3×160th 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计
3×160th垃圾焚烧炉循环流化床半干法烟气脱硫方案设计
3×160th垃圾焚烧炉循环流化床半干法烟气脱硫方案设计3×160t/h 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计摘要:本文根据某垃圾焚烧厂3×160 t/h 垃圾焚烧厂锅炉具体情况,进行了循环流化床半干法烟气脱硫工程的工艺设计。
本工艺利用原有的静电除尘器作为预除尘系统,采用“一电场预除尘+循环流化床半干法烟气脱硫+布袋除尘器”的工艺流程,采用一炉一塔设计,单塔塔径3.1m,塔高 22m。
脱硫时,设计处理量约为260000 Nm3/h。
预计脱硫效率90%,SO2 排放浓度≤80mg/Nm3,烟尘排放浓度≤20 mg/Nm3。
关键词:烟气脱硫;循环流化床半干法;方案设计。
SDFGD engineering design program for 3×160t/h waste incineration boiler Abstract: In this paper, according to the 3×160t/h waste incineration plant boiler of a factory, a process design of the circulating fluidizedbed semi-dry flue gas desulfurization project is proposed. In this program, the original electric field is retainedas a pre-precipitator electrostatic precipitators, andthe process can be described as “a pre-electric dust + SDFGD + bag filter”. The desi gn is used the one-boiler-and-one-tower process. The single tower diameter is 3.1m. It’s height is 22 m. The capacity is designed for 260000 Nm3/h. Desulfurization effect is expected to 84%. SO2 concentration ≤80mg/Nm3, dust emission concentration≤ 20mg/Nm3.Key words: flue gas desulfurization; circulating fluidized bed semi-dry flue gas desulfurization; design program.1引言1.1 设计背景和意义我国是燃煤大国,连续多年SO2 排放总量超过2000万t,已成为世界上最大的SO2排放国。
火力发电厂烟气循环流化床半干法脱硫系统设计规程
火力发电厂烟气循环流化床半干法脱硫系统设计规程1.引言烟气循环流化床半干法脱硫系统是一种常见的烟气脱硫技术,其主要原理是利用石灰浆液对烟气中的二氧化硫进行吸收和中和,从而达到脱硫的目的。
本规程旨在对烟气循环流化床半干法脱硫系统的设计进行详细的规定和要求,确保系统的安全、高效运行。
2.系统组成烟气循环流化床半干法脱硫系统主要由脱硫反应器、吸收塔、排灰装置、循环系统、浆液制备系统、废水处理系统等组成。
各个部件的设计应符合相关标准和规定,保证系统的稳定性和可靠性。
2.1脱硫反应器脱硫反应器是烟气循环流化床半干法脱硫系统的核心部件,其设计应考虑到烟气流动、固体颗粒吸附和反应等因素,保证脱硫效果和系统运行的稳定性。
2.2吸收塔吸收塔是用来将石灰浆液与烟气进行接触和反应的设备,其设计应考虑到吸收效果、塔内气液流动性能和填料选择等因素,确保烟气中的二氧化硫得到有效吸收和中和。
2.3排灰装置排灰装置用于将脱硫反应器中产生的固体废物进行处理和排放,其设计应考虑到固体废物的处理方式和排放标准,保证系统的环保性。
2.4循环系统循环系统用于将脱硫反应器中的循环床料进行回收和再利用,其设计应考虑到循环床料的输送和处理方式,保证系统的稳定性和运行效率。
2.5浆液制备系统浆液制备系统用于制备石灰浆液,其设计应考虑到石灰的制备方式、浆液的浓度和稳定性等因素,保证脱硫反应的充分和持续进行。
2.6废水处理系统废水处理系统用于处理脱硫过程中产生的废水,其设计应符合相关的环保标准和要求,保证废水排放达标并符合环保要求。
3.设计要求烟气循环流化床半干法脱硫系统的设计应符合以下要求:3.1脱硫效率要求系统设计应保证对烟气中的二氧化硫的脱除率达到环保要求的标准,保证系统的排放标准符合国家规定。
3.2设备稳定可靠系统设计应保证各个设备的稳定性和可靠性,防止因设备故障导致系统不能正常运行,从而影响脱硫效果和运行安全。
3.3运行经济性系统设计应考虑到设备的运行经济性,尽量减少能源消耗和运行成本,提高系统的经济效益。
循环流化床半干法烟气脱硫设计计算
符号 AFGDin LFGDin,1 LFGDin,2
H1 H2 Tav Vg,FGDav,r AFGD
单位 m2 m m m m ℃
m3/h m2
计算公式
数值
Vg,FGDin,r/(3600*w)
13.35974
选取
4
AFGDin/LFGDin,1
3.339935
选取
2
选取
2
(T1+T2)/2 (273.15+Tav)*Vg,FGDout/273.
脱硫系统总性能参数序号名称符号单位计算公式数值系统总脱硫率so2给定80预除尘效率d0一级除尘器分离效率sep给定9998d0选自除尘器参数资料一级除尘器漏风系数d1选自除尘器参数资料005二级除尘器漏风系数d2选自除尘器参数资料脱硫塔出口烟温t2给定75给定6010消石灰粉温度给定2011预除尘器热损失系数nl012脱硫塔热损失系数nl13一级除尘器热损失系数14二级除尘器热损失系数15脱硫系统钙硫摩尔比casmolmol给定1316脱硫系统入口烟气压力kpa给定983烟气系统序号名称符号单位计算公式数值现有除尘器入口烟道边长1l1现有除尘器入口烟道边长2l2l1l224现有除尘器入口实际烟气量vgfgdinrgfgdin273151394757gfgdinr3600a161430215ms145脱硫系统31脱硫塔设计参数序号名称符号单位计算公式数值脱硫塔喉口速度wth选取2832脱硫塔结构设计附右图序号名称符号单位计算公式数值gfgdinr3600w1335974入口管道边长2lfgdin2afgdinlfgdin13339935弯头高度h1方圆节高度h2t1t221015脱硫塔实际烟气量vgfgdavr27315tavvgfgdout273151348319脱硫塔截面积afgdvgfgdavr3600wfgd2374533备注数值为0则表示不存在该除尘器漏风量与理论空气量的比值漏风量与理论空气量的比值数值为0则表示不存在该除尘器散热量占入口烟气焓的份额数值为0则表示不存在该除尘器绝对压力备注备注多管文丘里备注双塔竖直方向为35
循环流化床烟气脱硫工艺设计 资料
1、前言循环流化床燃烧是指炉膛内高速气流与所携带的稠密悬浮颗粒充分接触,同时大量高温颗粒从烟气中分离后重新送回炉膛的燃烧过程。
循环流化床锅炉的脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,与石油焦中的硫份反应生成硫酸钙,达到脱硫的目的。
较低的炉床温度(850°C〜900°C),燃料适应性强,特别适合较高含硫燃料,脱硫率可达80%〜95%,使清洁燃烧成为可能。
2、循环流化床内燃烧过程石油焦颗粒在循环流化床的燃烧是流化床锅炉内所发生的最基本而又最为重要的过程。
当焦粒进入循环流化床后,一般会发生如下过程:①颗粒在高温床料内加热并干燥;②热解及挥发份燃烧;③颗粒膨胀及一级破碎;④焦粒燃烧伴随二级破碎和磨损。
符合一定粒径要求的焦粒在循环流化床锅炉内受流体动力作用,被存留在炉膛内重复循环的850C〜900C的高温床料强烈掺混和加热,然后发生燃烧。
受一次风的流化作用,炉内床料随之流化,并充斥于整个炉膛空间。
床料密度沿床高呈梯度分布,上部为稀相区,下部为密相区,中间为过渡区。
上部稀相区内的颗粒在炉膛出口,被烟气携带进入旋风分离器,较大颗粒的物料被分离下来,经回料腿及J阀重新回入炉膛继续循环燃烧,此谓外循环;细颗粒的物料随烟气离开旋风分离器,经尾部烟道换热吸受热量后,进入电除尘器除尘,然后排入烟囱,尘灰称为飞灰。
炉膛内中心区物料受一次风的流化携带,气固两相向上流动;密相区内的物料颗粒在气流作用下,沿炉膛四壁呈环形分布,并沿壁面向下流动,上升区与下降区之间存在着强烈的固体粒子横向迁移和波动卷吸,形成了循环率很高的内循环。
物料内、外循环系统增加了燃料颗粒在炉膛内的停留时间,使燃料可以反复燃烧,直至燃尽。
循环流化床锅炉内的物料参与了外循环和内循环两种循环运动,整个燃烧过程和脱硫过程就是在这两种形式的循环运动的动态过程中逐步完成的。
3、循环流化床内脱硫机理循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,石油焦和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。
三废流化床混燃炉烟气脱硝方案设计
三废流化床混燃炉烟气脱硝方案设计烟气脱硝是指通过一系列的化学反应将烟气中的二氧化硫(SO2)转化为硫酸,从而减少大气污染物的排放。
在三废流化床混燃炉中进行烟气脱硝可以有效地减少炉内废气的污染物排放,提高燃烧效率,减少污染物的生成。
烟气脱硝方案设计中需要考虑以下几个方面:1.脱硝反应剂的选择:常见的脱硝反应剂包括氨水脱硝、尿素脱硝和硫化氢等。
根据流化床混燃炉的特点和废气组成,选择适合的脱硝反应剂。
2.脱硝催化剂的使用:在脱硝过程中,催化剂可以加速反应速度和提高反应效率。
常见的脱硝催化剂有金属氧化物、金属基等。
根据烟气成分和操作条件来选择合适的脱硝催化剂。
3.脱硝反应的条件和操作控制:脱硝反应需要一定的温度和压力条件才能进行。
同时,也需要控制催化剂的投加量,反应时间等操作控制参数。
4.SCR脱硝技术的应用:Selective catalytic reduction (SCR) 是一种高效的脱硝技术,通过催化剂将烟气中的NOx转化为无害的氮气和水。
在设计方案中可以考虑引入SCR技术进行烟气脱硝。
5.烟气处理系统的设计:需要考虑设计一个完整的烟气处理系统,包括脱硝反应器、催化剂的喷射装置、催化剂的再生装置等。
6.脱硝效率和运行成本的考虑:设计方案中需要综合考虑脱硝效率和运行成本之间的平衡。
通过合理的反应条件和催化剂的选择来提高脱硝效率,同时也需要考虑投资和运行成本。
总之,三废流化床混燃炉烟气脱硝方案设计需要综合考虑废气组成、反应条件、催化剂选择和烟气处理系统等方面的因素。
通过合理的设计和操作,可以达到高效、环保和经济的烟气脱硫效果。
半干法脱硫技术方案(1)
3×75t锅炉烟气脱硫除尘工程总承包技术方案业主方:总包方:山东先进能源科技有限公司二○一八年三月目录1、技术规范 (2)1.1工程范围 (2)1.1.1设计范围: (2)1.1.2设计内容 (2)1.1.3设备制造及供货 (4)1.1.4设备及系统安装 (25)1.2设计基础资料 (26)1.2.1锅炉主要特性 (26)1.2.6厂址气象和地理条件 (28)1.2.7土建设计基础资料 (29)1.3工程方案 (30)1.3.1工艺设计 (30)1.3.2主要设计原则 (30)1.3.3方案设计 (31)1.4性能保证值 (34)1.5总包方提供的基本参数 (35)1.6设备清册(设备厂家供参考、设备选型以初设选型为准) (41)2业主人员培训 (48)2.1培训内容 (48)2.2培训方式 (48)2.3设计联络会 (49)3 监造、检验和性能验收试验 (51)2.1概述 (51)2.2工厂检验 (51)2.3设备监造 (52)1、技术规范1.1工程范围山东临沂电厂位于位于临沂市以南,距市区约3公里,在大菜园村以南,许家冲村以西地区,北距临沂火车站3公里,东距沂河5公里,位于临沂市规划区范围以内。
为改善电厂周围及临沂地区的大气环境,根据临沂发电厂二氧化硫治理规划和环保要求,临沂电厂将继续对剩余锅炉进行脱硫技改工作,本期工程将先行对5#、6#锅炉加装脱硫装置。
综合各方面情况考虑,临沂电厂机组设计含硫量为2.0%。
本工程为改造工程,采用循环流化床(干法)脱硫工艺,其装置在60%-100%BMCR工况下进行全烟气脱硫,脱硫效率不低于90%。
本工程包括脱硫除尘岛内系统正常运行、紧急情况处理及检修等所必需具备的工艺系统设计、设备选择、采购、运输及储存、制造及安装、土建建(构)筑物的设计、施工、调试、试验及检查、试运行、考核验收、消缺、培训和最终交付投产等方面的内容。
总包应对脱硫除尘岛的性能负全部责任。
循环流化床锅炉脱硫脱销工程设计方案
×××××××××公司2台90T/H循环流化床锅炉脱硫、脱硝工程设计方案2014 年07月目录第一章总论 (1)1.1 概述 (4)1.2 项目建设的必要性 (4)1.3 工程条件概述 (5)1.3.1 厂址位置及自然条件 (5)1.3.2 设计参数(单台锅炉) (5)1.4 锅炉烟气脱硫、脱硝处理技术确定 (5)1.5 项目范围 (6)1.6 主要技术原则 (6)第二章工艺方案设计; (6)2.1 工艺设计说明 (6)2.1.1 设计原则 (6)2.1.2 工艺方案的确定 (6)2.1.3 执行的法规、标准和规范 (7)2.2 工艺原理及流程说明 (8)2.3 主要工艺设备一览表 (10)2.4 原料要求 (11)第三章装置布置设计 (11)第四章设备设计 (11)4.1 非标设备的设计制作 (11)4.1.1 执行的法规、标准和规范 (11)4.1.2设备的设计、制造、检验与验收 (12)4.1.3设备的设计原则和特点 (12)4.1.4设备材料的选用原则 (13)4.1.5结构设计 (13)4.2 主要设备的介绍 (13)4.3 定型设备的选型 (14)4.3.3 引风机 (14)第五章供电设计 (14)5.1 设计范围 (14)5.2 设计所依据的主要标准规范 (14)5.3 系统负荷 (14)5.4 主要设备选择 (15)5.5 电缆设施 (114)5.6 中性点接地方式及电压等级 (15)5.7 电气接线 (15)5.8 车间低压动力及照明 (15)5.9 环境特征 (15)5.10 主要用电设备选型 (16)5.11 低压用电设备的操作和保护 (16)5.12 检修电源 (16)5.13 照明 (16)5.14 配电线路 (16)5.15 防静电、防雷及接地 (116)5.16 主要节能措施 (17)5.17 电气主要负荷表 (17)第六章仪表及自动控制 (17)6.1 测量控制系统设置的原则 (117)6.2 自动化水平 (117)6.3 热工自动化功能 (118)6.4 热工自动化设备选择 (118)6.4.1 分散控制系统 (118)6.4.2 变送器 (19)6.4.3 执行器 (19)6.4.4 特殊仪表 (19)6.5 电源和气源 (19)6.5.1 电源 (19)6.5.2 气源 (20)6.6 仪表选型 (20)6.7 电缆敷设 (21)6.8 取压管线 (21)6.9 管件的连接形式 (21)6.10 防腐防爆防护措施 (21)6.11 标准规范 (21)第七章土建 (21)7.1 建筑结构 (21)7.1.2 溶液循环槽 (22)7.1.3 塔 (22)7.1.7 烟道支架 (22)7.2 标准图的选用 (22)7.2.1 地方标准图 (22)7.2.2 国家标准 (22)7.3 设计规范 (23)7.3.1 建筑规范 (23)7.3.2 结构规范 (24)7.4 材料 (24)7.4.1 混凝土 (24)7.4.2 钢材 (24)7.4.3 砖及砂浆 (24)7.5 建筑设计 (25)7.5.1 钢结构防腐 (25)7.6 结构设计 (25)7.6.1 荷载 (25)7.6.2 地基处理 (25)7.6.3 基础 (25)7.6.4 设备基础 (25)7.6.5 钢结构 (26)第八章环保、消防、安全及劳动保护 (26)8.1 环境保护 (26)8.1.1 设计依据 (26)8.1.2 本项目主要污染物排放 (26)8.2 消防 (27)8.2.1 设计依据 (27)8.2.2 设计原则 (27)8.2.3 工程的火灾危险性分析 (27)8.2.4 设计中采取的消防设施 (27)8.3 安全 (27)8.3.1 设计依据 (27)8.3.3 劳动安全卫生设计中采用的主要防范措施 (28)8.4 劳动保护 (28)8.4.1 设计依据 (28)第九章生产组织及人员编制 (28)9.1 生产组织 (28)第一章总论1.1 概述本项目是×××××××××××××两台90t/h循环流化床锅炉烟气脱硫、脱硝工程项目。
火力发电厂烟气循环流化床半干法脱硫系统设计规程
火力发电厂烟气循环流化床半干法脱硫系统设计规程一、前言火力发电厂作为能源的重要供应者,在发展过程中也面临着环保要求的不断提高。
烟气脱硫是保护大气环境、减少硫氧化物对人体健康的影响的重要手段。
烟气循环流化床半干法脱硫技术因其具有高脱硫效率、低能耗、操作稳定等优点,逐渐受到火力发电厂的青睐。
二、烟气循环流化床半干法脱硫系统工艺概述烟气循环流化床半干法脱硫系统是采用石灰石浆液作为脱硫剂,通过在反应塔内与烟气进行接触反应,将烟气中的二氧化硫进行吸收,形成石膏。
脱硫反应后的烟气通过旋风除尘器,净化后排放到大气中。
而石膏通过脱硫废水处理系统进行处理,使其达到国家排放标准。
系统操作中,石灰石浆液通过气力输送管道输送到反应器塔中,通过旋风分离器将石膏和石灰石分离,石膏送到石膏浆液处理系统,石灰石返回到循环槽进行循环利用。
三、烟气循环流化床半干法脱硫系统主要设备及其特点1.反应器塔反应器塔是烟气循环流化床半干法脱硫系统的核心设备,主要由进气口、出口、填料层、雾化喷淋层等组成。
其主要特点包括:填料层的选择要注意填料的比表面积,容积比和对流湿度等参数;雾化喷淋层的设计要根据烟气流速、反应器的容积和石灰石浆液的流量进行合理设计。
2.旋风除尘器旋风除尘器是用于对脱硫反应后烟气中的粉尘进行除尘,其主要特点包括:结构紧凑、除尘效率高、易于维护、运行稳定等。
3.气力输送系统气力输送系统是用于输送石灰石浆液到反应器塔中,其主要特点包括:输送过程中石灰石浆液无泄漏、设备运行稳定、输送距离远等。
4.脱硫废水处理系统脱硫废水处理系统是用于对反应后产生的废水进行处理,使其达到国家排放标准,其主要特点包括:处理效率高、占地面积小、废水排放达标、运行成本低等。
四、设计规程1.设计依据根据国家《烟气污染物排放标准》等相关标准,结合火力发电厂的实际情况,确定系统的设计参数和工艺流程。
2.脱硫效率系统设计应保证脱硫效率达到国家标准要求,并对脱硫效率进行动态监测,确保系统运行稳定、可靠。
半干法脱硫方案
烟气脱硫技术方案第一章工程概述1.1项目概况某钢厂将就该厂烧结机后烟气进行烟气脱硫处理。
现烧结机烟气流程为烧结机—除尘器—吸风机—烟囱。
除尘器采用多管式除尘器,除尘效率大于90%。
主要原始资料如下:1.2主流烟气脱硫方法烟气脱硫(简称FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染最为有效和主要的技术手段。
,就目前国内实际应用工程,FGD其基本原理都是以一种碱性物质来吸收SO2按脱硫剂的种类划分,FGD技术主要可分为以下几种方法:1、以石灰石、生石灰为基础的钙法;2、以镁的化合物为基础的镁法;3、以钠的化合物为基础的钠法或碱法;4、以化肥生产中的废氨液为基础的氨法;最为普遍使用的商业化技术是钙法,所占比例在90%以上。
而其中应用最为广泛的是石灰石-石膏湿法和循环流化床半干法烟气脱硫系统。
针对本工程,我公司将就以上两种脱硫方法分别进行设计、描述,并最终给出两方案比较结果。
1.3主要设计原则针对本脱硫工程建设规模,同时本着投资少、见效快、系统简单可靠等原则,我方在设计过程中主要遵循以下主要设计原则:1、脱硫剂采用外购成品石灰石粉(半干法为消石灰粉),厂内不设脱硫剂制备车间。
2、考虑到烧结机吸风机出口烟气含硫浓度为2345 mg/Nm3,浓度并不是很高,在满足环保排放指标的前提下,脱硫装置的设计脱硫效率取≥90%。
3、脱硫装置设单独控制室,采用PLC程序控制方式。
同时考虑同主体工程的信号连接。
4、脱硫装置的布置尽可能靠近烟囱以减少烟道的长度,减少管道阻力及工程投资。
第二章石灰石-石膏湿法脱硫方案2.1工艺简介石灰石-石膏湿法脱硫工艺是目前世界上应用最为广泛和可靠的工艺。
该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。
图2.1 石灰石-石膏湿法脱硫工艺流程图工艺流程图如图2.1所示,该工艺类型是:圆柱形空塔、吸收剂与烟气在塔内逆向流动、吸收和氧化在同一个塔内进行、塔内设置喷淋层、氧化方式采用强制氧化。
循环流化床锅炉半干法超净脱硫技术方案
第2期
李小安,等:循环流化床锅炉半干法超净脱硫技术方案
• 39 •
图1改造后工艺
2 SO?实现低于35mห้องสมุดไป่ตู้/Nm3排放具
体控制措施
1) 精细控制循环流化床的床层波动,保证工艺 水的均匀扩散和蒸发。吸收塔内的流化床是脱硫反 应的主要场所,经喷水降温后的烟气与吸收剂在激 烈湍动的流化床内进行高效的脱硫等一系列反应, 采用物料循环阀,保证床层厚度,提高反应效率。同 时采用4灰斗4线程自平衡控制模式,灰斗料位和 物料床层之间的协同控制,从而保证床层压降的精 确控制,保证脱硫等一系列反应的顺利进行。
4) FGD用水系统。FGD装置工艺水水源来自 电厂服务水系统,本期工程对系统管线进行优化。
5) 压缩空气系统。炉外脱硫装置压缩空气 系统由全厂压缩空气系统提供。
收稿日期:2018-11 -29 作者简介:李小安(1968 -)男,2004年毕业于太原理工大学热能动力工程专业,工程师,从事火电厂检修管理工作。
1炉后S02处理工艺方案
1)烟气系统。脱硫除尘岛烟道系统包括空 预器出口与吸收塔的连接烟道、清洁烟气再循环 烟道。烟道的设计压力为一6000Pa - +6000Pa, 设计温度为200T。烟气系统设置清洁烟气再循 环风挡,当锅炉负荷低于75%时,打开清洁烟气 再循环风挡,利用循环烟道前后的压降,将清洁烟 气循环回吸收塔进口烟道,保证吸收塔内稳定的
循环流化床锅炉烟气脱硫项目技术方案
循环流化床锅炉烟气脱硫项目技术文件一、项目简介1.1.工程概述贵公司现有1台75t/h锅炉因燃料中含有一定的硫份,在高温燃烧过程中产生的粉尘及SO2会对周围的大气环境造成一定的污染,根据国家环保排放标准和当地环保部门的要求进行进一步除尘脱硫,确保锅炉尾部排放粉尘及SO2按照国家和当地环保排放要求达标排放,并按照环保总量控制要求在确保达标的同时进一步削减粉尘及SO2的排放量。
本期工程为锅炉烟气治理工程除尘脱硫系统的设计、制造、安装及运行调试,针对业主方的现场特点,结合我司的工艺技术和工程经验,从工艺技术、安全运行、排放指标、经济指标等各方面进行了细致的论证,提出以双碱法湿法脱硫工艺处理,新建使用喷淋雾化型脱硫塔(GCT-75),另外方案中还包含脱硫剂制备、脱硫循环水系统、再生、沉淀及脱硫渣处理系统等,供业主方决策参考。
本技术方案在给定设计条件下, SO2排放浓度≤300mg/m³的标准进行整体设计。
技术方案包括脱硫系统正常运行所必须具备的工艺系统设计、设备选型、采购或制造、运输、土建(构)筑物设计、施工及全过程的技术指导、安装督导、调试督导、试运行、考核验收、人员培训和最终的交付投产。
1.2.国脱硫技术现状我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸附法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。
进入八十年代以来,电力工业部门开展了一些较大规模的烟气脱硫研究开发工作,同时,近年来我国也加入了烟气脱硫技术的引进力度。
目前国主要的脱硫工艺有:(1)石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法烟气脱硫工艺主要是采用廉价易得的石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。
在吸收塔,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被吸收脱除,最终产物为石膏。
循环流化床半干法烟气脱硫设计计算
2 脱硫塔入口烟气焓值
I g,in
kJ/kg kJ/kg
查焓温表,注意温度范围
(1 − nl0 /100 )Ig,d0
3 脱硫塔入口烟气温度
T1
℃ 查焓温表,注意温度范围
4 脱硫塔出口烟气焓值 5 脱硫塔烟气放热量
I g,out
kJ/kg 查焓温表,注意温度范围
Qg
kJ/h
( ) Bcal I g,in − I g,out
7 未反应的CaO质量
8 未反应的Ca(OH)2质量
9
CaSO3
⋅
1 2
H
2O分子量
10
生成CaSO3
⋅
1 2
H
2
O质量
11 生石灰用量
12 生石灰含杂质量
13 消石灰用量
14 脱硫生成物总质量
2 露点温度计算
2.1 脱硫塔入口露点温度
序号
名称
1 脱硫塔入口蒸汽分压
2 脱硫塔入口水露点温度
符号
ns n ns,g M CaO
CH 2O Nm3/kg
75 150.5 304.5 462.7
I = V C H2O
0 H2O H2O
kJ/kg
37.46
75.17
152.08
231.09
kJ/kg
589.23 1176.14 2386.35 3632.14
Ck Nm3/kg
65 132.4 266.4 402.7
I
0 k
= V 0Ck
M Ca(OH )2
GCaO GCaO,l
GCa(OH )2 ,l M CaSO3 GCaSO3
Glime Glime,ip
循环流化床半干法脱硫装置计算书编辑版
主管:
第一层 D1g=20 25 3
Cr18Mn8Ni5N 无缝不锈钢管
第二层 D2g=25 32 3.5
Cr18Mn8Ni5N 无缝不锈钢管
第三层 D3g=20 25 3
Cr18Mn8Ni5N 无缝不锈钢管
第四层 D4g=15 所有母管:
18 3
Cr18Mn8Ni5N 无缝不锈钢管
Dg=150 159 4.5
2.带出热量: Q 灰 3, Q 烟气 ,Q 灰 2, Q 蒸汽 ,Q 散热
M 灰 3=M Ca(OH)2=1518.244Kg; Q 灰 3=QCa(OH)2=7469.76(Kcal/hr) Q 烟气=cmt= 0.25368 2.112 10 5 78 41.79 105 (Kcal/hr) ;
2.加料口计算
单颗粒:粒径 dP=0.01m,查表得气体密度为 0.87。
1) 假定加料口位于喉部,此时气体流速设定为 u=35m/s。
∵ 由颗粒受力分析得: FD+F 浮-G = M·a
FD= C D
u v 2 g d P2 8
F 浮=M pgρg/ρP G=M·g 即: FD + M P g ρ g/ρ P- M P g = M a
8 63.825l n 1
10 4 2 9991.2 40172
1
0.01055 1 0.327 18.8682
1
0.04112 3
10 5
4.135 10 5 8 63.825 0.010495 1.49026 10 5
0.5178 ( s)
∴ 层高 h V t 5 0.5178 2.59m
四、 喷嘴布置计算
MP
1 D3
1 P = 3.14
火力发电厂烟气循环流化床半干法脱硫系统设计规程
火力发电厂烟气循环流化床半干法脱硫系统设计规程烟气循环流化床半干法脱硫系统是一种广泛应用于火力发电厂的减少污染排放的技术。
该系统主要是通过将烟气中的SO2进行脱除,从而降低了环境污染物的排放。
下面是关于火力发电厂烟气循环流化床半干法脱硫系统设计的规程。
一、系统设计烟气循环流化床半干法脱硫系统主要由吸收塔、储存罐、输送泵、氧化风机和废气处理设施等组成。
在设计系统时,需要考虑以下要素:1.吸收塔的设计:吸收塔是烟气脱硫的关键设备,需要考虑至少两个放气孔,并且底部还要设置进料喷淋系统。
此外,塔体与输送泵的直径应逐渐变大,以使烟气中的灰粉与水井混合均匀。
2.储存罐的设计:储存罐需要具备防腐蚀、耐腐蚀、密封等特性,可以安全、有效地储存脱硫液。
储存罐的容量需要根据运行负荷和操作周期来确定。
3.输送泵的设计:输送泵需要具备高效、低能耗的特点,并且需要经过防腐蚀处理。
此外,泵也需要根据吸收塔的设计逐渐变大,以确保烟气中的灰粉与水井混合均匀。
4.氧化风机的设计:氧化风机在系统运行中发挥着重要的作用,需要具备高效、低噪音、高动态响应和安全可靠等特性。
此外,风机还需要根据系统的设计风量进行选型。
5.废气处理设施的设计:废气处理设施主要是负责处理系统产生的废气,需要具备抑制二氧化硫泄漏的能力。
在设计时,需要考虑设施的功能和环保要求,确保废气排放符合国家标准。
二、系统运行在系统的设计完成后,需要根据设计要求配置设备,进行系统的调试设置。
在运行过程中,需要掌握以下要点:1.脱硫液供给:脱硫液需要按照设备的要求配置,以确保吸收效果。
同时需要注意保持液位稳定,避免因为脱硫液不足或过量而导致吸收效率下降。
2.调整喷淋均匀性:通过调整喷淋系统来实现烟气中的灰粉与水井的混合均匀,提高脱硫效率。
3.氧化风量调整:氧化风量的设置需要根据烟气中SO2含量的变化来进行调整。
在氧化风量过小的情况下,SO2的氧化效率会下降,难以达到脱硫要求。
4.废气处理:废气处理是保证排放符合环保要求的关键环节,需要注意调整设施,确保效果良好。
循环流化床CFB半干法脱硫工艺计算程序
循环流化床干法脱硫业主:Circulating Fluidized Bed DryScrubber项目:工艺计算technical calculation输入参数gas volume 烟气量300,000Nm^3/h工况烟气量烟气量放量10.0%烟气含 SO2 量烟气温度140℃要求出口含 SO2 量温度放量10℃要求脱硫效率CDS入口粉尘浓度 0.25g/Nm^3CaO的利用率为要求粉尘排放浓度15mg/Nm^3脱硫需要的Ca/S比为一年运行小时数7000小时取CaO的纯度为烟气喷水冷却后温度70℃消石灰含水标况烟气量计算结果计算温度150℃计算烟气量后除尘器入口含尘浓度#REF!g/Nm^3工况烟气量除尘效率#REF!则SO2排放浓度为飞灰生成量#REF!Kg/h check每小时需脱去的SO2量为石灰消化用水量 130Kg/h烟气喷水冷却水量 14,447Kg/h一年运行天数喷嘴进水管水量 21,670Kg/h脱硫需要的CaO为系统耗水量 14,577Kg/h脱硫需要的Ca(OH)2为一天消化石灰用水为 3.1t/day一天所需CaO为一年消化石灰用水为 913t/year一年所需CaO为一天需要的脱硫用水为 347t/day一天需要的Ca(OH)2为一年需要的脱硫用水为 101,128t/year一年需要的Ca(OH)2为设计:校对:日期:日期:业主:项目:主要设备选型计算脱硫塔台数1台文丘里喉口速度漏风系数 2.0%文丘里个数出口法兰标高 3.5m塔内气速底部灰斗角度60 °脱硫塔进口烟气流速出灰口宽(方形)300mm出口烟道进口烟气量141.45am^3/s出口烟气量CDS塔几何尺寸单塔截面积31.5m^2文丘里段塔截面CDS塔直径 A 6.40m文丘里段塔直径 E 出口法兰高 B2 5.6m单塔喉口总面积计算出口法兰宽 B1 5.7m喉口直径 I天圆地方高 C 3.3m文丘里喉高 J3CDS塔直段高 D16.7m文丘里之间边距入口法兰宽 F 3.7m一级缩管直径 H1入口法兰高 G 2.7m二级缩管直径 H2底部灰斗高 2.94m一级缩管高 J1文丘里出口变径 L 3.7m二级缩管高 J2塔反应段高度29.3m文丘里出口喇叭高 J4反应时间 6.51s文丘里总高 K CDS塔总高38.40mCDS塔离地高41.9m单塔重#REF!t设计:校对:日期:日期:业主:项目:消石灰仓 Ca(OH)2数量1台数量储期1天储量消石灰容重0.6t/m^3脱硫灰容重直径3m直径取锥角63度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积20.4m^3所需容积锥体积7.7m^3锥体积直段高度 2.9m直段高度整个仓高 5.4m整个仓高仓重#REF!t仓重中间石灰仓数量0台数量储期0.5h储量消石灰容重0.5t/m^3直径直径1m所需容积所需容积0.6m^3高度高度0.7m水箱重仓重#REF!t生石灰仓数量1台系统数量储期3天数量生石灰容重 1.2t/m^3储量直径3m脱硫灰容重所需容积24.1m^3直径直段高度 3.4m取锥角仓重#REF!t出口法兰宽容积利用率所需容积锥体积直段高度整个仓高仓重中转灰仓数量0台系统数量储量0.15h数量脱硫灰容重0.6t/m^3储量循环灰量#REF!t/h脱硫灰容重直径2m直径取锥角60度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积#REF!m^3所需容积锥体积 2.1m^3锥体积直段高度#REF!m直段高度整个仓高#REF!m整个仓高仓重t仓重日期:2022/2/24锅炉:130Tam^3/h标况烟气 -Nm^3/h800mg/Nm^3石灰石细度:90%小于44μm(325目)30.0mg/Nm^3湿法中SO3以气溶胶的形式存在,跟随性较好,将绕过喷淋层液滴直接进入烟囱,排放到大气中,在半法脱硫中中,SO3表面不会以气溶脱的形式存在,SO3可以很好的与脱硫剂反应,生成96.3%65.0%Ca(OH)2+ SO2=CaS O3.1/2H2 O+1/2H2 O1.48CaSO3.1/ 2H2O+3/2 H2O+1/2 O2=CaSO 4.2H2O80.0%量要求:石灰粉细度宜在2mm以下;加适量水后4min内温度可升高到60度(或是3min温升45度),纯度:CaO含量>=85%.1.0%300000Nm^3/h499,231am^3/h138.68am^3/s循环倍率3630.0mg/Nm^3循环灰量#REF!Kg/hOK 沉降室效率0%248Kg/h 沉降室灰量#REF!Kg/h 沉降室灰量#REF!T/h291.7天脱硫灰容重0.6T/m^3402Kg/h 沉降室灰量#REF!m^3/h511Kg/h中转灰仓灰量#REF!T/h9.6t/day循环灰量#REF!T/h 2,813t/year排出量#REF!T/h12.3t/day3,576t/year布袋效率100%布袋收灰量#REF!T/h灰斗个数#REF!每灰斗灰量#REF!T/h日期:2022/2/24锅炉:60m/s 7个4.5m/s 14.00m/s 正方形m出口烟道正方形119.82am^3/s长方形m10.20m^2进CDS烟道截面3.23700mm 2.36m^2650mm975.0mm文丘里之间边距60.0mm75.0mm 文丘里与壁之间边距52.5mm1158mm 827.0mm 165.5mm 331.0mm 1441.0mm 2913.0mm文丘里计算日期:2022/2/24锅炉:1台9h0.6t/m^32m61度400mm80.0%#REF!m^32.2m^3#REF!m#REF!m#REF!t1台4h4.6m86.7m^35.2m#REF!t1套#5,#6炉共设两座直径为10m 的灰库,每座灰库有效贮灰容积为1860m^3,可供两炉存灰48h 。
烟气半干法脱硫技术方案
烟气半干法脱硫技术方案烟气脱硫是大气污染控制的重要环节之一、在各种脱硫技术中,半干法脱硫技术因其在湿法和干法脱硫技术之间具有的优势受到广泛关注。
本文将对烟气半干法脱硫技术方案进行详细介绍。
半干法脱硫技术是湿法脱硫和干法脱硫的组合应用,能够充分利用两种技术的优势,实现高效、经济、环保的烟气脱硫。
在半干法脱硫技术中,一般采用喷雾洗涤剂喷射到烟气中,与烟气中的硫化物发生反应,形成可溶于水的硫酸盐沉淀,并通过喷热饱和的汽汽化过程,将形成的硫酸盐颗粒收集下来。
同时,通过高温干燥和布袋除尘等步骤,有效地去除脱硫过程中产生的水分和颗粒物,控制烟气中的排放物浓度。
在半干法脱硫技术中,需要选择适合的洗涤剂以提供良好的脱硫效果。
常用的洗涤剂包括氨基酸类、丙烯酸类、氨溶液等。
氨基酸类洗涤剂具有良好的脱硫效果和腐蚀性能,丙烯酸类洗涤剂可有效地去除烟气中的氧化硫成分,氨溶液则可与硫化氢等形成可溶性的硫酸盐,提高脱硫效果。
半干法脱硫技术的关键步骤包括喷雾系统、热饱和汽汽化系统和布袋除尘系统。
喷雾系统是用来将洗涤剂喷洒到烟气中的重要设备,其设计需要考虑喷雾机构的安装位置和喷雾剂的喷射角度和流量等因素,以保证喷雾液能够均匀地与烟气混合,并达到充分反应的效果。
热饱和汽汽化系统则是通过加热喷射液体形成高温饱和蒸汽,使硫酸盐颗粒迅速凝结,促进其沉降,从而实现收集和回收。
布袋除尘系统则是用来控制烟气中的颗粒物排放,通常采用电除尘器或布袋过滤器进行过滤和收集。
在设计和实施半干法脱硫技术方案时,需要考虑以下几个方面的问题。
首先,需要根据烟气特性和排放要求选择合适的洗涤剂和设备。
其次,需要合理设计和布置喷雾系统、热饱和汽汽化系统和布袋除尘系统,以确保设备的有效运行和维护。
此外,还需要对废水处理和除硫废渣处理等进行合理安排,以保证整个系统的环保性能。
总之,烟气半干法脱硫技术方案是一种高效、经济、环保的烟气脱硫技术。
通过喷雾洗涤剂、热饱和汽汽化、布袋除尘等步骤,可以有效地去除烟气中的硫化物和颗粒物,实现排放物浓度的控制。
循环流化床锅炉的脱硫除尘技术方案
循环流化床锅炉的脱硫除尘技术方案循环流化床锅炉脱硫除尘工程技术方案书目录一、工程概况 (2)1、项目概述 (2)2、排污状况 (3)3、设计技术规范及要求 (3)二、技术方案设计原则与指导思想 (3)1、设计原则 (3)2、设计技术依据 (4)三、炉内喷钙尾部增湿工艺说明 (4)1、工艺说明 (4)2、炉内喷钙脱硫原理 (5)3.尾部增湿脱硫原理 (5)四、工程设计方案 (7)1、石灰石上料与储存系统 (7)2、炉内喷钙系统 (7)3、尾部增湿系统 (8)4、PLC控制系统 (9)五、烟气系统设计 (12)1、烟道改造 (12)2、系统阻力计算 (12)六、脱硫设备特点 (12)1、设备特点 (12)2、设计优点 (13)七、影响脱硫的因素 (13)1、钙硫比 (13)2、烟气温度 (14)3、石灰石等脱硫剂粒度的影响 (14)4、炉膛运行压力的影响 (14)5、脱硫剂本身特性 (14)八、炉内喷钙尾部增湿系统图 (15)九、水、电及消耗品用量及运行成本 (15)一、工程概况1、项目概述现有2台75t/h循环流化床锅炉。
锅炉在燃烧过程中含SO2烟气经静电除尘器处理后通过烟道进入烟囱排放。
现拟对锅炉尾气进行脱硫治理,根据相关数据和锅炉具体情况,确认采纳炉内喷钙+尾部增湿脱硫系统。
整体脱硫率在85%以上。
2、锅炉基础参数:(1)循环流化床锅炉参数额定蒸发量: 75t/h额定压力: 5.29Mpa额定温度:450℃热效率:91%给水温度:150℃排烟温度:140℃额定工况燃料消耗量: 12510kg锅炉出口烟气量: 168185m3/h锅炉本体烟气侧压头: 3560Pa;(2)设计燃料分析设计煤质元素分析:Cad=50.91% Had=3.07% Oad=7.03% Nad=0.89% Sad=0.37% 现使用煤质:工业分析:Mar=31.73% Mad=21.84% Aad=11.36% Vad=28.92%F、Cad=37.88% Qnet.ar=15774kj/kg3、排污状况2台75吨循环流化床锅炉,单台锅炉BMCR下每小时最大耗煤12.51吨,根据燃煤含硫量0.37%.除去煤本身固硫后,即每小时产生二氧化硫78.69公斤,经处理后排放量为11.8公斤/小时。
循环流化床半干法脱硫工艺流化床的建立及稳床措施
循环流化床半干法脱硫工艺流化床的建立及稳床措施浙江洁达环保工程有限公司吴国勋、余绍华、傅伟根、杨锋【摘要】循环流化床半干法脱硫工艺技术要求高,建立和稳定流化床是两个关键点,只有做好恰当的流化床设计和配置合理的输送设备,才可保证脱硫系统的稳定高效运行。
【关键词】循环流化床半干法脱硫床体1、简介循环流化床脱硫工艺技术是较为先进的运用广泛的烟气脱硫技术。
该法以循环流化床原理为基础,主要采用干态的消石灰粉作为吸收剂,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,其脱硫效率可根据业主要求从60%到95%。
该法主要应用于电站锅炉烟气脱硫,已运行的单塔处理烟气量可适用于6MW~300MW机组锅炉,是目前干法、半干法等类脱硫技术中单塔处理能力最大、在相对较低的Ca/S摩尔比下达到脱硫效率最高、脱硫综合效益最优越的一种方法。
该工艺已经在世界上10多个国家的20多个工程成功运用;最大业绩项目烟气量达到了1000000Nm3/h,最高脱硫率98%以上,烟尘排放浓度30mg/Nm3以下,并有两炉一塔、三炉一塔等多台锅炉合用一套脱硫设备的业绩经验,有30余套布袋除尘器的业绩经验,特别是在奥地利Thesis热电厂300MW机组的应用,是迄今为止世界上干法处理烟气量最大的典范之作;在中国先后被用于210MW,300MW,50MW 燃煤机组的烟气脱硫。
但是很多循环流化床半干法脱硫项目由于未能建立稳定的床体,导致项目的失败,不能按原有计划完成节能减排的要求。
因此很有必要在此讨论一下关于“循环流化床半干法工艺流化床的建立及稳定措施”的相关问题。
2、循环流化床脱硫物理学理论循环流化床脱硫塔内建立的流化床使脱硫灰颗粒之间发生激烈碰撞,使颗粒表面生成物的固形物外壳被破坏,里面未反应的新鲜颗粒暴露出来继续参加反应,从而客观上起到了加快反应速度、干燥速度以及大幅度提高吸收剂利用率的作用。
另外由于高浓度密相循环的形成,塔内传热、传质过程被强化,反应效率、反应速度都被大幅度提高,而且脱硫灰中含有大量未反应吸收剂,所以塔内实际钙硫比远远大于表观钙硫比。
火力发电厂烟气循环流化床半干法脱硫系统设计规程
火力发电厂烟气循环流化床半干法脱硫系统设计规程火力发电厂的烟气循环流化床半干法脱硫系统是一项重要的环保设备,其在火力发电过程中发挥着关键性作用。
在设计规程中,需要考虑脱硫系统的选择、烟气治理效果、设备的选型及使用参数以及维护养护等多个方面。
首先,设计规程中需要选择合适的半干法脱硫系统,以确保其对废气中的SO2具有有效的去除效率。
一般而言,目前常见的半干法脱硫系统有喷雾吸收脱硫、吸收鼓风式脱硫和催化氧化脱硫等。
在选择半干法脱硫系统时,需要考虑到其所能够达到的治理效果、设备安装及维护难度等方面。
其次,设计规程中还需确定脱硫系统的性能要求。
在设计初期,需要进行系统流程模拟并根据系统处理效果进行参数优化。
具体来说,需要确定脱硫设备的操作参数,例如废气流量、反应时间、吸收剂流量、吸收剂浓度等。
另外,设计规程中还需要考虑到选用的设备类型及规格。
一般而言,半干法脱硫系统目前常用的设备有旋流分离器、旋风器、反应器、吸收塔等。
对于不同的废气流量和SO2去除效率需求,需要选用不同类型的设备。
同时,在规划选型时,还需考虑到后续的运维及养护难度等方面。
最后,在设计规程中需要制定维护养护计划,以确保脱硫系统能够长期保持良好的治理效果。
具体而言,需要制定设备的安全防护及保养标准,设立定期检查及维护计划,并建立完整的资料档案及维护记录等。
综上,火力发电厂的烟气循环流化床半干法脱硫系统设计规程需要考虑多个方面,其中包括脱硫系统的选择、烟气治理效果、设备的选型及使用参数以及维护养护等方面。
只有在这些方面做到科学规范、合理严谨,才能更好的保护环境,实现可持续发展。
烟气半干法脱硫技术方案
烟气半干法脱硫技术方案1.吸收塔1.1工艺流程3尸口图1-1 循环流化床半干法工艺流程示意图原烟气由循环流化床半干法净化装置底部进入循环悬浮流化床脱硫塔。
Ca(OH)2原料经过螺旋输送机送入脱硫塔,流态化的物料和烟气中的二氧化硫在脱硫塔中发生化学反应,脱除掉大部分的二氧化硫。
烟气通过脱硫塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;脱硫塔顶部结构进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度,使得床内的Ca/S 比高达50以上。
这样循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现污染物高脱除率提供了根本的保证。
喷嘴的安装位置设置在文丘里扩散段,喷入的雾化水以降低脱硫塔内的烟温,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。
吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3T/2H2O,还与SO3 等反应生成相应的副产物CaSO47/2H2O等。
烟气在上升过程中,颗粒一部分随烟气被带出脱硫塔,一部分因自重重新回流到循环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间。
烟气在文丘里以上的塔内流速为3.5〜5.5m/s,烟气在塔内的气固接触时间大约为6〜8秒左右,从而有效地保证了脱硫效率。
从化学反应工程的角度看,SO2与氢氧化钙的颗粒在循环流化床中的反应过程是一个外扩散控制的反应过程;SO2与氢氧化钙反应的速度主要取决于SO2在氢氧化钙颗粒表面的扩散阻力,或说是氢氧化钙表面气膜厚度。
当滑落速度或颗粒的雷诺数增加时,氢氧化钙颗粒表面的气膜厚度减小,SO2进入氢氧化钙的传质阻力减小,传质速率加快,从而加快SO2与氢氧化钙颗粒的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3×160t/h 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计
摘要:本文根据某垃圾焚烧厂3×160 t/h 垃圾焚烧厂锅炉具体情况,进行了循环流化床半干法烟气脱硫工程的工艺设计。
本工艺利用原有的静电除尘器作为预除尘系统,采用“一电场预除尘+循环流化床半干法烟气脱硫+布袋除尘器”的工艺流程,采用一炉一塔设计,单塔塔径3.1m,塔高22m。
脱硫时,设计处理量约为260000 Nm3/h。
预计脱硫效率90%,SO2 排放浓度≤80 mg/Nm3,烟尘排放浓度≤20 mg/Nm3。
关键词:烟气脱硫;循环流化床半干法;方案设计。
SDFGD engineering design program for 3×160t/h waste incineration boiler
Abstract: In this paper, according to the 3×160t/h waste incineration plant boiler of a factory, a process design of the circulating fluidized bed semi-dry flue gas desulfurization project is proposed. In this program, the original electric field is retained as a pre-precipitator electrostatic precipitators, and the process can be described as “a pre-electric dust + SDFGD + bag filter”. The design is used the one-boiler-and-one-tower process. The single tower diameter is 3.1m. It’s height is 22 m. The capacity is designed for 260000 Nm3/h. Desulfurization effect is expected to 84%. SO2 concentration ≤80mg/Nm3, dust emission concentration≤ 20mg/Nm3.
Key words: flue gas desulfurization; circulating fluidized bed semi-dry flue gas desulfurization; design program.
1引言
1.1 设计背景和意义
我国是燃煤大国,连续多年SO2 排放总量超过2000万t,已成为世界上最大的SO2排放国。
烟气脱硫是控制SO2 排放最有效、最经济的手段。
目前,我国大型火电厂烟气脱硫主要采用国外应用较成熟、业绩较多的石灰石/石膏湿法工艺,但由于湿法工艺系统复杂、投资较大、占地面积大、耗水较多、运行成本较高。
而国内诸多中小型企业迫切需要投资少、运行成本低、效率高的脱硫技术。
德国鲁奇能捷斯集团(LLAG)公司在上世纪70年代末率先将循环流化床工艺用于烟气脱硫,开发了一种循环流化床烟气脱硫工艺(Circulating Fluidized Bed Flue Gas Desulfurization,简称CFB-FGD;)。
经过近30年的不断改进(主要是在90
年代中后期),解决负荷性、煤种变化、物料流动性、可靠性、大型化应用等方面的技术问题[1]。
近十余年来,CFB-FGD已经成为我国中小型锅炉烟气脱硫的重要技术。
目前主要可以从2个方面体现对SO2排放的控制,一方面是从控制燃烧源头的,国家环境保护总局[2002]26号文件规定:“各地不得新建煤层含硫分大于3%的矿井。
对硫含量大于3%的煤矿厂,进行关闭处理;对硫含量大于3%的大煤矿厂,实行限产。
”另一方面对燃煤设备使用烟气脱硫技术,工艺技术可以分为三大类,即燃烧前脱硫、燃烧中脱硫和燃烧后脱硫,目前控制燃煤电厂二氧化硫排放最有效和应用最广的技术是燃烧后脱硫即烟气脱硫[2]。
1.2 技术现状和分析
1.2.1 国内外烟气脱硫技术简介和现状
目前,世界上燃煤锅炉烟气脱硫的工艺繁多,按脱硫方式和产物的处理形式一般可以分为湿法,干法和半干法三类。
(1)湿法烟气脱硫工艺(WFGD工艺)
湿法脱硫技术是目前国内外应用最广的烟气脱硫方式。
它是用液态吸收剂来洗涤工业燃气、烟气以吸收其中的污染大气的主要产物二氧化硫(SO2)的。
工艺过程呈湿态,优点是设备简单,吸收剂利用率高,脱硫效率高,单位处理能力大,适用于大型热电厂,运行费用较低。
但也存在着系统有腐蚀性,一般占地面积较大,一次投资费用较高的欠缺。
因此,国内外在大型化装置建设前期,均十分注重工艺方案的可行性研究,方案多多,涉及面多多,不仅从单纯的工艺技术角度选择,亦从诸如燃煤煤质、企业的技术更新能力、工厂占地、当地的资源配备、对当地和后来的环境因素影响尤为重要的是技术经济指标及国家对节能减排的强制性政策认定,都是需要认真研究与选择的,而选择一种资源利用率高(指SO2 )、过程无新的废物产生,过程产品或副产品的附加值[3]。
比较常用的方法有石灰石/石膏法,氧化镁法,海水法,双碱法和氨法等。
石灰石石膏法的工艺特点为:工艺完全成熟,运行安全可靠,设备利用高,吸收剂资源丰富,成本价低,对高硫煤脱硫效率达90%以上。
对硫资源循环来看,该工艺的脱硫产物石膏附加值较低,有时甚至可视为抛弃物,对厂的环境恶劣。
加上消耗大,工艺设备易堵塞、腐蚀与磨损,都应引起国人对它的应用性质疑。