挑战高考数学压轴题库之圆锥曲线与方程
高中数学圆锥曲线压轴题大全
高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
数学高考圆锥曲线压轴题
数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题★★椭圆C:+=1(a>b>0)的离心率e=,2),a+b=3.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.★★如图,椭圆C:+=1(a>b>0)经过点P(1,),离心率e=,直线l的方程为x=4.(Ⅰ)求椭圆C的方程;(Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.★★椭圆C:+=1(a>b>0)的左右焦点分别是F1,F2,离心率为,2),过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(Ⅰ)求椭圆C的方程;(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明+为定值,并求出这个定值.二、圆锥曲线中的最值问题★★在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,2),直线y=x被椭圆C截得的线段长为,5).(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l 交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.★★★如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=,2),且|F2F4|=-1.(Ⅰ)求C1、C2的方程;(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.三、圆锥曲线与过定点(定直线)问题★★设椭圆E:+=1的焦点在x轴上.(Ⅰ)若椭圆E的焦距为1,求椭圆E的方程;(Ⅱ)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.四、圆锥曲线与求参数★★在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为,2).(Ⅰ)求椭圆C的方程;(Ⅱ)A,B为椭圆C上满足△AOB的面积为,4)的任意两点,E为线段AB的中点,射线OE 交椭圆C与点P,设=t,求实数t的值.五、存在性问题★★如图,已知椭圆+=1(a>b>0)过点(1,,2)),离心率为,2),左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线PF1、PF2的斜线分别为k1、k2.①证明:-=2;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率k OA、k OB、k OC、k OD满足k OA +k OB+k OC+k OD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.六、轨迹方程★★已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(,).(Ⅰ)求椭圆C的离心率;(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且=+,求点Q的轨迹方程.。
压轴题型11 圆锥曲线压轴题的处理策略(解析版)-2023年高考数学压轴题专项训练
压轴题11圆锥曲线压轴题的处理策略从近几年圆锥曲线的命题风格看,既注重知识又注重能力,既突出圆锥曲线的本质特征。
而现在圆锥曲线中面积、弦长、最值等几乎成为研究的常规问题。
“四心”问题进入园锥曲线,让我们更是耳目一新。
因此在高考数学复习中,通过让学生研究三角形的“四心”与圆锥曲线的结合问题,快速提高学生的数学解题能力,增强学生的信心,备战高考.○热○点○题○型1齐次化解决圆锥曲线压轴题○热○点○题○型2极点极线处理圆锥曲线压轴题○热○点○题○型3定点定值问题的处理策略1.已知拋物线2:2(0)C y px p =>,F 为焦点,若圆22:(1)16E x y -+=与拋物线C 交于,A B两点,且AB =(1)求抛物线C 的方程;(2)若点P 为圆E 上任意一点,且过点P 可以作拋物线C 的两条切线,PM PN ,切点分别为,M N .求证:MF NF ⋅恒为定值.(2)令()()0011,,,,P x y M x y N 抛物线在点M 处的切线方程为(1x x m -=与24y x =联立得2114440y my my x -+-=由相切()211164440m my x ∆=--=得4my 代入①得12y m=故在点处的切线方程为()1112y x x y y -=-同理:点N 处的切线方程为222yy x x =+而两切线交于点()00,P x y ,所以有010*******,22y y x x y y x x =+=+,则直线MN 的方程为:00220x y y x -+=,由2004220y x x y y x ⎧=⎨-+=⎩得200240y y y x -+=于是()()221212||||1116y y MF NF x x ⋅=++=+()22001x y =-+,又点()00,P x y 在圆22:(1)16E x y -+=上,所以()2200116x y -+=,即||||16MF NF ⋅=.【点睛】关键点睛:本题的关键在于设切点,写出切线方程,然后将其与抛物线方程联立,再利用Δ0=得到相关等式,再得到直线MN 的方程,将其与抛物线联立,得到韦达定理式,最后利用抛物线定义写出线段长乘积表达式,利用点在圆上进行整体代入即可.2.如图:小明同学先把一根直尺固定在画板上面,把一块三角板的一条直角边紧靠在直尺边沿,再取一根细绳,它的长度与另一直角边相等,让细绳的一端固定在三角板的顶点A 处,另一端固定在画板上点F 处,用铅笔尖扣紧绳子(使两段细绳绷直),靠住三角板,然后将三角板沿着直尺上下滑动,这时笔尖在平面上画出了圆锥曲线C 的一部分图象.已知细绳长度为3,经测量,当笔尖运动到点P 处,此时,30,90FAP AFP ∠∠=︒=︒.设直尺边沿所在直线为a ,以过F 垂直于直尺的直线为x 轴,以过F 垂直于a 的垂线段的中垂线为y 轴,建立平面直角坐标系.(1)求曲线C 的方程;(2)斜率为k 的直线过点(0,3)D -,且与曲线C 交于不同的两点M ,N ,已知k 的取值范围为(0,2),探究:是否存在λ,使得DM DN λ=,若存在,求出λ的范围,若不存在,说明理由.由60FPA ︒∠=得点P 的横坐标得32p =,所以轨迹C 的方程为2y =(2)假设存在λ,使得DM 由233y kx y x=-⎧⎨=⎩消去y 得:k 而(0,2)k ∈,2(63)k ∆=+2121221126((2)x x x x x x x x +++==于是21142k k λλ+=++,令因此1174λλ+>,又0λ>所以存在1(0,)(4,4λ∈⋃+∞【点睛】易错点睛:求解轨迹方程问题,设出动点坐标,根据条件求列出方程,再化简整理求解,还应特别注意:补上在轨迹上而坐标不是方程解的点,解的点.3.在平面直角坐标系xOy 中,已知双曲线E :()2210,0a b a b-=>>的右焦点为F ,离心率为2,且过点()2,3P .(1)求双曲线E 的标准方程;(2)设过原点O 的直线1l 在第一、三象限内分别交双曲线E 于A ,C 两点,过原点O 的直线2l 在第二、四象限内分别交双曲线E 于B ,D 两点,若直线AD 过双曲线的右焦点F ,求四边形ABCD 面积的最小值.4.如图,已知双曲线22:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,O 为坐标原点,过点F 作直线1l 与双曲线的渐近线交于P ,Q 两.点,且点P 在线段FQ 上,OP PQ ⊥,|||||OP OQ PQ +.(1)求C 的方程;(2)设12,A A 是C 的左、右顶点,过点1,02⎛⎫⎪⎝⎭的直线l 与C 交于M ,N 两点,试探究直线1A M 与2A N 的交点S 是否在某条定直线上,若是,求出该定直线方程,若不是,请说明理由.(1)求点P的轨迹C的方程;(2)过点(0,1)且斜率为122k k⎛⎫≤≤⎪⎝⎭的直线l与C交于A,B两点,与x轴交于点M,线段AB的垂直平分线与x轴交于点N,求||||ABMN的取值范围.(1)若第一象限的点P ,Q 是抛物线C 与圆的交点,求证:点F 到直线PQ 的距离大于1;(2)已知直线l :()1y k x =+与抛物线交于M ,N 两点,()0A t ,,若点N ,G 关于x 轴对称,且M ,A ,G 三点始终共线,求t 的值.7.已知双曲线22:1(0,0)C a b a b-=>>,焦点到渐近线20x y -=的距离为2.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为,A B ,直线l 交双曲线C 于点,M N (点M 在第一象限),记直线MA 斜率为1k ,直线NB 斜率为2k ,过原点O 做直线l 的垂线,垂足为H ,当12k k 为定值13-时,问是否存在定点G ,使得GH 为定值,若存在,求此定点G .若不存在,请说明理由.8.已知双曲线22:1(0,0)x y C a b a b-=>>,若直线l 与双曲线C 交于,A B 两点,线段AB 的中点为M ,且34AB OM k k ⋅=(O 为坐标原点).(1)求双曲线C 的离心率;(2)若直线l 不经过双曲线C 的右顶点()2,0N ,且以AB 为直径的圆经过点N ,证明直线l 恒过定点E ,并求出点E 的坐标.)因为双曲线的右顶点()2,0N ,所以双曲线C 的标准方程为2243x y -34AB OM k k ⋅=,所以直线l 的斜率一定存在,并且3,//2AB OM ±,这不可能)设直线l 的方程为y kx m =+,联立方程)(222841203k xkmx m ---=()(2222Δ644344k m k m =---2430k -+>,21212284,3434km m x x x x k -+=⋅=--因为以AB 为直径的圆经过点N ,NA NB ⊥,所以0NA NB ⋅=,又因为()(1122,,2,NA x y NB x =-=- ()()121222NA NB x x y y ⋅=--+又因为()()1212y y kx m kx m k =++=()(21212NA NB k x x km ⋅=++- )()2241212343m km k --+⨯+-⨯-化简得2216280m km k ++=,即(m 14m k =-或2m k =-,且均满足9.已知椭圆()22:10C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的标准方程;(2)若直线y kx m =+与椭圆C 交于M ,N 两点,O 为坐标原点,直线OM ,ON 的斜率之积等于1-,求OMN 的面积的取值范围.F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的方程;(2)设O 为坐标原点,求OAB 面积的最大值以及此时直线l 的方程.11.已知双曲线()22:10,0C a b a b-=>>,焦点为12,F F ,其中一条渐近线的倾斜角为150 ,点M 在双曲线上,且124MF MF -= .(1)求双曲线C 的标准方程;(2)设椭圆M 以双曲线C 的顶点为焦点,焦点为顶点,直线():01l y kx m m =+<<交M 于,A B 两点(均不在坐标轴上),若AOB 的面积为1,求222k m -的值.设()()1122,,,A x y B x y ,由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得:()222148440k x kmx m +++-=则()2216140k m ∆=+->,即2214m k <+,122814km x x k ∴+=-+,21224414m x x k -=+,设l 与y 轴交于点T ,则()0,T m ,(1211122AOB AOT BOT S S S m x x m x ∴=+=⋅-=⋅+ 2222222141414121414m k m m k m k k+-=⋅=⋅+-=++,()2222214144k k mm +∴+-=,即()222412k m ⎡⎤+-=⎣⎦整理可得:22122k m -=-.【点睛】思路点睛:求解直线与椭圆综合应用中的三角形面积问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求三角形的面积.12.如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C ,当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率的取值范围.13.已知椭圆:22:1(0)x y E a b a b +=>>的左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,122B B =,四边形1122A B A B 的周长为(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与x 轴交于点P ,与椭圆E 交于不同的两点M ,N ,点M 关于y 轴的对称点为M '、直线M N '与y 轴交于点Q .若OPQ △的面积为2,求k 的值.123((2,2M M M -⎭中恰有两个点在椭圆上.(1)求椭圆C 的方程;(2)若C 的上顶点为E ,右焦点为F ,过点F 的直线交C 于A ,B 两点(与椭圆顶点不重合),直线EA ,EB 分别交直线40x y --=于P ,Q 两点,求EPQ △面积的最小值.⊥两点,O为坐标原点,OA OB(1)求C的方程;(2)在x轴上是否存在点T,使得直线TA与直线TB的斜率之和为定值k.若存在,求出点T的坐标和定值k;若不存在,请说明理由.,抛物线C的准线与x轴的交点为B,且||AB=(1)求抛物线C的标准方程;(2)过点B的直线l与抛物线C交于E,F两点(异于点A),若直线,EA FA分别交准线于点,M N,求||||BMBN的值.17.在直角坐标系xOy 中,已知椭圆2:12+=E y 的右顶点、下顶点、右焦点分别为A ,B ,F .(1)若直线BF 与椭圆E 的另一个交点为C ,求四边形ABOC 的面积;(2)设M ,N 是椭圆E 上的两个动点,直线OM 与ON 的斜率之积为12-,若点P 满足:2OP OM ON =+.问:是否存在两个定点G ,H ,使得PG PH +为定值?若存在,求出G ,H 的坐标;若不存在,请说明理由.18.已知双曲线22:1(0,0)C a b a b -=>>的左、右焦点分别为1F ,2F ,且124F F =,P 是C 上一点.(1)求C 的方程;(2)不垂直于坐标轴的直线l 交C 于M ,N 两点,交x 轴于点A ,线段MN 的垂直平分线交x 轴于点D ,若||||2||AM AN AD ⋅=,证明:直线l 过四个定点()()()()3,0,1,0,1,0,3,0--中的一个.19.已知过点()1,e 的椭圆E :()2210x y a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于,A C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.20.已知椭圆Γ:(210,2x y m m m +=>≠,点,A B 分别是椭圆Γ与y 轴的交点(点A 在点B 的上方),过点()0,1D 且斜率为k 的直线l 交椭圆Γ于,E G 两点.(1)若椭圆Γ焦点在x 轴上,且其离心率是2,求实数m 的值;(2)若1m k ==,求BEG 的面积;(3)设直线AE 与直线2y =交于点H ,证明:,,B G H 三点共线.。
高考数学压轴大题训练:圆锥曲线的方程与性质
点,且满足
=
.
(1)试用 a 表示 m2; (2)求 e 的最大值; (3)若 e∈( , ),求 m 的取值范围.
8.(12 分)已知中心在原点 O,焦点在 x 轴上的椭圆 C 的离心率为 ,点 A,B 分别是椭
圆 C 的长轴、短轴的端点,点 O 到直线 AB 的距离为 .
(1)求椭圆 C 的标准方程;
高考数学压轴大题训练:圆锥曲线的方程与性质
解答题(共 12 小题,满分 148 分)
1.(13 分)已知椭圆 C:
=1(a>b>0),直线 y=
与以原点为圆心,以椭圆
C 的短半轴长为半径的圆相切,F1、F2 为其左、右焦点,P 为椭圆 C 上任一点,△F1PF2 的重心为 G,内心为 I,且 IG∥F1F2. (1)求椭圆 C 的方程; (2)若直线 l:y=kx+m(k≠0)与椭圆 C 交于不同的两点 A、B,且线段 AB 的垂直平 分线 l′过定点 Q( ,0),求实数 k 的取值范围.
6.(13 分)如图,椭圆 C1:
=1(a>b>0)的离心率为 ,x 轴被曲线 C2:y=
x2﹣b 截得的线段长等于 C1 的长半轴长. (Ⅰ)求 C1,C2 的方程; (Ⅱ)设 C2 与 y 轴的交点为 M,过坐标原点 O 的直线 l 与 C2 相交于点 A、B,直线 MA, MB 分别与 C1 相交于 D,E. (i)证明:MD⊥ME;
,且点 Q
在 x 轴上的射影恰为该双曲线的一个焦点 F1
第 1页(共 19页)
(Ⅰ)求双曲线 C 的方程;
(Ⅱ)命题:“过椭圆
的一个焦点 F 作与 x 轴不垂直的任意直线 l”交椭圆于
A、B 两点,线段 AB 的垂直平分线交 x 轴于点 M,则
高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)
高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(2)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线3.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54 B .45C .43D .344.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是( ) A .36B .48C .72D .965.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .46.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1167.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .48.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分9.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .2y x =±D .y =11.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .812.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.14.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 15.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.16.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.17.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.18.已知椭圆222:1(06)6x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.19.已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,则该双曲线的离心率的取值范围___________.20.在平面直角坐标系xOy 中,已知双曲线22:17y x Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OMON的值为________. 三、解答题21.已知抛物线2:2(0)C y px p =>的焦点F 到直线:l y x =的距离为2,A B ,为抛物线C 上两个动点,满足线段AB 的中点M 在直线l 上,点(0,2)N .(1)求抛物线C 的方程; (2)求NAB △面积的取值范围.22.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M 的距离为,线段NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E . (1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.23.设1F 、2F 分别是椭圆2214xy +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求1PF ·2PF 的取值范围;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.24.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值.25.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别为1F 、2F ,点M 为短轴的一个端点,离心率为12,12MF F △的面积S = (1)求椭圆C 的方程;(2)设A 是椭圆上的一点,B 是点A 关于x 轴的对称点,P 是椭圆C 上异于A 、B 的任意一点,且直线PA 、PB 分别于x 轴交于不同的点C 、D ,O 为坐标原点,求POC POD S S ⋅△△的最大值,并求出此时P 点的坐标26.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.D解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,OB ∴=. 则(0P ,0,1),B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30,2||cos30||||PQ u PQ u x ∴︒===+化为2213yx-=,即为点Q的轨迹.故选:D.【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.3.D解析:D【分析】设112233(,),(,),(,)P x y Q x y G x y,则可得切线,GP GQ的方程,即可得到直线PQ的方程,进而可求出点点,M N的坐标,再结椭圆方程可求出2231OM ON+的值【详解】解:设112233(,),(,),(,)P x y Q x y G x y,则切线GP的方程为114x x y y+=,切线GQ的方程为224x x y y+=,因为点G在切线,GP GQ上,所以13134x x y y+=,23234x x y y+=,所以直线PQ的方程为334x x y y+=,所以3344(,0),(0,)M Nx y,因为点33(,)G x y在椭圆221124y x+=上,所以2233312x y+=,所以22223333223311123(3)161616164x yx yOM ON+=+=+==,故选:D【点睛】关键点点睛:此题考查椭圆的标准方程,以及简单性质有应用,解题的关键是设点33(,)G x y ,再由已知条件得到直线PQ 的方程为334x x y y +=,从而可得,M N 的坐标,进而可得答案,考查计算能力和转化能力,属于中档题4.D解析:D 【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,25b =,则224c a b =-=,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点, 所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.5.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.6.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 7.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.8.D解析:D 【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线. 【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离, 因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.9.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).10.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F DE M =∴=,可知四边形12MF DE 为平行四边形;又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故==ce a, 故双曲线C的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.11.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点,所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率e =所以221514e a =+=,解得2a =,所以((120,,F F 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以21F M ==所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.14.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦217 【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()22222122122P b c a c b PF c c a a c a +=+--=+=,2221422b a PF PF a a +=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++, 当123cos 5F PF ∠=时,28235e =+,17e =, 当123cos 5F PF ∠=-时,28835e =+,2e =,172 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积 解析:1227【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0,∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 16.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 17.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 18.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+,由椭圆定义可得,12||||22PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称, 故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且0b <<则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x y G +=,与22163y x +=两方程相加得222222x y +=⇒=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.19.【分析】作出图形根据已知条件可得出与的大小关系再利用公式可求得双曲线的离心率的取值范围【详解】如下图所示双曲线的渐近线方程为由于过点且倾斜角为的直线与双曲线的右支有且只有一个公共点由图可知直线的倾斜解析:23,⎡⎫+∞⎪⎢⎪⎣⎭【分析】作出图形,根据已知条件可得出b a 与tan 6π的大小关系,再利用公式21b e a ⎛⎫=+ ⎪⎝⎭可求得双曲线的离心率的取值范围. 【详解】如下图所示,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,由于过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,由图可知,直线by xa=的倾斜角6πα≥,所以,tan63baπ≥=,因此,cea====≥所以,该双曲线的离心率为取值范围是3⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:3⎡⎫+∞⎪⎢⎪⎣⎭.【点睛】方法点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a、b、c的齐次关系式,将b用a、e表示,令两边同除以a或2a化为e的关系式,进而求解.20.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M,N两点的横坐标,由OMON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c===,2c=,12(F F-,取双曲线的一条渐近线y=,所以圆的方程为(2232x y+=-,由(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=,解得2NMx x==,32MNMOxxON===.取双曲线的另一条渐近线y=,(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=与上同,综上32OMON=.故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.三、解答题21.(1)24y x =;(2)(0,4]. 【分析】(1)利用抛物线焦点F 到直线l的距离为2,求出抛物线方程; (2)设出直线AB 的方程与抛物线方程联立,由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法得出NAB △面积的取值范围. 【详解】(1),02p F ⎛⎫ ⎪⎝⎭由2pd ==,解得2p = 所以抛物线方程为24y x =(2)设直线AB 的方程为:221212,,,,44y y x my t A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭联立方程组24y x x my t ⎧=⎨=+⎩,消去x 得2440y my t --=所以121244y y m y y t +=⎧⎨=-⎩,得(2,2)M m m有2212444y y m +=,即()21212216y y y y m +-= 所以222t m m =- 点N 到AB的距离h =||AB ==所以1||2|2|2NABSAB h m t =⋅⋅=+42m m =-令u =u = 由24y xy x =⎧⎨=⎩,得l 与抛物线的两交点坐标为(0,0),(4,4), 因点M 在l 上可得(0,2)m ∈ 所以(0,1]μ∈ 得34(0,4]NABSu =∈【点睛】关键点点睛:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查面积公式,解决本题的关键点是由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法和函数的性质得出NAB △的面积的取值范围,考查了学生计算能力,属于中档题.22.(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +==>=,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明. 【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||2||KM KN KM KQ MQ MN +=+==>= ∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+. 易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m my y my y m m ++=-=++ 所以0PA PB k k +=,所以OPA OPB ∠=∠. 【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 23.(1)[]2,1-;(2)22k -<<-或22k <<. 【分析】(1)根据椭圆的标准方程可得())12,F F ,设(),P x y ,利用向量数量积的坐标运算可得()2121384PF PF x ⋅=-,再由[]2,2x ∈-即可求解. (2)由题意可得直线0x =不满足题设条件,可设直线:2l y kx =+,将直线与椭圆方程联立,消去y ,可得()221416120kxkx +++=,0∆>,且12120OA OB x x y y ⋅=>+,结合韦达定理即可求解.【详解】解:(1)易知2,1,a b c ===())12,F F ,设(),P x y,则())2212,,,3PF PF x y x y x y ⋅=---=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-; 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1; ∴1PF ·2PF 的取值范围是[]2,1-(2)显然直线0x =不满足题设条件,可设直线:2l y kx =+,联立22244y kx x y =+⎧⎨+=⎩,消去y ,整理得:()221416120k x kx +++= 由题意,()()2216414120k k ∆=-+⋅>得2k <-或2k >,① 令()()1122,,,A x y B x y ,∴1212221612,1414k x x x x k k+=-=++∵AOB ∠为锐角,∴cos 0AOB ∠>即0OA OB ⋅>, ∴12120OA OB x x y y ⋅=>+又()()()2121212122224y y kx kx k x x k x x =++=+++22222212322044141414k k k k k k=-+=-++++ ∴2221220401414k OA OB k k⋅=-+>++,解得24k <, ∴22k -<<,② 故由①、②得22k -<<-或22k <<. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用数量积()2121384PF PF x ⋅=-,确定[]2,2x ∈-,并且根据题意得出0OA OB ⋅>,考查了运算求解能力.24.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴222113a a b b ⎧=⎪==⇒⎨=⎪⎩椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥⎪----⎝⎭⎣⎦()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241210512186244121244105122210512212k k k k k k k kk k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)22143x y+=;(2)POC PODS S⋅△△的最大值为3,此时P点坐标为(0,和(.【分析】(1)由面积得bc=,,a b c,得椭圆方程;(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y,写出直线,PA PB方程,求得,C D两点的横坐标,计算C Dx x⋅,注意点,A P是椭圆上的点由此可得4C Dx x⋅=为常数,这样可计算出POC PODS S⋅△△=2Py,最大值易得.【详解】解:(1)由12ca=,2a c=,得b=,又12122MF FS c b=⨯⨯=△所以1c=,2a=,b=所以椭圆C的方程为22143x y+=(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y则直线PA的方程为:()011101y yy y x xx x--=--,令y=,得100101Cx y x yxy y-=-,同理100101Dx y x yxy y+=+,所以222210012201C Dx y x yx xy y-⋅=-,又点A与点P均在椭圆上,故220413yx⎛⎫=-⎪⎝⎭,2211413yx⎛⎫=-⎪⎝⎭,得()222212201012222010141414334C Dyyy yy yx xy y y y⎛⎫⎛⎫---⎪⎪-⎝⎭⎝⎭⋅===--,所以4C DOC CD x x⋅=⋅=为定值,因为221114224POC POD P p p pS S OC y OD y y y⋅=⋅⋅⋅=⨯⨯=△△由P为椭圆上的一点,所以要使POC PODS S⋅△△最大,只要2py最大而2py最大为3,所以POC POD S S ⋅△△的最大值为3,此时P 点坐标为(0,和(. 【点睛】关键点点睛:本题考查由离心率求椭圆方程,考查椭圆中的最值问题,解题方法是解析几何的基本方程:设点,A P 坐标,:求直线方程,求交点坐标,计算面积之积,得出结论:即设点,A P 坐标,求出直线,AP BP 方程,求出交点,C D 的坐标(横坐标,纵坐标为0),而2111224POC POD P p C D p S S OC y OD y x x y ⋅=⋅⋅⋅=⨯⋅⨯△△,再计算CD x x ⋅可得最大值时P 点位置.26.(1)22143x y +=;(2)证明见解析.【分析】(1)根据椭圆离心率和椭圆的性质可知b =,再根据PQ x ⊥轴时,APQ 的面积为 92,由面积公式可知()212922b ac a +⋅=,由此即可求出椭圆方程; (2)设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知 12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线 BQ 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为 1x my =+,与椭圆22143x y +=联立,得 ()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,。
押新高考第21题 圆锥曲线(新高考)(解析版)
圆锥曲线圆锥曲线部分历来是高考的重点,也是学生心中的难点,很多学生对圆锥曲线都有畏惧心理.从高考成绩分析上来看,圆锥曲线也是高考得分较低的部分;从考纲上来看,一般会"考查学生对解析几何基本概念的掌握情况,考查学生对解析几何基本方法的一般应用情况,适当地考查学生对几何学知识的综合应用能力,重视对数学思想方法的渗透".通过近几年的高考可以看到浙江高考题在圆锥曲线这一块考抛物线较多。
圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程,研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题第(1)问起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.解决此类问题的关键是找到已知条件和代求问题之间的联系,实现代求问题代数化,与已知条件得到的结论有效对接,难点在于代求问题的转化问题方法总结1.圆锥曲线中最值问题的求解方法(1)几何法:通过利用圆锥曲线的定义和几何性质进行求解(2)代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.函数主要是二次函数、对勾函数或者导数求解,不等式主要是运用基本不等式求解2.圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3定点、定值模板1.寻找适合运动变化的量或者参数,如点坐标,直线的斜率,截距等,把相关问题用参数表示备用,或者找寻带有参数的直线与曲线联立方程组,得到关于x 或y 的一元二次方程,利用韦达定理列出x1x2,x1+x2(或y1y2,y1+y2的关系式备用2.根据已知条件把定点、定值问题转化为与参数有关的方程问题,与第一步的结论对接3,确定与参数无关点、值,即为所求.1.(2021·湖南·高考真题)已知椭圆()2222:10x y C a b a b +=>>经过点()20A ,3(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值. 【详解】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =, 32c ca ==,所以3c =222431b ac =-=-=, 所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x ,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭.2.(2021·江苏·高考真题)已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上.(1) 求实数a 的值; (2) 求()()48f f -+的值; (3) 求函数()f x 的解析式. 【详解】(1) 由直线l 过定点可得:(2)5m x y +=--,由2050x y +=⎧⎨--=⎩,解得25x y =-⎧⎨=-⎩,所以直线l 过定点()2,5A --.又因为0x <时,()log ()2a f x x x =-+, 所以(2)log 245a f -=-=-, 有log 21a =-,12a =. (2) 12(4)log 4810f -=-=-, 因为()f x 为偶函数,所以12(8)(8)log 81619f f =-=-=-, 所以(4)(8)29f f -+=-.(3) 由(1)知,当0x <时,12()log ()2f x x x =-+. 当0x >时,0x -<,1122()log 2()log 2f x x x x x-=+⋅-=-,又()f x 为偶函数,所以12()()log 2f x f x x x =-=-,综上可知,1212log ()20()log 20x xx f x x x x -+<⎧⎪=⎨->⎪⎩.3.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F 6(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN = 【详解】(1)由题意,椭圆半焦距2c =6c e a =,所以3a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F 三点共线,可设直线(:2MN y k x =即20kx y k --=,由直线MN 与曲线221(0)x y x +=>2211k k =+,解得1k =±,联立(22213y x x y ⎧=±⎪⎨⎪+=⎩可得246230x x -+=,所以12122343x x x x +=⋅=,所以()212121143MN x x x x =++-⋅所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>211b k =+,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++, 所以()2222212122263314141313kb b MN k x x x x kk k -⎛⎫=++-⋅=+--⋅ ⎪++⎝⎭22241k k =+3 化简得()22310k -=,所以1k =±,所以12k b =⎧⎪⎨=-⎪⎩或12k b =-⎧⎪⎨=⎪⎩:2MN y x =或2y x =-+所以直线MN 过点(2,0)F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||3MN =4.(2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围. 【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =. (2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故21111+1+1+444R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-, 同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-, 令21s t =-,则12s t +=且0s ≠, 故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩, 解得73n ≤--7431n -+≤<或1n >.故直线l 在x 轴上的截距的范围为743n ≤--731n -+<或1n >. [方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-. 因为2112231121114,44y y y k k y y y +==+=+, 12121223111212110444y y y y y y k k k k y y y y ++∴+=+++=+=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-. 同理3112Q m y k +=-. 由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-. 因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭. 故22121314112k m m k ++⎛⎫=⎪-⎝⎭⎛⎫- ⎪⎝⎭. 令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭. 所以210,1410,m m m -≠⎧⎨++≥⎩,解得73m ≤--731m -+≤<或1m.故直线l 在x 轴上的截距的范围为(,743)[743,1)(1,)-∞---++∞. [方法三]【最优解】:设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-. 所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--. 设直线l 的方程为2(2)y x m m =+≠-, 则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ). 所以(,1483][1483,)m ∈-∞-++∞. 因此直线l 在x 轴上的截距为(,743][743,1)(1,)2m-∈-∞---++∞.5.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b+=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为45. (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围. 【详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =,故椭圆的标准方程为:22154x y +=. (2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.1.(2022·天津·一模)已知椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,离心率为2且6AB (1)求椭圆的方程;(2)过点A 的直线与椭圆相交于点24,33⎛⎫- ⎪⎝⎭H ,与y 轴相交于点S ,过点S 的另一条直线l 与椭圆相交于M ,N 两点,且△ASM 的面积是△HSN 面积的32倍,求直线l 的方程.【解析】(1)根据题目列方程2222226a b c c a a b ⎧=+⎪⎪=⎨⎪+=⎪⎩ 解得24a =,22b =, 所以椭圆的方程为22142x y +=. (2)由已知得12=-AH k ,所以,直线AH 的方程为()122y x =--,所以,S 点的坐标为()0,1.当直线l 的斜率不存在时,21=-ASM S △,213+=HSN S △, 或21=+ASM S △,213-=HSN S △都与已知不符; 当直线的斜率存在时,设直线l 的方程为1y kx =+,()11,M x y ,()22,N x y ,由221421x y y kx ⎧+=⎪⎨⎪=+⎩,得()2212420k x kx ++-=, 122412k x x k -+=+,122212x x k -=+, 1sin 2=⋅∠ASM S AS MS ASM △,1sin 2=⋅∠HSN S HS NS HSN △, 由△ASM 的面积是△HSN 面积的32可得23=ASM HSN S S △△化简23⋅=⋅AS MS HS NS ,即23=AS NSHS MS, 又3==-A HAS xHS x ,所以,2=NS MS ,即212=-x x ,也就是212x x =-, 所以,12412--=+k x k ,12412=+k x k ,22812-=+k x k ,()2122223221212k x x k k --==++, 解得,2114k =,所以,直线方程为14114=±+y x .2.(2022·福建·模拟预测)在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,22.过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=.(1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由. 【解析】(1) 由题意知:2c e a ==,即2a c =; 当A 为椭圆的短轴端点时,不妨设()0,A b ,则()2,AF b c =-,(),2AP b =-,2223AF AP b c ∴⋅=+=,又22222a b c c =+=,22∴=b c ,即223c c +=,解得:1c =,2a ∴1b =, ∴椭圆C 的标准方程为2212x y +=;(2)设():2l y k x =-,由()22212y k x x y ⎧=-⎪⎨+=⎪⎩得:()2222218820k x k x k +-+-=, ()()42264421820k k k ∆=-+->,22k ⎛∴∈ ⎝⎭, 设()11,A x y ,()22,B x y ,则2122821k x x k +=+,21228221k x x k -=+,()()()42222121212224821221k k x x x x x x k -+∴+=+-=+,()11,0F -,()()2222221111111111112222F A x y x x x x ∴=++=++-=++,同理可得:221221222F B x x =++, ()()2242221211122248122244221x x k k F A F B x x k +++∴+=+++=++, 又219F P =,()4222481224921k k k++∴+=+,整理得:4228830k k --=,即()()22211430k k -+=,解得:2k =,222k ⎛∈- ⎝⎭,∴不存在直线l 符合题意. 3.(2022·湖南·雅礼中学二模)已知曲线C :22221(0)x y a b a b+=>>,1F ,2F 分别为C 的左、右焦点,过1F 作直线l 与C 交于A ,B 两点,满足115AF F B =,且1222AF F S =.设e 为C 的离心率. (1)求2e ; (2)若32e ≤2a =,过点P (4,1)的直线1l 与C 交于E ,F 两点,1l 上存在一点T 使111EP FP PT +=.求T 的轨迹方程. 【解析】 (1)由题直线l 斜率存在且不为0,设:l x my c =-,()()1122,,,A x y B x y ,联立方程组22221x my cx ya b =-⎧⎪⎨+=⎪⎩得22222221210m mc c y y ab a a ⎛⎫+-+-= ⎪⎝⎭, 则2222122122222222214,511mc c a a y y y y y y m m a b a b -+=-==-=++,消去2y ,得2222454a m c b =-,不妨设0m >,则()()122121212215452226AF F c y y y y c y y cSy +--====,整理可得64272176136330e e e -+-=,解得212e =3537-3537+(舍). (2)由题知22:142x y C +=, 若1l 斜率不存在,则与C 无交点,不合题意; 若1l 斜率存在,设1:(4)1l y k x =-+,与22142x y +=联立, 得()()222221416321620k x k k x k k ++-+--=,设()()1122,,,E x y F x y ,则2212122216432162,2121k k k k x x x x k k ---+==++,由()2Δ812810k k =-++>得2727k -+∈⎝⎭,设()00,T x y ,由题120111444x x x +=---,即()1212120811644x x x x x x x --=+-+-, 则可得07424x k -=+, 若07424x k -=+,则008954,2424k k x y k k +-+==++,消去k 得0042110x y +-=,若07424x k --=+,则0082394,2424k k x y k k ++==++,消去k 得0042250x y +-=, 综上,T 的轨迹方程为42110x y +-=或42250x y +-=.4.(2022·广东深圳·二模)已知椭圆2222:1(0)x y E a b a b +=>>经过点3M ⎛ ⎝⎭,且焦距1223F F =,AB CD 分别是它的长轴和短轴.(1)求椭圆E 的方程;(2)若(,)N s t 是平面上的动点,从下面两个条件中选一个...........,证明:直线PQ 经过定点. ①31,s t =≠,NA NB 与椭圆E 的另一交点分别为P ,Q ; ②2,t s =∈R ,直线,NC ND 与椭圆E 的另一交点分别为P ,Q . 【解析】(1)由已知,3c =3M ⎛ ⎝⎭在椭圆上,所以221314a b +=,又因为222a c b -=,所以 224,1a b ==,所以椭圆的方程为:224,1a b ==.(2)选①,则()()(1,),2,0,2,0N t A B -,设()(),,,P P Q Q P x y Q x y , ,,12312NA NB t t t k k t ====-+-所以()():2,:2,3NA NB tl y x l y t x =+=-- ()222314t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()2222941616360t x t x t +++-=, ()()42222564941636360t t t ∆=-+-=>所以221636294P t x t --=+,所以2281894Pt x t -+=+,则21294P t y t =+,所以22281812,9494t t P t t ⎛⎫-+ ⎪++⎝⎭, ()22214y t x x y ⎧=--⎪⎨+=⎪⎩,消去y 得:()222214161640t x t x t +-+-=, ()()422256414164160t t t ∆=-+-=>,所以22164214Q t x t -=+,所以228214Qt x t -=+,则2414Q t y t =+,所以 222824,1414t t Q t t ⎛⎫- ⎪++⎝⎭, 所以322224222124322429414818823664349414PQt tt t t t t k t t t t t t ---++===-+--+-++,所以直线PQ 的方程为:22224282143414t t t y x t t t ⎛⎫---=- ⎪+++⎝⎭, 所以()()43216832162830y x t yt x t y +-++-+=,所以0,4y x ==,故直线PQ 恒过定点()4,0.选②,则()()(,2),0,1,0,1N s C D -,设()(),,,P P Q Q P x y Q x y , 211213,,NC ND k k s s s s -+====所以13:1,:1,NC ND l y x l y x s s=+=- 221114y x s x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()22224240s y s y s +++-=, ()()4224444640s s s ∆=-+-=>所以2244P s y s -=+,所以284P s x s -=+, 所以22284,44s s P s s ⎛⎫-- ⎪++⎝⎭ 同理:223636Q s y s -=+,所以22436Q s x s =+,所以2222436,3636s s Q s s ⎛⎫- ⎪++⎝⎭()()()2222222222364121212364248161612364PQs s s s s s s k s s s s s s s ---+⋅--++===-+-++所以直线PQ 的方程为:22224128+4164s s s y x s s s --⎛⎫-= ⎪++⎝⎭令0x =,则()()2222212+2841=22424s s s y s s --+==++ 故直线PQ 恒过定点10,2⎛⎫⎪⎝⎭.5.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),(0,0,3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-, 易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC ,又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.(限时:30分钟)1.已知圆C :()22116x y -+=,点()1,0F -,P 是圆C 上一动点,若线段PF 的垂直平分线和CP 相交于点M .(1)求点M 的轨迹方程E .(2)A ,B 是M 的轨迹方程与x 轴的交点(点A 在点B 左边),直线GH 过点()4,0T 与轨迹E 交于G ,H 两点,直线AG 与1x =交于点N ,求证:动直线NH 过定点B .【详解】(1)由圆()22116x y -+=,可得圆心()1,0C ,半径4r =,因为24FC =<,所以点F 在圆C 内,又由点M 在线段PF 的垂直平分线上,所以MF MP =, 所以4MC MF MP MC PC +=+==,由椭圆的定义知,点M 的轨迹是以F ,C 为焦点的椭圆, 其中2a =,1c =,23b =,所以点M 的轨迹方程为22143x y +=.(2)设直线GH 的方程为4x my =+,()11,G x y ,()22,H x y ,()2,0A -,()2,0B ,将4x my =+代入22143x y +=,得()223424360m y my +++=,1222434my y m -+=+,1223634y y m =+, 直线AG 的方程为11(2)2y yxx ,令1x =得1132y y x =+,即1131,2y N x ⎛⎫⎪+⎝⎭,NH 的直线方程为121121323(1)12y y x y y x x x -+=-+-+, 2x =代入得()()()()121211211212133231231212y y y y x y x x y y x x x x --++-+=+=-+-+ 12112213(6)3(3)(1)(2)y y my y my x x -++--=-+12122146()(1)(2)my y y y x x ++=-+222136244634340(1)(2)mm m m x x -⨯+⨯++==-+,所以直线NH 过定点(2,0)B .2.已知定点()22,0O ,点P 为圆1O :()22232x y ++=(1O 为圆心)上一动点,线段2O P 的垂直平分线与直线1O P 交于点G .(1)设点G 的轨迹为曲线C ,求曲线C 的方程;(2)若过点2O 且不与x 轴重合的直线l 与(1)中曲线C 交于D ,E 两点,M 为线段DE 的中点,直线OM (O 为原点)与曲线C 交于A ,B 两点,且满足2MD MA MB =⋅,若存在这样的直线,求出直线l 的方程,若不存在请说明理由. 【详解】(1)依题意有2111||42GO GO GO GP O P +=+==,所以G 点轨迹是以1O ,2O 为焦点的椭圆,长轴长242a =,焦距24c =,故点G 的轨迹C 方程为22184x y +=;(2)设存在直线l 满足2MD MA MB =⋅,因为()()22AM BM AO OMBO OM AO OM ⋅=+-=-,222MD AO OM =-,设l 方程为2x my =+,()11,D x y ,()22,E x y ,222184x my x y =+⎧⎪⎨+=⎪⎩得22(2)440m y my ++-=,12242m y y m -+=+,12242y y m -=+. 22221222241642(1)11()222m m DE m y mm m m -+=+-=++=+++,222(1)m MD += 121228()42x x m y y m +=++=+,∴2242(,)22m M m m -++,2OM m k =-,224m OM +=,AB 方程为2m y x =-,设()00,A x y ,()00,B x y --,由222184m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22162x m =+, ∴22222000224(1)42m m OA x y x m +=+=+⋅=+∴2222222228(1)4(4)4(4)(2)2(2)m m m m m m +++=-+++,解得:22m =或21m =-(舍),2m =±,故存在符合条件的直线l ,其方程为220x y +-=或220x --=.3.已知椭圆E :()222210x y a b a b +=>>的离心率32e =,椭圆E 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,四边形ACBD 的面积为4.(1)求椭圆E 的方程;(2)若P 是椭圆E 上一点(不在坐标轴上),直线PC ,PD 分别与x 轴相交于M ,N 两点,设PC ,PD ,OP 的斜率分别为1k ,2k ,3k ,过点P 的直线l 的斜率为k ,且123k k kk =,直线l 与x 轴交于点Q ,求MQ NQ -的值.【详解】(1)由题:32c a =,且12242a b ⋅⋅=,又222a c b -=, 所以2a =,1b =,所以椭圆的方程为2214x y +=.(2)设()00,P x y ,则220014x y +=即()220041x y =-,不妨设()0,1C ,()0,1D -,直线PC :0011y y x x -=+, 令0y =得001x x y =-,故00,01x M y ⎛⎫ ⎪-⎝⎭;同理可求00,01x N y⎛⎫ ⎪+⎝⎭. 则200012200011114y y y k k x x x -+-=⋅==-,030y k x =,所以004x k y =-,所以直线l 为()00004x y y x x y -=--,令0y =得220004x y x x +=,又220014x y +=, 故04x x =即04,0Q x ⎛⎫⎪⎝⎭. ()()0000000002881111x MQ NQ x x y y x y y x =+-=--++--, 又220014x y +=即()220041x y =-,代入上式得,02002804x x MQ N x Q --==. 4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是点A ,B ,直线2:3l x =与椭圆C 相交于D ,E两个不同点,直线DA 与直线DB 的斜率之积为14-,ABD △的面积为23. (1)求椭圆C 的标准方程;(2)若点P 是直线2:3l x =的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q ,过P 作BQ 的垂线,垂足为M ,在x 轴上是否存在定点N ,使得MN 为定值,若存在,请求出点N 的坐标;若不存在,请说明理由.【详解】解:(1)设02,3D y ⎛⎫ ⎪⎝⎭,由题意得0002022122433142223419DA DB y y k k a a a y y ab ⎧⋅=⋅=-⎪+-⎪⎪⎪⎪⨯⨯=⎨⎪⎪+=⎪⎪⎪⎩, 2214b a ⎧=∴⎨=⎩,∴椭圆C 的方程为2214x y +=; (2)假设存在这样的点N ,设直线PM 与x 轴相交于点()0,0T x ,由题意得TP BQ ⊥,由(1)得()2,0B ,设2,3P t ⎛⎫ ⎪⎝⎭,()11,Q x y ,由题意可设直线AP 的方程为2x my =-, 由22214x my x y =-⎧⎪⎨+=⎪⎩,得()22440m y my +-=,1244m y m ∴=+或10y =(舍去),212284m x m -=+, 223mt =-,83t m∴=, TP BQ ⊥,()0112203TP BQ x x ty ⎛⎫∴⋅=--+= ⎪⎝⎭, 210212284403233416ty m m x x m m +∴=+=+⋅⋅=-+-, ∴直线PM 过定点()0,0T ,∴存在定点()1,0N ,使得1MN =.5.如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【详解】解:(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=- 又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+ 则212222A N A N A NB M A N y y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.设1F ,2F 是双曲线C :22111y x -=的两个焦点,O 为坐标原点,点M 在C 上且OM =12MF F △的面积是( )A .10B .11C .12D .133.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D4.已知F 是双曲线2222:1(0)x y E a b a b-=>>的左焦点,过点F 的直线与双曲线E 的左支和两条渐近线依次交于,,A B C 三点,若||||||FA AB BC ==,则双曲线E 的离心率为( )A BC .2D 5.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 26.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =7.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B C .2 D8.已知椭圆222:14x y C b+=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足||||OF FP =,则b =( )A .3BC D 9.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D10.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为1F ,若直线:l y kx =,3k ∈⎣与双曲线C 交于M 、N 两点,且11MF NF ⊥,则双曲线C 的离心率的取值范围是( )A .()1,2B .)2C .1⎤⎦D .(1⎤⎦11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( )A .(B .C .[D .12.已知抛物线24x y =的焦点F 和点(1,8),A P -为抛物线上一点,则||||PA PF +的最小值是( ) A .3B .9C .12D .6二、填空题13.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)14.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.15.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,焦距为2c ,若直线)y x c =-与椭圆的一个交点M 满足21122MF F MF F ∠=∠,则该椭圆的离心率等于________.16.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______ 17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.已知椭圆C :22221(0)x y a b a b+=>>的右焦点(c,0)F ,点P 在椭圆C 上,线段PF与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则椭圆C 的离心率为_______.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,若点P 在C 上,点E 在l 上,且PEF 是边长为4的正三角形. (1)求C 的方程;(2)过F 作直线m ,交抛物线C 于A ,B 两点,若直线AB 中点的纵坐标为1-,求直线m 的方程.23.已知点(-在椭圆2222:1(0)x y E a b a b +=>>上,E 的离心率为2. (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.24.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.26.在平面直角坐标系xOy 中,设动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等,记P 的轨迹为曲线Γ. (1)求曲线Γ的方程;(2)过点F 的直线交曲线Γ于点A 、B (其中点A 在第一象限),交直线l 于点C ,且点F 是AC 的中点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】由12F F M △是以M 为直角直角三角形得到2212||||48MF MF +=,再利用双曲线的定义得到12||||2MF MF -=,联立即可得到12||||MFMF ,代入12F F M S =△121||||2MF MF 中计算即可. 【详解】由22111y x -=可知1,23a c ==不妨设12(23,0),(23,0)F F -, 因为121232OM F F ==,所以点M 在以12F F 为直径的圆上,即12F F M △是以M 为直角顶点的直角三角形,故2221212||||||MF MF F F +=,即2212||||48MF MF +=,又12||||22MF MF a -==,所以2124||||MF MF =-=2212||||2MF MF +-12||||482MF MF =-12||||MF MF ,解得12||||22MF MF =, 所以12F F M S =△121||||112MF MF = 故选:B 【点晴】关键点点睛:根据OM =12MF F △为直角三角形是解题的关键,再结合双曲线的定义及勾股定理,即可计算焦点三角形面积,是一道中档题.3.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.B解析:B 【分析】可设出直线AB ,与两渐近线方程联立,解出,B C y y ,利用两者的关系式求出直线的斜率.进而表示出A 的坐标,代入双曲线方程,得到,,a b c 的关系式,从而求得离心率. 【详解】||||||FA AB BC ==,故有1123A B C y y y == 故32B C y y =设过点F 的直线方程为:()y k x c =+联立()y k x c b y x a ⎧=+⎪⎨=-⎪⎩,解之得C C kc x bk a b kc a y b k a -⎧=⎪+⎪⎪⎨⎪=⎪⎪+⎩ 同理联立()y k x c by x a ⎧=+⎪⎨=⎪⎩解之得B B kc x bk a b kc a y b k a ⎧=⎪-⎪⎪⎨⎪=⎪⎪-⎩由32B C y y =有23b bkc kca ab b k k a a =+-,故3232b b k k a a +=- 解之得5bk a=-直线为:()5by x c a=-+ 则1212A B bc y y a -==,又()5A A b y x c a =-+ 故712A cx =-又A 在双曲线上可得:2222491144144c c a a -= 得2213c a =故ca =故选:B 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y , 设圆22(1)1y x +-=的圆心为C ,则(0,1)C ,所以||CI =01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--, 1222221222sin cos1sin 22sin 321cos tan112sin 22PF F b b b S PF PF b θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,3tan23θ∴=, 0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF a PF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,2b a ∴=, 因此,双曲线C 的渐近线方程为2by x x a=±=±,即20x y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴233c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.B【分析】首先由椭圆的对称性得到点P 的位置,再求解,c b 的值. 【详解】根据椭圆的对称性可知,若椭圆上只有一个点满足OF FP =,这个点只能是右顶点,即2a c c a c -=⇒=,由条件可知242a a =⇒=,则1c =,那么b ==故选:B 【点睛】关键点点睛:本题的关键是确定点P 的位置,从而得到2a c =这个关键条件.9.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y .4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,0433m c x n y =-⎧⎨=-⎩.以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=ca x c,于是()2222220233-=-=b ac y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B.本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.10.C解析:C 【分析】根据题意,得到()1,0F c -,设(),M x y ,则(),N x y --,由11MF NF ⊥,求出2220x y c +-=与双曲线联立,求出()2222242242222a c a x c c a c a y c ⎧-⎪=⎪⎨-+⎪=⎪⎩,再由2221,33y k x ⎡⎤=∈⎢⎥⎣⎦,列出不等式求解,即可得出结果 【详解】因为点1F 为双曲线()2222:10,0x yC a b a b-=>>的左焦点,则()1,0F c -,设(),M x y ,由题意有(),N x y --,则()1,MF c x y =---,()1,NF c x y =-+,又11MF NF ⊥,所以()()2110MF NF c x c x y ⋅=---+-=,则2220x y c +-=,又(),M x y 在双曲线上,所以22221x y a b-=,由22222222221x y a b x y c c a b ⎧-=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得()2222242242222a c a x c c a c ay c ⎧-⎪=⎪⎨-+⎪=⎪⎩,又M 在直线y kx =上,k ∈⎣, 所以()4224424222222222212111,33212c a c a e e e e e a c a y k x -+-+---⎡⎤====-∈⎢⎥⎣⎦, 即42424213421e e e e ⎧≥⎪⎪-⎨⎪≤⎪-⎩,整理得42423840840e e e e ⎧-+≥⎨-+≤⎩,解得224e ≤≤+2243e -≤(舍,因为双曲线离心率大于1),1e ≤, 故选:C关键点点睛:本题考查双曲线的性质,考查双曲线的标准方程,解决本题的关键点是把11MF NF ⊥转化为向量数量积的坐标表示,求出点M 的轨迹方程,结合点在双曲线上,求出点的坐标,代入斜率公式求出离心率的范围,考查学生逻辑思维能力和计算能力,属于中档题.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.B解析:B 【分析】根据抛物线的标准方程求出焦点坐标和准线方程,利用抛物线的定义可得||||||||PA PF PA PF AM +=+≥,故AM 为所求【详解】解:由题意得2p =,焦点(0,1)F ,准线方程为1y =-, 设P 到准线的距离为PM ,(即PM 垂直于准线,M 为垂足),则||||||||9PA PF PA PF AM +=+≥=,(当且仅当,,P A M 共线时取等号), 所以||||PA PF +的最小值是9, 故选:B 【点睛】关键点点睛:此题考查抛物线的定义、标准方程,以及简单性质的应用,解题的关键是由题意结合抛物线定义得||||||||PA PF PA PF AM +=+≥,从而可得结果二、填空题13.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =求得离心率范围即可. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.14.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率52e =所以221514e a =+=,解得2a =,所以()()120,5,0,5F F - 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以225112F M ==+所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.15.【分析】由题意利用直角三角形的边角关系可得再利用椭圆的定义及离心率的计算公式即可得出【详解】设直线的倾斜角为则在直角三角形中令则由椭圆定义得椭圆的离心率故答案为:【点睛】熟练掌握直角三角形的边角关系 31【分析】由题意1290F MF ∠=,利用直角三角形的边角关系可得21,MF MF,再利用椭圆的定义及离心率的计算公式即可得出. 【详解】设直线3()y x c =--的倾斜角为α,则tan 3α=-,0180α≤<120α∴=.21211212122360090F MF F MF F M F MF M F F F ∴∠=∠=∠∴∠=∴∠=在直角三角12F MF 形中,令1c =,则22211,213MF MF ==-=由椭圆定义得122||||31a MF MF =+=+∴椭圆的离心率231231c e a ===-+. 故答案为:31-. 【点睛】熟练掌握直角三角形的边角关系、椭圆的定义、离心率的计算公式是解题的关键,属于基础题.16.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立 解析:412-【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-,抛物线上任意一点Р到直线l 的距离为m ,过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-22==,当且仅当,,P F C 三点共线时等号成立,所以m PA +2,2. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率c e a ==≥=⎫∈⎪⎪⎣⎭e .故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】根据数形结合分析可得并根据勾股定理可得计算离心率【详解】如图首先画出函数图象又且且根据椭圆的定义可知由勾股定理可知即整理为即故答案为:【点睛】方法点睛:本题考查椭圆离心率的取值范围求椭圆离心解析:53【分析】根据数形结合分析,可得'PF PF⊥,并根据勾股定理,可得()()22222244b a bc a b+-==-,计算离心率.【详解】如图,首先画出函数图象,1233EF OF OE c c c=-=-=,2131'23cEFEF c c∴==+,又2PQ QF=,'//PF QE∴,且1'3QEPF=,且'PF PF⊥,3bQE=,'PF b∴=,根据椭圆的定义可知2PF a b=-,由勾股定理可知22212'PF PF F F+=,即()()22222244b a bc a b+-==-整理为222224444b a b ab a b++-=-,即23ba=,2251c ba a∴=-=.故答案为:53【点睛】方法点睛:本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据,,a b c直接求,2.根据条件建立关于,a c的齐次方程求解,3.根据几何关系找到,,a b c的等量关系求解.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =, 所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)220x y +-=. 【分析】(1)设l 与x 轴交于点D ,根据PEF 是边长为4的正三角形.得到PE l ⊥,60PEF EFD ∠=∠=︒,然后由||cos60p DF EF ==求解.(2)设()11,A x y ,()22,B x y ,根据点A ,B 在抛物线上,由21122244y x y x ⎧=⎨=⎩,根据线段AB 中点的纵坐标为1-,利用“点差法”求解. 【详解】(1)因为PEF 是边长为4的正三角形. 则||||PE PF =,所以PE l ⊥,设l 与x 轴交于点D ,则60PEF EFD ∠=∠=︒,||4EF =, 所以||cos602p DF EF === 所以抛物线的方程为24y x =.(2)由(1)得抛物线C 的方程为24y x =,焦点(1,0)F ,设A ,B 两点的坐标分别为()11,A x y ,()22,B x y ,由21122244y x y x ⎧=⎨=⎩,得()121212124y y x x x x y y -=≠-+, 因为线段AB 中点的纵坐标为1-,所以直线m 的斜率21442(1)2AB k y y ==-+-⨯=, 所以直线m 的方程为02(1)y x -=--, 即220x y +-=. 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314ab +=,又椭圆的离心率为2,∴2c e a ==,由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得k >k <, 且1221614kx x k+=-+,1221214x x k ⋅=+, 由COB ∠为锐角,∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴22k -<<-或22k <<,∴直线l的斜率的范围是32,,2⎛⎛⎫-⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.24.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程. 【详解】(1)由抛物线()2:20E y px p =>可得准线方程为:2p x =-, 由抛物线的定义可得:342p ⎛⎫--= ⎪⎝⎭,解得:2p =, 所以抛物线E 的方程为24y x =,(2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式相减可得()2212124y y x x -=-, 所以()()()1212124y y y y x x -+=-,因为线段AB 中点的纵坐标为1-,所以122y y +=-, 所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--,即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程. 25.(1)24y x =;(2)证明见解析. 【分析】(1)设直线l 的方程为2x my p =+,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,由题意可得出222122144y y x x p==,求出p 的值,进而可得出抛物线C 的方程; (2)设点()33,M x y 、()44,N x y ,可得出213y y p =-,224y y p =-,利用直线的斜率公式以及韦达定理可得出lMNk k 为定值.【详解】(1)若直线l 与x 轴重合,则该直线与抛物线C 有且只有一个交点,不合乎题意. 设直线l 的方程为2x my p =+,代入22y px =得22240y pmy p --=,则()22440p m ∆=+>,且2124y y p =-,则22212122444y y x x p p⋅===, 0p >,解得1p =.∴抛物线C 的方程为24y x =;(2)证明:()33,M x y 、()44,N x y ,同(1)可知,直线AM 不可能与x 轴重合,设直线AM 的方程为2p x ty =+, 联立222p x ty y px⎧=+⎪⎨⎪=⎩,消去x 得2220y tpy p --=,由韦达定理可得213y y p =-,同理可得224y y p =-, 又直线l 的斜率12122212121222l y y y y pk y y x x y y p --===--+, 直线MN 的斜率3434342MN y y pk x x y y -==-+,()2221222341212212121212144l MN p y y p p k y y y y y y p p k y y y y y y y y p -+--++--∴======+++-, 故直线l 与直线MN 斜率之比为定值14.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 26.(1)24y x =;(2)16||3AB =. 【分析】(1)根据抛物线定义可得答案;(2)由点F 是AC 的中点可得A 点的坐标,设出直线AB 方程与抛物线方程联立,利用韦达定理再得B 点坐标,再由两点间的距离公式可得答案. 【详解】(1)因为动点P 到定点(1,0)F 的距离与到定直线:1l x =-的距离相等, 由抛物线定义可得曲线Γ为抛物线,设其方程为22(0)y px p =>,则12p=, 所以2p =,曲线Γ的方程为24y x =.(2)设过点F 的直线方程为1x my =+,设1122(,),(,)A x y B x y ,且120,0y y ><,0(1,)C y -,由214x my y x=+⎧⎨=⎩整理得,2440y my --=,所以124y y =-, 因为点F 是AC 的中点,所以1112x -=,解得13x =,所以211412y x ==,得1y =(3,A ,又因为124y y =-,所以2y =,代入抛物线方程得213x =,所以1,3B ⎛ ⎝⎭,所以163AB ===. 【点睛】本题考查了抛物线方程、直线与抛物线的位置关系及弦长,关键点是由点F 是AC 的中点可得A 点的坐标,利用韦达定理再得B 点坐标,考查了学生的基础知识、基本技能.。
十、圆锥曲线与方程
十、圆锥曲线与方程高考模块检测一 圆锥曲线与方程1.(2014北京,理11)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________. 【答案】221312x y -=; 2y x =±【解析】解:双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±;设C :224y x m -=,因为C 过()2,2,所以代入并解得3m =-,故C 的方程为221312x y -=,渐近线方程为2y x =±【考点】双曲线的简单性质【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,再利用待定系数法解题是关键,比较基础.2.(2013北京,理6)若双曲线22221x y a-=( ).A .y =±2x B.y =C .12y x =± D.yx = 【答案】:B【解析】:c ,∴b . ∴渐近线方程为by x a=±=,故选B. 【考点】双曲线的简单性质【点评】本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力。
3.(2012北京,理12)在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为【答案】3【解析】根据y 2=4x 得焦点坐标F (1,0),因为直线l 的倾斜角为60º,所以直线的斜率为K=tan600=3,利用点斜式,直线方程为y=3x-3,将直线和曲线联立⇒⎪⎩⎪⎨⎧=-=xy x y 4)1(32A (3,23)B (332,31-),因此33212121=⨯⨯=⨯⨯=∆A OAF y OF S【考点】直线与圆锥曲线的综合问题;直线的倾斜角;抛物线的简单性质 【点评】直线与抛物线的关系可以转化为求交点坐标问题.4.(2012北京,理12)在直角坐标系xOy 中.直线l 过抛物线24y x =的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方.若直线l 的倾斜角为60º.则△OAF 的面积为【答案】3【解析】根据y 2=4x 得焦点坐标F (1,0),因为直线l 的倾斜角为60º,所以直线的斜率为K=tan600=3,利用点斜式,直线方程为y=3x-3,将直线和曲线联立⇒⎪⎩⎪⎨⎧=-=xy x y 4)1(32A (3,23)B (332,31-),因此33212121=⨯⨯=⨯⨯=∆A OAF y OF S【考点】直线与圆锥曲线的综合问题;直线的倾斜角;抛物线的简单性质. 【点评】直线与抛物线的关系可以转化为求交点坐标问题.7(2011北京,理14)曲线C 是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数)1(2>a a 的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积大于21a 2。
【高考数学经典习题】圆锥曲线压轴题(含答案)8
【高考数学经典习题】圆锥曲线压轴题(含答案)8未命名一、解答题1.(题文)已知离心率为的椭圆C:经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程;(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.2.(题文)已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)直线与椭圆交于两点,以为直径的圆与轴正半轴交于点.是否存在实数,使得的内切圆的圆心在轴上?若存在,求出的值;若不存在,请说明理由.3.在直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,A是C上的动点,且满足AF的最小值为2.(1)求椭圆C的标准方程;(2)在椭圆C上任取一点B,使OA OB⊥,求证:点O到直线AB的距离为定值. 4.已知抛物线的顶点在原点,准线方程为,是焦点,过点的直线与抛物线交于两点,直线分别交抛物线于点.(1)求抛物线的方程及的值;(2)记直线的斜率分别为,证明:为定值.5.(题文)(题文)已知椭圆:,斜率为的动直线与椭圆交于不同的两点、.(1)设为弦的中点,求动点的轨迹方程;(2)设、为椭圆的左、右焦点,是椭圆在第一象限上一点,满足,求面积的最大值. 6.动点在抛物线上,过点作垂直于轴,垂足为,设.(I )求点的轨迹的方程;(II )设点,过点的直线交轨迹于两点,设直线的斜率分别为,求的最小值.7.给定椭圆2222:1(0)x y C a b a b+=>>.称圆心在原点O圆C 的“准圆”.若椭圆C 的一个焦点为F ,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的一个动点,过动点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,试判断12,l l 是否垂直?并说明理由. 8.已知椭圆的离心率为,以原点为圆心,以椭圆的半长轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程; (Ⅱ)设点在椭圆上运动,与关于原点对称,且,当的面积最小时,求直线的方程.9.(题文)已知点是圆上的任意一点,点为圆的圆心,点与点关于原点对称,线段的垂直平分线与线段交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设点,若直线轴,且与曲线交于另一点,直线与直线交于点.(1)证明:点恒在曲线上;(2)求面积的最大值. 10.双曲线的一条渐近线方程是:,且曲线过点.(1)求双曲线的方程; (2)设曲线的左、右顶点分别是、,为曲线上任意一点,、分别与直线交于、,求的最小值.11.(题文)已知双曲线的一条渐近线方程为 ,焦距为 .(1)求双曲线 的方程;(2)若直线 与双曲线 交于 两点,且点 在第一象限,过点 作 轴的垂线,交 轴于点 ,交双曲线 于另一点 ,连结 交双曲线 于点 ,求证: .12.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为())12,F F ,直线0x =与椭圆C 的—个交点为(),点A 是椭圆C 上的任意—点,延长1AF 交椭圆C 于点B ,连接22,BF AF . (1)求椭圆C 的方程;(2)求2ABF ∆的内切圆的最大周长.13.已知椭圆( )经过点 ,且其离心率为, 、分别为椭圆 的左、右焦点.设直线 与椭圆 相交于 , 两点, 为坐标原点.(I )求椭圆 的标准方程;(II )当 时,求 的面积的最大值;(III )以线段 , 为邻边作平行四边形 ,若点 在椭圆 上,且满足 ,求实数 的取值范围. 14.已知椭圆的两个焦点为 ,其短轴长是 ,原点 到过点 和 两点的直线的距离为.(1)求椭圆 的方程;(2)若点 是定直线 上的两个动点,且 ,证明:以 为直径的圆过定点,并求 定点的坐标. 15.已知椭圆的左、右焦点分别为,为该椭圆上任意一点,且的最大值为.(I)求椭圆的离心率;(II)已知椭圆的上顶点为,动直线与椭圆交于不同的两点,且,证明:动直线过定点,并求出该定点坐标.16.椭圆M:的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线与椭圆M相交于两个不同的点C,D.①求的取值范围;②当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.17.如图所示,如图所示,已知椭圆,⊙,点是椭圆的左顶点直线与⊙相切于点.(1)求椭圆的方程;(2)若⊙的切线与椭圆相交于两点,求面积的取值范围. 18.已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点且斜率为的直线与椭圆相交于两点,直线分别交直线于两点,线段的中点为. 记直线的斜率为,求证:为定值.19.如图,抛物线的焦点为,取垂直于轴的直线于抛物线交于不同的两点,,过,作圆心为的圆,使抛物线上其余点均在圆外,且.(1)求抛物线和圆的方程;(2)过点作倾斜角为的直线,且直线与抛物线和圆依次交于,求的最小值.20.已知椭圆(),其离心率与双曲线的离心率互为倒数,而直线过椭圆的一个焦点.(I)求椭圆的方程;(II)如图,以椭圆的左顶点为圆心作圆,设圆与椭圆交于两点,,求的最小值,并求出此时圆的方程.21.已知椭圆的离心率,一个焦点为.(1)求椭圆的方程;(2)设是椭圆与轴负半轴的交点,过点作椭圆的两条弦和,且. (i)直线是否过定点,如果是求出该点坐标,如果不是请说明理由;(ii)若是等腰直角三角形,求直线的方程.22.已知抛物线的焦点为,直线与轴的交点为,与的交点为 ,且.(1)求 的方程;(2)设 ,动点 在曲线 上,曲线 在点 处的切线为 .问:是否存在定点 ,使得 与 都相交,交点分别为 ,且 与 的面积之比是常数?若存在,求 的值;若不存在,说明理由.23.如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为,点(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .24.设顶点在原点,焦点在x 轴上的拋物线过点()2,4P ,过P 作抛物线的动弦PB PA ,,并设它们的斜率分别为DC . (1)求拋物线的方程;(2)若0=+PB PA k k ,求证:直线AB 的斜率为定值,并求出其值; (3)若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.25.如图,已知椭圆()222210x y a b a b+=>>的左、右焦点为()()121,0,1,0,F F P -为椭圆上一点,Q 为椭圆上顶点,M 在1PF 上,122,0F M MP PO F M =⋅=.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率的取值范围;(3)当椭圆离心率最小时,若过0,7⎛- ⎝⎭的直线l 与椭圆交于,A B (不同于点Q )两点,试问:AQB ∠是否为定值?并给出证明. 26.已知椭圆的方程为,它的一个顶点为 ,离心率为. (1)求椭圆的方程;(2)设直线 与椭圆交于 两点,坐标原点 到直线 的距离为,求 面积的最大值.27.在平面直角坐标系 中,已知椭圆的左顶点为 ,右焦点为 ,为椭圆 上两点,圆 .(1)若 轴,且满足直线 与圆 相切,求圆 的方程;(2)若圆 的半径为 ,点 满足,求直线 被圆 截得弦长的最大值.28.如图,在平面直角坐标系 中,已知椭圆的离心率为,长轴长为4,过椭圆的左顶点 作直线 ,分别交椭圆和圆 于相异两点 .(1)若直线 的斜率为 ,求的值; (2)若,求实数 的取值范围.29.在平面直角坐标系 中,已知抛物线 上一点到准线的距离与到原点 的距离相等,抛物线的焦点为 . (1)求抛物线的方程;(2)若 为抛物线上一点(异于原点 ),点 处的切线交 轴于点 ,过 作准线的垂线,垂足为点 .试判断四边形 的形状,并证明你的结论.30.在平面直角坐标系xOy 中,已知点3(1,)2P 在椭圆2222:1(0)x y C a b a b+=>>上,P到椭圆C 的两个焦点的距离之和为4. (1)求椭圆C 的方程;(2)若点,M N 是椭圆C 上的两点,且四边形POMN 是平行四边形,求点,M N 的坐标.31.已知两点 ,直线 、 相交于点 ,且这两条直线的斜率之积为.(1)求点 的轨迹方程;(2)记点 的轨迹为曲线 ,曲线 上在第一象限的点 的横坐标为1,直线 、 与圆相切于点 、 ,又 、 与曲线 的另一交点分别为 , ,求 的面积的最大值(其中点 为坐标原点).32.如图,设抛物线 的准线与 轴交于 ,焦点为 ;以 为焦点,离心率的椭圆 与抛物线 在 轴上方的交点为 ,延长 交抛物线于点 是抛物线 上一动点,且 在 与 之间运动.(1)当 时,求椭圆 的方程;(2)当 的边长恰好是三个连续的自然数时,求 面积的最大值. 33.已知A 为椭圆上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有.(Ⅰ)求椭圆离心率;(Ⅱ)设,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.34.设抛物线的准线与轴交于点,焦点;椭圆以和为焦点,离心率.设是与的一个交点.(1)椭圆的方程;(2)直线过的右焦点,交于两点,且等于的周长,求的方程.35.已知椭圆的离心率为,其短轴的下端点在抛物线的准线上.(1)求椭圆的方程;(2)设为坐标原点,是直线上的动点,为椭圆的右焦点,过点作的垂线与以为直径的圆相交于两点,与椭圆相交于两点,如图所示.①若,求圆的方程;②设与四边形的面积分别为,若,求的取值范围.36.已知抛物线 上一点 到焦点F 距离是.(1)求抛物线C 的方程;(2)过F 的直线与抛物线C 交于A 、B 两点,是否存在一个定圆恒以AB 为直径的圆内切,若存在,求该定圆的方程;若不存在,请说明理由. 37.已知椭圆C:的离心率为,直线 与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设 是椭圆的上顶点,过点 分别作直线 交椭圆于 , 两点,设两直线的斜率分别为,,且 , 证明:直线 过定点(,-l).38.已知椭圆C :2222by a x +=1(a>0,b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线一1=0与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(I)求椭圆C 的方程;(Ⅱ)设点B ,C ,D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称.设直线CD ,CB ,OB ,OC 的斜率分别为k 1,k 2,k 3,k 4,且k 1k 2=k 3k 4. (i)求k 1k 2的值: (ii)求OB 2+ OC 2的值. 39.设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形. (1)求椭圆的方程和“相关圆”的方程; (2)过“相关圆”上任意一点作相关圆”的切线与椭圆交于两点,为坐标原点.若,证明原点到直线的距离是定值,并求的取值范围.40.已知抛物线方程为22(0)x py p =>,其焦点为F ,点O 为坐标原点,过焦点F 作斜率为(0)k k ≠的直线与抛物线交于,A B 两点,过,A B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA OB ⋅;(2)设直线MF 与抛物线交于,C D 两点,且四边形ACBD 的面积为2323p ,求直线AB 的斜率k .41.已知椭圆 : 的焦距为4,设右焦点为 ,过原点 的直线 与椭圆 交于 , 两点,线段 的中点为 ,线段 的中点为 ,且. (1)求弦 的长;(2)若直线 的斜率为 ,且,求椭圆 的长轴长的取值范围. 42.已知过抛物线的焦点,斜率为的直线交抛物线于()11,,A x y ()22,B x y (12x x <)两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值43.已知椭圆的离心率为,点在椭圆上.(I )求椭圆C 的方程; (II )设椭圆的左右顶点分别是A 、B ,过点的动直线与椭圆交于M ,N 两点,连接AN 、BM 相交于G 点,试求点G 的横坐标的值.44.如图椭圆的离心率为,其左顶点在圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆的另一个交点为,与圆的另一个交点为.(i)当时,求直线的斜率;(ii)是否存在直线,使得? 若存在,求出直线的斜率;若不存在,说明理由.45.已知椭圆:的焦距为4,设右焦点为,过原点的直线与椭圆交于,两点,线段的中点为,线段的中点为,且.(1)若离心率,求椭圆的方程;(2)求椭圆的长轴长的取值范围.46.已知为圆上的动点,点,线段的垂直平分线与半径相交于点,记点的轨迹为.(1)求曲线的方程;(2)当点在第一象限,且时,求点的坐标.47.已知焦点在轴上的椭圆的中心是原点,离心率等于,以椭圆的长轴和短轴为对角线的四边形的周长为,直线与轴交于点,与椭圆交于、两个相异点,且.(Ⅰ) 求椭圆的方程;(Ⅱ)若,求的取值范围.48.已知椭圆的离心率为,右顶点为.(Ⅰ)求椭圆的方程;(Ⅱ)过点的直线交椭圆于两点,设直线的斜率为,直线斜率为.求证:为定值,并求此定值.49.已知椭圆C:的离心率为,且点在C上.(1)求椭圆C的方程;(2)直线l经过点,且与椭圆C有两个交点A、B,是否存在直线l0:x = x0(其中x0> 2),使得A、B到l0的距离d A、d B满足恒成立?若存在,求x0的值;若不存在,请说明理由.50.已知椭圆的右焦点为,短轴长为2,点为椭圆上一个动点,且的最大值为.(1)求椭圆的方程;(2)设不在坐标轴上的点的坐标为,点为椭圆上异于点的不同两点,且直线平分,试用表示直线的斜率.参考答案1.(Ⅰ);(Ⅱ),直线过定点.【解析】试题分析:(Ⅰ)根据条件,和椭圆的性质,得到椭圆的标准方程;(Ⅱ)设直线的方程:,和椭圆方程联立,得到根与系数的关系,并且,用坐标表示,结合根与系数的关系,得到,最后代入得到的取值范围;根据以上所求关系得到线段的中点,并且设出直线AB 的方程,经过整理得到,得到定点.试题解析:(Ⅰ)由条件知(),且b=1,解得a2=2,椭圆C的方程为.(Ⅱ)令直线l的方程为,代入椭圆方程得:.由得,解之得.令A(x1,y1),B(x2,y2),则.由条件得,即.因为,,即.将代入中,得..由上知,,于是得AB中点坐标为,中垂线方程为:.将代入得:,整理得:.故AB的中垂线过定点.考点:1.椭圆方程;2.直线与椭圆的位置关系.【思路点睛】本题第二问考察是否过定点问题,一般考察直线过定点问题,首先是设直线,斜率存在时设,然后通过方程发现的等量关系,代入后即得到直线所过定点,或是通过特殊情况先发现定点,然后通过条件证明点和定点,三点共线;而本题所采用就是第一种方法,根据直线方程与椭圆方程联立,得到根与系数的关系,和将本题所给的三个斜率成等差数列的等式转化为坐标的关系,就会得到的等量关系和中点坐标,最后代入中垂线方程,问题就迎刃而解了.2.(1);(2)或.【解析】试题分析:(1)由椭圆:的离心率为,过焦点且垂直于轴的直线被椭圆截得的线段长为,求出,由此能求出椭圆方程;(2)依题意知,设,,,则,由此能求出存在满足条件的值.试题解析:(1)设焦点,则,从而,由题意有,即,解得,又由,于是,解得,椭圆的方程为.(2)依题意可知,且,于是直线的斜率为,直线的斜率为,则,,,,相加得.联立消去,整理得,,.把两边同时平方,可得,代入可得,化简可得,或,解得,或,即存在满足条件的值,,或.考点:椭圆的简单性质.【方法点晴】本题考查椭圆方程的求法,考查满足条件的直线的斜率的求法,是中档题,解题时要认真审题,在第一问中利用离心率以及过焦点且与轴垂直的弦长求出椭圆的方程,也是在高考中常见的表达形式;在第二问中利用设而不求的思想设出三点的坐标,先利用内切圆的圆心在轴上,即等价于直角的角平分线轴上,得,转化为斜率,联立直线的方程与椭圆的方程结合维达定理,代入求解.3.(1)2214xy+=;(2)证明见解析.【解析】试题分析: (1)由AF 的最小值为23-可得23a c -=-,由离心率为3可知,再由的关系最后可求得的值,得到椭圆的标准方程;(2)当AB 的斜率不存在时很容易求得O 到AB 的距离,当AB 的斜率存在时可设直线方程的斜截式y kx m =+,联立椭圆方程,由根与系数的关系得122841km x x k +=-+,21224441m x x k -=+,再由OA OB ⊥可建立等式,求得224(1)5m k =+,代入点到直线的距离公式可得距离为定值. 试题解析:(1)解:根据题意有2{a c c a -==, 解方程组得:2,a c ==∴21b =,∴椭圆C 的标准方程为2214x y +=. (2)证明:当AB 的斜率不存在时,AB 的方程为x =±O 到AB 的距离为d =; 当AB 的斜率存在时,可设AB 的方程为y kx m =+,1122(,),(,)A x y B x y ,由22{14y kx mx y =++=,得222(41)8440k x kmx m +++-=, ∵22222(8)4(41)(44)16(14)0km k m k m ∆=-+-=-->,∴122841km x x k +=-+,21224441m x x k -=+, ∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,222222224484414141m km m k k km m k k k --=⋅-⋅+=+++, ∵OA OB ⊥,∴22112212122544(,)(,)041m k OA OB x y x y x x y y k --⋅==+==+, ∴224(1)5m k =+, ∴点O 到直线AB :0kx y m -+=的距离5d ===, 故O 到AB 的距离为定值.考点:椭圆的性质、直线与椭圆的位置关系.4.(1) ;(2)证明见解析.【解析】试题分析:(1)根据抛物线的定义即可得出抛物线方程,再联立 的方程,消去 ,由韦达定理可得 的值;(2)设出 的坐标,由斜率公式表示出 ,消去变量即可得出的定值.试题解析:(1)依题意,设抛物线方程为y 2=-2px(p>0),由准线x = =1,得p =2, 所以抛物线方程为y 2=-4x ,设直线PQ 的方程为x =my -2,代入y 2=-4x ,消去x ,整理得y 2+4my -8=0, 从而y 1y 2=-8.(2)证明 设M(x 3,y 3),N(x 4,y 4),则. 设直线PM 的方程为x =ny -1,代入y 2=-4x ,消去x ,整理得y 2+4ny -4=0,所以y 1y 3=-4,同理y 2y 4=-4.故,为定值. 考点:1、抛物线的标准方程;2、抛物的几何性质;3、斜率公式;4、直线方程. 5.(1)();(2).【解析】试题分析:(1)设,,,两式相减结合,可求得;(2)由求出点坐标,设直线的方程为,面积用表示,最后用基本不等式求最值.试题解析:(1)设,①②①-②得:,,即,又由中点在椭圆内部得,所以点的轨迹方程为,(2)由,得点坐标为,设直线的方程为,代入椭圆方程中整理得:,由得,则,,,所以,当时,.考点:1、点差法求轨迹方程;2、利用基本不等式求解析几何中的最值.【方法点睛】本题主要考查“点差法”求轨迹方程以及利用基本不等式求解析几何中的最值,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.本题(1)就是利用“点差法”求解的.6.(I);(II).【解析】试题分析:(I)设点,,则由,得,因为点在抛物线上,∴;(II)联立,利用根与系数关系得到,下面分情况讨论.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,,直线不经过点即且时,,化简得故.试题解析:(I)设点,,则由,得,因为点在抛物线上,∴.(II)方法一:由已知,直线的斜率一定存在,设点,,则联立,得,,由韦达定理,得.当直线经过点即或时,当时,直线的斜率看作抛物线在点处的切线斜率,则,,此时;同理,当点与点重合时,直线不经过点即且时,∵,,故,所以的最小值为1.方法二:同上,,所以的最小值为1.方法三:设点,,由直线过交轨迹于两点得:,化简整理得:令则,.而.考点:1.直线与圆锥曲线的位置关系;2.根与系数关系.【方法点晴】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟与系数的关系是解这类题目的必备工具,另外题目运算量较大,需要一定的运算能力.7.(Ⅰ)2213xy+=,224x y+=;(Ⅱ)垂直.【解析】试题分析:(1)由“椭圆C的一个焦点为F,其短轴上的一个端点到F”知:12c a b====⇒=从而可得椭圆的标准方程和“准圆”的方程;(2)分两种情况讨论:①12,l l当中有一条直线斜率不存在;②直线12,l l斜率都存在.对于①可直接求出直线12,l l的方程并判断其是不互相垂直;对于②设经过准圆上点()00,,P x y与椭圆只有一个公共点的直线为()00y t x x y=-+与椭圆方程联立组成方程组()0022{13y tx y txxy=+-+=消去y得到关于x的方程:()()()2220000136330t x t y tx x y tx++-+--=由0∆=化简整理得:()22200003210x t x y t y-++-=22004x y+=→()()22300003230x t x y t x-+--=而直线12,l l的斜率正是方程的两个根12,t t,从而121t t⋅=-12l l⇒⊥(1)2,1c a b==∴=∴椭圆方程为2213xy+=准圆方程为224x y+=(2)①12,l l当中有一条无斜率时,不妨设1l无斜率,因为1l与椭圆只有一个共公点,则其方程为x=当1l方程为x1l与准圆交于点)),1-此时经过点)(或)1-)且与椭圆只有一个公共眯的直线是1y=(或1y=-)即2l为1y=(或1y=-),显然直线12,l l垂直;同理可证1l方程为x =12,l l 也垂直.②当12,l l 都有斜率时,设点()00,,P x y 其中22004x y +=设经过点()00,,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+则由()0022{13y tx y tx x y =+-+=消去y ,得()()()2220000136330t x t y tx x y tx ++-+--=由0∆=化简整理得:()22200003210x t x y t y -++-=因为22004x y +=,所以有()()22300003230x t x y t x -+--=设12,l l 的斜率分别为12,t t ,因为12,l l 与椭圆只有一个公共点 所以12,t t 满足上述方程()()22300003230x t x y t x -+--= 所以121t t ⋅=-,即12,l l 垂直, 综合①②知,12,l l 垂直.考点:1、椭圆的标准方程;2、直线与圆锥曲线的综合问题. 8.(Ⅰ);(Ⅱ),或.【解析】试题分析:(Ⅰ)根据离心率可以得到 的一个关系,再由椭圆与直线相切可以得到 的一个关系,再联立 即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时地特殊情况,并求出其面积;其次当直线的斜率 存在并且不为零时,用 表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.试题解析:(Ⅰ)以原点为圆心,以椭圆的半长轴长为半径的圆的方程为,因为该圆与直线相切,所以有,解得.又,所以,故.所以椭圆的方程为.(Ⅱ)当为长轴(或短轴)时,依题意知,点是椭圆的上顶点或下顶点(左顶点或右顶点),此时.当直线的斜率存在且不为时,设直线的斜率为,,,则直线的方程为,由,解得所以由知,为等腰三角形,为线段的中点,,所以直线的方程为,由,解得.当且仅当,即时,上式中的等号成立,此时的面积的最小值为,因为,所以的面积的最小值为,此时直线的方程为,或.考点:1、椭圆;2、基本不等式;3、三角形的面积.【思路点晴】本题是一个关于圆锥曲线方面的综合性问题,属于难题.解决本题的基本思路是:(Ⅰ)根据离心率可以得到的一个关系,再由椭圆与直线相切可以得到的一个关系,再联立即可求出椭圆的方程;(Ⅱ)首先注意到当直线的斜率不存在或者等于零时即为长轴(或短轴)时的特殊情况,并求出其面积;其次当直线的斜率存在并且不为零时,用表示出的面积并结合基本不等式求出此时的面积的最小值,并注意与特殊情况进行比较,最后即可得出的面积最小值,进而可求得当的面积最小时,求直线的方程.9.(Ⅰ);(Ⅱ)(1)证明见解析;(2).【解析】试题分析:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.试题解析:(Ⅰ)由题设得圆的圆心为,半径为,,又,所以,由椭圆的定义知,动点的轨迹是以为焦点,以为长轴长的椭圆.设此椭圆方程为,且焦距为,则即所以动点的轨迹的方程为.(Ⅱ)(1)设,则,且,所以直线,即①.直线,即.②联立①②,解得,所以点的坐标是.则所以点恒在椭圆上.(2)设直线,,则由消去,并整理得,.因为恒成立,所以.所以.令,设,因为,所以函数在上单调递增,故.所以,即当时,的面积取得最大值,且最大值为. 考点:1、椭圆;2、导数在函数(三角形的面积)研究中的应用.【方法点晴】本题是一个关于椭圆的概念以及直线与其位置关系方面的综合性问题,属于难题.解决本题的基本思路及切入点是:(Ⅰ)根据题目条件并结合椭圆的定义,即可求得动点的轨迹的方程;(Ⅱ)(1)根据(Ⅰ)的结论设出的坐标,并表示出的坐标,进而表示出直线与直线的交于点的坐标,即可证明点恒在曲线上;(2)根据(Ⅰ)及(Ⅱ)(1)的结论,再结合构造函数以及函数的单调性,即可求得面积的最大值.10.(1);(2).【解析】试题分析:(1)由渐近线方程可先设出双曲线的方程,再把点的坐标代入即可求得双曲线的方程;(2)可设出、的斜率,并表示出点、的坐标,进而表示出的长,再结合基本不等式即可求得的最小值.试题解析:(1)由渐近线方程可知,双曲线的方程为,把代入可得,所以双曲线方程为.(2)由双曲线的对称性可知,在右支上时,取最小值.由上可得,,根据双曲线方程可得,所以设直线、的斜率分别为,则.的方程为,令,解得,的方程为,令,解得,所以.当且仅当,即时等号成立.考点:1、双曲线;2、基本不等式.11.(1);(2)证明见解析.。
高考数学压轴题突破训练——圆锥曲线(含详解)
(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试(含答案解析)
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+= 3.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( )A .13B C .12D .24.双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2223x y -+=截得的弦长为2,则C 的离心率为( )A .3B .2C D5.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .56.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B 2C .322D .327.已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( ) A .221124x y +=B .2211612x y +=C .221128x y +=D .2212016x y +=8.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( ) A .4,33⎡⎤⎢⎥⎣⎦B .(1,23C .5,43⎡⎤⎢⎥⎣⎦D .[2,23]9.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .22y x =±B .2y x =C .3y x =D .3y x =10.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .2273+ B .273+ C .53D .212.已知抛物线1C 的顶点在坐标原点,焦点F 在y 轴正半轴上.若点F 到双曲线222:126x y C -=的一条渐近线的距离为2,则1C 的标准方程是( )A .2833y x =B .21633y x =C .28x y =D .216x y =二、填空题13.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.14.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.15.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过点F 且与x 轴垂直的直线与双曲线C 和双曲线C 的一条渐近线分别相交于P ,Q 两点(P ,Q 在同一象限内),若P 为线段QF 的中点,且3||PF =,则双曲线C 的标准方程为_________. 17.已知椭圆222:1(06)6x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.18.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.19.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.已知点M ⎭在椭圆2222:1(0)x y C a b a b +=>>上,且点M 到C 的左,右焦点的距离之和为4. (1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点,O M )上,求OA OB ⋅的取值范围.22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于A B 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.23.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.24.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点. 25.过平面上点P 作直线11:2l y x =,21:2l y x =-的平行线分别交y 轴于点M ,N 且228OM ON +=.(1)求点P 的轨迹C 方程;(2)若过点()0,1Q 的直线l 与轨迹C 交于A ,B 两点,若AOB S △l 的方程.26.已知椭圆()2222:10x y C a b a b+=>>,A ,B 为椭圆的左、右顶点,点()0,2N -,连接BN 交椭圆C 于点Q ,ABN 为直角三角形,且:3:2NQ QB = (1)求椭圆的方程;(2)过A 点的直线l 与椭圆相交于另一点M ,线段AM 的垂直平分线与y 轴的交点P 满足154PA PM ⋅=,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线0x y -+=过(,0)F c -,所以00c --+=,得c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-, 又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B【分析】首先利用点,C D分别是线段AB的两个三等分点,则211222x xyy=-⎧⎪⎨=⎪⎩,得1112ykx=⋅,再利用点差法化简得2212214y bx a=,两式化简得到选项.【详解】设()11,A x y,()22,B x y,,C D分别是线段AB的两个三等分点,()1,0C x∴-,10,2yD⎛⎫⎪⎝⎭,则112,2yB x⎛⎫-⎪⎝⎭,得211222x xyy=-⎧⎪⎨=-⎪⎩,1121121131232yy y ykx x x x-===⋅-,利用点差法22112222222211x ya bx ya b⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()1212121222x x x x y y y ya b+-+-+=,整理得到2212214y bx a=,即222222244b a ck ka a-=⇒=,即221k e+=故选:B【点睛】关键点点睛:本题的关键利用三等分点得到211222x xyy=-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.B解析:B【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =, 因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.4.D解析:D 【分析】设双曲线C 的渐近线方程为y kx =,其中bk a=±,利用圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理可求得k的值,再利用e =可求得双曲线C 的离心率e 的值. 【详解】设双曲线C 的渐近线方程为y kx =,其中b k a=±, 圆()2223x y -+=的圆心坐标为()2,0,半径为r =圆心到直线y kx =的距离为d =另一方面,由于圆的半径、渐近线截圆所得弦长的一半、弦心距三者满足勾股定理,可得d ===,解得1k =±,1ba∴=, 因此,双曲线C的离心率为c e a ===== 故选:D. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-.由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.6.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB 的斜率为21=-∴直线AB 的方程为1)y x =-,由2422(1) y xy x⎧=⎪⎨=-⎪⎩,整理可得22520x x-+=,解得12x=,212x=当212x=时,22y=-,因此AOB的面积为:1211113||||||||12122222222 AOB AOF BOFS S S OF y OF y=+=+=⨯⨯+⨯⨯=.故选:C.【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决. 7.C解析:C【分析】根据椭圆的定义以及余弦定理,结合221cos cos0AF O BF F∠+∠=列方程可解得a,b,即可得到椭圆的方程.【详解】22||2||AF BF=,2||3||AB BF∴=,又1||||AB BF=,12||3||BF BF∴=,又12||||2BF BF a+=,2||2aBF∴=,2||AF a∴=,13||2BF a=,12||||2AF AF a+=,1||AF a∴=,12||||AF AF∴=,A∴在y轴上.在Rt2AF O 中,22cos AF O a∠=,在12BF F △中,由余弦定理可得22221316()()822cos 2242a a a BF F a a +--∠==⨯⨯. 221cos cos 0AF O BF F ∠+∠=,可得22802a a a -+=,解得212a =.2221248b a c =-=-=.椭圆C 的方程为:221128x y +=.故选:C . 【点睛】方法点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求.8.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F DE M =∴=,可知四边形12MF DE 为平行四边形;又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故==ce a, 故双曲线C的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54Px a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=,又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.12.D解析:D 【分析】先根据双曲线的方程求解出双曲线的渐近线方程,再根据点到直线的距离公式求解出抛物线方程中的p ,则抛物线方程可求. 【详解】双曲线2C 的渐近线方程是22026x y -=,即y =.因为抛物线的焦点()0,02p F p ⎛⎫> ⎪⎝⎭0y -=的距离为2,2=,即8p =,所以1C 的标准方程是216x y =,故选:D . 【点睛】方法点睛:求解双曲线方程的渐近线方程的技巧:已知双曲线方程22221x y a b-=或22221y x a b -=,求解其渐近线方程只需要将方程中的“1”变为“0”,由此得到的y 关于x 的一次方程即为渐近线方程. 二、填空题13.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C , 则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率3k =-, 所以线段AC的垂直平分线的方程为)43y x =--即33y x =-+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以22145233x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=-+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.14.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.15.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题解析:4【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入e =即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故22221b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.16.【分析】根据题意结合双曲线性质可知结合整理求得结果【详解】根据题意可知因为P 为线段QF 的中点所以又因为联立解得所以双曲线C 的标准方程为:故答案为:【点睛】思路点睛:该题考查的是有关双曲线方程的求解问解析:2213x y -=【分析】根据题意,结合双曲线性质,可知22bc b a a =,233b a =,结合222c a b =+,整理求得结果. 【详解】根据题意,可知233b PF a ==, 因为P 为线段QF 的中点,所以2QF PF =,又因为bcQF a =,联立2222232b abc b a a c a b ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ==, 所以双曲线C 的标准方程为:2213x y -=.故答案为:2213x y -=.【点睛】思路点睛:该题考查的是有关双曲线方程的求解问题,解题思路如下: (1)根据题意,明确量之间的关系;(2)利用题中条件,建立关于,,a b c 之间的关系,结合222c a b =+,求得,a b 的值,得到结果.17.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+,由椭圆定义可得,12||||22PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称,故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且06b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或6)b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x yG +=,与22163y x += 两方程相加得22222222x y x y +=⇒+=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.18.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫--⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫--⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.19.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN ENy y k k k x x ===-,又1190,MN yNMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a bx x x x y y y y ab x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)2214x y +=;(2)861,540⎛⎫- ⎪⎝⎭.【分析】(1)本小题根据已知条件直接求出2a =,1b =,再求出椭圆方程即可.(2)本小题先设A 、B 两点,再将OA OB ⋅转化为只含m 的表达式,最后根据m 的范围确定OA OB ⋅的范围,即可解题. 【详解】解:(1)∵点M ⎭在椭圆C :22221x y a b +=(0a b >>)上,∴222112a b +=,又∵24a =, ∴ 2a =,1b =.∴椭圆C 的方程:2214x y +=;(2)设点A 、B 的坐标为11(,)A x y ,22(,)B x y ,则AB 中点1212,22x x y y ++⎛⎫⎪⎝⎭在线段OM 上,且12OM k =,则12122()x x y y +=+,又221112x y +=,222212x y +=,两式相减得()()()()1212121202x x x x y y y y -++-+=, 易知120x x -≠,120y y +≠,所以()1212121212y y x xx x y y -+=-=--+,则1AB k =-. 设AB 方程为y x m =-+,代入2214xy +=并整理得2258440x mx m -+-=.由216(5)0m ∆=->解得25m <,又由(12425x x m +=∈,则0m <<. 由韦达定理得1285m x x +=,2124(1)5m x x -⋅=,故OA OB ⋅1212x x y y =+()()1212x x x m x m =+-+-+ ()212122x x m x x m =-++ ()22281855m m m -=-+285m =-又∵. 04m <<∴OA OB ⋅的取值范围是861,540⎛⎫- ⎪⎝⎭. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭;若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -, 由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭.【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.23.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫ ⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩, 则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221d k=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值. 24.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QR x =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQpPR x k p QR x k ===. ()2因为222,p p A k k ⎛⎫⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离.25.(1)221164x y +=;(2)112y x =±+.【分析】(1)首先设点()00,P x y ,利用平行线的性质求点,M N 的坐标,代入228OM ON +=,求点P 的轨迹方程;(2)由(1)可知,轨迹C 方程221164x y +=,直线:1l y kx =+与椭圆方程联立,利用公式1212AOBS OQ x x =⋅-△表示面积,求直线的斜率.。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》检测卷(答案解析)(3)
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.直线3y x与曲线2||194y x x -=的公共点的个数是( )A .1B .2C .3D .43.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A.4B .5C D .65.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 6.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .17.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF F B =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .538.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =9.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±10.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该双曲线的离心率为( )A B C .2 D 11.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .12.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(二、填空题13.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________.14.已知ABC 中,()1,0B -、()1,0C ,1k 、2k 分别是直线AB 和AC 的斜率.关于点A 有如下四个命题:①若A 是双曲线2212y x -=上的点,则122k k ⋅=;②若122k k ⋅=-,则A 是椭圆2212x y +=上的点;③若121k k ,则A 是圆221x y +=上的点;④若2AB AC =,则A 点的轨迹是圆. 其中所有真命题的序号是__________.15.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.16.已知圆22:68210C x y x y ++++=,点A 是圆C 上任一点,抛物线28y x =的准线为l ,设抛物线上任意一点Р到直线l 的距离为m ,则m PA +的最小值为_______17.过双曲线M :2213x y -=的右焦点F 作圆C :221(1)2x y ++=的切线,此切线与M 的右支交于A ,B 两点,则||AB =___________.18.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.19.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.20.已知椭圆222:1(06x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.三、解答题21.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.22.已知抛物线22(0)x py p =>的焦点在圆221x y +=上.(1)求抛物线的方程;(2)圆上一点00,x y 处的切线交抛物线于两点,A B ,且满足2AOB π∠=(O 为坐标原点),求0y 的值.23.已知椭圆()2222:10x y C a b a b+=>>左、右焦点分别为1F 、2F ,上顶点为M ,离心率为6,12MF F△的面积为2. (1)求椭圆C 的标准方程;(2)过点2F ,的直线l 交椭圆于A 、B 两点,当1ABF 面积最大时,求直线l 的方程. 24.已知抛物线C :()220y px p =>过点()2,4T -.(1)求抛物线C 的焦点到准线的距离;(2)已知点()4,0A ,过点()4,0B -的直线l 交抛物线C 于点M 、N ,直线MA ,NA 分别交直线4x =-于点P 、Q .求PBBQ的值. 25.已知抛物线28y x =的焦点为F ,且A 是抛物线上一点. (1)若4AF =求点A 的坐标;(2)直线l :y x m =+与抛物线交于两个不同的点P ,Q ,若OP OQ ⊥,求实数m 的值.26.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.C解析:C 【分析】由于已知曲线函数中含有绝对值符号, 将x 以0为分界进行分类讨论,当x ≥0时,曲线为焦点在y 轴上的双曲线,当x <0时,曲线为焦点在y 轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数. 【详解】当0x ≥时,曲线2194x xy -=的方程为22194y x -=当0x <时,曲线2194x xy -=的方程为22194y x +=,∴曲线2194x xy -=的图象如图,在同一坐标系中作出直线3y x的图象,可得直线与曲线交点个数为3个.故选:C 【点晴】本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.3.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-+≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n ++-++.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n ++-++点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF =,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线250x y -+=过点F ,可得()5,0F - 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OP OF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有()225112OH ==+-故12PF =,12PF PF a -=,(22221125PF PF F F +==故()2222220a ++=. 可得1a =ce a== 故选:D 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.7.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).8.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,b ∴=, 因此,双曲线C的渐近线方程为by x a=±=0y ±=.故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 9.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >,则()()220045c -+-=,解得3c =,因为2a =,所以22945b c a =-=-=, 所以双曲线的渐进线为:5b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.10.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴23c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.11.C解析:C利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a 可求得该双曲线的渐近线的斜率. 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.12.C解析:C把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e-=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.2【分析】首先根据可得可计算结合可得是等腰三角形且再由渐进线的斜率可计算出点坐标即可求出点坐标利用结合可得之间的关系即可求解【详解】因为所以即所以为点到渐近线的距离所以可得点为的中点又因为所以所以设解析:2 【分析】首先根据0OM MF ⋅=可得⊥OM MF ,可计算MF b =,结合||MN b =可得OFN △是等腰三角形,且ON c =,再由渐进线的斜率可计算出点N 坐标,即可求出点M 坐标,利用OM a =结合222b c a =-可得,a c 之间的关系,即可求解. 【详解】因为0OM MF ⋅=,所以OM MF ⊥,即⊥OM MF 所以MF 为点(),0F c 到渐近线0bx ay -=的距离,22bcMF b cb a ===+, 所以MF MN b ==,可得点M 为NF 的中点, 又因为⊥OM MF ,所以ON OF c ==, 所以222OM c b a =-=,设双曲线的左焦点为1F ,1FON θ∠=,(),N x y 则()tan tan tan bFON FON aθπ=-∠=-∠=, 因为222c a b =+,所以cos acθ=,sin b c θ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=, 所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭, 222222c a b OM a -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,将222b c a =-代入整理可得:()22224c a c a a -+-= 即222240c ac a --=,所以220e e --=,可得()()210e e -+=, 解得:2e =或1e =-(舍), 故答案为:2 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=; (2)利用变形公式e =; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.14.①③【分析】设点可得出结合斜率公式可判断A 选项的正误;求出动点的轨迹方程可判断②的正误;根据求出点的轨迹方程可判断③的正误;由求出点的轨迹方程可判断④的正误【详解】设动点的坐标为对于①由于点是双曲线解析:①③ 【分析】设点(),A x y ,可得出2212y x =+,结合斜率公式可判断A 选项的正误;求出动点A 的轨迹方程,可判断②的正误;根据121k k ,求出点A 的轨迹方程,可判断③的正误;由2AB AC =求出点A 的轨迹方程,可判断④的正误. 【详解】设动点A 的坐标为(),A x y .对于①,由于点A 是双曲线2212y x -=上的点,则2212y x =+,所以,22122221112y y y y k k y x x x =⋅===+--,①正确;对于②,21222111y y y k k x x x =⋅==-+--,化简可得2212y x +=,②错误;对于③,21221111y y y k k x x x =⋅==-+--,化简可得221x y +=,③正确;对于④,由2AB AC ==化简可得2251639x y ⎛⎫-+= ⎪⎝⎭, 当点A 为圆2251639x y ⎛⎫-+= ⎪⎝⎭与x 轴的交点时,A 、B 、C 三点无法构成三角形,④错误.故答案为:①③.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.15.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:17 【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE 设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率175c e a ==. 故答案为:17 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.16.【分析】由抛物线的定义可知结合圆的性质当且仅当三点共线时等号成立取得最值【详解】由圆可得圆心设的焦点为则抛物线上任意一点Р到直线l 的距离为过点作于点则由抛物线的定义可知所以当且仅当三点共线时等号成立 解析:412-【分析】由抛物线的定义可知m PF =,m PA PF PA +=+结合圆的性质,当且仅当,,P F C 三点共线时等号成立取得最值. 【详解】由圆22:68210C x y x y ++++=可得圆心()3,4C --,2r,设28y x =的焦点为F ,则()2,0F ,:2l x =-,抛物线上任意一点Р到直线l 的距离为m , 过点P 作PH l ⊥于点H ,则PH m =, 由抛物线的定义可知PH PF =,所以2m PA PH PA PF PA FC r FC +=+=+≥-=-()()223242412=--+-=,当且仅当,,P F C 三点共线时等号成立,所以m PA +2,2. 【点睛】关键点点睛:本题解题的关键点是利用抛物线的定义转化为抛物线上一点到焦点的距离与到圆上一点的距离之和的最小值,利用三点共线即可求解.17.【分析】首先设出直线利用直线与圆相切求直线方程再利用弦长公式求弦长【详解】因为直线过双曲线的右焦点且与圆相切所以直线的斜率存在设直线方程为()由直线与圆相切知解得或当时双曲线的一条渐近线的斜率是该直解析:【分析】首先设出直线,利用直线与圆相切,求直线方程,再利用弦长公式求弦长AB . 【详解】因为直线过双曲线的右焦点且与圆相切,所以直线的斜率存在,设直线方程为0y k -=(2x -)2=,解得1k =或17k =,当17k =时,双曲线的一条渐近线的斜率是3,173<,该直线不与双曲线右支相交于两点,故舍去;所以直线方程为2y x =-,联立双曲线方程,消元得2212150x x -+=.设()11,A x y ,()22,B x y ,则126x x +=,12152x x =,所以12||AB x =-===.故答案为:【点睛】易错点点睛:利用直线与圆相切,得到两个斜率1k =或17k =,需舍去一个,否则出现增根.18.4【分析】设出的坐标写出坐标满足的关系式根据题意写出直线的方程求出的横坐标计算得出的值【详解】解:设则则所以直线的方程为令可得同理有直线的方程为令可得则故答案为:【点睛】圆锥曲线中求定值问题常见的方解析:4 【分析】设出,,M N P 的坐标,写出坐标满足的关系式.根据题意,写出直线PM ,PN 的方程,求出,A B 的横坐标,计算得出mn 的值. 【详解】解:设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==-故答案为:4 【点睛】圆锥曲线中求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 20.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+, 由椭圆定义可得,12||||2262PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称, 故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且06b <<,则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或6)b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x y G +=,与22163y x += 两方程相加得22222222x y x y +=⇒+=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.三、解答题21.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩,则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221d k=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值. 22.(1)24x y =;(2)014y =. 【分析】(1)求出221x y +=与y 轴交点,得出抛物线22(0)x py p =>的焦点,求出p(2)设出直线AB ,与抛物线联立,利用12120x x y y +=求出直线的参数m ,再利用AB 为切线,求出直线方程.再与圆方程联立求出交点纵坐标即可. 【详解】(1)∵抛物线22(0)x py p =>的焦点为0,2p F ⎛⎫ ⎪⎝⎭, 圆221x y +=与y 轴交点为(0,1),122pp ∴=⇒=, 即24x y =.(2)设直线AB 为y kx m =+(k 一定存在),224404y kx m x kx m x y=+⎧∴⇒--=⎨=⎩, 2221212124,44x x x x m y y m ∴=-=⋅=,又21212,04042AOB x x y y m m m π∠=∴+=⇒-=⇒=,即直线AB 为24,115y kx k =+=⇒=,2202215(40161y x x x y ⎧=⎪∴=⇒=⎨+=⎪⎩, 20116y ∴=,即014y =.【点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11,A x y ,()22,B x y ;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)2213x y +=;(2)0x y -=或0x y +=.【分析】(1)由离心率、面积和222a b c =+可得答案;(2)设()11,A x y ,()22,B x y ,:l x ty =+11212AF BF F AF F BSSS=+,结合基本不等式,可得答案.【详解】(1)∵c e a ==,12MF F S bc ==△222a b c =+,解得a =1b =,c =C 的方程为:2213x y +=.(2)()1F ,)2F ,设()11,A x y ,()22,B x y ,已知直线l 的斜率不为0,设直线l:x ty =+2213x ty x y ⎧=+⎪⎨+=⎪⎩,得()22310t y ++-=,故12y y +=,12213y y t =-+,1212121212F F A F F BSSF F y y+=-=因为2312t =≤+=,即1t =±时等号成立,所以直线l 的方程为0x y --=或0x y +=. 【点睛】本题考查了椭圆的定义,考查了三角形的面积公式,关键点是利用韦达定理表示1212F F AF F BSS+并利用基本不等式求最值,考查了直线与椭圆的位置关系和计算能力.24.(1)4p =;(2)1. 【分析】(1)求出p 后可得焦点到准线的距离.(2)设直线l 的方程为4x my =-,()11,M x y ,()22,N x y ,可用,M N 的坐标表示PB BQ ,再联立直线l 的方程和抛物线的方程,利用韦达定理化简PBBQ可得所求的值. 【详解】(1)因为()2,4T -在抛物线上,164p =即4p =,抛物线C 的焦点到准线的距离为4p =.(2)显然直线l 的斜率不为0,故设直线l 的方程为4x my =-,由248x my y x=-⎧⎨=⎩得28320y my -+=, 由()228320m ∆=->得216m >,设()11,M x y ,()22,N x y ,则128y y m +=,1232y y =,所以()12124my y y y =+. 又114MA y k x =-,224NA y k x =-, 所以直线MA :()1144y y x x =--,NA :()2244yy x x =--,令4x =-,得1184P y y x -=-,2284Q y y x -=-,所以121212124848P QPB y y x y my BQx y my y y --==⋅=⋅-- ()()121121211221221248844184844y y y my y y y y my y y y y y y y +---====-+--.【点睛】思路点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题. 25.(1)点A 的坐标为()()2,4,2,4-;(2)8-. 【分析】(1)由4AF =根据焦半径公式求出点A 的横坐标,再代入抛物线方程求得纵坐标; (2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,利用韦达定理,结合向量垂直的坐标表示,列方程可求实数m 的值. 【详解】(1)设()00,A x y ,042p AF x =+=,22p=,02x ∴= 所以20082164y y =⨯=⇒=±,∴点A 的坐标为()()2,4,2,4-.(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,设()11,P x y ,()22,Q x y ,则1282x x m +=-,212x x m =,121228y y x x m ∴+=++=,()()()2121212128y y x m x m x x m x x m m =++=+++=,又OP OQ ⊥,0OP OQ ∴⋅=,2121280x x y y m m ∴+=+=,0m ∴=或8m =-,经检验,当0m =时,直线与抛物线交点中有一点与原点O 重合:不符合题意,当8m =-时,2(24)4640∆=--⨯>,符合题意. 综上,实数m 的值为8-. 【点睛】方法点睛:解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.26.(1)22194x y +=;(2)最大值为.【分析】(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合c a =222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点P ⎛ ⎝⎭,所以2213219a b +=,因为离心率为33c a =, 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12MN x =-=,因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题。
高中数学圆锥曲线与方程难题典型题拔高练习带答案
高中数学圆锥曲线与方程一.选择题(共20小题)1.从圆x2+y2=4上的点向椭圆C:+y2=1引切线,两个切点间的线段称为切点弦,则椭圆C内不与任何切点弦相交的区域面积为()A.B.C.D.前三个答案都不对2.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为()A.B.2﹣C.﹣2D.﹣3.如图,抛物线y2=2px(p>0)的焦点为F,斜率k=1的直线l过焦点F,与抛物线交于A、B两点,若抛物线的准线与x轴交点为N,则tan∠ANF=()A.1B.C.D.4.抛物线将坐标平面分成两部分,我们将焦点所在的部分(不包括抛物线本身)称为抛物线的内部.若点N(a,b)在抛物线C:y2=2px(p>0)的内部,则直线l:by=p(x+a)与抛物线C的公共点的个数为()A.0B.1C.2D.不能确定5.如图,已知白纸上有一椭圆C,它焦点为F1,F2,长轴A1A2,短轴B1B2,P是椭圆上一点,将白纸沿直线B1B2折成90°角,则下列正确的是()①当P在B1(或B2)时,PF1+PF2最大.②当P在A1(或A2)时,PF1+PF2最小.A.①②B.①C.②D.都不正确6.已知F为抛物线y2=4x的焦点,A、B、C为抛物线上三点,当时,则存在横坐标x>2的点A、B、C有()A.0个B.2个C.有限个,但多于2个D.无限多个7.过双曲线C:右焦点F的直线l与C交于P,Q两点,,若,则C 的离心率为()A.B.2C.D.8.已知抛物线C:y2=8x,点P,Q是抛物线上任意两点,M是PQ的中点,且|PQ|=10,则M到y轴距离的最小值为()A.9B.8C.4D.39.过点P作抛物线C:x2=2y的切线l1,l2,切点分别为M,N,若△PMN的重心坐标为(1,1),且P在抛物线D:y2=mx上,则D的焦点坐标为()A.B.C.D.10.过点P(2,1)斜率为正的直线交椭圆于A,B两点.C,D是椭圆上相异的两点,满足CP,DP分别平分∠ACB,∠ADB,则△PCD外接圆半径的最小值为()A.B.C.D.11.已知双曲线E:=1(a,b>0),斜率为﹣的直线与E的左右两支分别交于A,B两点,点P的坐标为(﹣1,2),直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为﹣,则E的离心率为()A.B.C.D.12.曲线Γ:(﹣﹣1)=0,要使直线y=m(m∈R)与曲线Γ有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣3,3)C.(﹣3,﹣)∪(,3)D.(﹣3,﹣)∪(﹣,)∪(,3)13.圆锥曲线与空间几何体具有深刻而广泛的联系.如图所示,底面半径为1,高为3的圆柱内放有一个半径为1的球,球与圆柱下底面相切,作不与圆柱底面平行的平面α与球相切于点F,若平面α与圆柱侧面相交所得曲线为封闭曲线τ,τ是以F为一个焦点的椭圆,则τ的离心率的取值范围是()A.B.C.D.14.已知A(x1,y1),B(x2,y2)是椭圆4x2+y2=1上两个不同点,且满足,则|2x1+y1﹣1|+|2x2+y2﹣1|的最大值为()A.B.4C.D.15.如图,α,β,γ是由直线l引出的三个不重合的半平面,其中二面角α﹣l﹣β大小为60°,γ在二面角α﹣l﹣β内绕直线l旋转,圆C在γ内,且圆C在α,β内的射影分别为椭圆C1,C2.记椭圆C1,C2的离心率分别为e1,e2,则e12+e22的取值范围是()A.B.C.D.16.已知双曲线的左、右焦点分别为F1、F2,过F2且与x轴垂直的直线l与双曲线的两条渐近线分别交于A、B两点,,若双曲线上存在一点P使得|PM|+|PF2|≤t,则t的最小值为()A.B.C.D.17.已知椭圆Γ:内有一定点P(1,1),过点P的两条直线l1,l2分别与椭圆Γ交于A、C和B、D两点,且满足,,若λ变化时,直线CD的斜率总为,则椭圆Γ的离心率为()A.B.C.D.18.已知椭圆的左、右焦点分别为F1,F2,P为椭圆上不与左右顶点重合的任意一点,I,G分别为△PF1F2的内心和重心,当IG⊥x轴时,椭圆的离心率为()A.B.C.D.19.已知双曲线的离心率为2,F1,F2分别是双曲线的左、右焦点,点M(﹣a,0),N(0,b),点P为线段MN上的动点,当取得最小值和最大值时,△PF1F2的面积分别为S1,S2,则=()A.4B.8C.D.20.已知直线y=kx(k≠0)与双曲线交于A,B两点,以AB为直径的圆恰好经过双曲线的右焦点F,若△ABF的面积为4a2,则双曲线的离心率为()A.B.C.2D.二.填空题(共5小题)21.设F1、F2分别是椭圆的左、右焦点,若在其左准线上存在点M,使线段MF2的中垂线过点F1,则椭圆的离心率的取值范围是.22.平面直角坐标系xOy中,抛物线y2=2x的焦点为F,设M是抛物线上的动点,则的最大值是,此时|MF|=.23.已知双曲线﹣=1(a>0,b>0),F1(﹣c,0)是左焦点,圆x2+y2=c2与双曲线左支的一个交点是P,若直线PF1与双曲线右支有交点,则双曲线的离心率的取值范围是.24.已知点P为直线ax+y﹣4=0上一点,P A,PB是椭圆C:+y2=1(a>1)的两条切线,若恰好存在一点P使得P A⊥PB,则椭圆C的离心率为.25.已知一族双曲线E n:x2﹣y2=(n∈N*,且n≤2020),设直线x=2与E n在第一象限内的交点为A n,点A n 在E n,的两条渐近线上的射影分别为B n,∁n,记△A n B n∁n的面积为a n,则a1+a2+a3+……+a2020=.三.解答题(共15小题)26.已知,点M在x轴上,点L在y轴上,且,当点L在y轴上运动时,动点N的轨迹为曲线C过x轴上一点K的直线交曲线C于P,Q两点.(Ⅰ)求曲线C的轨迹方程;(Ⅱ)证明:存在唯一的一点K,使得为常数,并确定K点的坐标.27.已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.28.已知点A(﹣,0),B(,0),△ABC的周长为4+2,顶点C的轨迹为E.(1)求E的方程;(2)直线l:y=kx+m与曲线E交于M,N两点(M,N不在x轴上),若点P在E上,且△PMN的重心是坐标原点O.(i)求m与k满足的等式关系;(ii)求证:△PMN的面积为定值.29.如图,已知椭圆E的右焦点为F2(1,0),P,Q为椭圆上的两个动点,△PQF2周长的最大值为8.(Ⅰ)求椭圆E的标准方程;(Ⅱ)直线1经过F2,交椭圆E于点A,B,直线m与直线l的倾斜角互补,且交椭圆E于点M,N,|MN|2=4|AB|,求证:直线m与直线l的交点T在定直线上.30.已知椭圆:(a>b>0)过点E(,1),其左、右顶点分别为A,B,左、右焦点为F1,F2,其中F1(,0).(1)求栖圆C的方程:(2)设M(x0,y0)为椭圆C上异于A,B两点的任意一点,MN⊥AB于点N,直线l:x0x+2y0y﹣4=0,设过点A 与x轴垂直的直线与直线l交于点P,证明:直线BP经过线段MN的中点.31.如图,设点F是抛物线C:x2=2y的焦点,直线l与抛物线C相切于点P(点P位于第一象限),并与抛物线C的准线相交于点A.过点P且与直线l垂直的直线l1交抛物线C于另一点B,交y轴于点Q,连结AB.(Ⅰ)证明:△FPQ为等腰三角形;(Ⅱ)求△P AB面积的最小值.32.已知动圆P过点F2(2,0),并且与圆相外切,设动圆的圆心P的轨迹为C.(1)求曲线C的方程;(2)过动点P作直线与曲线3x2﹣y2=0交于A、B两点,当P为AB的中点时,求|OA|•|OB|的值;(3)过点F2的直线l1与曲线C交于E、F两点,设直线,点D(﹣1,0),直线ED交l于点M,求证:直线FM经过定点,并求出该定点的坐标.33.已知椭圆C:的左右顶点分别为A(﹣a,0),B(a,0),点P是椭圆C上异于A、B的任意一点,设直线P A,PB的斜率分别为k1、k2,且,椭圆的焦距长为4.(1)求椭圆C的离心率;(2)过右焦点F且倾斜角为30°的直线l交椭圆C于M、N两点,分别记△ABM,△ABN的面积为S1、S2,求|S1﹣S2|的值.34.已知点,在圆C:上任取一点E,EN的垂直平分线交EC于点M.(如图).(1)求点M的轨迹方程H;(2)若过点P(0,1)的动直线l与(1)中的轨迹H相交于A、B两点.问:平面内是否存在异于点P的定点Q,使得恒成立?试证明你的结论.35.已知椭圆的离心率为,F1,F2分别为椭圆的左、右焦点,点P为椭圆上一点,ΔF1PF2面积的最大值为.(1)求椭圆C的方程;(2)过点A(4,0)作关于x轴对称的两条不同直线l1,l2分别交椭圆于M(x1,y1)与N(x2,y2),且x1≠x2,证明直线MN过定点,并求出该定点坐标.36.在平面直角坐标系xOy中,圆A:(x﹣1)2+y2=16,圆内一点B(﹣1,0),P是圆上任意一点,线段BP的垂直平分线l和半径AP相交于点E,当P在圆上运动时,(1)求点E的轨迹方程;(2)过A的直线与点E的轨迹方程交于H、G两点,若线段HG的中点为M,且=2,求四边形OHNG面积的最大值.37.已知椭圆的右焦点为F(c,0),短轴长为2,且C截直线x=c所得线段MN的长为(1)求C的方程;(2)若A,B为C上的两个动点,且∠AFM=∠BFM.证明直线AB过定点,并求定点的坐标.38.椭圆,A,B是椭圆C的左右顶点,点P是椭圆上的任意一点.(1)证明:直线P A,与直线PB,斜率之积为定值.(2)设经过D(1,0)且斜率不为0的直线l交椭圆于M,N两点,直线AM与直线BN交于点Q,求证:为定值.39.以点M(2,0)为切点作圆C:(x﹣3)2+(y﹣t)2=r2的切线l1,过点N(﹣2,0)作圆的线l2,l1与l2交于点E.(1)证明:|EM|+|EN|为定值,并求动点E的轨迹r的方程.(2)若过点T(﹣3,0)的直线l与轨迹r交于A,B两点,求△MAB面积的最大值及此时直线1的方程.40.如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,其中A、C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)设直线PF1、PF2的斜率分别为k1、k2,证明k1⋅k2=1;(3)是否存在题设中的点P,使得|.若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共20小题)1.【解答】解:如图所示,设点A(2cosθ,2sinθ),则BC直线方程为cosθ•x+2sinθ•y=1,由于在点(a cosθ,b sinθ)的切线方程为,则,因此cosθ•x+2sinθ•y=1 为椭圆x2+4y2=1 的切线系方程.由椭圆的面积可得,下面证明以下两个引理:①过椭圆上一点P(x0,y0)的切线方程为.证明:当斜率存在时,设切线方程为y=kx+t,联立椭圆方程,联立直线与椭圆方程可得(b2+a2k2)x2+2a2ktx+a2(t2﹣b2)=0①由题可得:△=4a4k2t2﹣4a2(b2+a2k2)(t2﹣b2)=0,化简可得:t2=a2k2+b2,①式只有一个根,记作x0为切点的横坐标,切点的纵坐标,所以,所以,所以切线方程为:,化简得:,当切线斜率不存在时,切线为x=±a,也符合方程,综上上一点P(x0,y0)的切线方程为.②从椭圆外一点P(x0,y0)作椭圆的两条切线,切点分别为A,B,则切点弦AB的方程为.证明:如图,设切点A,B的坐标分别为(x1,y1),(x2,y2),则椭圆的以A,B为切点的切线方程分别为和,由两切线均过点P(x0,y0)有和,所以点A(x1,y1),B(x2,y2)均在直线上,因此切点弦AB的方程为.故选:A.2.【解答】解:如图,设|F1F2|=2c,|AF1|=m,若△ABF1构成以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=m,由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+m,即m=2(2﹣)a,则|AF2|=2a﹣m=(2﹣2)a,在直角三角形AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2﹣)2a2+4(﹣1)2a2,∴c2=(9﹣6)a2,则e2==9﹣6=,∴e=.故选:D.3.【解答】解:∵直线l的斜率k=1,∴可设A(+y,y),代入抛物线y2=2px,可得y2=2p(+y),∴y=p+p,∴tan∠ANF===.故选:C.4.【解答】解:根据题意,点N(a,b)在抛物线C:y2=2px(p>0)的内部,∴|b|<,且a>0;又直线l:by=p(x+a)与抛物线C的方程联立,得;消去y,得;px2+(2pa﹣2b2)x+pa2=0,∵p>0,且△=(2pa﹣2b2)2﹣4p•pa2=4(2pa﹣b2)(﹣b2)=4b2(b2﹣2pa)<0,∴方程组无解;∴直线与抛物线无公共点.胡选:A.5.【解答】解:设翻折前椭圆方程为:,如图所示建立空间直角坐标系,根据对称性,不妨设,F1(c,0,0),F2(0,0,c),则=,设,则,故函数单调递减,故当θ=0,即当P在B1(或B2)时,PF1+PF2最大,故时,当P在A1(或A2)时,PF1+PF2最小.故选:A.6.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3),先证x1≤2,由知,F为△ABC的重心,又F(1,0),∴,,∴x2+x3=3﹣x1,y2+y3=﹣y1,∴,∴,∴,∴x1≤2(x2+x3),∴x1≤2(3﹣x1),∴x1≤2,同理x2≤2,x3≤2,故选:A.7.【解答】解:设双曲线的左焦点为F',由,可得|QP|=2|PF|,,可得OP⊥FQ,可设|PF|=t,可得|QP|=2t,由双曲线的定义可得|PF'|=|PF|+2a=t+2a,|QF'|=|QF|﹣2a=3t﹣2a,在直角三角形POF中,可得cos∠PFO=,在△PFF'中,cos∠PFO=,在△QFF'中,cos∠QFO=cos∠PFO=,由=,化为3ta=c2﹣a2,①由=,可得3t2﹣3ta=c2﹣a2,②由①②消去t,可得c2=7a2,即c=a,则e==,故选:C.8.【解答】解:法﹣:由题意可知直线l的斜率不为零,设l:x=my+n,设点A(x1,y1)、B(x2,y2),则点M(,),点M到x轴的距离为.由,整理得y2﹣8my﹣8n=0.△=64m2+32n>0,由韦达定理得y1+y2=8m,y1y2=﹣8n.|AB|=•|y1﹣y2|=•=10,可得n=﹣2m2,∵=4m,∴=m•+n=m•4m+n=4m2+﹣2m2=2m2+=2(1+m2)+﹣2≥2﹣2=5﹣2=3;当且仅当2(1+m2)=,即当m=±时,等号成立,此时n=﹣2m2=2,△=64m2+32n>0成立,合乎题意!因此,点M到y轴的距离的最小值为3,此时,直线l的方程为x±y﹣2=0.法二:因为:|PQ|≤PF+QF=x1+x2+p⇒x1+x2≥10﹣p=6;∴PQ的中点M到y轴距离的值为:≥3;即最小值为3.故选:D.9.【解答】解:设M(x1,),N(x2,),由x2=y,得y=,∴y′=x,故直线L1的方程为y﹣=x1(x ﹣x1)即y=x1x﹣,同理直线L2的方程为y=x2x﹣,联立L1,L2的方程可得x=,y=,设△PMN 的重心坐标为(x0,y0),则x0==1,y0==1即所以,则P的坐标为(1,﹣1),从而(﹣1)2=m×1,故D的焦点坐标为(,0).故选:A.10.【解答】解:如图,先固定直线AB,设,则f(C)=f(D)=f(P),其中为定值,故点P,C,D在一个阿波罗尼斯圆上,且△PCD外接圆就是这个阿波罗尼斯圆,设其半径为r,阿波罗尼斯圆会把点A,B其一包含进去,这取决于BP与AP谁更大,不妨先考虑BP>AP的阿波罗尼斯圆的情况,BA的延长线与圆交于点Q,PQ即为该圆的直径,接下来寻求半径的表达式,由,解得,同理,当BP<AP时有,,综上,;当直线AB无斜率时,与椭圆交点纵坐标为,则;当直线AB斜率存在时,设直线AB的方程为y﹣1=k(x﹣2),即y=kx﹣2k+1,与椭圆方程联立可得(24k2+5)x2+48k(1﹣2k)x+96(k2﹣k﹣1)=0,设A(x1,y1),B(x2,y2),则由根与系数的关系有,,∴=,注意到x1﹣2与x2﹣2异号,故=,设t=12k+5,则,故,又,故选:D.11.【解答】解:设A(x1,y1),B(x2,y2),线段AB的中点M(x M,y M),则,两式相减得:=•⇒﹣=•⇒y M=﹣①设C(x3,y3),D(x4,y4),线段CD的中点N(x N,y N),同理可得y N=﹣•x N②易知P,M,N三点共线,∴=,①②代入得=,即(x M﹣x N)•(1﹣)=0,∴a2=4b2,∴e=.故选:C.12.【解答】解:曲线Γ:(﹣﹣1)=0,可知x,y∈[﹣3,3],图形如图:是一个圆与双曲线的一部分,由,解得y=±,曲线Γ:(﹣﹣1)=0,要使直线y=m(m∈R)与曲线Γ有四个不同的交点,可得m∈(﹣3,﹣)∪(,3).故选:C.13.【解答】解:当α与底面趋于平行时,τ几乎成为一个圆,因此离心率可以充分接近0.当α与底面的夹角最大时,τ的离心率达到最大,下面求解这一最大值.如图,A,B为长轴,F为焦点时,e最大.a+c=|BF|=|BG|=2,易知b=1,所以,则e==.则离心率的取值范围是.故选:B.14.【解答】解:已知A(x1,y1),B(x2,y2)是椭圆4x2+y2=1上两个不同点,则,设2x=m,y=n,C(m1,n1),D(m2,n2),O为坐标原点,则,,∴,且,∴C、D两点均在圆m2+n2=1的圆上,且∠COD=60°,∴△COD为等边三角形且|CD|=1,根据点到直线的距离公式,知为C、D两点到直线x+y﹣1=0的距离d1、d2之和.设CD的中点为E,E到直线x+y﹣1=0的距离d3,则,∴d1+d2的最大值为,∴,∴|2x1+y1﹣1|+|2x2+y2﹣1|的最大值为,故选:C.15.【解答】解:显然圆在两平面内的射影均为椭圆,且椭圆的长轴都为圆的直径,设圆的直径为2,要求椭圆的离心率,关键是求出其短轴,现将问题平面化,如图所示,设AB=2,在平面α内的投影为A1B1,在面β内的投影为A2B2,设∠MOH=θ,θ∈(0,),则∠MOH=﹣θ,则A1B1=AB cosθ,A2B2=2cos(﹣θ),所以e12===1﹣cos2θ,e22===1﹣cos2(﹣θ),则e12+e22=1﹣cos2θ+1﹣cos2(﹣θ)=1﹣cos2θ+1﹣cos2θ﹣sinθcosθ﹣sin2θ=﹣cos2θ﹣sinθcosθ=1﹣sin(2θ+),因为θ∈(0,),所以2θ+∈(,),则sin(2θ+)∈(,1],所以1﹣sin(2θ+)∈[,),即e12+e22∈[,),故选:C.16.【解答】解:双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),渐近线方程为y=±x,令x=c,解得y=±,可得|AB|=,|AB|=3,即有=3,由a=2,c2=a2+b2,解得b=,c=3,即有双曲线的方程为,由题意可知若P在左支上,由双曲线的定义可得|PF2|=2a+|PF1|,|PM|+|PF2|=|PM|+|PF1|+2a≥|MF1|+4=+4=5+4,当且仅当M,P,F1共线时,取得最小值4+5;若P在右支上,由双曲线的定义可得|PF2|=|PF1|﹣2a,|PM|+|PF2|=|PM|+|PF1|﹣2a≥|MF1|﹣4=5﹣4,当且仅当M,P,F1共线时,取得最小值5﹣4.综上可得,所求最小值为5﹣4.故选:D.17.【解答】解:设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),由,即(1﹣x1,1﹣y1)=λ(x3﹣1,y3﹣1),则x1+λx3=1+λ,y1+λy3=1+λ,由,同理可得:x2+λx4=1+λ,y2+λy4=1+λ.则(y1+y2)+λ(y3+y4)=(x1+x2)+λ(x3+x4),将点A,B的坐标代入椭圆方程作差可得:=﹣•,由题意可得:AB∥CD,∴k AB=k CD=﹣.则a2(y1+y2)=4b2(x1+x2)①,同理可得:a2(y3+y4)=4b2(x3+x4),∴λa2(y3+y4)=4λb2(x3+x4),②①+②得:a2[(y1+y2)+λ(y3+y4)]=4b2[(x1+x2)+λ(x3+x4)],∴a2[(x1+x2)+λ(x3+x4)]=4b2[(x1+x2)+λ(x3+x4)],∴a2=4b2,则椭圆的离心率e===.故选:A.18.【解答】解:如图所示,设P(x0,y0),不妨设y0>0.F1(﹣c,0),F2(c,0).则G(,),∵IG⊥x轴,∴x I=.设三角形内切圆的半径为r.由三角形内切圆的性质可得:r(2a+2c)=•2c•y0.解得r=,∴y I=.设PF1,PF2分别与内切圆相切于点D,E.则PD=PE=(2a﹣2c)=a﹣c.在Rt△PDI中,由勾股定理可得:PD2+ID2=PI2.∴(a﹣c)2+=+,化为:+=1.与椭圆比较可得:a2=,∴a=(a﹣c),可得=.∴e=.故选:A.19.【解答】解:由,得,故线段MN所在直线的方程为,又点P在线段MN上,可设,其中m∈[﹣a,0],由于F1(﹣c,0),F2(c,0),即F1(﹣2a,0),F2(2a,0),得,所以=.由于m∈[﹣a,0],可知当时,取得最小值,此时,当m=0时,取得最大值,此时,则,故选:A.20.【解答】解:∵以AB为直径的圆恰好经过双曲线的右焦点F,∴以AB为直径的圆的方程为x2+y2=c2,由对称性知△ABF的面积S=2S△OBF=2×h=ch=4a2,即h=,即B点的纵坐标为y=,则由x2+()2=c2,得x2=c2﹣()2=c2﹣,B在双曲线上,则﹣=1,即﹣﹣=1,即﹣(1+)=1,即﹣•=1,即﹣=1,即﹣1==,得16a4=(c2﹣a2)2,即4a2=c2﹣a2,得5a2=c2,得c=a,则离心率e===,方法2:设双曲线的左焦点为F′,由图象的对称性得,圆O经过点F′,且|BF′|=|AF|,设|BF'|=|AF|=m,|BF|=n,∵BF⊥AF∴S△ABF=mn=4a2,m2+n2=4c2,则mn=8a2,∵|BF′|﹣|BF|=2a,∴m﹣n=2a则m2﹣2mn+n2=4a2,∴4c2﹣16a2=4a2,即c2=5a2,则c=a,即离心率e===,故选:D.二.填空题(共5小题)21.【解答】解:左准线方程为:x=﹣,连接MF1,则由线段MF2的中垂线过点F1,可得|MF1|=|F1F2|=2c,又|MF1|≥(﹣c)﹣(﹣),即有3c,即c≥a,则e=,又0<e<1,则<1.故答案为:.22.【解答】解:焦点F(,0),设M(m,n),则n2=2m,m>0,设M到准线x=﹣的距离等于d,则由抛物线的定义得====,令m﹣=t,依题意知,m>0,若t>0,则==≤=,∴()max=,此时==;若﹣<t<0,y=t++单调递减,故y<﹣﹣+=﹣1,∈(﹣1,0);综上所述,=.此时t=,即t==m﹣,则m=+=1,则|MF|=d=m﹣(﹣)=1+=,故答案为:,23.【解答】解:设直线PF1的方程为y=k(x+c),即kx﹣y+kc=0,由直线和圆有交点,可得<c,解得k≠0.联立圆x2+y2=c2与双曲线方程﹣=1,解得交点P,设为(﹣,).可得k=>0,由题意可得k<,结合a2+b2=c2,a<c2﹣ab,化简可得b>2a,即有b2>4a2,可得c2>5a2,即有e=>.故答案为:(,+∞)24.【解答】解:设P(m,n),过点P的切线方程为y﹣n=k(x﹣m),联立,得(k2a2+1)x2+2ka2(n﹣km)x+a2[(n﹣km)2﹣1]=0,∵直线与椭圆相切,∴△=4k2a4(n﹣km)2﹣4a2(k2a2+1)[(n﹣km)2﹣1]=0,整理得(a2﹣m2)k2+2mnk+1﹣n2=0,若切线P A、PB的斜率均存在,分别设为k1,k2,∵P A⊥PB,∴k1•k2==﹣1,即m2+n2=1+a2,∴点P在以(0,0)为圆心,为半径的圆上,即(0,0)到直线ax+y﹣4=0的距离为,∴d==,解得a=±,∵a>1,∴a=,若切线P A、PB分别与两坐标轴垂直,则P(a,1)或(﹣a,1)或(a,﹣1)或(﹣a,﹣1),存在点P(a,1),将其代入直线ax+y﹣4=0中,解得a=.综上所述,a=.又b=1,∴c==,∴离心率e===.故答案为:.25.【解答】解:双曲线E n:x2﹣y2=(n∈N*,且n≤2020)的两条渐近线为y=x,y=﹣x,互相垂直,直线x=2与E n在第一象限内的交点为A n,,点A n在E n的两条渐近线上的射影分别为B n,∁n,则,∴,∴=.故答案为:.三.解答题(共15小题)26.【解答】解:(Ⅰ)根据题意可知F(,0),(p>0),点M在x轴上,点L在y轴上,且,画出几何关系如下图所示:设N(x,y),L为MN的中点,∵点L在y轴上,∴点M的横坐标为﹣x,由等腰三角形的三线合一可知|FM|=|FN|,即+x=,展开化简可得y2=2px.证明(Ⅱ):设K为x轴上一点,设K(a,0),过K点直线方程为y=k(x﹣a),交抛物线于P(x1,y1),Q(x2,y2),联立方程组,化简变形可得k2x﹣(2ak2+2p)+k2a2=0,∴x1+x2==2a+,x1x2=a2,由两点之间的距离公式可得|PK|2=(x1﹣a)2+y12=(x1﹣a)2+2px1,|QK|2=(x2﹣a)2+y22=(x2﹣a)2+2px2,∴=+=+=对于分子x12+x22+(2p﹣2a)(x1+x2)+2a2=(x1+x2)2﹣2x1x2+(2p﹣2a)(x1+x2)+2a2=(2a+)2+(2p﹣2a)(2a+)=(2a+)(2p+)=,对于分母[x12+(2p﹣2a)x1+a2][x12+(2p﹣2a)x1+a2]=(x1x2)2+(2p﹣2a)x1x2(x1+x2)+a2[(x1+x2)2﹣2x1x2]+(2p﹣2a)2x1x2+a2(2p﹣2a)(x1+x2)+a4,=a4+(2p﹣2a)a2(2a+)+a2[(2a+)2﹣2a2]+a2(2p﹣2a)2+a2(2p﹣2a)(2a+)+a4=,∴=,当a=p时,=,此时K(p,0).27.【解答】解:如图所示:(1)由题意A(﹣a,0),B(a,0),G(0,1),∴=(a,1),=(a,﹣1),•=a2﹣1=8,解得:a=3,故椭圆E的方程是+y2=1;(2)由(1)知A(﹣3,0),B(3,0),设P(6,m),则直线P A的方程是y=(x+3),联立⇒(9+m2)x2+6m2x+9m2﹣81=0,由韦达定理﹣3x c=⇒x c=,代入直线P A的方程为y=(x+3)得:y c=,即C(,),直线PB的方程是y=(x﹣3),联立方程⇒(1+m2)x2﹣6m2x+9m2﹣9=0,由韦达定理3x D=⇒x D=,代入直线PB的方程为y=(x﹣3)得y D=,即D(,),则①当x c=x D即=时,有m2=3,此时x c=x D=,即CD为直线x=,②当x c≠x D时,直线CD的斜率K CD==,∴直线CD的方程是y﹣=(x﹣),整理得:y=(x﹣),直线CD过定点(,0).综合①②故直线CD过定点(,0).28.【解答】解:(1)由题意知|CA|+|CB|=4,所以E为焦点在x轴上的椭圆,所以a=2,c=,则b=,所以椭圆的方程为,(y≠0),(2)(i)设M(x1,y1),N(x2,y2),P(x3,y3),因为△PMN的重心是坐标原点O,则,联立y=kx+m和,得(2k2+1)x2+4kmx+2m2﹣4=0,△=8(2+4k2﹣m2),当△>0时,,,所以,y3=﹣(y1+y2)=﹣k(x1+x2)﹣2m=,故P(,),因为点P在椭圆上,所以带入椭圆整理得,满足△>0,因而m与k满足的等式关系为.①(ii)由(i)当△>0时,,因为△PMN的重心是坐标原点O,所以△PMN的面积为△OMN的面积的3倍,设直线l与y轴交与点D,那么△PMN的面积为=,关系式①代入得S=,所以△PMN的面积为定值.29.【解答】解:(1)由已知,得c=1,4a=8,即a=2,则b=,则椭圆E的标准方程为,(2)若直线l的斜率不存在,直线m的斜率也不存在,这与两直线交与点P矛盾,即直线l的斜率存在,设直线l为y=k(x﹣1),(k≠0),直线m为y=﹣k(x+t),A(x A,y A),B(x B,y B),P(x P,y P),Q(x Q,y Q),将直线m的带入椭圆方程:(3+4k2)x2+8k2tx+4(k2t2﹣3)=0,则,,则|MN|2=(1+k2),同理|AB|==,令|MN|2=4|AB|,得t=0,此时△=16k4t2﹣16(3+4k2)(k2t2﹣3)>0,所以直线m:y=﹣kx,则P(),即P在定直线x=上30.【解答】解:(1)由题意知,2a=|EF1|+|EF2|==4,则a=2,c=,b=,故椭圆的方程为,(2)由(1)知A(﹣2,0),B(2,0),过点A且与x轴垂直的直线的方程为x=﹣2,结合方程x0x+2y0y﹣4=0,得点P(﹣2,),直线PB的斜率为,直线PB的方程为,因为MN⊥AB于点N,所以N(x0,0),线段MN的中点坐标(),令x=x0,得,因为,所以,即直线BP经过线段MN的中点.31.【解答】解(1)设P(x0,)且x0>0,因为直线l与抛物线C相切,求导得y'=x,即k=x0,所以直线l的方程为y=x0x﹣,直线l1的方程为y﹣=,即Q(0,+1),因为F(0,),则|FQ|=+1﹣=+,而|FP|==+,所以|FQ|=|FP|,即△FPQ为等腰三角形,(2)抛物线C的准线为y=﹣,得A(,﹣),所以|P A|==,联立方程组y﹣=和x2=2y,得,因为,则,即B(,),所以|PB|==,得△P AB面积为S=|P A|•|PB|==≥4,当且仅当x0=1时取等号,所以△P AB面积最小值为4.32.【解答】解:(1)设P(x,y),动圆的半径为r,圆的圆心F2(﹣2,0),半径为2,由题意可得|PF1|=r+2,|PF2|=r,即有|PF1|﹣|PF2|=2+r﹣r=2<|F1F2|,可得P的轨迹为以F1,F2为焦点的双曲线的右支,可得a=1,c=2,b=,即曲线C的方程为(x≥1);(2)证明:设P(x0,y0),即有x02﹣=1,曲线3x2﹣y2=0即为y=x和y=﹣x,设A(m,m),B(n,﹣n),由P为AB的中点,可得m+n=2x0,m﹣n=2y0,解得m=x0+y0,n=x0﹣y0,则|OA|•|OB|=2|m|•2|n|=4|mn|=4|(x0+y0)(x0﹣y0)|=4|x02﹣y02|=4为定值.|OA|•|OB|=4;(3)①当斜率不存在时,l1:x=2 可知E(2,3),F(2,﹣3),∵D(﹣1,0),所以直线ED:,M(),所以直线FM:即y=﹣3(x﹣1)所以直线恒过(1,0);②当斜率存在时,l1:y=k(x﹣2),联立双曲线方程,消去y,可得(3﹣k2)x2+4k2x﹣4k3﹣3=0,设E(x1,y1),F(x2,y2)根据韦达定理可得,则直线ED的方程为,当x=时,y=,M()设点N(1,0),若FM过定点N,则两直线斜率相等.即k FN=k MN,,,所以FM恒过定点N(1,0),∴综上所述,直线FM恒过定点(1,0).33.【解答】解:(1)设点P(x0,y0)(|x0|≠a),则,①∵,②∴联立①②得,∴a2=3b2(|x0|≠a),∴,∴.(2)由题意知,2c=4,即c=2,由(1)知,a2=3b2,∴a2=b2+c2=b2+4,∴b2=2,a2=6,∴椭圆C的方程为:,由已知得l:.联立,可得x2﹣2x﹣1=0.设M(x1,y1),N(x2,y2),根据韦达定理,得x1+x2=2,于是=.34.【解答】解:(1)由题意,可知|MC|+|MN|=|MC|+|ME|=|CE|=6(6>|CN|=2).故点M的轨迹是以C,N为左、右焦点的椭圆,2a=6,a=3,,b2=a2﹣c2=4,∴所求点M的轨迹是椭圆H:.(2)由题意,可知①当直线l∥x轴时,此时|P A|=|PB|,故=1,即|QA|=|QB|.故此时点Q线段AB的垂直平分线即y轴上,∴此时点Q为y轴上任意一点即满足题意.∴可设定点Q的坐标为(0,y0).②当直线l⊥x轴时,A(0,2),B(0,﹣2),由,可得,或y0=4.∵定点Q必须异于点P才满足题意,∴此时定点Q的坐标为(0,4).③下面证明:当直线l的斜率存在时,定点Q(0,4)也使得恒成立.证明:当直线l的斜率存在时,设斜率为k,则直线l:y=kx+1,设A(x1,y1),B(x2,y2).联立,整理,得(4+9k2)x2+18kx﹣27=0,则,.∴+===k.∴=k﹣.如图所示,作点B(x2,y2)关于y轴的对称点为B'(﹣x2,y2),则|QB|=|QB′|.连接QA,QB,QB′.∵,=﹣k+=﹣k+3(k﹣)=k﹣.∴k QA=k QB′,即Q、A、B'三点共线,∵===.∴结合图形可知:.∴当直线l的斜率存在时,定点Q(0,4)也使得恒成立.综上所述,可知平面内存在异于点P的定点Q(0,4),使得恒成立.35.【解答】解:(1)设a2﹣b2=c2,则,设P(x,y),则,∵.解得.所以椭圆C的方程为.(2)证明:设MN方程为x=ny+m,(n≠0),联立,得(n2+4)y2+2nmy+m2﹣4=0,∴,因为关于x轴对称的两条不同直线l1,l2的斜率之和为0,即,即,得2ny1y2+m(y1+y2)﹣4(y1+y2)=0,即.解得:m=1.直线MN方程为:x=ny+1,所以直线MN过定点B(1,0).36.【解答】解:(1)由题意知|EB|=|EP|,所以|EB|+|EA|=|PE|+|EA|=|P A|=4>|AB|=2,所以E的轨迹是焦点为A、B,长轴为4的椭圆,设椭圆方程为,则2a=4,2c=2,所以a2=4,b2=3,所以椭圆方程为;即点E的轨迹的方程为.(2)因为直线HG斜率不为0,设为x=ty+1,设G(x1,y1),H(x2,y2),联立整理得(3t2+4)y2+6ty﹣9=0,所以Δ=36t2+36(3t2+4)=144(t2+1)>0,,,所以,∵,∴S△GHN=2S△OHG,设四边形OHNG的面积为S,则=,令,再令,则在[1,+∞)单调递增,所以m=1时,y min=4,此时t=0,取得最小值4,所以.37.【解答】(1)解:把x=c代入得,则.即.又2b=2,则b=1,从而故C的方程为.(2)证明:由题意可知直线AB的斜率存在,设直线AB的方程为y=kx+m,联立,得(1+2k2)x2+4kmx+2m2﹣2=0.设A,B的坐标分别为(x1,y1),(x2,y2),则△=16k2m﹣4(1+2k2)(2m2﹣2)=16k2﹣8m2+8>0,且,.设直线F A,FB的倾斜角分别为α,β,∵∠AFM=∠BFM,且FM垂直x轴,∴tanα+tanβ=0,即k F A+k FB=0,∴∴则y1(x2﹣1)+y2(x1﹣1)=0,即(kx1+m)(x2﹣1)+(kx2+m)(x1﹣1)=0,∴2kx1x2﹣(k﹣m)(x1+x2)﹣2m=0,∴化简可得m=﹣2k,则直线AB的方程为y=kx﹣2k=k(x﹣2),故直线AB过定点(2,0).38.【解答】(1)证明:由题意,设点P(x0,y0),A(﹣2,0),B(2,0),则直线P A的斜率为,直线PB的斜率为,所以,又由点P(x0,y0)在椭圆上,可得,即,所以,即直线P A与直线PB的斜率之积为定值.(2)证明:由直线l过点D(1,0),所以直线l的方程为l:x=ky+1,联立方程组,整理得(k2+4)y2+2ky﹣3=0,设M(x1,y1),N(x2,y2),则,则,即3y1+3y2=2ky1y2,又由直线,直线,联立方程组,可得,整理得,解得x=4,即点Q(4,y0)又由向量=(﹣2,0),=(4,y0),所以=﹣2×4+0×y0=﹣8(定值),即为定值.39.【解答】解:(1)设NE与圆C切于点D,则|EM|=|ED|,过圆心C作CF⊥x轴于点F,|EM|+|EN|=|ED|+|EN|=|ND|,连结CD,CN,CM,则,因为|CN|2=|NF|2+|CF|2,|CM|2=|MF|2+|CF|2,所以为定值,因为|EM|+|EN|>|MN|,因以E的轨迹r是以原点为中心,坐标轴为对称轴,长轴长为,焦距为4的椭圆,所以r的方程是.(2)设直线l的方程为y=k(x+3)(k≠0),A(x1,y1),B(x2,y2),,消去y整理得(1+3k2)x2+18k2x+27k2﹣6=0,△=(18k2)2﹣4(1+3k2)(27k2﹣6)=24﹣36k2>0,解得,,,,点M到直线l的距离为,所以,令1+3k2=m,则1<m<3,且,所以,当,即,时,S△MAB有最大值,综上可知,△MAB面积的最大值为,此时直线l的方程为.40.【解答】解:(1)由题意知,椭圆离心率为,故,又,所以可解得,c=2,所以b2=a2﹣c2=4,所以椭圆的标准方程为;所以椭圆的焦点坐标为(±2,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为.证明:(2)设点P(x0,y0),则,,∴,又点P(x0,y0)在双曲线上,所以,即,所以.解:(3)不妨设点P在第一象限,∵k1•k2=1,∴设直线AB的方程为y=k(x+2),则直线CD的方程为,由方程组消y得:(2k2+1)x2+8k2x+8k2﹣8=0,设A(x3,y3),B(x4,y4),则由韦达定理得,,,同理可得,设与的夹角为θ,∵|,∴||+||=cosθ•||•||,设λ=cosθ,∵|AB|+|CD|=λ|AB|•|CD|,∴,∴cosθ=,∴cosθ=,∴θ=,分别设直线AB,CD与x轴的夹角为α,β,∴β=α+,∴tanβ=tan(α+),∴=,解得k=﹣1,(负值舍去),∴=+1,由,解得x=2,y=2,∴点P的坐标为(2,2).同理可得P(2,﹣2),(﹣2,﹣2),(2,﹣2),综上所述点P的坐标为(2,2),P(2,﹣2),(﹣2,﹣2),(2,﹣2).。
专题01 曲线和方程(训练篇A)-用思维导图突破圆锥曲线压轴题
专题01 曲线与方程 训练篇A1.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为 ( )C. 解 因为抛物线的焦点为,焦点,准线的方程为。
因为l 与双曲线的两条渐近线分别交于点和点,且为原点),所以,, ,,,离心率为,故选D.2. 过曲线的焦点并垂直于轴的直线分别与曲线交于、,在上方,为抛物线上一点,,则 .解 依题意求得:,,设坐标为,有:,代入有:,即.3. 双曲线的右焦点为,点在的一条渐近线上,为坐标原点,若,则的面积为 ( )A.C. D.解 双曲线的右焦点为,渐近线方程为:,不妨在第一象限,可得,,所以的面积为:. 故选.4.设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为( ) A.C.2解1 由题,得,,为等腰直角三角形,.故填2. 24y x =F l l 22221(0,0)x y a b a b -=>>A B ||4||AB OF =O 232524y x =F (1,0)F ∴l 1x =-22221(0,0)x y a b a b-=>>A B ||4||(AB OF O =2||b AB a ∴=||1OF =24ba=2b a ∴=225c a b a ∴=+5ce a=24y x =F x 24y x =A B A BM (2)OM OA OB λλ=+-u u u u r u u u r u u u rλ=(1,2)A (1,2)B -M (,)M x y (,)(1,2)(2)(1,2)(22,4)x y λλλ=+-⋅-=-24y x =164(22)λ=⋅-3λ=22:142x y C -=F P C O ||||PO PF =PFO ∆323223222:142x y C -=(6F 0)2y =P 2tan POF ∠6(P 3PFO ∆133262=A F 2222:1(0,0)x y C a b a b-=>>O OF 222x y a +=P Q ||||PQ OF =C 235||OFc =||OP a =OPF ∆∴2ce a==解2由题意,把代入,得再由,得,即, ,解得.故选:. 5.设,为椭圆的两个焦点,为上一点且在第一象限,若△为等腰三角形,则的坐标为 .解 设,,,椭圆的,,,,由于为上一点且在第一象限,可得,△为等腰三角形,可能或,即有,即,;,即,舍去.可得.6.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解 (1)依题意知,直线A1N 1的方程为y =m6(x +6),① 直线A 2N2的方程为y =-n6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点, ①×②得y 2=-mn 6(x 2-6), 又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q(x 2,y 2),则N (x 1,-y 1), 由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF ―→=λF Q ―→, 即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2, 2c x =222x y a +=PQ =||||PQ OF =c =222a c =∴222c a =ce a==A 1F 2F 22:13620x y C +=M C 12MF F M (,)M m n m 0n >22:13620x y C +=6a =b =4c =23c e a ==M C 12||||MF MF >12MF F 1||2MF c=2||2MF c =2683m +=3m =n =2683m -=30m =-<M即证2x1x2-5(x1+x2)+12=0,又x1x2=(ty1+3)(ty2+3)=t2y1y2+3t(y1+y2)+9,x1+x2=ty1+3+ty2+3=t(y1+y2)+6,所以2t2y1y2+6t(y1+y2)+18-5t(y1+y2)-30+12=0,即2t2y1y2+t(y1+y2)=0,而2t2y1y2+t(y1+y2)=2t2·3t2+3-t·6tt2+3=0成立,即NF―→=λF Q―→成立.7.设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.已知|2||(OA OB O=为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线4x=上,且//OC AP.求椭圆的方程.分析第(1)2b=,再由离心率公式可得所求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆锥曲线中的定值问题
y2
b2=
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率
为m,证明2m-k为定值.
y2
b2=
线l的方程为x=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.
y2
b2=
过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证
y2=1(a>0)的右焦点为F,点A,B分别在
C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
(Ⅰ)求双曲线C的方程;
|NF|
定值,并求此定值.
二、圆锥曲线中的最值问题
y2
b2=
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面积的最大值.
★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,
(ⅰ)证明直线AE过定点,并求出定点坐标;
(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
y2
b2=1(a>b>0)的左、右焦
y2
b2=1的左、右焦点分
(Ⅰ)求C1、C2的方程;
(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.
y 2
b 2=1
(
a >
b >0)的一个顶
点,
C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心(Ⅰ)求抛物线C 的方程;
(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;
的最小值.
三、圆锥曲线与过定点(定直线)问题
y 2
1-a 2=1的焦点在x 轴上.
(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;
(Ⅱ)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q ,证明:当a 变化时,点P 在某定直线上.
四、圆锥曲线与求参数
★★在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x
(Ⅰ)求椭圆C 的方程;
AB 的中点,射线OE 交椭圆C 与点P ,设OP →=tOE →
,求实数t 的值. ★★★已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →
)+2. (Ⅰ)求曲线C 的方程;
(Ⅱ)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都不相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值.若不存在,说明理由. 五、存在性问题
y 2b 2=焦点分别为F 1、F 2.点P 为直线l :x +y =2上且不在x 轴上的任意一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D ,O 为坐标原点. (Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线PF 1、PF 2的斜线分别为k 1、k 2.
②问直线l 上是否存在点P ,使得直线OA 、OB 、OC 、OD 的斜率k OA 、k OB 、k OC 、k OD 满足k OA +k OB +k OC +k OD =0?若存在,求出所有满足条件的点P 的
坐标;若不存在,说明理由.
y 2b 2=
=x 2-b 截得的线段长等于C 1的长半轴长. (Ⅰ)求C 1,C 2的方程;
(Ⅱ)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A 、B ,直线MA ,MB 分别与C 1相交于D ,E . (i )证明:MD ⊥ME ;
六、轨迹方程
y 2
b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),
(Ⅰ)求椭圆C 的离心率;
(Ⅱ)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段
★★如图,抛物线C 1:x 2=4y ,C 2:x 2=-2p y (p >0),点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,
(Ⅰ)求p 的值;
(Ⅱ)当M 在C 2上运动时,求线段A B 中点N 的轨迹方程(A ,B 重
合
于O 时,中点为O ).。