人教版初中数学函数基础知识经典测试题及答案解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学函数基础知识经典测试题及答案解析

一、选择题

1.弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:

物体质量x/千克0 1 2 3 4 5 …

弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …

下列说法不正确的是()

A.x与y都是变量,其中x是自变量,y是因变量

B.弹簧不挂重物时的长度为0厘米

C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米

D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米

【答案】B

【解析】

试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.

解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;

B、弹簧不挂重物时的长度为10cm,错误,符合题意;

C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;

D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.

故选B.

点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.

2.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()

A.他们都骑了20 km

B.两人在各自出发后半小时内的速度相同

C.甲和乙两人同时到达目的地

D.相遇后,甲的速度大于乙的速度

【答案】C

【解析】

【分析】

首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.

【详解】

解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;

B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;

C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;

D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;

故答案为:C.

【点睛】

此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.

3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()

A.B.C.D.

【答案】D

【解析】

【分析】

根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C、D的正误.

【详解】

解:∵s随t的增大而减小,

∴选项A、B错误;

∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,

∴s随t的增大减小得比开始的快,

∴选项C错误;选项D正确;

故选:D.

【点睛】

本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键

4.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后的时间x (时)之间的函数关系如图所示,则当16x ≤≤,y 的取值范围是( )

A .864311y ≤≤

B .64811y ≤≤

C .883y ≤≤

D .816y ≤≤

【答案】C

【解析】

【分析】

根据图像分别求出03x 剟

和314x <„时的函数表达式,再求出当x=1,x=3,x=6时的y 值,从而确定y 的范围.

【详解】

解:设当03x 剟

时,设y kx =, 38k ∴=, 解得:83

k =, 83

y x ∴=; 当314x <„时,设y ax b =+,

∴38140a b a b +=⎧⎨+=⎩

, 解得:81111211a b ⎧=-⎪⎪⎨⎪=⎪⎩

, 81121111

y x ∴=-+; ∴当1x =时,8

3y =,当3x =时,y 有最大值8,当6x =时,y 的值是

6411

, ∴当16x 剟时,y 的取值范围是883

y 剟. 故选:C .

【点睛】

本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.

5.已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )

A .

B .

C .

D .

【答案】A

【解析】

【分析】

根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.

【详解】 解:由题意得,12

×2πR×l =8π, 则R =8l

π, 故选A .

【点睛】

本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.

6.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )

A .1个

B .2个

C .3个

D .4个

【答案】B

【解析】

【分析】

根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函

相关文档
最新文档