直流电动机的MATLAB仿真..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章课程设计内容及要求
1. 直流电动机的机械特性仿真;
2. 直流电动机的直接起动仿真;
3. 直流电动机电枢串联电阻启动仿真;
4. 直流电动机能耗制动仿真;
5.直流电动机反接制动仿真;
6. 直流电动机改变电枢电压调速仿真;
7. 直流电动机改变励磁电流调速仿真。
要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析
第二章直流电动机的电力拖动仿真绘制
1)直流电动机的机械特性仿真
clear;
U_N=220;P_N=22;I_N=115;
n_N=1500;R_a=;R_f=628;
Ia_N=I_N-U_N/R_f;
C_EPhi_N=(U_N-R_a*Ia_N)/n_N;
C_TPhi_N=*C_EPhi_N;
Ia=0;Ia_N;
n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia;
Te=C_TPhi_N*Ia;
P1=U_N*Ia+U_N*U_N/R_f;
T2_N=9550*P_N/n_N;
figure(1);
plot(Te,n,'.-');
xlabel('电磁转矩Te/');
ylabel('转矩n/rpm');
ylim([0,1800]);
figure(2);
plot(Te,n,'rs');
xlabel('电磁转矩Te/');
ylabel('转矩n/rpm');
hold on;
R_c=0;
for coef=1:;;
U=U_N*coef;
n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;
plot(Te,n,'k-');
str=strcat('U=',num2str(U),'V');
s_y=1650*coef;
text(50,s_y,str);
end
figure(3);
n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs');
xlabel('电磁转矩Te/');
ylabel('转矩n/rpm');
hold on;
U=U_N;R_c=;
for R_c=0::;
n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;
plot(Te,n,'k-');
str=strcat('R=',num2str(R_c+R_a),'\Omega');
s_y=400*(4-R_c*;
text(120,s_y,str);
end
ylim([0,1700]);
figure(4);
R_c=0;
n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs');
xlabel('电磁转矩Te/');
ylabel('转矩n/rpm');
hold on;
U=U_N;R_c=;
for R_c=::;
C_EPhi=C_EPhi_N*coef;
C_TPhi=C_TPhi_N*coef;
n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te;
plot(Te,n,'k-');
str=strcat('\phi=',num2str(coef),'*\phi_N');
s_y=900*(4-coef*;
text(120,s_y,str);
end
a)固有机械特性b)降低电枢电压人为机械特性
c) 增加电枢电阻人为机械特性d) 改变磁通人为机械特性
2)直流电动机直接起动仿真
直流电动机直接起动时,起动电流很大,可以达到额定电流的10-20倍,由此产生很大的冲击转矩。适用Simulink对直流电动机的直接起动过程建立仿真模型,通过仿真获得直流电动机的直接起动电流和电磁转矩的变化过程。
他励直流电动机直接起动仿真模型原理图
直流电动机模块参数设置图直流电源模块参数设置图
定时模块参数设置图
开关模块参数设置图
他励直流电动机直接起动转速—电流关系仿真结果
他励直流电动机直接起动仿真结果
3)直流电动机电枢串联电阻启动仿真
建立他励直流电动机电枢串联三级电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流.转速和电磁转矩的变化曲线。
他励直流电动机串起电阻启动仿真模型原理图
他励直流电动机串起电阻仿真
他励直流电动机串起电阻起动的转速—电流关系仿真结果
4)直流电动机能耗制动仿真
能耗制动时,电枢通过电阻Rb短接,使用Simulink建立直流电动机的能耗制动仿真模型,仿真分析获得转速。电枢电流和电磁转矩的暂态过程曲线。
他励直流电动机能耗制动仿真模型原理图
他励直流电动机能耗制动仿真结果
5)直流电动机反接制动仿真
直流电动机的反接制动分为电压反向的反接制动和倒拉反接制动。电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。使用Simulink建立直流电动机的电压反向反接制动的仿真模型,仿真分析获得转速。电枢电流和电磁转矩的暂态过程曲线。