数学建模--物流配送中心选址模型

合集下载

物流配送中心选址的随机数学模型

物流配送中心选址的随机数学模型

文 章 编 号 : 0 3—2 7 2 0 ) 5—0 5 10 0 (0 2 0 0 7—0 5
物 流 配 送 中 心 选 址 的 随 机 数 学 模 型
杨 波 , 梁 棵 , 启 鹤 唐
( 国科 学技 术 大 学 商 学 院 , 徽 合 肥 2 0 2 ) 中 安 3 0 6
摘 要 : 文 对 照 传 统 的 物 流 配 送 中 心 选 址 问 题 提 出 了 ~ 个 随 机 化 的 模 型 , 从 数 学 角 度 对 该 模 型 进 行 了 的 一 些 本 并
在 物 流 系 统 中 , 送 中 心居 于 重 要 的枢 纽 地 位 , 配 起 着 承 上 启 下 的作 用 。因 此 物 流 配 送 中心 的合 理 选 址 就 显 得 十 分 重 要 -, 1 61 。在 物 流 系 统 分 析 与 设 计 2 时 , 流 配送 中 心 选 址 常 需 要 得 到模 型 化 , 量 化 的 物 数 支 持 。传 统 的物 流 配送 选 址 模 型 往 往 都 是 假 设 在 物 流 系 统 中各 供 应 点 ( 市 ) 某 商 品的 需 求 量 为 已知 城 对 常 数 , 后 选 择 单 个 或 多 个 配 送 中 心 [ 4 , 。但 然 .' , 我们认为 , 在企 业 确 定 物 流 中 心 时 各 个 城 市 对 某 商
品 的 需 求 量 是 不 可 能 已知 的 。企 业 只 可 能 对 这 些 需
1 2, , . , … n
() 1
于 是 配 送 中 心 选 址 问题 归 结 成 为 寻 找 一 个 m , 使

D m D i n


() 2
这 样 的 处 理 显 然 有 不 合 理 的 一 面 。 没 有 考 虑 到 各 它 个 城 市 对 某 商 品 的需 求 量 。 下 文 中 我 们 认 为 单 位 路 程 ・重 量 的 运 费 为 常 数 。 数 学 的简 便 起 见 , 们 设 运 费 恒 为 1 为 我 。 鉴 于 每 个 城 市 对 某 种 商 品 需 求 量 的 差 异 , 述 上 模 型 应 该 修 正 为 : 第 k个 城 市 对 该 种 商 品 的 需 求 设 量 为 常数 , k: 1 2 … , 如 果 中心 建 在 第 m 个 , , n。 城市 , z= 1 2 … , 。 它 到 各 个 城 市 的 总 配 送 需 ,, n 则 求 为

物流配送中心选址数学模型的研究和优化

物流配送中心选址数学模型的研究和优化

物流配送中心选址数学模型的研究和优化作者:王勇韦俊姜涛徐金荟来源:《科技资讯》2020年第03期摘 ;要:为解决县域农村物流配送中心的选址问题,综合现实路网信息和农村网点吞吐量等要素,建立基于实际公路网的农村物流配送中心选址优化模型,通过基于图论的理论方法建立了物流网点的交通网络赋权图,确定各网点间的最短路径,进而使用基于弗洛伊德算法的迭代重心法建立配送中心的初始模型。

在初始模型的基础上,打破行政区域的划分,建立基于密度峰值聚类算法的物流配送中心的双目标优化模型。

关键词:配送中心选址 ;农村物流 ;弗洛伊德算法 ;密度峰值聚类算法中图分类号:F259.2 ; 文献标识码:A 文章编号:1672-3791(2020)01(c)-0214-02在城市市场被瓜分完毕,各大物流公司向乡镇市场进军以寻求新的利润增长点的大背景下,物流公司之间的竞争变得愈发激烈。

物流配送中心选址的适宜与否直接关系到各公司经济战略的成败以及国家的“工业品下乡,农产品进城”等政策能否顺利實施。

县域农村物流配送中心是农村物流系统的库存调度与控制中心,也是供应链物流的“最后一公里”,农村物流配送中心的选址与农村经济发展的不匹配,已经引起业界的广泛重视。

该文立足县域经济,结合农村路网信息和农村网点吞吐量等要素,提出一个基于现实公路网的农村物流配送中心选址优化问题的模型。

1 ;基本模型假设对问题做如下假设:以县域为模型适用区间,共设两级配送中心,一个一级(县级)配送中心为所有的二级(镇级)配送中心供货;各个农村物流网点分布在镇内,二级配送中心服务范围覆盖所有农村网点;各农村物流网点之间的需求量和各二级配送中心之间的需求量都已知;各级配送中心所用配送车辆为同一款车型且该车可到达任意网点;各相邻网点间路线皆为直线;物流网点和配送中心皆位于交通路口。

2 ;物流配送中心选址初始模型的建立2.1 镇级交通网络赋权图和最短路矩阵将镇域的交通线路抽象为交通网络赋权图。

物流配送中心选址模型

物流配送中心选址模型

) , (
) , 应由专家系统来定义此函数的值。通过解该模型,
可求出应该新建、 扩大或关闭的配送中心的数目, 并且可求出货物的产地与配送中心, 配送中心与需求点
求解算法
模型式 ( ) 是混合整数规划, 应当用
[ ] 分解算法求解 。为此先把原问题式 ( ) 转化成标准形式

其中: 是线性变量矢量; 是专门变量矢量 (全是
; ; ;
的配送能力的最小扩充量, 的配送能力的最大扩充量, 的基本投资, ;
到 运输 产品的运价 (路程, 运量, 运输方式等为自变量的分段函) ; 扩建到最小扩大容量时的扩建费用, 继续扩大的单位扩建费用 (元 /) , 将节省的费用, 。 ; ; ; ;
新建配送中心 配送中心 配送中心
关闭配送中心 配送中心 万方数据
" (
( ) )
"
#
$
%
万方数据 , 为式 ( ) 的最优解, 则考虑下列的问题 )
西


通 (
大 (
学 ) )



卷 ( )

由文献 [ ] 可以得出下列结论: 式 ( ) 有可行解 式 ( ) 有无界解 若是 ( 式 ( ) 有可行解。 式 ( ) 有无界解。 的最优解 ( ) ) , ) 是式 ( ) 的最优解, 为下述
[ ] 度大大提高 。
物流组织是否合理, 直接决定着生产过程是否能够顺利进行, 决定着商品价值和使用价值是否能得以 实现。充分地应用现代技术、 组织之间 (送货人和受货人、 运输业主和货主之间等) 的协作以及通过新组织 (货主集团等) , 可实现物流合理化。物流合理化程度越高, 周转速度快, 将提高社会经济效益。再者由于 物流费用是构成生产成本和流通成本的重要组成部分, 所以有机地结合运输枢纽站, 仓库、 配送中心、 卸货 地区的功能、 切实地配备现代化的物流据点, 采取完善环境保护的对策可以提高物流效益。在今后物流中 不断消除多余的流通环节、 压缩不合理的销售储备, 减少流通费用, 不断提高经济效益。 参考文献:

物流配送中心选址问题研究 建模论文

物流配送中心选址问题研究 建模论文

2012河南科技大学第九届大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从题目编号中选择一项填写):F题目:物流与选址问题F 物流与选址问题摘要本篇论文主要通过建立数学模型对中心仓库选址问题进行了较为全面的研究。

内容包括生产工厂、中心仓库选址的模型及其建立。

针对工厂、中心仓库选址的一般要求以及城市对物资的需求量,同时结合它们的选址实例,运用所建立的混合整数规划模型确定工厂、中心仓库选址最佳方案并在合理的假设条件下建立了‘模型图’,最后借助优化建模软件Limgo,通过对实际问题的抽象建模,编写求解程序,成功求解该模型,使工厂和中心仓库布局科学化,将运作效率和综合效益大大提高。

关键字:运筹学;中心仓库;选址一、问题重述某公司是生产某种商品的省内知名厂家。

该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。

根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库的单位面积的建设费用和运营费用已知,请你建立数学模型,回答以下问题: 如何为两个生产工厂选址? (建多大规模?)建多少个中心仓库?分别建在什么地方? (分别建多大规模?)生产工厂如何向中心仓库供货?请你自己选用一组数据进行计算(可以根据假设、地图和铁路、公路、水路等信息选择有关数据),并对你的模型和结果作出评价。

物流配送中心选址建模

物流配送中心选址建模

上海海事大学交通运输学院院系交通运输学院专业年级物流管理133 学生姓名刘笑颜学号 2二○一六年六月物流配送中心选址问题建模摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。

因此,物流中心选址、发展现代化配送中心是现代物流业的发展方向。

(我的创新:本文建立了关于中心仓库选址问题的数学模型,但并未给出具体案例。

我的创新在于将这个模型运用到一个实例中,并给出了这个模型不足和可改进的地方。

)关键字:物流网络、配送中心、最优路径、最低成本、营运费用1背景介绍工厂和中心仓库位置的选择,将显著影响其实际营运的效率与成本,以及日后仓储规模的扩充与发展。

因此在决定中心仓库设置的位置方案时,必须谨慎参考相关因素,按适当步骤进行。

在选择过程中,如果已经有预定地点或区域方案,应于规划前先行提出,并成为规划过程中的限制因素;如果没有预定的地点,则可于可行性研究时提出几个备选方案,并对比各备选方案的优劣,以供决策者选择。

2.问题介绍:在现实当中,一个企业通常不会只考虑建设一个中心仓库,而是考虑建设多个中心仓库。

因此,多中心仓库选址模型在实际当中更加受欢迎。

不同产品从不同的工厂运到中心仓库,再由中心仓库转运给不同的顾客,为使企业成本最低应考虑仓库的建造费用、运输费用、仓库营运费用等。

下面需要建立模型来解决这些问题。

3.建模:3.1.模型的假设本文建立的选址模型是在给定某一地区所有被选点的地址集合中选出一定数目的地址作为中心仓库,使选出点建立的中心仓库在满足城市的需求前提下,在考虑工厂和城市重要度的情况下使得总费用最小。

为了便于模型求解,同时使模型具有使用价值,作如下的假设:(1)仅在一定的备选范围内考虑设置新的中心仓库;(2)模型包括从工厂到中心仓库之间的运输以及从中心仓库到城市之间的运输;(3)一个中心仓库可由多个工厂供货,一个城市的需求也可由多个中心仓库提供;(4)中心仓库的容量能够满足城市的需求;(5)各城市的需求量一定且为已知。

数学建模物流配送中心选址模型

数学建模物流配送中心选址模型

物流配送中心选址模型姓名:学号:班级:摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。

因此,发展现代化配送中心是现代业的发展方向。

文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。

关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。

前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。

归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。

第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。

这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。

解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。

解析方法的优点在于计算简单,数据容易搜集,易于理解。

由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。

第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。

第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。

国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。

物流配送中心选址数学模型的研究和优化

物流配送中心选址数学模型的研究和优化

物流配送中心选址数学模型的研究和优化【摘要】本文研究物流配送中心选址数学模型的研究和优化问题。

在介绍了研究背景、研究意义和研究内容。

在包括模型建立、数据采集与分析、参数优化、模型评价和优化策略的讨论。

通过建立数学模型,利用实际数据进行分析,对配送中心选址进行参数优化,并评价模型效果。

在结论中总结了研究成果,展望未来研究方向,并对本文进行了总结。

本文旨在为物流行业提供选址决策的方法和策略,提高配送效率,优化物流网络布局,降低成本和提高服务质量。

通过本文的研究,为物流行业的发展和进步提供了一定的参考和指导。

【关键词】物流配送中心、选址、数学模型、研究、优化、背景、意义、内容、模型建立、数据采集、分析、参数优化、评价、策略、成果、展望未来、总结。

1. 引言1.1 研究背景物流配送中心选址是物流配送系统中的重要环节,选址的合理与否直接影响到物流效率和成本控制。

随着电子商务的快速发展,物流需求不断增加,物流配送中心也面临着更多的挑战。

对物流配送中心选址进行数学模型研究和优化具有重要的意义和价值。

在过去的研究中,物流配送中心选址主要依靠经验和专家判断,缺乏科学的分析和决策支持。

随着数学建模和优化算法的发展,可以通过建立数学模型来辅助决策者进行选址决策。

通过对物流需求、市场结构、交通网络等多方面因素进行综合分析,可以预测不同选址方案的效果,并进行优化选择。

本研究旨在通过建立数学模型,采集和分析相关数据,优化模型参数,评价优化效果,并提出相应的优化策略,以提高物流配送中心选址的效率和准确性。

通过本研究的开展,将为物流配送中心选址提供更科学的决策支持,促进物流行业的发展和进步。

1.2 研究意义物流配送中心选址数学模型的研究和优化具有重要的意义。

物流配送中心的选址决定着整个物流系统的效率和成本。

一个合理的选址能够减少货物的运输距离和时间,降低运输成本,提高配送效率。

选址还关系着配送中心对周边地区的服务覆盖范围,直接影响着客户的满意度和品牌形象。

数学建模论文--物流及选址问题

数学建模论文--物流及选址问题

物流预选址问题2摘要错误!未定义书签。

一、问题重述3二、问题的分析32.1 问题一:分析确定合理的模型确定工厂选址和建造规模42.2 问题二:建立合理的仓库选址和建造规模模型42.3 问题三:工厂向中心仓库供货的最正确方案问题42.4 问题四:根据一组数据对自己的模型进展评价4三、模型假设与符号说明53.1条件假设53.2模型的符号说明5四、模型的建立与求解64.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模64.1.1模型的建立64.2 问题二:建立合理模型确定中心仓库的位置及建造规模84.2.1 基于重心法选址模型94.2.2 基于多元线性回归法确定中心仓库的建造规模104.3 问题三:工厂向中心仓库供货方案114.4 问题四:选用一组数据进展计算12五、模型评价175.1模型的优缺点175.1.1 模型的优点175.1.2 模型的缺点17六参考文献17物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进展供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。

本论文在综述工厂和中心仓库选址问题研究现状的根底上,对二者选址的模型和算法进展了研究。

对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进展实例化分析,我们确定了工厂和中心仓库位置和建造规模。

对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。

问题四我们选用了一组数据通过求解多元线性规划对问题进展了实例化分析。

为中心仓库的选址问题做了合理说明。

最后我们对模型进展了评价和分析。

关键词:物流网络重心法选址模型多元线性规划一、问题重述某公司是生产某种商品的省知名厂家。

该公司根据需要,方案在本省建立两个生产工厂和假设干个中心仓库向全省所有城市供货。

物流配送中心选址建模

物流配送中心选址建模

(三)物流配送中心选址的主要方法与类型1.选址方法类型近年来,随着选址理论迅速发展,各种各样的选址越来越多,层出不穷。

特别是计算机技术的发展与应用,促进了物流系统选址的理论发展,对不同方案的可行性分析提供了强有力的工具。

但是现阶段选址的理论方法大体上有以下几类:(1)运筹法运筹法是通过数学模型进行物流网点布局的方法。

采用这种方法首先根据问题的特征、己知条件以及内在的联系建立数学模型或者是图论模型。

然后对模型求解获得最佳布局方案。

采用这种方法的优点是能够获得较为精确的最优解缺乏是对一些复杂问题建立适当的模型比较困难,因而在实际应用中受到很大的限制。

解析法中最常用的有重心法和线性规划法。

(2)专家意见法专家意见法是以专家为索取信息的对象,运用专家的知识和经验考虑选址对象的社会环境和客观背景,直观地对选址对象进行综合分析研究寻求其特点和发展规律并进行选择的一类选址方法是专家选择法,其中最常用的有因素评分法和德尔菲法。

(3)仿真法仿真法是将实际问题用数学方法和逻辑关系表示出来然后通过模拟计算及逻辑推理确定最佳布局方案。

这种方法的优化是比较简单,缺点是选用这种方法进行选址,分析者必须提供预定的各种网点组合力案以供分析评价,从中找出最佳组合。

因此,决策的效果依赖于分析者预定的组合方案是否接近最佳方案该法是针对模型的求解而言的,是种逐次逼近的方法。

对这种方法进行反复判断实践修正直到满意为止。

该方法的优点是模型简单,需要进行方案组合的个数少,因而,容易寻求最佳的答案。

缺点是这种方法得出的答案很难保证是最优化的一般情况下只能得到满意的近似解用启发式进行选址,一般包括以下步骤:①定义一个计算总费用的方法;②制定评判准则;③规定方案改进的途径;④给出初始方案;⑤迭代求解。

2.典型物流中心选址决策方法(1)单点物流中心选址方法所谓单点网点选址,就是指在规划区域内设置网点的数目惟一的物流设施的选点问题,其中主要包含以下几种方法:1交叉中值法选址在城市内建立物流设施,不可能不受限制任意选址,可能的情况是只能沿着相互交叉的街道选择某一处地点。

物流配送中心选址模型

物流配送中心选址模型

文章编号:025822724(2000)0320311204物流配送中心选址模型刘海燕, 李宗平, 叶怀珍(西南交通大学交通运输学院,四川成都610031)摘要:主要分析物流系统中库存管理、运输、配送中心之间的联系,应用最优化方法建立了物流配送中心选址的数学模型。

该模型是一个混合整数规划,给出了按BE NGERS 方法设计的求解算法,模型中约束方程数量的有限性保证了算法的收敛性。

由于考虑了多种实际因素,所以该模型有较大实用价值。

关键词:选址问题;最佳化;物流;配送中心中图分类号:U294.1 文献标识码:ALogistics Distribution Center Allocation ModelLIU Hai 2yan , LI Zong 2ping , YE Huai 2zhen(School of T raffic and T ransp.,S outhwest Jiaotong University ,Chengdu 610031,China )Abstract :The article analyseis the relation of stock ,transport ,and Distribution center in the system of logistics.By means of optimization method ,the mathematical m odel of logistics Distribution center allocation is put forward.It is a mixed integer programming m odel.The alg orithm which refers to the benders ,s method is given.Limited quantity of stipulations ensures the astringency of the alg orithm.The m odel should be practical because of variety of reality facts have been considered.K ey w ords :location problems ;optimization ;logistics ;distribution center在整个物流系统中,由于可以用联结点(供货点、物流配送中心、需求点)和运输路线构成的物流网络来表示。

数学建模--物流配送中心选址模型

数学建模--物流配送中心选址模型

物流配送中心选址模型姓名:学号:班级:摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。

因此,发展现代化配送中心是现代物流业的发展方向。

文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。

关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。

1.2 前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。

归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。

第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。

这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。

解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。

解析方法的优点在于计算简单,数据容易搜集,易于理解。

由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。

第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。

第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。

国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。

数学建模作业数学规划模型----供应与选址的问题

数学建模作业数学规划模型----供应与选址的问题
f=f1+f2;
再编写主程序liaochang2.m为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
程序截图如下:
程序的运行结果为:
xx =
3.0000
5.0000
0.0000
7.0000
0.0000
1.0000
0.0000
0.0000
4.0000
0.0000
6.0000
10.0000
fval =
136.2275
运行结果截图如下:
即由料场A、B向6个工地运料方案为:

关于物流配送中心的选址模型研究

关于物流配送中心的选址模型研究
minTC= (3.1)
式中, 为i点运输量, 为待建物流中心到i点的运输费率, 为待建物流中心到i点的距离。
模型中的,目标函数表示完成所有运输任务后,产生的运输总费用要达到最小。
2.2.2算法的思路
设供应商和客户所在所在地的坐标为 ,待建物流中心的位置坐标为 ,则有
(3.2)
将(3.2)式代入(3.1)式,然后求运输总费用TC对 和 的偏导,并令其等于零,经过化简得到
(3.2)
(3.4)
(3.3)和(3.4)式中仍含有未知数 ,因此不能直接求得 和 的值,需要通过迭代收敛法予以解决。
2.2.3迭代收敛法的具体步骤:
(1)用重心公式估算代建物流中心初始选址点 和 。
利用物体重心坐标公式可以得到待建物流中心所在区域集合重心点的坐标,令其为物流中心的初始选址点,则坐式为
(2)选择配送中心时,不考虑配送中心所处地理位置的地产价格;
(3)运输费率与运输距离和运输量呈线性关系;
(4)决策各点的需求量不是地理位置上所实际发生的需求量,而是一个汇总量,这个量聚集了分散在一定区域内众多的需求量;
(5)各配送点的需求量已知;
(6)可以估计各个备选配送中心的固定费用(包括基本建设费和固定经营费);
物流中心选址的目标有成本最小化、服务质量最优化、辐射范围最大化和社会效益最高化。影响因素有地质条件及气候条件、交通条件、土地因素、市场因素和政策环境因素。
1重心法选址模型研究的综述
重心法是将物流系统中的需求点和资源点看成是分布在某一平面范围内的物流系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心作为物流网点的最佳设置点,利用求物体系统重心的方法来确定物流网点的位置。[2]
(3.5)
(3.6)

物流配送中心的选址模型分析研究

物流配送中心的选址模型分析研究

毕业设计<论文)题目:关于物流配送中心的选址模型研究学生姓名:学号:班级:专业:工商管理<物流管理方向)本科所在系: 管理系指导教师:关于物流配送中心的选址模型研究摘要:在物流网络中,配送中心连接着供货点和需求点,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好配送中心的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。

本论文在综述配送中心选址问题研究现状的基础上,对配送中心选址的模型和算法进行了研究。

本课题的第一部分对物流配送中心选址的研究背景进行介绍,阐述物流配送中心选址的重要性;第二部分对国内的物流配送中心选址问题的研究进行平述。

第三部分物流配送中心选址的模型的理论模型。

深入分析改进的重心法模型与整数规划模型的理论模型和算法。

第四部分是实证研究,以验证本文所构建的重心法模型的合理性及可行性。

本文结论是:采用改进的重心法建立选址模型,然后利用多元线性回归对重心法模型中的总成本函数方程中的系数进行优化。

这样使重心法模型克服对于系数的数据处理的主观性,减小了主观因素带来的偏差,也使模型在配送中心的选址中具有实用性。

通过指派问题模型可以实现配送中心资源的重新优化配置,并且其为配送中心选址提供一条新的途径。

关键词:物流配送中心选址重心法分派问题模型ABOUT THE LOCATION OF LOGISTICSDISTRIBUTIONCENTER MODEL RESEARCHABSTRACTIn the logistics network, the distribution center point and needs to connect the supply point is a bridge between the two, in the logistics system has a pivotal role, it will improve the logistics distribution center location and even played the role of the logistics system economic efficiency have an important effect. In the review of this paper the problem of distribution center location based on the current situation, on the distribution center location model and algorithm research. The first part of this issue of logistics distribution center location of the background briefing, explained the importance of logistics distribution center location。

数学建模--物流配送中心选址模型

数学建模--物流配送中心选址模型

物流配送中心选址模型姓名:学号:班级:摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。

因此,发展现代化配送中心是现代物流业的发展方向。

文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。

关键词:物流选址;选址;重心法;优化模型;1.背景介绍1.1 研究主题如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。

1.2 前人研究进展1.2.1国内外的研究现状:国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。

归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;(2)应用离散型模型选择地点;(3)应用德尔菲(Delphi)专家咨询法选择地点。

第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。

这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。

解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。

解析方法的优点在于计算简单,数据容易搜集,易于理解。

由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。

第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。

第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。

国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。

数学建模论文__物流与选址问题

数学建模论文__物流与选址问题

物流预选址问题 (2)摘要 .............................................................................................. 错误!未定义书签。

一、问题重述 (3)二、问题的分析 (3)2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4)2.2 问题二:建立合理的仓库选址和建造规模模型 (4)2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5)2.4 问题四:根据一组数据对自己的模型进行评价 (5)三、模型假设与符号说明 (5)3.1条件假设 (5)3.2模型的符号说明 (5)四、模型的建立与求解 (6)4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6)4.1.1模型的建立 (7)4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10)4.2.1 基于重心法选址模型 (10)4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12)4.3 问题三:工厂向中心仓库供货方案 (13)4.4 问题四:选用一组数据进行计算 (14)五、模型评价 (21)5.1模型的优缺点 (21)5.1.1 模型的优点 (21)5.1.2 模型的缺点 (21)六参考文献 (21)物流预选址问题摘要在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。

本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。

对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。

数学建模题目解答 物流中心位置选择

数学建模题目解答 物流中心位置选择

物流中心位置选择摘要本题为物流运输问题,属于有约束的线性规划模型。

本文通过对运输费用、需求量、供应量、运输方式、建设费用等因素之间关系的综合分析,建立了待建仓储选址的一般数学模型。

然后我们通过对模型进行编程求解,得出物流公司的新仓储位置选择和向销售中心供货的具体方案。

接着我们进行了灵敏度分析,并求解出了在需求量增大5%和仓储容量增大5%的情况下,新的仓储选址方案。

通过对供需有小幅改变的前后数据及图表的分析,我们得出了供需小幅改变不改变选址方案,配送方案也只有小幅改变的结论,作为对物流公司的一点建设性的意见。

然后我们分析了模型与实际的联系,并对模型的实际意义进行了建设性的分析,提出了有益的改进方案。

最后我们对基于“供求平衡”、“供求失衡”时方案关系及模型进行了几点分析、总结,得出了一切“供需”模型均可以转化为“供求平衡”模型,我们还进行了进一步探究,提出了“供需平衡”问题的求解思路,作为对“运输问题”的一种有益的探索和有价值的总结。

关键词数学模型 物流 供需 线性规划 选址1. 模型的分析本题属于物流公司运输的模型,通常该模型中包含了不同运输路径的单价,运输量,需求量,存储量以及运输成本。

由它们之间的关系可知,设第一个销售中心至第n 个销售中心的需求量分别为-,第一个仓库到第m 个仓库的存储量分别为-,而从第i 个仓库向第j 个销售中心运输的货物量为ij x ,运输成本为ij c ,总费用为f ,则有;i=1,2,3,…,nj=1,2,3,…,ms.t.j=1,2,3,…,m (*)i=1,2,3,…,ni=1,2,3,…,12 j=1,2,3,…,12 而对于当仓库存储的货物总量正好等于销售中心需求量时,*式则变为了:j=1,2,3,…,m通过求解如上的数学模型,我们就可以得出具体问题的最优化方案,我们就能在生活、工作中做出正确的选择!2. 本次大赛问题的分析分析本次题目中给出的物流公司建设新仓储的过程可知,需要考虑的因素包括:(1)销售中心货物的需求量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物流配送中心选址模型
姓名:学号:班级:
摘要:在现代物流网络中,配送中心不仅执行一般的物流职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个物流网络的灵魂所在。

因此,发展现代化配送中心是现代物流业的发展方向。

文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。

关键词:物流选址;选址;重心法;优化模型;
1.背景介绍
1.1 研究主题
如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。

1.2 前人研究进展
1.2.1国内外的研究现状:
国外对物流配送选址问题的研究已有60余年的历史,对各种类型物
流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。

归纳起来,这些配送中心选址方法可分为三类:(1)应用连续型模型选择地点;
(2)应用离散型模型选择地点;
(3)应用德尔菲(Delphi)专家咨询法选择地点。

第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。

这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。

解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。

解析方法的优点在于计算简单,数据容易搜集,易于理解。

由于通常不需要对物流系统进行整体评估,所以在单一设施定位时应用解析方法简便易行。

第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。

第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。

国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。

北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。

中国矿业大学周梅华也用重心法和微分法相结合的方法在徐州矿业集团自用型配送中心的选址中进行应用,取得了很好地效果。

对于第三类物流中心选址方法,国内进行的研究相对较少,主要在物流园区的布局规划中有所应用[1]。

2.建模
2.1假设
(1) 假设需求量集中以某一点
(2) 模型没有区分在不同地点建设仓库所需的资本成本,以及与在不同地点经营有关的其他成本差别,而只计算运输成本。

(3) 不考虑需求点的库存策略。

(4) 分销渠道内只有一种产品或者有多种产品,但假设其分拨储运方式及其费用率均相同。

(5) 备选物流中心有容量限制,且限制容量已知。

[2]
2.2概念模型
假设有n个客户P1,P2,P3,…,P n分布在同一个平面上,其坐标分别为(x i,y i),客户需求量为wi,费用函数为配送中心与客户间距离和相应的运费、需求量的乘积,确定P0(x0,y0),使总运用最小。

2.3 数据模型
设总运费Z为:
∑=
-
+
-
=
n
i
s
i
s
i
i
y
y
x
x
w
Z
1
2/1
2
2]
)
(
)
[(
min
精确重心法目标函数为双变量系统,分别对x s 和y s 求偏导,并令导数为零,求得隐含最优解的等式[2]:
2.4 软件求解
用Excel 求解[3]:
①在Excel 中输入数据,并且假设原点坐标为(1,1),在G3中输入“=SQRT(($D$9-D3)^2+($E$9-E3)^2)”,并将右下角的十字光标下拉复制公式。

权重为:距离×运输费率×物资需求量
w i ---与第i 个点对应的权重,例如需求; x i ,y i ---第i 个需求点的坐标; x s ,y s ---服务设施的坐标;
n---需求点的总数目 2
21111)()(s
i
s
i
is
n
i is
i n
i is
i
i s n
i is
i n
i is
i i s y y x x d d w d y w y d w d x w x -+-==
=∑∑
∑∑====
②规划求解
③第一次迭代求得重心坐标为(7.76,5.52)此时总费用为196.46。

④第二次迭代求得重心坐标(9.15,5.21),此时总费用为190.04。

⑤第100次迭代求得重心坐标为(9.20,5.03),此时总费用为189.97。

2.5 模型分析
1)敏感性报告
2)运算结果报告
2)极限值报告
关于重心法,尽管理论上能够求得比较精确的最优化结果,但是在现实的作中,却不一定容易实现。

首先,在精确的最优化解的位置上由于其他因素的影响,决策者考虑其他因素后,又是不得不放弃这一最优化解的结果,转而选择现实中满意的其他方案。

其次,在该模型中将距离刚坐标来表示,这样就把运输费用看成是两点间直线距离的函数,这一点与实际是不相符的,虽然可通过在距离计算公式中增加一个调整系数来加以修正,但系数的合理选取还是有一定的难度。

最后,当供给点和需求点同在一个系统中时,求得的“重心”的最优性是在供给点必须通过该“重心”再到达需求点的前提下取得的,而事实上,这个前提并不是真正必须的,在很多情况下,由于明显的不合理性而会对结果进行调整,调整的结果也难以保证其最优性。

[4] 下面对重心法模型进行改进,根据重心法选择的地点有可能在江流之上或者在街道中间,此时就需要根据客观条件,放弃最有位置而另外选择一比较满意的位置,还需要对重心法求得的坐标点进行分析,当考虑可变成本、固定成本和决策权值时,最佳选址地点是什么。

3.模型改进
3.1假设
设有n个零售点,它们的坐标是(x i,y j)(i,j=1,2,3,……,n),配送中心的坐标是(x0,y0),假设:
(1)运输费用只与配送中心和配送点的直线距离有关,不考虑城市交通情况;
(2)选择配送中心时,不考虑配送中心所在地理位置,不考虑城市交通情况;
(3)选择配送中心时,不考虑配送中心所处地理位置的地产价格;
(4)各需求点的需求量已知;
(5)可以估计各个备选配送中心的固定费用(包括基本建设费和固定经营费);
(6)可以估计经营管理产生的可变费用,并在总费用中加以考虑。

3.2 数学模型
H = h j w j d j(j=1,2,3, ……,n)
Min F(x)=ρ1H1+ρ1νIi(W j)θ+ρ2F Ii
其中:h j---从配送中心到零售店i的发送费率;
w j---从配送中心向零售店i的发送量;
d j---从配送中心到零售店i的距离;
I i一由重心法得到的各个备选地址;
W j---各个零售店的需求量之和;
H Ii---指备选地址I.总的运输费用;
νIi---指各备选配送中心考虑经营管理的单位可变费用;
νIi(W j)θ---指各备选地址I.总的可变费用;
F Ii---指各备选地址I 的固定费用;
θ---经验值,且θ∈(0,1);
ρ1,ρ2---权系数 (可以根据决策者的需求来定)且ρ1+ρ2=l,其中ρ
ρ2∈(0,1)。

1,
假设ρ1=0.7,ρ2=0.3。

根据上面的例题,可知有三个方案(7.76,5.52),(9.15,5.21)和(9.20,5.03)。

设方案1的可变费用为350,固定费用为400;方案2的可变费用为400,固定费用为350;第三个方案的可变费用为500,固定费用为340。

根据公式软件求解的:
有结果可知此时方案一的总费用最低,为584.979,是最佳方案。

4.结论
配送中心是提高流通企业组织化程度、实现集约化经营、优化社会资源配置、创造规模效益、推动流通科技进步、实现流通现代化的有效形式。

重心法模型是连续型模型,相对于离散模型来说,其物流配送中心地点的选择是不加特定限制的,有自由选择的长处,而且由于
改进模型不仅考虑了运输成本,而且还考虑了配送中心的可变运营成本、固定成本和决策权系数,比传统重心法又有了明显的优越性,因此有较好的实用性。

还可以推广到其它的选址问题上,如投资问题,不足之处在于只能解决单配送中心的选址问题,如果要用于多配送中心的选址还需改进。

参考文献
[1]jobwangwu.物流设施选址模型间就现状及新思考[EB/OL]/doc/VmcMNQ47UT9aMARkVzk=.html2011-5-25.
[2] wdm10001基于重心法的配送中心选址研究及应用[EB/OL]/p-992595473343.html2011-11-18.
[3]李孟涛,徐建.物流常用数学工具实验教程[M].北京:中国人民大学出版社,2011-4:25-28.
[4] 蒋长兵,王姗姗. 精确重心算法在物流节点选址中的应用[J]. 物流技术,2005(9):32-36.
11。

相关文档
最新文档