平行四边形单元测试题试题
2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案
平行四边形一.选择题(共10小题)1.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC2.平行四边形两邻角的平分线相交所成的角的大小是()A.90°B.60°C.45°D.30°3.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4.下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A.1个B.2个C.3个D.4个5.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.如图,在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),则点B坐标为()A.(0,2)B.(0,)C.(0,1)D.(0,2)7.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形8.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8 B.2.4 C.2.5 D.2.69.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断10.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形二.填空题(共8小题)11.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E、F两点,AB=6,BC=10,则EF的长度是.12.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC =∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度运动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD 也为矩形.15.如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=3,则AE的边长为.16.在▱ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD=10,EF=4,则AB=.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.18.如图,正方形OABC在直角坐标系中,点B(﹣2,2),点D为BC的中点,点E在线段OC上运动,射线ED交AB延长线于点F,设E(0,t),当△AEF是以AE为腰的等腰三角形时,点E的坐标是.三.解答题(共7小题)19.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE 的长.20.在▱ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以GH为边或对角线的所有平行四边形.21.已知:如图,在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.22.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.23.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB 的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.25.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.第《18章平行四边形》单元测试题参考答案与试题解析一.选择题(共10小题)1.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.2.【分析】根据平行四边形的性质得到∠DAB+∠ABC=180°,由角平分线可得∠BAO+∠ABO=90°,根据三角形的内角和定理得∠AOB=90°,即可得到所选选项.【解答】解:▱ABCD的∠DAB的平分线和∠ABC的平分线交于O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°﹣90°=90°.故选:A.【点评】本题主要考查了平行四边形的性质,角平分线的定义,三角形的内角和定理等知识点,能综合利用性质进行证明是解此题的关键.3.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.【分析】根据平行四边形的判定定理以及性质定理即可判断.【解答】解:①正确;②平行四边形的对角相等,命题错误;③平行线间的平行线段相等,命题错误;④正确;⑤正确.故选:C.【点评】本题考查了平行四边形的判定定理以及性质定理,正确理解定理的内容是关键.5.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.【分析】根据菱形的性质可得∠OAB=∠BAD=60°,∠AOB=90°,解直角△AOB,求出OB,即可得到点B坐标.【解答】解:∵在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),∴∠OAB=∠BAD=60°,∠AOB=90°,在直角△AOB中,∵OA=2,∴OB=OA•tan∠OAB=2×=2,∴点B坐标为(0,2).故选:D.【点评】本题考查了菱形的性质,掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角是解题的关键.也考查了锐角三角函数定义,坐标与图形性质.7.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.8.【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.9.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.二.填空题(共8小题)11.【分析】根据平行四边形的性质可知∠DEC=∠ECB,又因为CE平分∠BCD,所以∠DCE=∠ECB,则∠DEC=∠DCE,则DE=DC,同理可证AF=AB,那么EF就可表示为AF+ED﹣BC=2AB﹣BC,继而可得出答案.【解答】解:∵平行四边形ABCD,∴∠DEC=∠ECB,又CE平分∠BCD,∴∠DCE=∠ECB,∴∠DEC=∠DCE,∴DE=DC,同理可证:AF=AB,∴2AB﹣BC=AF+ED﹣BC=EF=2.故答案为2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.12.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.13.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.【分析】四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.【解答】解:根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4(s).故答案是:4.【点评】本题考查了矩形的判定与性质.此题利用了矩形的对边相等的性质进行解题的.15.【分析】由平行四边形的性质和角平分线证出AD=DF,由F为DC中点,AB=CD,求出AD与DF 的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由AAS证明ADF≌△ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=4,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=2×2=4,故答案为:4【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解本题的关键.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.18.【分析】由ASA证明△DBF≌△DCE,得出BF=CE=2﹣t,得出AF=AB+BF=4﹣t,即可得出点F的坐标;分两种情况:①当AE=AF时,根据勾股定理得出AE2=OA2+OE2,得出方程22+t2=(4﹣t)2,解方程即可求出t的值;②当AE=EF时,点E在AF的垂直平分线上,得出OE=AF,即t=(4﹣t),解方程即可求出t的值,从而求解.【解答】解:(1)∵四边形OABC是正方形,∴OA=AB=BC=OC=2,∠AOC=∠ABC=∠BCO=90°,∴∠FBD=90°,∵D是BC的中点,∴BD=CD,在△DBF和△DCE中,,∴△DBF≌△DCE(ASA),∴BF=CE=2﹣t,∴AF=AB+BF=4﹣t,∴D的坐标为(﹣2,4﹣t),当△AEF是以AE为腰的等腰三角形时,分两种情况:①当AE=AF时,∵AE2=OA2+OE2,∴22+t2=(4﹣t)2,解得:t=1.5;②当AE=EF时,点E在AF的垂直平分线上,∴OE=AF,即t=(4﹣t),解得:t=.综上所述:当△AEF是以AE为腰的等腰三角形时,点E的坐标是(0,1.5)或(0,).故答案为:(0,1.5)或(0,).【点评】考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.三.解答题(共7小题)19.【分析】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.【解答】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,作辅助线构造出以DE为中位线的三角形是解题的关键.20.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF,即可得出四边形DFBE是平行四边形;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.21.【分析】由矩形的性质可得出BA=CD、∠A=∠D,由AM=DN可得出AN=DM,进而即可证出△ABN≌△DCM(SAS),根据全等三角形的性质可证出BN=CM.【解答】证明:∵四边形ABCD为矩形,∴BA=CD,∠A=∠D.∵AM=DN,∴AN=DM.在△ABN和△DCM中,,∴△ABN≌△DCM(SAS),∴BN=CM.【点评】本题考查了矩形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理SAS 证出△ABN≌△DCM是解题的关键.22.【分析】延长EM交AD于点P,延长FM交AB于点Q,根据正方形的性质可得出:四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,进而可得出AQ=FM,QM=ME,结合∠AQM=∠FME=90°即可证出△AQM≌△FME(SAS),再利用全等三角形的性质可证出AM=EF.【解答】证明:延长EM交AD于点P,延长FM交AB于点Q,如图所示.∵四边形ABCD为正方形,点M为对角线BD上一点,∴四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,∴AQ=PM=FM,QM=ME.在△AQM和△FME中,,∴△AQM≌△FME(SAS),∴AM=EF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及矩形的性质,利用全等三角形的判定定值SAS证出△AQM≌△FME是解题的关键.23.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意可得BE=5,BF=3,根据勾股定理可求EF的长【解答】证明:(1)连接BE,DE∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵点F是BD的中点,BE=DE∴EF⊥BD(2)∵BE=AC∴BE=5∵点F是BD的中点∴BF=DF=3在Rt△BEF中,EF===4【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半是本题的关键.24.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,根据菱形的判定得出即可;(2)设CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根据菱形的面积公式求出x,求出EF和CE,根据勾股定理求出CF即可.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.【点评】本题考查了勾股定理,平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.25.【分析】(1)过G作GH⊥CD于H,根据三角形的内角和得到∠CDE=60°,根据平行四边形的性质得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到结论;(2)根据全等三角形的性质得到∠ADH=∠EDC,∠H=∠C,DH=DC,根据平行四边形的性质得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM =∠H,根据全等三角形的性质即可得到结论..【解答】解:(1)如图1,过G作GH⊥CD于H,∵DE⊥BC,∴∠DEC=90°,∵∠C=60°,∴∠CDE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=2,∴∠ADC=120°,∵AD=DF,∴∠DAF=∠DFA=30°,∴∠GDF=∠DFG,∴DG=GF,∵CD=2,∴DF=,∴HF=DF=,∴GF=1;(2)∵AH⊥AD,DE⊥BC,∴∠DAH=∠DEC=90°,在△ADE与△DEC中,,∴△ADE≌△DEC(SAS),∴∠ADH=∠EDC,∠H=∠C,DH=DC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DAB=∠C,∠DFA=∠BAF,∵AD=DF,∴∠DAF=∠DFA,∴∠DFA=∠C,如图2,在DH上截取HM=AH,∴∠HAM=∠HMA,∴∠H=180°﹣2∠HAM,∵∠MAD=90°﹣∠HAM,∴∠DAM=∠H,∴∠MAD=∠GFD,在△ADM与△FDG中,,∴△ADM≌△FDG(ASA),∴DM=DG,∵AB=CD=DH=HM+DM,∴AB=AH+DG.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.。
八年级数学下册《平行四边形》单元测试卷(附答案)
八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。
人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)
人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。
人教版小学四年级数学上册 第5单元 平行四边形和梯形 单元测试题(含答案)
人教版小学四年级数学上册《第5单元平行四边形和梯形》单元测试题一.选择题1.下列说法中正确的是()A.两个锐角的和一定比直角大B.长方形相邻的两条边互相垂直C.不相交的两条直线叫平行线D.射线无限长,没有端点2.同一平面上的三条直线,一条直线既垂直于直线a也垂直于直线b,那么直线a和直线b()A.相交B.平行C.垂直D.无法确定3.下面的图形中,属于平行四边形的共有()个.A.1 B.2 C.3 D.44.把一个四边形撕成了三部分,其中两部分如图,这个四边形可能是()A.长方形B.正方形C.平行四边形D.梯形5.用长为5cm、5cm、8cm、8cm的四根小棒搭不同形状的平行四边形,可以搭出()个。
A.1 B.2 C.4 D.无数6.下面的说法正确的是()A.有一组对边平行的四边形是梯形B.平行四边形和梯形都是四边形C.在梯形中,平行的一组对边叫做梯形的腰7.下面的图形中,属于梯形的是()A.①和②B.②和③C.①和④D.①8.过直线外一点画已知直线的垂线,可以画()条.A.1 B.2 C.3 D.无数二.填空题9.一个梯形中最多有个直角,最多有条边长度相等.10.因为平行四边形容易变形,所以生活中往往会把做成平行四边形的形状.11.如图.(1)如果把梯形记作:梯形ABDC,那么请你在图中再找一个梯形,用这种表达方式记作:梯形.(2)如果把梯形AEFC的上底记作:AE,那么下底记作,高记作.这是一个梯形.12.平行四边形的一个内角是直角,并且相邻的边不相等,这个平行四边形就是,若相邻的边相等,这个平行四边形就是.13.如图,春光小学的伸缩门应用了平行四边形的特点.14.当两条直线相交成直角时,这两条直线.15.如果两条直线都垂直于同一条直线,那么这两条直线.16.在同一平面内,可以画条已知直线的垂线.过直线外的一点可以画条已知直线的平行线.17.两条直线相交成直角,这两条直线的交点叫.18.下面的各组直线,属于互相平行的有,属于相交的有,属于互相垂直的有。
北师大版八下第六章《平行四边形》单元测试题(含答案)
第六章平行四边形时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC 的周长为()A.13 B.17 C.20 D.262.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.243.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE4.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10 5.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.46.如图,▱ABCD中,AC⊥AB,O为对角线AC的中点,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.37°B.53°C.127°D.143°第6题图第7题图7.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①②B.①④C.③④D.②③8.如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,连接EF.若EF=1,AC=6,则AB的长为()A.10 B.9 C.8 D.6第8题图第10题图9.马小虎在计算一个多边形的内角和时,由于粗心少算了两个内角,其和等于830°,则该多边形的边数是()A.7 B.8 C.7或8 D.无法确定10.如图,在△ABC中,DE∥AB,FD∥BC,EF∥AC,则下列说法:①图中共有3个平行四边形;②AF=BF,CE=BE,AD=CD;③EF=DE=DF;④图中共有3对全等三角形.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:____________,使四边形ABCD为平行四边形(不添加任何辅助线).第12题图第13题图13.如图,P为▱ABCD的边CD上一点,若S▱ABCD=20cm2,则S△APB=________cm2.14.如图,在▱ABCD中,对角线AC,BD交于点O,AD=10,△BOC的周长为21,则AC+BD=________.第14题图第15题图15.如图,在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=________cm.16.如图,一块四边形绿化园地的四个角都做有半径为1m的圆形喷水池,则这四个喷水池占去的绿化园地的面积为________.第16题图第17题图17.如图,在▱ABCD中,AE⊥BC于点E,且DE平分∠CD A.若BE∶EC=1∶2,则∠BCD 的度数为________.18.如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为________(n为正整数).三、解答题(共66分)19.(8分)如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD,连接CE.求证:CE平分∠BC D.20.(8分)如图,已知四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.21.(8分)一个多边形的内角和与某个外角的度数的总和为1350°,试求此多边形的边数及此外角的度数.22.(10分)如图,△ABC中,BD平分∠ABC,AD⊥BD,D为垂足,E为AC的中点.求证:(1)DE∥BC;(2)DE=12(BC-AB).23.(10分)如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=M C.(1)求证:CD=AN;(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.24.(10分)如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,BD =2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点.求证:(1)BE ⊥AC ;(2)EG =EF (提示:直角三角形中,斜边上的中线等于斜边的一半).25.(12分)如图,在▱ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =12BC ,连接DE ,CF .(1)求证:四边形CEDF 是平行四边形; (2)若AB =4,AD =6,∠B =60°,求DE 的长.参考答案BDBBD DDCCB11.10 12.AD =BC (答案不唯一) 13.10 14.22 15.3 16.πm 2 17.120° 18.12n19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE ,AE +CD =AE +AB =BE .(3分)又∵AE +CD =AD ,∴BE =AD =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BC D.(8分)20.证明:∵∠A +∠B +∠C +∠D =360°,∠A =∠C ,∠B =∠D ,∴∠A +∠B =180°.(3分)又∵∠A =∠C ,∴∠B +∠C =180°,∴AD ∥BC ,AB ∥CD ,(6分)∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).(8分)21.解:∵1350°=180°×7+90°,(2分)又∵多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,(5分)多边形的边数为7+2=9.(8分)22.证明:(1)延长AD 交BC 于F .∵BD 平分∠ABC ,AD ⊥BD ,∴AB =BF ,AD =DF .(3分)又∵E 为AC 的中点,∴DE 是△ACF 的中位线,∴DE ∥B C.(5分)(2)∵AB =BF ,∴FC =BC -A B.(7分)∵DE 是△ACF 的中位线,∴DE =12FC =12(BC -AB ).(10分)23.(1)证明:∵CN ∥AB ,∴∠1=∠2.在△AMD 和△CMN 中,⎩⎪⎨⎪⎧∠1=∠2,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN (ASA ),∴AD =CN .又∵AD ∥CN ,(3分)∴四边形ADCN 是平行四边形,∴CD =AN .(5分)(2)解:∵AC ⊥DN ,∠CAN =30°,MN =1,∴AN =2MN =2,∴AM =AN 2-MN 2= 3.(7分)∴S △AMN =12AM ·MN =12×3×1=32.(8分)∵四边形ADCN 是平行四边形,∴S四边形ADCN=4S △AMN =2 3.(10分)24.证明:(1)∵四边形ABCD 为平行四边形,∴AD =BC ,BD =2BO .(1分)又∵BD =2AD ,∴BO =AD =B C.(3分)∵E 为OC 的中点,∴BE ⊥A C.(5分)(2)由(1)知BE ⊥AC ,∴△ABE 为直角三角形,AB 为斜边.在Rt △ABE 中,G 为AB 的中点,∴EG =12A B.(7分)又∵E ,F 分别为OC ,OD 的中点,∴EF =12C D.(8分)∵四边形ABCD是平行四边形,∴AB =CD ,∴EG =EF .(10分)25.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =B C.(1分)∵F 是AD 的中点,∴DF =12A D.又∵CE =12BC ,∴DF =CE .(4分)又∵DF ∥CE ,∴四边形CEDF 是平行四边形.(5分)(2)解:过点D作DH⊥BE于点H.(6分)在▱ABCD中,∵AB∥CD,∠B=60°,∴∠DCE =60°,∴∠CDH=30°.(7分)∵AB=4,∴CD=AB=4,∴CH=2,DH=DC2-CH2=2 3.(9分)在▱CEDF中,CE=DF=12AD=3,则EH=CE-CH=1.(10分)∴在Rt△DHE中,由勾股定理得DE=DH2+HE2=(23)2+1=13.(12分) 。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
第一章 特殊平行四边形 单元测试(含答案)
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
华东师大版2019-2020学年初二数学第二学期第18章 平行四边形单元测试题(含答案)
华东师大版八年级数学下册第18章平行四边形单元检测卷一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°(第1题)(第4题)(第5题)2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cm ;B.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm(第6题)(第7题) (第8题)7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD 于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.9.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.(第9题) (第10题)10.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是cm.11.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.(第11题)(第12题)12.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号).三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为.参考答案一、选择题(每小题4分,共28分)1.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD 于点F,则∠1=()A.40°B.50°C.60°D.80°【解析】选B.∵四边形ABCD是平行四边形,∴AD∥BC,∵∠B=80°,∴∠BAD=100°,又∵AE平分∠BAD交BC于点E,∴∠EAD=∠BAD=50°,∵CF∥AE,∴四边形AECF是平行四边形,∴∠1=∠EAD=50°.2.平行四边形两邻角的平分线相交所成的角为()A.锐角B.直角C.钝角D.不确定【解析】选B.▱ABCD的∠DAB的平分线和∠ABC的平分线交于点O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°-90°=90°.3.在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10 cmB.6 cmC.5 cmD.4 cm【解析】选A.因为平行四边形的对边相等,所以AD=BC=3cm,AB=CD=2cm,所以周长为10 cm.4.如图,四边形ABCD是平行四边形,点E在边BC上.如果点F是边AD上的点,那么△CDF 与△ABE不一定全等的条件是()A.DF=BEB.AF=CEC.CF=AED.CF∥AE【解析】选C.由平行四边形的性质可得AB=CD,AD=BC,∠B=∠D等.A中,DF=BE,∠B=∠D,AB=CD,符合“边角边”定理,△CDF≌△ABE,选项A成立;B中,AF=CE,可得DF=BE,同选项A,选项B成立;C中,CF=AE,∠B=∠D,AB=CD,条件为两边及一边的对角,C 不一定成立;D中,CF∥AE,可得四边形AECF是平行四边形,得AF=CE,所以BE=DF,同选项A,该选项成立.综上所述,选C.5.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°【解析】选D.由平行四边形的性质及图形可知:∠1和∠2是邻补角,故∠1+∠2=180°,A 正确;因为AD∥BC,所以∠2+∠3=180°,B正确;因为AB∥CD,所以∠3+∠4=180°,C 正确;D.根据平行四边形的对角相等,∠2=∠4,∠2+∠4=180°不一定正确,故选D.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA 的取值范围是()A.3cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA<8cm【解析】选C.在△ABC中,BC-AB<AC<AB+BC,即2cm<AC<8cm,所以1cm<OA<4cm.7.如图所示,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解析】选B.∵AE⊥BD于点E,CF⊥BD于点F,∴∠DFC=∠BEA=90°.∵DE=BF,∴DF=BE.又∵AB=CD,∴△DFC≌△BEA,∴CF=AE,①正确,∠CDF=∠ABE,∴AB∥C D.又∵AB=CD,∴四边形ABCD是平行四边形,③正确,∴OD=O B.又∵DF=BE,∴OE=OF,②正确,易知图中的全等三角形有:△DFC≌△BEA,△OFC≌△OEA,△AOF≌△COE,△AEF≌△CFE,△ACF≌△CAE,△AOB≌△COD,△AOD≌△COB,△ABD≌△CDB,△ACD≌△CAB,…,故④不正确.综上可知,正确的结论为①②③,共3个.二、填空题(每小题5分,共25分)8.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB 的周长为.【解析】因为平行四边形的对角线互相平分,所以OA=AC=7,OB=BD=4,又因为AB=10,所以△OAB的周长=7+4+10=21.答案:219.如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为.【解析】点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,由勾股定理得AE===3.答案:310.如图所示,平行四边形ABCD的周长是18cm,对角线AC,BD相交于点O,若△AOD 与△AOB的周长差是5cm,则边AB的长是cm.【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.答案:211.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE∶EF∶FB的值是.【解析】∵四边形ABCD是平行四边形,∴∠DCE=∠BE C.∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BE=BC=4.∵F是AB的中点,AB=6,∴FB=3.∴EF=BE-FB=1,∴AE=AB-BE=2,∴AE∶EF∶FB=2∶1∶3.答案:2∶1∶312.如图,已知直线a∥b,点A、点C分别在直线a,b上,且AB⊥b,CD⊥a,垂足分别为B,D,有以下五种说法:①点A到直线b的距离为线段AB的长;②点D到直线b的距离为线段CD的长;③a,b两直线之间距离为线段AB的长;④a,b两直线之间距离为线段CD的长;⑤AB=CD,其中正确的有(只填相应的序号). 【解析】本题主要考查点到直线的距离和平行线间的距离,①②③④⑤都正确.答案:①②③④⑤三、解答题(共47分)13.(10分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【证明】∵AB∥CD,∴∠BAE=∠DCF,∵BE∥DF,∴∠BEF=∠DFE,∴∠AEB=∠CF D.在△AEB和△CFD中,∴△AEB≌△CFD,∴AB=C D.又∵AB∥CD,∴四边形ABCD是平行四边形.14.(12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.【证明】(1)∵点D,E分别是AB,BC的中点,∴DE∥AC;同理:EF∥AB,∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴∠DAF=∠DEF.∵在Rt△AHB中,D是AB中点,∴DH=AB=AD,∴∠DAH=∠DHA,同理:∠F AH=∠FHA,∴∠DAF=∠DHF,∴∠DHF=∠DEF.15.(12分)如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F 在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【证明】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=B C.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.16.(13分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD,并写出了如下不完整的已知和求证.已知,如图在四边形ABCD中,BC=AD,AB=.求证:四边形ABCD是四边形.(1)在方框中填空,以补全已知和求证.(2)按嘉淇的想法写出证明:(3)用文字叙述所证命题的逆命题为. 【解析】(1)CD平行(2)证明:连结B D.在△ABD和△CDB中,∵AB=CD,AD=CB,BD=DB,∴△ABD≌△CDB,∴∠1=∠2,∠3=∠4,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形.(3)平行四边形的对边相等.。
新人教版八年级下册平行四边形单元测试题
人教版八年级数学(下)四边形单元训练题(五一作业)一、选择题(共12小题,每小题3分,满分36分)1.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()第1题图第2题图第3题图A.3 B.6 C.12 D.242.如图,沿虚线EF将平行四边形ABCD剪开,则得到的四边形ABFE是()A.梯形 B.平行四边形C.矩形 D.菱形3.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm4.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF.你认为()A.仅小明对B.仅小亮对C.两人都对D.两人都不对第4题图第6题图5.在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A.矩形 B.菱形 C.正方形D.梯形6.矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为()A.8 B .C.4 D .7.下列命题正确的是()A.对角线相等且互相平分的四边形是菱形B.对角线相等且互相垂直的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.对角线相等的四边形是等腰梯形8.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE第8题图第9题图第10题图9.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm10.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°11.如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,以下四个结论:①∠ABC=∠DCB,②OA=OD,③∠BCD=∠BDC,④S△AOB=S△DOC.其中正确的是()第11题图第12题图第13题图A.①② B.①④ C.②③④D.①②④12.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30° B45°C.60°D.90°二、填空题(共6小题,每小题3分,满分18分)13.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_________cm2.14、如图5,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF 的长是15、如下图,正方形ABCD的边长为8,点M在DC上且DM=2,N是AC上的一动点,求DN+MN 的最小值()。
小学数学第五单元平行四边形和梯形 单元测试(含答案解析)
小学数学第五单元平行四边形和梯形单元测试(含答案解析)一、选择题1.如图,直线a、b互相平行,图中一共有()个梯形.A. 1B. 2C. 3D. 42.一个等边三角形的周长是36厘米,用两个这样的等边三角形可以拼成的平行四边形的周长是()厘米。
A. 12B. 48C. 1443.下列各句话中有()句是错误的。
⑴两条直线相交,这两条直线互相垂直。
⑵两条直线的交点,叫做这两条直线的垂足。
⑶平行线之间的线段处处相等。
⑷两条直线都与另一条直线相交,这两条直线一定平行。
A. 1B. 2C. 3D. 44.有两条直线都和第三条直线平行,那么这两条直线()。
A. 互相垂直B. 互相平行C. 相交5.两个完全一样的直角梯形,一定不能拼成()。
A. 长方形B. 梯形C. 三角形D. 平行四边形6.一张长方形纸,对折两次,折痕会()A. 互相平行B. 互相垂直C. 两种情况都有可能7.军军家通往一条大道有3条不同的路,这3条路的长度分别为56米、87米、54米,其中有一条小路与大道是垂直的,那么这条路的长度应是()米。
A. 54米B. 56米C. 87米8.下图里,AB、AC、AD、AE四条线段中,它们的长度为4厘米、5厘米、6厘米、7厘米。
线段()一定长4厘米。
A. ABB. ACC. AD9.在同一平面内,a∥b,b⊥c,那么直线a与直线c()。
A. 相交但不互相垂直B. 互相平行C. 互相垂直D. 不确定10.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.11.过直线外一点,可以画( )条与己知直线垂直的直线。
A. 无数B. 1C. 2D. 0 12.下面数学书挡住的是一张四边形彩纸,则这张彩纸可能是()形的。
A. 正方B. 平行四边C. 长方D. 三角二、填空题13.两条直线相交成________度时,这两条直线互相垂直。
14.如图中,a∥b,量一量∠1=________°,∠2=________°,∠1和∠2是一组同位角.猜想:在平行线中,________.验证:画一条直线d与直线a、b相交,标出一组同位角∠3和∠4,∠3=________°,∠4=________°.结论:猜想正确.15.从直线外一点可以画________条已知直线的平行线,平行线间的垂直线段有________条,每条垂线段的长度都________;在同一个平面内,若两条直线都和同一条直线平行,那么这两条直线________.16.如图中与直线b互相平行的是直线________,与直线b互相垂直的是直线________。
最新北师大版八年级下册数学平行四边形单元测试试题以及答案 (2套题)
八年级下册平行四边形单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、在平行四边形ABCD中,如下图,若∠B=134°,则∠E与∠F的和是()。
A、46°B、45°C、56°D、36°2、如图,M是BC的中点,AN⊥BN,且AN平分∠BAC,若AB=7厘米,AC=13厘米,则MN的长是()。
A、6厘米B、5厘米C、3厘米D、2.5厘米3、如图,a∥b,AB∥CD,CE⊥BE,FG⊥BG,下列说法不正确的是()。
A、a与b的距离就是线段AB的长度B、A、B两点的距离就是线段AB的长度C、AC=BDD、FC=EG4、如图,在平行四边形ABCD中,CD=6,△AOB的周长是14,则两条对角线的和是()。
A、28B、20C、26D、165、如图,∠B=90°,AB=8,BC=6,D、E分别是AB、AC中点,∠ACM 的平分线CF交DE的延长线于点F,则DF的长是()。
A、7B、8C、9D、106、如图,在平行四边形ABCD中,E、F在对角线AC上,下列条件不能证明四边形BFDE是平行四边形的是()。
A、∠AED=∠CFBB、DE=BFC、∠ADE=∠CBFD、AE=CF7、如图,在平行四边形ABCD中,AE平行∠BAD,AD=11,CD=8,则CE的长是()。
A、2B、3C、4D、18、如图,AB⊥BM,D、E分别是AB、AC的中点,∠ACM的平分线交DE的延长线于点F,若EF:DE=5:3,BD=6,则DF的长是()。
A 、10B 、12C 、14D 、159、如图,在等边三角形ABC 中,PF ∥AC ,PD ∥AB ,PE ∥DC ,若等边三角形的周长是24,则PD+PE+PF 的值是( )。
A 、12B 、8C 、6D 、410、如图,21L L ∥,四边形ABCD 是正方形,A 、D 、F 在同一条直线上,则下列结论正确的是( )。
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)
八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。
人教版四年级上学期数学第五单元“平行四边形和梯形”单元测试题(含答案)
第五单元平行四边形和梯形单元测试题(时间:60分钟满分100分)一.填空题.(每小题1分,共30分)1.平面内,过一点可以画已知直线的垂线()条;过直线外一点,可以画()条已知直线的平行线.2.在一个长方形中,互相垂直的线段有()组,互相平行的线段有()组.3.一个等腰梯形的周长是25厘米,上底和下底的和是13厘米,则这个等腰梯形的腰长为()厘米.4.一个平行四边形一条边为底,能作出()条高,这些高的长度().5.在一个平面内,如果m垂直n,m垂直p,则n,p的关系是(互相平行)(填互相垂直或互相平行)6.如图,已知a平行b,平行四边形有()个,梯形有()个,三角形有()个。
(第6题图)(第7题图)7.如图,平行四边形CD边上的高是(),BC边长的高是()。
8.一个平行四边形的周长是24厘米,其中一条边是邻边的3倍,这个平行四边形的两边长分别是()厘米和()厘米.二.判断题.(共10分)1.一个梯形的高只有一条。
()2.两个周长相等的梯形一定可以拼成一个平行四边形。
()3.一个梯形的内角和是270°。
()4.两个等底等高的平行四边形,形状不一定相同。
()5.四个边分别是4厘米,4厘米,3厘米和8厘米拼成的四边形一定是等腰梯形。
()三.单选题。
(共16分)1.下面()图中的平行线组数与其它三个不一样.A. B. C. D.2.从梯形的一条底上的一点到对边可以画()条垂线.A.1B.2C.3D.无数3.在等腰梯形中画一条线段,不可能把它分割成().A.一个平行四边形和一个梯形B.两个三角形C.一个平行四边形和一个三角形D.两个平行四边形4.下图中有()个梯形.A.8B.9C.7D.6(第4题图)(第5题图)(第7题图)5.下面信封里装的图形,不可能是().A.三角形B.长方形C.正方形D.梯形6.下面()钟面上时针和分针互相垂直.A.12时B.4时C.10时D.3时7.如图,小明从直线l外一点P向直线l画四条线段,其中一条是垂直线段,则点P到直线l 的距离是()A.PAB.PBC.PCD.PD8.如图,直线a平行b,c平行d,e平行f,下图①,②,③,④中,()是平行四边形.(第8题图)A.① B.② C.③ D.④四.操作题.1.过点A画出已知直线的的垂线。
第18章 平行四边形单元测试题1(全)
第18章平行四边形单元测试题(1)一、单选题1.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D′,B之间的距离为()A.1cm B.2cm C.(2√2+1)cm D.(2√2−1)cm2题图3题图6题图7题图2.满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形3.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用HL证明Rt△AEP≌Rt△AFPC.AP平分∠BAD D.点P一定是菱形ABCD的两条对角线的交点4.在▱ABCD中,若∠A=60°,则∠D的度数是()A.60∘B.90∘C.120∘D.30∘5.平行四边形的两条对角线将它分成4个小三角形,则这4个小三角形的面积()A.都不相等B.不都相等C.都相等D.结论不确定6.在平行四边形ABCD中,AC,BD相交于O,AC=10,BD=8,则AD的长度的取值范围是()A.AD>1B.1<AD<9C.AD<9D.AD>97.如图,矩形ABCD 的对角线AC与BD相交于点O,∠AOB=60°,AB=3,则OC等于()A.3 B.3.5 C.4 D.58.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=55°,∠ANM=45°,则∠B=().A.20°B.45°C.80°D.70°8题图9题图10题图15题图9.如图,在▱ABCD中,∠A=45°,AD=2,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为( )D.2√2A.1 B.√2C.√22BD的长为半径作弧,两弧相交于两点,过这两点10.如图,BD为▱ABCD的对角线,分别以B,D为圆心,大于12的直线分别交AD,BC于点E,F,交BD于点O,连接BE,DF.根据以上尺规作图过程,下列结论不一定正确的是() A.点O为▱ABCD的对称中心B.BE平分∠ABDC.S△ABE:S△BDF=AE:ED D.四边形BEDF为菱形11.在▱ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出在▱ABCD中是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③有一条对角线平分一个内角的平行四边形为菱形.其中不正确的有( )A.3个B.2个C.1个D.0个1至12题答案:二、填空题13.已知平行四边形的周长是30,相邻两边的长相差3,则两条邻边中较长的边长为.14.一个直角三角形斜边上的中线和高分别是6和5,它的面积=.15.如图,在△ABC中,D,E分别是边AB,BC的中点,若DE的长是2√2,则AC的长为.16.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为.16题图19题图20题图21题图17.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为 . 18.若顺次连接对角线长分别为10和16的菱形ABCD四边中点形成新的四边形,则该新四边形的周长为.19.如图已知正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是 . 20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E为边BC的中点,连接OE,已知OE=a,则菱形ABCD 的周长为(用含a的式子表示).21.如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB 上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为.22.如图,在同一平面内,直线l同侧有三个正方形,A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为22题图23题图13至22题答案:三、解答题23.已知,如图所示,折叠长方形OABC的一边BC,使点B落在AO边的点D处,已知B(10,8),求:(1)求D的坐标;(2)求E的坐标.)×√624.(1)计算:(2√12−√13(2)直角三角形ABC中,∠ACB=90°,D是斜边AB的中点,两直角边AC=6,BC=8,求CD的长.24题图25题图25.如图,在△ABC中.【实践与操作】请利用尺规作图完成以下操作:(1)作△ABC的角平分线AD,交边BC于点D;(2)作线段AD的垂直平分线,分别交边AB,AC于点E,F;(3)连接DE,连接DF.(要求:不写作法,标明字母);【猜想与证明】试猜想四边形AEDF的形状,并加以证明.26.如图,已知A(2,3)和直线y=x.(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标;(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.27.在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN 的形状,并证明你的结论.28.如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.参考答案:1.D【分析】先求出BD,再根据平移性质得BB′=1cm,然后由DB′=BD−BB′求解即可.【详解】解:由题意,BD=√22+22=2√2(cm),由平移性质得BB′=1cm,∴点D,B′之间的距离为DB′=BD−BB′=(2√2−1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.2.A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的菱形还是菱形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A.【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键.3.D【详解】试题分析:根据到角的两边距离相等的点在角的平分线上判断出AP平分∠BAD,根据菱形的对角线平分一组对角线可得AC平分∠BAD,然后对各选项分析判断利用排除法求解.∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.考点:菱形的性质;全等三角形的判定;角平分线的性质4.C【分析】本题主要考查了平行四边形的性质,掌握平行四边形的邻角互补成为解题的关键.如图:由平行四边形的性质得出∠A+∠D=180°,据此即可解答.【详解】解:如图:∵▱ABCD中,AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=180°−∠A=120°.故选:C.5.C【分析】根据平行四边形的性质,对角线互相平分,则可知,两条对角线将它分成4个小三角形都是等底等高的,因此面积相等.【详解】如图,作DQ⊥AC,BP⊥AC∵▱ABCD中,CE=EA,DE=EB,AD=BC∴△ADE≌△CBE(SSS),∴DQ=PBCE⋅DQ,∴4个小三角形的面积都可表示为12∴4个小三角形的面积相等.故选:C【点睛】此题考查平行四边形的性质,解题关键是三角形面积公式为底乘以高的一半,三角形等底等高即可证明面积相等.6.B【分析】根据平行四边形性质可知,平行四边形的对角线互相平分,则AO,DO,与AD三边组成三角形,然后再利用三角形三边关系解题即可.【详解】解:设AC,BD交于点O,平行四边形对角线平分,则有AO=CO=5,BO=DO=4,再根据三角形两边之和大于第三边,两边之差小于第三边,可得:1<AD<9.故选:B .【点睛】本题结合三角形的三边关系,考查了平行四边形的对角线互相平分这一性质,解题时注意数形结合. 7.A【分析】由矩形的性质得出OA =OB ,由已知条件证出△AOB 是等边三角形,得出OA =AB =3,得出OA =OC =3即可.【详解】解:∵四边形ABCD 是矩形, ∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB , ∵∠AOB =60°,∴△AOB 是等边三角形, ∴OA =AB =3, ∴OA =OC =3; 故选:A .【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解题的关键. 8.C【分析】根据三角形中位线定理得出MN //BC ,进而利用平行线的性质解答即可. 【详解】解:∵M 、N 分别是△ABC 的边AB 、AC 的中点,∠A =55°,∠ANM =45°, ∴MN //BC ,∴∠C =∠ANM =45°,∴∠B =180°−∠A −∠C =180°−55°−45°=80°, 故选:C .【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN //BC 解答. 9.C【分析】连接DM ,根据中位线的性质得出EF =12DM ,当DM ⊥AB 时,DM 最小,根据等腰直角三角形的性质,勾股定理即可求解.【详解】解:如图,连接DM ,∵E、F分别为DN、MN的中点,∴EF=12DM,∴EF的最小值,就是DM的最小值,当DM⊥AB时,DM最小,∴DM=√22AD=√2∴EF=12DM=√22,故选:C.【点睛】本题考查了中位线的性质,垂线段最短,勾股定理,等腰直角三角形的性质,掌握中位线的性质是解题的关键.10.B【分析】由作图知,EF是线段BD的垂直平分线,利用平行四边形的性质可判断选项A;根据菱形的判定定理可判断选项C;根据菱形的性质得到S△BDF=S△BDE,可判断选项D;BE不一定平分∠ABD,选项B不正确.【详解】解:由作图知,EF是线段BD的垂直平分线,即点O为▱ABCD的对称中心,故选项A正确,不符合题意;∵四边形ABCD是平行四边形,∴DE∥BF,∴∠DEF=∠BFE,∵EF是线段BD的垂直平分线,∴BE=ED,BF=FD,∠BFE=∠EFD,∴∠DEF=∠EFD,∴DE=DF,∴DE=DF=BE=BF,∴四边形BEDF为菱形,故选项D正确,不符合题意;∴S△BDF=S△BDE,∴S△ABE:S△BDF=S△ABE:S△BDE=AE:ED,故选项C正确,不符合题意;BE不一定平分∠ABD,故选项B不正确,符合题意;故选:B.【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.B【分析】根据平行四边形、矩形以及菱形的判定定理进行逐一分析判断,从而得出答案即可.【详解】一组对边平行且相等的四边形是平行四边形,故①错误;对角线相等的平行四边形是矩形,故②错误;有一条对角线平分一个内角的平行四边形为菱形,故③正确;综上所述,不正确的有2个,故选:B.【点睛】本题主要考查了平行四边形、矩形以及菱形的判定,熟练掌握相关概念是解题关键.13.9【分析】根据平行四边形的对边相等,设较长的边长为x,则较短的边长为(x−3),根据周长是30,建立一元一次方程解方程求解即可.【详解】解:设较长的边长为x,则较短的边长为(x−3),2(x+x−3)=30解得x=9故答案为:9【点睛】本题考查了平行四边形的性质,平行四边形的性质是解题的关键.14.30【分析】根据直角三角形斜边上的中线先求出斜边长,再利用三角形的面积进行计算即可解答.【详解】解:∵直角三角形斜边上的中线是6,∴斜边长=2×6=12,∵直角三角形斜边上的高是5,×12×5=30,∴直角三角形的面积=12故答案为:30.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线是解题的关键.15.4√2【分析】根据三角形中位线定理,即可求解.【详解】解:∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DE的长是2√2,∴AC=4√2.故答案为:4√2【点睛】本题主要考查了三角形中位线定理,熟练掌握三角形的中位线等于第三边的一半,并且平行于第三边是解题的关键.16.15.【分析】根据平行四边形的性质和角平分线的定义得∠ABF=∠AFB,∠DCE=∠CED,从而得AB=AF,DC=DE,进而即可求解.【详解】∵四边形ABCD为平行四边形,AB=8,∴CD=AB=8,AD//BC,∴∠AFB=∠CBF,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AF=AB=8,同理DE=DC=8,∵EF=1,∴AE=AF−EF=8−1=7,∴AD=AE+DE=7+8=15,故答案为15.【点睛】本题主要考查平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,综合应用平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,是解题的关键.17.21cm【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵平行四边形的周长等于56cm,∴AB+CD+AD+BC=56cm,∴AB+BC=28cm.∵BC:AB=3:1,∴BC=21cm,AB=7cm,∴这个平行四边形较长的边长为21cm.故答案为21cm.18.26【分析】根据三角形的中位线得出EH=12BD,GF=12BD,EF=12AC,HG=12AC,求出EH、GF、EF、HG的长度,再求出周长即可.【详解】解:如图,∵E、F、G、H分别是边AB、BC、CD、AD的中点,∴EH=12BD,GF=12BD,EF=12AC,HG=12AC,∵AC=10,BD=16,∴EH=8,FG=8,EF=5,HG=5,∴四边形EFGH的周长是EF+FG+HG+EH=5+8+5+8=26,故答案为:26.【点睛】本题考查了菱形的性质,三角形的中位线性质等知识点,能熟记三角形的中位线平行于第三边,并且等于第三边的一半是解此题的关键.19.20.【详解】试题解析:连接BN.∵四边形ABCD是正方形,∴NB="ND."∴DN+MN="BN+MN."当点B、N、M在同一条直线上时,ND+MN有最小值.由勾股定理得:BM=√MC2+BC2=20考点:轴对称-最短路线问题.20.8a【分析】根据菱形性质和直角三角形斜边上中线等于斜边一半,可以求出BC=2OE,进而可以求出菱形周长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点E为边BC的中点,∴BC=2OE=2a,∴菱形ABCD周长为8a.故答案为:8a.【点睛】本题也可以根据菱形性质得到O为AC中点,利用三角形中位线性质求出AB,亦可求解.21.(8,0)或(-2,0)/(-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∴AE=5,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=5,∴点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.22.6【分析】如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,证明△GPF≌△DPQ,可得:DQ=GF,PD=PG=3,同理利用三角形全等的性质可得:QD=2,QE=3,从而可得答案.【详解】解:如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,∵A,C的面积分别为9和4,∴PG=3,NK=2,∵正方形,A,B,C,∴PQ=PF,∠QPF=90°,∠PDQ=∠PGF=90°,∴∠GPF+∠DPF=90°,∠DPF+∠DPQ=90°,∴∠GPF=∠DPQ,∴△GPF≌△DPQ,∴DQ=GF,PD=PG=3,同理可得:GF=NK=2,PG=FK=3,EN=NK=2,QE=FK=3,∴DQ=2,∴S=12×3×2+12×2×3=6.故答案为:6.【点睛】本题考查的是全等三角形的判定与性质,作出适当的辅助线构建全等三角形是解题的关键. 23.(1)(6,0)(2)(10,3)【分析】本题主要考查了折叠变换的性质、勾股定理等几何知识点及其应用问题.(1)根据折叠性质得,CD=AB=10,由勾股定理得OD=6,可得点D坐标;(2)在Rt△ADE中,根据勾股定理即可求点E坐标.【详解】(1)解:由折叠可知:CD=CB,∵B(10,8),∴CD=CB=10,OC=8,在Rt△ODC中,由勾股定理得OD=6,∴点D坐标为(6,0);(2)∵OA=BC=10,OD=6,∴AD=OA−OD=10−6=4由折叠可知:BE=DE,设AE=x,则DE=BE=8−x,在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,解得:x=3,∴点E坐标为(10,3).24.(1)11√2;(2)5【分析】(1)原式利用乘法分配律计算即可得到结果.(2)首先利用勾股定理求出AB=10.再利用直角三角形斜边上中线的性质可得答案.×6【详解】解:(1)原式=2√12×6−√13=12√2−√2=11√2;(2)在Rt△ABC中,由勾股定理得,AB=√AC2+BC2=√62+82=10,∵D是斜边AB的中点,AB=5.∴CD=12【点睛】本题主要考查了勾股定理,二次根式的混合运算,直角三角形斜边上中线的性质等知识,熟练掌握性质是解题的关键.25.实践与操作:见解析;猜想与证明:菱形,见解析【分析】[实践与操作]根据角平分线,垂直平分线的作法作图即可;[猜想与证明]根据垂直平分线的性质得到FA=FD,EA=ED,∠EOA=∠FOA=90°,证明△AEO≌△AFO(ASA),得到AE=AF,再根据四边相等的四边形是菱形证明即可.【详解】解:[实践与操作]如图,即为所求;[猜想与证明]四边形AEDF为菱形,理由如下:∵EF垂直平分AD,交点为O,∴FA=FD,EA=ED,∠EOA=∠FOA=90°,∵AD平分∠BAC,∴∠EAO=∠CAO,∵AO=AO,∴△AEO≌△AFO(ASA),∴AE=AF,∴AE=ED=DF=FA,∴四边形AEDF是菱形.【点睛】本题考查了尺规作图,角平分线和垂直平分线的作法,垂直平分线的性质,菱形的判定,解题的关键是掌握基本尺规作图的方法,菱形的判定方法.26.(1)B(3,2),C(−2,−3)(2)矩形,见解析【分析】本题考查矩形,点关于直线对称的知识,解题的关键是掌握点关于直线对称的性质,矩形的判定,即可.(1)根据点A关于直线y=x对称,则x,y互换即为对称点坐标求出点B,根据点关于原点对称横纵坐标互为相反数,即可;(2)根据点关于原点对称横纵坐标互为相反数,求出点D,再根据矩形的判定,即可.【详解】(1)∵A(2,3),∴点A关于直线y=x的对称点B(3,2);∵关于原点对称横纵坐标互为相反数,∴A(2,3)关于原点的对称点C的坐标为:C(−2,−3).(2)∵点B(3,2),∴点B(3,2)原点的对称点D的坐标为:D(−3,−2),∵点B与点D关于原点对称,点A与点C关于原点对称,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为B,点A关于原点的对称点为C,点B关于原点的对称点为D,∴AC=DB,∴平行四边形ABCD是矩形.27.(1)平行四边形,证明见解析;(2)菱形,证明见解析【分析】(1)根据平行四边形的判定,对边平行且相等的四边形是平行四边形即可求解.(2)根据题意列出方程,数形结合证明平行四边形PQMN 的临边相等,根据一组临边相等的平行四边形是菱形即可求解.【详解】解:(1)四边形PQMN 为平行四边形;连接AC 、BD .∵PQ 为△ABC 的中位线,∴PQ ∥AC ,PQ =12AC , 同理MN ∥AC .MN =12AC . ∴MN =PQ ,MN ∥PQ ,∴四边形PQMN 为平行四边形;(2)四边形PQMN 是菱形;理由如下:设△ADE 的边长是x ,△BCE 的边长是y ,∴DB 2=(12x +y )2+(√32x )2=x 2+xy +y 2,AC 2=(x +12y )2+(√32y )2=x 2+xy +y 2, 由(1)得MN =12AC 与(1)同理可证MP =12BD∴MN =MP ,∴平行四边形PQMN 是菱形;【点睛】本题考查中位线的性质、平行四边形的性质、等边三角形的性质、菱形的判定等知识点,熟练掌握几何图形的性质,进行等量代换、数形结合即可求解.28.见解析.【分析】先证明CE =DE, 再证明EF 是△CDB 的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.。
人教版-八下数学第十八章《平行四边形》单元测试题及答案
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.
平行四边形单元测试卷(5套题)
第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。
(易错题)小学数学四年级上册第五单元平行四边形和梯形 单元测试题(含答案解析)
(易错题)小学数学四年级上册第五单元平行四边形和梯形单元测试题(含答案解析)一、选择题1.直线行驶的汽车车轮留下的两行印迹()。
A. 互相平行B. 互相垂直C. 相交2.下图中共有()个平行四边形。
A. 10B. 6C. 43.以下方格图中已经画了三个点,请在图中再找一个点,使图上的四个点依次相连后成为平行四边形,一共有()种方法。
A. 1B. 2C. 3D. 无数4.一个平行四边形(长方形外)相邻两边的长度分别是8厘米、5厘米,那么8厘米这条边上的高可能是()厘米。
A. 4厘米B. 5厘米C. 6厘米D. 7厘米5.用长3cm,3cm,5cm,5cm的四根小棒可以搭成()个形状不同的平行四边形。
A. 1 B. 2 C. 3 D. 无数个6.学校拉门里有许多小平行四边形,这是应用了平行四边形()的性质。
A. 容易变形B. 对边相等C. 稳定性D. 互相对称7.平行线间的距离()。
A. 相等B. 不相等C. 不能确定8.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.9.从直线外一点到这条直线所画的线段中,垂直线段()。
A. 最短B. 最长C. 不能确定10.同一平面内,两条直线相交成直角时,这两条直线()。
A. 相交B. 互相垂直C. 互相平行D. 不确定11.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长()。
A. 大B. 小C. 一样大12.两个完全相同的三角形一定能拼成一个()A. 长方形B. 正方形C. 平行四边形二、填空题13.最少有一组对边________的四边形叫做梯形。
14.一个平行四边形的相邻边长度和是10厘米,这个平行四边形的周长是________。
15.平行四边形有________组对边平行,梯形有________组对边平行.16.梯形里有________组对边互相平行。
17.如图中的线段,________和________是互相平行,________和________是互相垂直,________和________也是互相垂直的.18.这张试卷的两条对边互相________,相邻的两条边互相________.19.这个平行四边形的高是底________上的高20.在________不相交的两条直线叫________,也可以说这两条直线________。
人教版2020学年初中数学八年级下《第18章 平行四边形》单元测试卷
人教版2020学年初中数学八年级下《第18章平行四边形》单元测试卷一.选择题(共10小题)1.在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A.5:2:2:5B.5:5:2:2C.2:5:2:5D.2:2:5:52.如图,在平行四边形ABCD中,AD=2AB,AE平分∠BAD交BC边于点E,且CE=3,AD的长为()A.4B.5C.6D.73.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AD∥BC,∠A=∠BC.AD∥BC,∠A=∠C D.AD∥BC,AB∥CD4.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是()A.3B.4C.5D.2.55.以上四个条件中可以判定四边形是平行四边形的有()①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.A.1个B.2个C.3个D.4个6.在平面直角坐标系中,一个长方形的三个顶点坐标分别为(﹣2,0)、(﹣2,1)、(0,0),则第四个顶点的坐标为()A.(0,1)B.(1,0)C.(1,1)D.(﹣2,﹣1)7.如图,各正方形的边长均为1,则四个阴影三角形中,面积为1的是()A.②③B.①③C.①②③D.④8.下列说法不正确的是()A.四边都相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分且相等的四边形是菱形9.如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD 的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1D.10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论,其中正确结论的序号是()①AP=EF②∠PFE=∠BAP③△APD一定是等腰三角形④PD=ECA.①②④B.②④C.①②③D.①③④二.填空题(共8小题)11.如图在△ABC中,∠ACB=60°,D是AB边的中点,E是边BC上一点,若DE平分△ABC的周长,且DE=,则AC的长为.12.在平行四边形ABCD中,∠B+∠D=180°,则∠A=.13.如图,平行四边形ABCD的对角线交于坐标原点O,点A的坐标为(﹣3,2),点B的坐标为(﹣1,﹣2),则点C的坐标为.14.如图,△ADE中,C是AE中点,且DC⊥AE,BC∥DE,BC交AD于点B,DE=10cm,AE=8cm,则△ABC 的周长为cm.15.如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.16.如图,在正方形ABCD中,E是对角线BD上任意一点,过E作EF⊥BC于F,作EG⊥CD于G,若正方形ABCD 的周长为24cm,FG=5cm,则四边形EFCG的面积为.17.如图,在矩形ABCD中,BD为对角线,过点C作CE⊥BD,交AB于点E,点F在BC上,AF交CE于点G,且AG=GF=CF,BD=,则线段AB的长为.18.如图,正方形ABCD和正方形CEFG的边长分别为a和b,BE和DG相交于点H,连接HC,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论是.三.解答题(共6小题)19.将▱ABCD放在平面直角坐标系中,对角线AC,BD交于坐标原点O,B(﹣4,﹣3),C(0,﹣3),请根据要求画出图形,并求出▱ABCD的面积和周长.20.如图,在▱ABCD中,AM⊥BD,CN⊥BD,垂足分别为点M,N.求证:四边形AMCN是平行四边形.21.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,AE ⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:AG=CG.22.已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,EF.(1)如图①,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图②,若点E是边AB的中点,DE平分∠ADF,求BF的长.23.已知在△ABC中,AD平分∠BAC,交BC于点D,点E在边AC上AB=AE,过点E作EF∥BC,交AD于点F,连接BF.(1)如图1,求证:四边形BDEF是菱形;(2)如图2,当AB=BC时,在不添加辅助线的情况下,请直接写出图中度数等于∠BAD的2倍的所有的角.24.如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°.(1)如图(1),试判断EF,BE,DF间的数量关系,并说明理由;(2)如图(2),若AH⊥EF于点H,试判断线段AH与AB的数量关系,并说明理由.人教版2020学年初中数学八年级下《第18章平行四边形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴A、B、D不正确,C正确;故选:C.2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB,又∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∵AD=2AB,∴BC=2BE,即点E是BC中点,∵CE=3,∴AD=BC=6,故选:C.3.【解答】解:A、AB=CD,AD=BC,即四边形ABCD的两组对边相等,则该四边形是平行四边形,故本选项不符合题意;B、∵AD∥BC,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠B,∴∠C=∠D,∴四边形ABCD不一定是平行四边形,故本选项符合题意;C、∵AB∥CD,∴∠A+∠D=180°,∠B+∠C=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;D、AD∥BC,AB∥CD即四边形ABCD的两组对边分别平行,则该四边形是平行四边形,故本选项不符合题意;故选:B.4.【解答】解:∵四边形ABCD是平行四边形,∠ABC、∠BCD的角平分线的交点E落在AD边上,∴∠BEC=×180°=90°,∵BE=4,CE=3,∴BC==5,∵∠ABE=∠EBC,∠AEB=∠EBC,∠DCE=∠ECB,∠DEC=∠ECB,∴∠ABE=∠AEB,∠DEC=∠DCE,∴AB=AE,DE=DC,即AE=ED=AD=BC=2.5,由题意可得:AB=CD,AD=BC,∴AB=AE=2.5.故选:D.5.【解答】解:①两组对边分别平行,符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选:C.6.【解答】解:如图,则第四个顶点的坐标为(0,1).故选:A.7.【解答】解:①阴影三角形=×1×1=;②阴影三角形=×2×1=1;③阴影三角形=×1×2=1;④阴影三角形=×2×2=2;则四个阴影三角形中,面积为1的是②③;故选:A.8.【解答】解:∵四边都相等的四边形是菱形,∴选项A不符合题意;∵有一组邻边相等的平行四边形是菱形,∴选项B不符合题意;∵对角线互相垂直平分的四边形是菱形,∴选项C不符合题意;∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.9.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=2=CD,∠DCA=∠BCD=30°,∴A'D=1,A'C=DA'=,∴菱形ABCD的面积=4××A'D×A'C=2,如图,由平移的性质得,▱ABCD∽▱A'ECF,且A'C=AC,∴四边形A'ECF的面积是▱ABCD面积的,∴阴影部分的面积==,故选:B.10.【解答】解:连接PC,如图所示:在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,∵在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴AP=PC,∠BAP=∠BCP,∵PE⊥BC,PF⊥CD,∴四边形PECF是矩形,∴PC=EF,∠BCP=∠PFE,∴AP=EF,∠PFE=∠BAP,故①②正确;∵PF⊥CD,∠BDC=45°,∴△PDF是等腰直角三角形,∴PD=PF,∵矩形的对边PF=EC,∴PD=EC,故④正确;只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故③错误;综上所述,正确的结论有①②④,故选:A.二.填空题(共8小题)11.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,设AC=x,DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=x,∴AM=2DE=2AN=2,∴AC=2,故答案为:2.12.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∴∠B+∠D=180°,∴∠B+∠B=180°,解得:∠B=90°,∴∠A=180°﹣∠B=90°.故答案为:90°.13.【解答】解:∵平行四边形ABCD的对角线交于坐标原点O,∴A点与C点关于原点对称,∴C点坐标为(3,﹣2).故答案为:(3,﹣2).14.【解答】解:∵C是AE中点,且DC⊥AE,∴AD=DE=10cm,∠ADC=∠EDC,∵BC∥DE,∴∠BCD=∠EDC,∴∠BDC=∠BCD,∴BD=BC,∵AE=8cm,∴AC=4cm,∴△ABC的周长=AB+BC+AC=AB+BD+AC=AD+AC=10+4=14cm,故答案为:14.15.【解答】(1)证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=BC•AB=AC•CP,即×4×3=×5•CP,解得CP=.故答案为:.16.【解答】解:连接FG.∵ABCD为正方形,周长为24cm,∴∠DBC=∠BDC=45°,AB=BC=CD=AD=6cm,又∵EF⊥BC,EG⊥CD,∴∠EFC=∠EGC=90°,又∠C=90°,∴四边形EFCG为矩形,∴EG=FC,EF=GC,∵△BEF和△EDG都为等腰直角三角形,∴DG=EG,EF=BF,∴EG+EF=BF+CF=BC=6cm,设EG=xcm,EF=ycm,则有,①2﹣②可得2xy=11,∴xy=5.5,∴四边形EFCG的面积为5.5cm2故答案为5.5cm2.17.【解答】解:连接AC交BD于O,BD交AF于M,连接GO,CM,CE交BD于点N.∵四边形ABCD是矩形,∴OA=OC,∵AG=GF=CF,∴∠FCG=∠FGC,OG∥CF,∴∠OGC=∠FCG=∠FGC,∵CE⊥BD,∴∠GNO=∠GNM=90°,∵GN=GN,∴△GNO≌△GNM(ASA),∴ON=NM,OG=GM,∵∠CNO=∠CNM=90°,CN=CN,∴△CNO≌△CNM(SAS),∴∠OCN=∠MCN,OC=MC=AC,∴GC平分∠ACM,作GK⊥CM交CM的延长线于K,作GJ⊥AC于J.则有GJ=GK,∴==,∴==,∴AG=2GM,∵AG=GF,∴GM=MF,∵∠MOG=∠MBF,∠OMG=∠BMF,∴△MOG≌△MBF(AAS),∴OG=BF=GM=FM,设GM=k,则GM=BF=MF=OG=k,AG=FG=CF=2k,∴BC=3k,在Rt△ABF中,∵AF2=AB2+BF2,∴(4k)2=k2+AB2①,在Rt△ABC中,∵AC2=BC2+AB2,AC=BD=,∴()2=(3k)2+AB2②,由①②可得AB=.故答案为.18.【解答】解:如图,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,∵,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BHG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DH2+BH2=BD2=BC2+CD2=2a2,EH2+HG2=EG2=CG2+CE2=2b2,则BG2+DE2=DH2+BH2+EH2+HG2=2a2+2b2,故③正确.故答案为:①②③.三.解答题(共6小题)19.【解答】解:如图所示,∵B(﹣4,﹣3),C(0,﹣3)∴BC=4,OC=3,∵四边形ABCD是平行四边形,∴OA=OC=3,AD=BC=4,AB=CD,∴AC=6,∵BC⊥AC,∴▱ABCD的面积=BC×AC=4×6=24;∵AB==2,∴▱ABCD的周长=2(AB+BC)=4+8.20.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABM=∠CND,∵AM⊥BD,CN⊥BD,∴∠AMB=∠CND=90°,∵在△ABM和△CDN中,,∴△ABM≌△CDN(AAS),∴AM=CN,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴四边形AMCN是平行四边形.21.【解答】解:(1)∵CG⊥AB,∴∠AGC=∠CGB=90°,∵BG=1,BC,∴CG=3,∵∠ABF=45°,∴BG=EG=1,∴CE=2,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,∴CF=CE=2,∴EF=CE=;(2)如图,延长AE交BC于H,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠AHB=∠HAD,∵AE⊥AD,∴∠AHB=∠HAD=90°,∴∠BAH+∠ABH=∠BCG+∠CBG=90°,∴∠GAE=∠GCB,在△BCG与△EAG中,,∴△BCG≌△EAG(AAS),∴AG=CG.22.【解答】(1)证明;∵CF=2BE=2,∴BE=1,∴AE=AB﹣BE=7.∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,CD=AB=8,AD=BC=6,在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+EF2=12+42=17,∴DF2+EF2=DE2,∴△DEF是直角三角形,且∠DFE=90°;(2)解:作EH⊥DF于H,则∠A=∠DHE=90°.∵DE平分∠ADF,∴∠ADE=∠HDE,在△AED和△HED中,,∴△AED≌△HED(AAS),∴DA=DH=6,EA=EH=4,∴EH=EB=4,在Rt△EHF和Rt△EBF中,,∴Rt△EHF≌Rt△EBF(HL),∴BF=HF.设BF=x,则HF=x,CF=6﹣x,∴DF=DH+HF=6+x,在Rt△CDF中,DC2+CF2=DF2,∴82+(6﹣x)2=(6+x)2,∴x=,即BF=.23.【解答】解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴DB=DE,∠BDA=∠EDA.∵EF∥BC,∴∠EFD=∠BDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=BD,∵EF∥BD,∴四边形BDEF为菱形.(2)∵AD平分∠BAC,∴∠BAC=2∠BAD,∵AB=BC,∴∠BAC=∠BCA=2∠BAD,∵EF∥BC,∴∠FEC=∠BCA=2∠BAD,∵∠ABF=∠AEF,∴∠ABF=2∠BAD.所以图中度数等于∠BAD的2倍的所有的角:∠BAC,∠BCA,∠ABF,∠AEF.24.【解答】(1)解:BE+DF=EF;理由如下:如图1,延长FD到G,使DG=BE,连接AG,∵在△GDA和△EBA中,,∴△GDA≌△EBA(SAS),∴AG=AE,∠GAD=∠EAB,故∠GAF=45°,在△GAF和△EAF中,∵,∴△GAF≌△EAF(SAS),∴GF=EF,即GD+DF=BE+DF=EF;(2)AH=AB,理由如下:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴把△ADF绕点A顺时针旋转90°得到△ABQ,如图2,∴AQ=AF,∠F AQ=90°,∠ABQ=∠D=90°,而∠ABC=90°,∴点Q在CB的延长线上,∵∠EAF=45°,∴∠QAE=90°﹣∠EAF=45°,∴∠EAF=∠QAE,在△AEQ和△AEF中,,∴△AEQ≌△AEF(SAS),∴EQ=EF,∵AB⊥EQ,AH⊥FE,∴AB=AH.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形单元测试题试题一、解答题1.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC 等于多少度时,四边形OCFD 为菱形?请说明理由.2.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.3.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.4.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交于BE 的延长线于点F ,且AF=DC ,连接CF .(1)求证:D 是BC 的中点;(2)如果AB=AC ,试判断四边形ADCF 的形状,并证明你的结论.5.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.6.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).7.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.8.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.9.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E ,F 分别在CB 的延长线和DC 的延长线上,且CE=DF ,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE 和BF ,若点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形”中的哪一种,并证明你的结论.10.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.2.(1)四边形AGFP 是菱形,理由见解析;(2)四边形AGFP 的周长为:2【分析】(1)根据矩形的性质和菱形的判定解答即可;(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.【详解】解:(1)四边形AGFP 是菱形,理由如下:∵四边形ABCD 是矩形,∴∠BAP =90°,∵PF ⊥BD ,PA =PF ,∴∠PBA =∠PBF ,∵AE ⊥BD ,∴∠PBF+∠BGE =90°,∵∠BAP =90°,∴∠PBA+∠APB =90°,∴∠APB =∠BGE ,∵∠AGP =∠BGE ,∴∠APB =∠AGP ,∴AP =AG ,∵PA =PF ,∴AG =PF ,∵AE ⊥BD ,PF ⊥BD ,∴AE ∥PF ,∴四边形AGFP 是平行四边形,∵PA =PF ,∴平行四边形AGFP 是菱形;(2)在Rt △ABP 和Rt △FBP 中,∵PB =PB ,PA =PF ,∴Rt △ABP ≌Rt △FBP (HL ),∴AB =FB =1,∵四边形ABCD 是矩形,∴AD =BC =2,∴BD =设PA =x ,则PF =x ,PD =2﹣x ,PF 1,在Rt △DPF 中,DF 2+PF 2=PD 2,∴2221)(2)x x +=-解得:x=12,∴四边形AGFP的周长为:4x=42=.【点睛】此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,解题的关键是熟练掌握所学的知识定理进行解题.3.(1)见解析;(2)HG=OH+BG;(3)能成矩形,y33 42x=-.【分析】(1)根据旋转和正方形的性质可得出CD=CB,∠CDG=∠CBG=90,根据全等直角三角形的判定定理(HL)即可证出Rt△CDG≌Rt△CBG,即∠DCG=∠BCG,由此即可得出CG平分∠DCB;(2)由(1)的Rt△CDG≌Rt△CBG可得出BG=DG,根据全等直角三角形的判定定理(HL)即可证出Rt△CHO≌Rt△CHD,即OH=HD,再根据线段间的关系即可得出HG=HD+DG=OH+BG;(3)根据(2)的结论即可找出当G点为AB中点时,四边形AEBD为矩形,再根据正方形的性质以及点B的坐标可得出点G的坐标,设H点的坐标为(x,0),由此可得出HO=x,根据勾股定理即可求出x的值,即可得出点H的坐标,结合点H、G的坐标利用待定系数法即可求出直线DE的解析式.【详解】(1)∵正方形ABCO绕点C旋转得到正方形CDEF,∴CD=CB,∠CDG=∠CBG=90°.在Rt△CDG和Rt△CBG中,∵CG CGCD CB=⎧⎨=⎩,∴Rt△CDG≌Rt△CBG(HL),∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG.在Rt△CHO和Rt△CHD中,∵CH CHCO CD=⎧⎨=⎩,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴BG=GA12=AB,由(2)证得:BG=DG,则BG=GA=DG12=AB12=DE=GE,又AB=DE,∴四边形AEBD为矩形,∴AG=EG=BG=DG.∵AG12=AB=3,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3.在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:2063k bk b+=⎧⎨+=⎩,解得:3432kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线DE的解析式为:y3342x=-.故四边形AEBD能为矩形,此时直线DE的解析式为:y3342x=-.【点睛】本题考查了矩形的性质、旋转的性质、全等三角形的判定及性质、待定系数法求函数解析式以及勾股定理.解题的关键是:(1)证出Rt△CDG≌Rt△CBG;(2)找出BG=DG、OH=HD;(3)求出点H、G的坐标.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边和角是关键.4.(1)见详解;(2)四边形ADCF是矩形;证明见详解.【分析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【详解】(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,FAE BDEAFE DBEAE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.5.(1)见解析;(2)①见解析;②+2【分析】(1)根据矩形的性质,结合角平分线的定义可证明△ABE≌△AFD(AAS),进而证得结论;(2)①通过求解∴∠EFG=∠AED=67.5°,∠DFG=∠FDG=22.5°,进而可得EG=FG=DG;②AB=x,则x,DF=AF=x,x-x,利用勾股定理可求解x值,再根据矩形ABCD 的面积=△AED面积的2倍可求解.【详解】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∠DAB=∠ABE=90°,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠BAE=∠AEB=45°,∴AB=EB,∵DF⊥AC∴∠AFD=90°,∴∠ABE=∠AFD=90°,∵AE=AD,∴△ABE≌△AFD(AAS),∴AB=AF;(2)①证明:∵AE=AD,∠EAD=45°,∴∠AED=∠ADE=67.5°,∴∠FDG=22.5°,∵AB=AF,∠BAF=45°,∴∠AFB=67.5°,∴∠EFG=67.5°,∴∠EFG=∠AED ,∴FG=EG ,∠DFG=22.5°,∴∠DFG=∠FDG ,∴FG=DG ,∴EG=DG ;②∵EG=1,∴DG=2,设AB=x ,则x ,DF=AF=x ,∴x-x ,x-x )2+x 2=22,解得x 2,∴矩形ABCD 的面积=2×12×AE×DF x 2. 【点睛】本题主要考查勾股定理,矩形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,灵活运用定理是解题的关键.6.(1)214t ;(2)t =;(3)存在,如图2(见解析),当AHQ HBM ≅时,t =3(见解析),当ADE AHE ≅时,t =4(见解析),当EGQ HBF ≅时,t = 【分析】 (1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==,四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒, AE ∵是BAD ∠的角平分线,1452HAQ DAE BAD ∴∠=∠=∠=︒,QH AB ⊥,AQH ∴是等腰直角三角形, 2222AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===, 由(1)知,2AH t =, 则222t =, 解得22t =;(3)由题意,有以下三种情况: ①如图2,当点H 是AB 的中点时,则AH HB =,四边形PQHM 是平行四边形,//HM PQ ∴,HAQ BHM ∴∠=∠,在AHQ 和HBM △中,90HAQ BHM AH HB AHQ HBM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA ∴≅,由(2)可知,此时22t=;②如图3,当点Q 与点E 重合时,在ADE 和AHE 中,9045D AHE DAE HAE AE AE ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS ∴≅,3AD AH ∴==,则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅,2,42AH t AB ==,242HB AB AH t ∴=-=-, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE AD ==,32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:262422t t -=-, 解得722t =;综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.7.(1)见解析;(2)不变,见解析;(3)能,12x =-或12+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCD AEFCHG 时,得到S △BEF +S △DGH GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】 解:()1折叠后B 落在BD 上,,BE EP ∴=BF PF =BD 平分,ABC ∠ BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴ ∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE = 四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠= 30,ABD ∴∠= 1,AO ∴=3,BO =12332ABCS∴=⨯=23ABCD S ∴=四边形当六边形AEFCHG 534 53233344DEFDGHSS +==由()1得BE AG =AE DG ∴= DG x = 2BE x ∴=-记GH 与BD 交于点,M12GM x ∴=,3DM x = 23DHGSx ∴= 同理()223323344BEFS x x x =-=-+ 即223333334x x x +-+= 化简得22410,x x -+= 解得121x =-,221x =+∴当212x =-或212+时,六边形AEPCHG 的面积为534. 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目. 8.(I) ;(II) 16或10;(III).【解析】 【分析】(I)根据已知条件直接写出答案即可. (II)分两种情况: 或讨论即可.(III)根据已知条件直接写出答案即可.【详解】 (I);(II)∵四边形是矩形,∴,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作∥,分别交与于点、.∵四边形是矩形,∴∥,.又∥,∴四边形是平行四边形,又,'⊥,∴□是矩形,∴,,即B H CD又,∴,,∵,∴,∴,在RtΔEGB'中,由勾股定理得:,∴,在中,由勾股定理得:,综上,的长为16或10.(III) . (或).【点睛】本题主要考查了四边形的动点问题.9.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.考点:1.四边形综合题;2.综合题.10.(1)12;(2)13ADAC=.【分析】(1)易证四边形CDEB是矩形,由条件“四边形ADBE是平行四边形可得AD=EB=DC,从而得到ADAC的值.(2)由题可知当DE AC⊥时,DE最短,可以证到四边形DCBE是矩形.从而可以得到各边关系从而求出ADAC的值.【详解】解:(1)∵四边形ADBE是平行四边形,∴AD∥BE,AD=BE.∵DE ⊥AC ,∠ACB =90°, ∴∠ADE =∠C =90°. ∴DE ∥BC .∵DC ∥BE ,DE ∥BC ,∠C =90°, ∴四边形DCBE 是矩形. ∴EB =DC . ∴AD =DC . ∴AD AC==12.故答案为:12.(2)如图,由题可知当DE AC ⊥时,DE 最短.最小值是6.∵四边形FDBE 是平行四边形, ∴//DF BE ,DF BE =. ∵DE AC ⊥,90C ∠=︒, ∴90ADE C ∠=∠=︒. ∴//DE BC .∴四边形CDEB 是平行四边形, 又∵90C ∠=︒, ∴四边形CDEB 是矩形. ∴BE CD =,6DE BC ==. ∴DF CD =. ∵AF AD =,∴2DC DF AD ==. ∴3AC AD DC AD =+=.∴13AD AC =. 【点睛】本题考查了平行线之间的距离、平行线的判定、矩形的判定与性质、平行四边形的性质等知识,具有一定的综合性;本题还考查了阅读能力,体现了自主探究与合作交流相结合的新课程理念,是一道好题.。