穿2)静态电压作用下杂质”小桥”的形成,泄露电流增大,局部放电等产生气体和发热使水分汽化形成气泡3)气泡“小桥”形成,气体的耐压强度比液体的低得多,击穿就容易发生在气泡小桥中) 影响因素: 电场的均匀程度,电场越不均匀,击穿场强越低.击穿过程受水分等杂质影响大. 措施:提高油间隙击穿强度,在实际绝缘结构中采用油与固体介质组合绝缘.提高油的品质,变压器油在使用一段时间后进行净化处理.固体介质的击穿机理:(1)热击穿:当达到某一临界电压时,在所有温度下,发热量总量大于散热量.介质温度将持续上升(电流增大),直到产生热破坏(烧成导电通道),并永远丧失绝缘性能.(2)电击穿:在强电场下电介质内部带电粒子剧烈运动,发生碰撞电离,破坏了固体介质的晶格结构,使电导增大而导致击穿. 影响因素:电压,电场均匀程度,受潮,累积效应. 措施:改进绝缘设计(采用合理的绝缘结构,改善电极形状及表面光洁度,尽量使电场均匀,消除接触气隙,确保可靠密封)改进制作工艺(消除残留的杂质,气泡,水分等)改善影响环境(防潮防尘和防止有害气体的侵蚀,加强散热冷却)交流耐压实验和直流耐压实验的比较 1.直流下没有电容电流,要求电源容量很小,加上可以用串极的方法产生高压直流,试验设备可以做得比较轻巧,适用于现场预防性试验.2.直流耐压试验时,可以同时测量泄漏电流. 直流耐压实验比交流耐压试验更能发现电机端部的绝缘缺陷.但是由于交,直流下绝缘内部的电影分布不同,直流耐压试验不如交流下接近实际情况,因此不能用直流完全代替交流耐压试验,两者应配合使用. 冲击电压试验就是用来检验各种高压电气设备在雷电过电压和操作过电压作用下的绝缘性能或保护性能.冲击电压发生器是产生冲击电压波的装置.冲击电压测量方法:测量球隙(测量电压峰值);分压器—峰值电压表;分压器-示波器(记录波形)设备:从试品接到分压器高压端的高压引线;分压器;把分压器与示波器连接起来的同轴电缆;示波器. 反击:接地的杆塔及避雷线电位升高导致线路绝缘闪络. 雷直击三种情况:雷击杆塔;雷击避雷线;雷绕击于导线. 防雷措施:1)架设避雷线(防止雷直击导线,有分流作用以减小流经杆塔的雷电流,降低塔顶电位)2)降低杆塔接地电阻(可以减小雷击杆塔时的电位升高)3)架设耦合地线(加强避雷线与导线间的耦合使线路绝缘上的过电压降低,增加对雷电流的分流作用) 4)采用中性点非有效接地方式(增加分流和对未闪络相的耦合作用,使未闪络相绝缘上的电压下降,而提高线路的耐雷水平)5)加强线路绝缘(加大大跨越档导,地线间的距离,以加强线路绝缘)6)装设自动重合闸(大多数雷击事故在线路跳闸后能自行消除,安装后可降低线路的雷击事故率)填空题 1.固体电介质电导包括表面电导和体积电导2.极不均匀电场中,屏障的作用是由于其对空间电荷的阻挡作用,造成电场分布改变3.电介质的极化形式包括电子式极化、离子式极化、偶极子极化和夹层极化。
高电压技术复习要点
第一章 电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2) 复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段:气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
高电压技术总复习重点
6、 影响固体电介质击穿电压的主要因素
电压作用时间 温度
电场均匀程度受潮来自累积效应 机械负荷第二篇 电气设备绝缘试验
第3章 绝缘的预防性试验
1、绝缘电阻与吸收比的测量
?用兆欧表来测量电气设备的绝缘电阻
?吸收比K定义为加压 60s时的绝缘电阻与 15s时的绝 缘电阻比值。
?K恒大于 1,且越大表示绝缘性能越好。
?大容量电气设备中,吸收现象延续很长时间,吸收 比不能很好地反映绝缘的真实状态,可用极化指数 再判断。
?测量绝缘电阻能有效地发现总体绝缘质量欠佳;绝 缘受潮;两极间有贯穿性的导电通道;绝缘表面情 况不良。
2、泄漏电流的测量
测量泄漏电流从原理上来说,与测量绝缘电阻是 相似的,能发现一些尚未完全贯通的集中性缺陷, 原因在于 :
若个别试验项目不合格,达不到规程的要求,可使 用三比较方法。 ?与同类型设备作比较
同类型设备在同样条件下所得的试验结果应该大 致相同 ,若差别很大就可能存在问题 ?在同一设备的三相试验结果之间进行比较
若有一相结果相差达 50%以上,该相很可能存在缺陷 ?与该设备技术档案中的历年试验数据进行比较
若性能指标有明显下降情况 ,即可能出现新的缺陷
11、气体的状态对放电电压的影响 湿度、密度、海拔高度的影响
12、气体的性质对放电电压的影响 在间隙中加入高电强度气体 ,可大大提高击穿电 压,主要指 一些含卤族元素的强电负性气体, 如SF6
13、提高气体放电电压的措施 ?电极形状的改进 ?空间电荷对原电场的畸变作用 ?极不均匀场中屏障的采用 ?提高气体压力的作用 ?高真空 ?高电气强度气体 SF6的采用
高电压技术各章 知识点
高电压技术复习资料要点
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
高电压技术重点知识整理(6页)
1.电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体D=1 水D=81 蓖麻油 D=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。
5.电介质中的能量损耗:δωδωεCtg U V tg E pV P 22=== 6.tg δ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数 7.四种形式电离的产生:撞击电离 光电离 热电离 表面电离 8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强cr E 值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10.汤森德理论只是对较均匀电场和S •δ较小的情况下适用。
11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为1-de α这批正离子在阴极上造成的二次自由电子数(r 过程)应为:)1(-de r α如果它等于1就意味着那个初始电子有了一个后继电子从而使放电得以自持。
12.帕邢定律:在均匀电场中,击穿电压b U 与气体相对密度δ,极间距离S 并不具有单独的函数关系,而是仅与他们的积有函数关系,只要S ⋅δ的乘积不变,b U 也就不变。
13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
高电压技术复习总
一:填空题1.电离是指电子脱离原子核的束缚而形成自由电子和正离子过程。
2.碰撞电离是气体放电过程中产生带电质点最重要的方式。
3.气体发生放电时,除不断形成带电质点的电离过程外,还存在相反的过程,即带电质点的消失过程,则带电质点的消失情况有:带电质点受电场力的作用流入电极;带电质点的扩散;带电质点的复合4.新电子在向阳极行进过程中会发生碰撞电离,产生两个新电子,电子总数增加到4个。
第三次碰撞增加到8个,即按几何数不断增加,因此将这一剧增的电子流称为:电子崩5.自持放电的条件为:r(ead-1)=1或read=16.汤逊放电理论的适用范围低电压、pd较小。
7.棒-板间隙中棒为正极性时电晕起始电压比负极性时略高。
8.在均匀电场中的击穿,若电极布置称,则无<有,无>击穿极性效应,当间隙距离d在1到10cm范围内时,击穿强度比约等于30kv/cm。
9.由于高场强下电极性不同,空间电荷极性不同,对放电发展的影响也不同,这就造成不同极性的高场强电极的电晕起始电压的不同以及间隙击穿电压的不同,称为极性效应。
10.解决电晕放的途径是限制导线的表面场强,最好解决方法是采用分裂导线。
1.国际上大多数国家对于不同极性的标准雷电波形可表示为+1.2|50us或-1.2|50us 。
2.空间电荷对原电场有畸变作用。
3.沿整个固体绝缘表面产生的放电称为闪络。
4.输电线路采用钢化玻璃绝缘子是由于它具有损坏后自爆的特性。
5.引入固体介质的闪络电压比气体的闪络电压低。
6.具有强垂直分量时的沿面放电对绝缘的危害比具有弱垂直分量时的沿面放电对绝缘的危害大。
7.出现滑闪放电的条件: 电场必须有足够的垂直分量, 电场必须有足够的水平分量,电压必须是交变的。
8.目前在世界范围内应用最广泛的划分污秽等级的方法是等值盐密法。
9.采用高电气强度气体 SF6 可削弱气体中的电离强度。
10.石蜡的闪络电压比电瓷高,因为石蜡具有憎水性质。
1.液体电介质有矿物绝缘油、合成绝缘油、植物油三大类。
高电压技术重点知识整理
E U 1. 电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2. 电介质的介电常数代表电介质极化程度 (气体 D=1 水 D=81 蓖麻油 D=4.2 )3. 电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4. 影响液体介质电导的因素 :温度,电场强度。
5. 电介质中的能量损耗 :P pV E 2 tg V U 2Ctg6. tgδ :介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7. 四种形式电离的产生 :撞击电离 光电离 热电离 表面电离 8. 气体中带电质点的消失 :1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9. 自持放电:当场强超过临界场强 值时,这种电子崩已可仅由电场的作用而自行维持和cr发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10. 汤森德理论 只是对较均匀电场和• S 较小的情况下适用。
11. 物理意义 :一个电子从阴极到阳极途中因为电子崩 (ɑ过程)而造成的正离子数为 e d1这批正离子在阴极上造成的二次自由电子数( r 过程)应为: r (ed1) 如果它等于 1 就意味着那个初始电子有了一个后继电子从而使放电得以自持。
12. 帕邢定律:在均匀电场中,击穿电压与气体相对密度 ,极间距离S 并不具有单独的 b函数关系,而是仅与他们的积有函数关系,只要S 的乘积不变, 也就不变。
b13. 流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强 电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极 (阳极流柱)或由阴极向阳极(阴极流柱)击穿14. 电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电 有本质的区别, 电晕放电的电流强度并不取决于电源电路中的阻抗, 而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
(完整)高电压重点知识复习
第一章 电介质的电气强度第一节平均自由行程长度:单位行程中的碰撞次数Z 的倒数λ。
影响因素:气体分子的半径、温度、气压。
迁移率:E vk =,表示带电粒子在单位场强(m /1V )下沿电场方向的漂移速度。
电离:产生带电粒子的物理过程,气体放电的首要前提。
使基态原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能,外界能量必须大于电离能才能使电离发生。
四种电离方式:光电离、热电离、碰撞电离、电极表面的电离其中引起碰撞电离的条件为i e W Ex q ≥。
电极表面的电离的四种方式:正离子撞击阴极表面、光电子发射、热电子发射、强场发射。
负离子的形成:当电子与气体分子碰撞时,有可能引起碰撞电离而产生出正离子和新电子,也可能会发生电子和中性分子结合形成负离子(称为附着)。
对放电的形成起什么作用及其原因:负离子的形成并没有使气体中的带电粒子数改变,但却能使自由电子数减少,因而对气体放电的发展起抑制作用。
带电粒子的消失三种形式:1.在电场驱动下作定向运动,到达电极时消失于电极上而形成外电路中的电流2.因扩散现象而逸出气体放电空间3.带电粒子的复合第二节发生电子崩后抵达阳极的电子数:d a e n n α0= 电子碰撞电离系数E BPApe -=α,表明该系数与场强和气压有关。
场强很大时,α急剧增大,气压过大或过小时α都较小。
(电子碰撞电离系数越大击穿电压越低)第三节汤逊放电的γ过程及汤逊放电全过程:(1)正离子撞击到阴极表面发生表面电离,使阴极释放出二次自由电子的过程称为γ过程(2)在电极的气隙中,因外界电离因子产生出自由电子,这些自由电子在电极两端电压的作用下向阳极移动,当空间的电场强度足够大,这些电子将引起碰撞电离,产生出新的电子,新的电子又将引发碰撞电离,如此持续就会产生电子崩。
在碰撞电离过程中产生的正离子在电场的作用下撞击阴极,当场强足够大时,初始电子崩的正离子能在阴极上产生的新电子数大于或等于由外界电离因子产生的电子,那么即使除去外界电离因子的作用,放电也能够自持。
高电压技术考试复习知识点
高电压技术考试复习知识点高电压技术复习资料1. 原子的电离:中性原子在外界因素作用下,获得足够大的能量,可使原子中的一个或几个电子完全摆脱原子核的束缚,形成自由的电子和正离子的过程。
2. 电离的条件:原子从外界获取的能量大于原子的电离能。
3. 气体原子电离的因素:电子或正离子与气体分子的碰撞、各种光辐射、高温下气体的热能。
4. 电离的形式:碰撞电离、光电离、热电离、表面电离(外界电离因素作用,电子从电极表面释放)。
5. 去电离过程:即带电粒子消失的过程,带电粒子从电离区消失,或者削弱其产生电离。
带电离子的运动、扩散、复合以及电子的附着作用都属于这样的作用。
6. 带电粒子的扩散:带电粒子不断从高浓度区域移向低浓度区域,使各种带电粒子浓度变得均匀的现象。
是由于热运动造成的。
7. 气体放电分类:自持放电与非自持放电。
8. 自持放电:由天然辐射作用产生电离形成正离子和电子,在高电场作用下,电子加速碰撞气体分子,产生新的电子和离子,电离过程像雪崩一样发展,称为电子崩。
正离子撞击阴极又产生新的电子崩,即使外界不传给起始电子,放电过程能持续下去的现象。
不需要其他任何外加电离因素而仅由电场的作用就能维持的放电。
9. 汤逊理论:当外加电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,因碰撞游离而产生的新的正离子在电场作用下向阴极运动,并撞击阴极,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电的过程。
10. 汤逊理论适用范围:均匀电场、低气压、Pd 较小的条件下在放电实验的基础上建立的。
11. 汤逊放电理论实质:碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极表面逸出电子,逸出电子是维持气体放电的必要条件,所逸出的电子是否能够接替起始电子是自持放电的判据。
12. 流注理论:解决汤逊理论不能解释的在高气压、Pd 大时的放电外形(具有分支的细通道,而按汤逊理论,整个电极空间连续进行)、放电时间(实测时间比计算值小得多)、击穿电压(击穿电压计算值与实验值不一致)、阴极材料(击穿电压与材料无关)等问题,并在总结这些实验现象的基础上形成。
高电压技术部分知识点复习
《高电压技术》部分知识点复习第一部分 高电压绝缘及其试验(1-6章)重点:高压绝缘中电介质的电气特性及高压设备的绝缘预防性试验。
气体的绝缘特性1、汤逊理论:(气体伏安特性)基本理论,带电粒子产生的条件,:外界加入的能量大于或等于电离能。
产生的方式:碰撞电离,光电离、热电离、表面电离、负离子的形成。
去游离条件,:去游离的方式:带电质点受电场力的作用流入电极中和电量;带电质点的扩散、带电质点的复合。
’电子崩的发展规律:气体发生撞击电离,电离出来的电子和离子在场强的驱引下又加入到撞击电离过程,于是,电离过程就像雪崩一样增长起来。
及自持放电条件,:汤逊理论的局限性:δS>0.26cm,气隙击穿电压与按汤森德理论计算出来的数值差异较大。
对δS 较大时的很多气隙放电现象无法解释。
比如放电形式、阴极材料、放点时间。
汤逊理论适用范围。
:低气压、短间隙的情况和较均匀场中。
2、不均匀场放电特性:流注理论,:由初崩中辐射出的光子,在崩头、崩尾外围空间的局部强场中衍生出二次电子崩并汇合到主崩通道中来,使主崩通道不断向前、后延伸的过程。
电子崩的发展规律:有效电子(经撞击电离)→电子崩(畸变电场)→发射光子(在强电场作用下)→产生新的电子崩(二次崩) →形成混质通道(流注)→由阳极向阴极(阳极流注)或由阴极向阳极(阴极流注)击穿.及自持放电条件:δS>0.26cm,即产生流注的条件,适用范围:δS>0.26cm 的均匀电场和不均匀电场各种电压作用的放电特性:放电时延的定义:从电压达到U0的瞬时起,到气隙完全被击穿为止的时间,u 50%在何处:气隙被击穿的概率为50%的冲击电压峰值,接近伏秒特性带的最下边缘。
3.、提高抗电强度的措施:改善电场分布、采用高度真空、增大气压、采用耐电强度高的气体。
4、沿面放电的三个阶段及提高沿面放电电压的措施:电晕放电、刷形放电、滑闪放电措施:屏障、屏蔽、加电容极板、消除窄气隙、绝缘表面处理、改善局部绝缘体的表面电阻率、强制固定绝缘沿面各点的电位、附加金具、阻抗调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高电压技术复习要点(2013-2014-1 0912121-2) (王伟 屠幼萍编著 高电压技术) 第1章 气体放电的基本物理过程1.何为原子的激励和电离。
2.气体电离的形式及基本概念。
3.气体碰撞电离与哪些因素有关。
4.气体产生放电的首要前提。
5.热电离与碰撞电离的异同。
6.影响逸出功的因素。
7.金属电极表面电离的四种形式。
8.负离子形成对气体放电的影响。
9.气体放电过程中存在哪三种带电质点。
10.带电粒子的自由行程及特性。
11.影响平均自由行程的因素。
12.带电粒子的迁移率。
为何电子的迁移率和平均自由行程大于离子。
13.何为带电离子的扩散,何原因所致。
14.带电粒子消失的主要方式。
15为何电子与离子间的复合概率远小于正、负离子复合概率。
16.气体放电分为哪两类。
17.非自持放电自持放电18.绘制并说明“气体中电流与电压的关系曲线”及对应的放电过程。
19.阐述Townsend理论。
20.电子碰撞电离系数;正离子表面电离系数。
21.自持放电条件表达式。
22.影响电子碰撞电离系数的因素。
23.Paschen定律,击穿电压为何具有最小值。
24.当pd>200(cm.133Pa)后,击穿过程与Townsend理论的差异主要有哪些。
25. Townsend理论的适用范围。
26.流注理论的特点;流注27.正流注、负流注以及二者形成的不同之处。
28根据放电特征,电场均匀程度如何划分。
29.电晕放电;防止和减轻电晕放电的根本途径。
30.极性效应31.雷电放电的三个主要阶段。
32.沿面放电。
33.固体介质表面电场分布的三种典型情况。
34.极不均匀电场具有强垂直分量时沿面放电过程。
35.滑闪放电以什么为特征。
沿面放电与什么有关。
比电容。
第2章 气体介质的电气强度1.空气间隙击穿的充要条件。
2.放电时间及三个组成部分和特性。
3.升压时间;统计时延;放电发展时间。
4.雷电冲击电压标准波形及符号表示。
5.雷电冲击截波电压波形及符号表示。
6.操作冲击电压标准波形及符号表示。
7.50%冲击击穿电压及作用;冲击系数8.空气间隙的伏秒特性及特征。
9.间隙伏秒特性的形状决定与什么。
10.间隙伏秒特性的应用意义及对伏秒特性形状的要求。
11.耐受率与击穿率的关系。
12.影响稍不均匀电场间隙击穿电压的因素。
13.同样间隙距离下击穿电压与电场均匀程度的规律。
14.极不均匀电场中影响间隙击穿电压的因素。
15.极不均匀电场中击穿电压与稍不均匀电场中击穿电压的不同。
16.操作冲击电压下极不均匀电场长间隙击穿曲线呈U形是何原因造成的,其冲击击穿特性的饱和程度与什么有关。
17.大气条件对击穿电压的影响。
18.提高气体介质电气强度的途径、方法及作用。
19.全电压效应。
20.影响气体沿面闪络电压的因素。
21.提高间隙沿面闪络电压的方法及作用缘由。
22.爬电比距;屏障;屏蔽。
第3章 电介质的电气特性1.高压电介质的电气特性。
2.电介质极化及四种基本形式和特点。
3.介电常数的物理意义。
4.液体电介质可分为哪几种,介电常数有何不同。
5.影响极性液体电介质介电常数的主要因素及图解。
6.固体电介质可分为哪三种,有何不同。
7.简述介质极化在实际工程中的意义。
8.表征电介质导电性能的主要物理量。
9.按载流子不同,电介质电导可分为哪两种。
10.离子电导可分为哪两种。
11.气体电介质电导如何造成的。
12.液体电介质的电导主要有哪两种。
13.杂质和温度对液体电导的影响。
14.电场强度对液体电导的影响及图3-1-12的含义。
15.固体介质电导分为哪两部分。
图3-1-13的含义。
16.电场强度、杂质和温度对固体电导的影响。
17.固体介质表面电导。
18.电介质损耗有哪两种。
何为介质损耗。
19.理解电介质的三支路等值电路。
20.理解气体损耗图3-1-17。
21.中性液体电介质损耗主要由什么决定。
理解图3-1-18,3-1-19.22.极性液体电介质损耗主要包括哪些。
理解图3-1-20,3-1-21.23.固体介质按结构分为哪几种。
24.不均匀固体电介质损耗取决于什么。
25.讨论介质损耗的意义。
26.纯净液体电介质的击穿机理主要分为哪两类。
27.电击穿、气泡击穿机理。
28.工程用液体电介质击穿机理。
29.影响液体电介质击穿电压的因素及内涵。
30.对液体电介质的击穿电压,为何在不均匀电场中或冲击电压作用下,杂质影响较小。
31.提高液体电介质击穿电压的方法,屏障的作用。
32.常见固体电介质的击穿形式。
33.固体电介质的击穿机理。
图3-3-1的含义。
34.长时击穿电压;电化学击穿机理。
35.在交流电压和冲击电压下,导致树枝状放电劣化的缘由。
36.影响固体电介质击穿电压的主要因素。
37.提高固体电介质击穿电压的方法。
38.电介质的其他性能。
第4章 电气设备绝缘预防性试验1.电气设备绝缘试验的分类。
2.绝缘特性试验、绝缘耐压试验及相关内容。
3.画出绝缘等值电路及泄漏电流和绝缘电阻与时间的关系曲线及意义。
4.吸收比K及其值与绝缘状况的关系。
5.极化指数P6.兆欧表屏蔽端子的作用。
7.测绝缘电阻能有效发现哪些缺陷。
8.测泄漏电流相对测绝缘电阻还需注意哪些问题。
9.泄漏电流测量具有什么特点。
10.哪些因素影响西林电桥测介质损耗的精度。
11.消除西林电桥测量误差的最简便有效的方法。
12.画出西林电桥反接线图。
13.测介质损耗可有效发现绝缘的那些缺陷。
14.测介质损耗应注意的问题。
15.画出局部放电的等效电路。
16.衡量局部放电强度的参数有哪些。
17.当电气设备内部有局部过热或局部放电等缺陷时,缺陷附近的绝缘会分解出哪些气体。
18.变压器内部裸金属部分局部过热引起变压器油中溶解气体的主要特点。
19.变压器内部固体绝缘过热时溶解于变压器油中溶解气体的主要特征。
20.变压器内部存在局部放电,色谱分析特征。
如何区别是放电还是过热。
21.色谱分析法的功效和局限性。
.第5章电气设备绝缘在线监测1. 何为介质损耗在线监测的相位差法、综合相对法。
2. 局部放电在线监测、油中气体含量在线监测的基本原理。
第6章输电线路和绕组中的波过程1.何为波过程。
写出波阻抗与电压和电流波的关系式,简述其物理意义。
2.写出波速的表达式,简述物理含义。
3.从功率的观点简述波阻抗与集中参数电阻物理意义的不同。
4.绘出电压波和电流波间关系图示。
5.行波计算的四个方程。
6.几种特殊情况下的波过程。
7.彼得逊法则及应用。
8.电感、电容对通过的行波的作用。
波过电感和电容有何不同。
9.在波多次折反射的网格图上标注折反射数值。
10.多次折返射波过程有何特点。
11.波在多导线系统中传播的特点及特征参数。
12.对称三相系统三相同时进波时,导线等值波阻抗的变化及物理意义。
13.平行多导线耦合作用的表征参数及工程应用意义。
14.引起波在传播过程中能量损耗的因素。
15.线路的电阻和电导对波过程有哪些影响。
16.冲击电晕对波过程有哪些影响。
17.单绕组中波过程起始电压分布取决于什么。
分布的大致情况如何。
18.单绕组中波过程稳态电压分布情况。
19.单绕组中波过程过渡过程存在的根本原因。
20.饶祖间波的传递是如何实现的。
削弱绕组内部振荡的基本方法。
第7章雷电及防雷保护装置1.雷云对大地的每次放电分为哪三个过程。
2.画出雷电放电的彼德逊等值电路。
3.常用的雷电等值波形有哪三种,分别画出或识别。
4.雷暴日;雷暴小时;地面落雷密度;线路落雷次数。
5.雷电流平均陡度计算。
6.避雷针(线)的保护原理。
7.避雷线的保护角及取值范围。
8.避雷器保护原理及基本类型。
9.阀式避雷器的保护比,电阻阀片的主要作用。
10.氧化锌避雷器的保护比。
11.电力系统接地按功能分为哪三类。
12.接地电阻包括哪些部分的组合。
13.接地电阻大小的物理意义。
工频接地电阻计算。
14.发电厂、变电站接地电阻的计算及取值范围。
第8章输电线路的防雷保护1.输电线路上出现的雷电过电压的两种形式。
2.衡量输电线路的防雷性能优劣的主要指标。
3.耐雷水平;雷击跳闸率。
4.线路上的感应雷过电压包括那两个分量,各产生的机理。
5.感应雷过电压值的计算(雷击大地、雷击杆塔)。
6.避雷线感应雷过电压的抑制机理。
7.感应雷过电压的特点。
8.雷击无避雷线的两种情况;雷击有避雷线的三种情况及耐雷水平。
9.何为反击。
工程上提高雷击杆塔耐雷水平的主要手段。
10.雷击导线时的过电压幅值和耐雷水平,等值电路。
11.雷击避雷线档距中央可能出现哪两种情况,等值电路。
12.雷电过电压引起线路跳闸应具备的双重条件。
13.建弧率;输电线路雷击跳闸率计算。
14.线路防雷的最终目的。
15.线路防雷可采取的措施及机理。
第9章发电厂和变电站的防雷保护1.发电厂、变电站遭受雷害可能来自哪两个方面。
2.对直击雷的保护一般采用什么方式。
3.对线路入侵雷电波的防护采用什么方式。
4.直配电机的防雷保护措施。
5.避雷针的装设可分为哪两种形式。
6.独立避雷针用于何种电压等级的变电所,为什么。
7.装设独立避雷针时,哪些间隙应满足的要求值。
8.构架避雷针不应装设的位置。
10.正常防雷接线的110~220kv变电站,流经避雷器的雷电流数值一般不超过多少。
11.避雷器与被保护设备距离与被保设备过电压的关系。
12.何为避雷器与被保护设备间的最大允许电气距离。
13.何为变电所进线段保护及保护机理,14.熟悉35kv及以上变电所的进线段保护接线图及机理。
15..熟悉35kv小容量变电所简化进线段保护及机理。
16.三绕组变压器的防雷保护在哪一侧,为什么。
17.熟悉自耦变压器防雷保护的配置。
18.不同接地方式对变压器中性点保护的要求。
19.直配电机的防雷保护内容包括哪些。
熟悉保护措施及接线原理图。
20.非直配电机如何防雷。
第10章电力系统内部过电压1.何为内部过电压,分为哪两类。
2.电力系统常见的操作过电压有哪些。
3.暂时过电压有哪些。
4.内部过电压的特征,内部过电压倍数。
5.工频过电压及引起的原因;工频过电压为何对超高压远距离输电绝缘水平的确定起重要作用。
6.空载长线路电容效应。
7.熟悉无限大电源、有限大电源与空载长线相连及有限大电源与带并联电抗器的长线相连等情况下的工频电压升高问题。
8.何种形式的不对称接地引起的工频电压升高更严重。
9.从不对称的角度简述35kv~60kv和110kv及以上系统采用的不同接地方式。
10.操作过电压及产生机理。
11.中性点直接接地系统常见的操作过电压有哪些。
12.中性点非直接接地系统常见的操作过电压及防护措施。
13.超高压系统中目前采取的限制操作过电压水平的有效措施有哪些。
14.合闸空载线路通常有哪两种情况。
哪种情况的过电压最严重。
15.正常空载线路合闸时的理想最大过电压幅值。
16.重合闸时线路上可能出现的最大高电压幅值。