偏微分方程数值解定稿.ppt
合集下载
第6章_偏微分方程数值解法
2 2 2
u ( x, 0) = sin( x) , u (0, t ) = 0, u (π , t ) = 0
利用线上法数值求解 u ( x, t ) 随时间的演化关系 解:取 Δx = π /15 ,计算程序:demo_MOL.m,和结果见右图。
对于 a > 0 ,波从 k − 1 点过来, k − 1 点状态已变化, k + 1 点状态还未变化。差分只能 uk − uk −1 。同样意
n n
义可分析 a < 0 情况。见图 6.1.1。迎风格式的精度为 O(Δt , Δx) ,稳定性条件为 Δt < Δx / | a | 。
% Upwind_Method L = 15;dx = 0.1;dt = 0.05;a = -1.; x =[-L+dx:dx:0]';n=length(x); %Initial value u1=zeros(1,n-20);u2=ones(1,10);u3 = zeros(1,10); u = [u1 u2 u3]';r = a*dt/dx; u0 = u; plot(x,u','LineWidth',2);axis([-15 0 -1 2]);pause(1); for t=dt:dt:10. u(1:n-1) = (1+r)*u(1:n-1)-r*u(2:n); % u(2:n-1)=0.5*((1.-r)*u(3:n)… % +(1.+r)*u(1:n-2)); % Lax scheme hold off;plot(x,u,'LineWidth',2); axis([-15 0 -1 2]);pause(0.05) end hold on; plot(x,u0','r','LineWidth',2);axis([-15 0 -1 2]); xlabel('position');ylabel('u(x,t)'); legend('传播的波','初始方波'); title('Upwind')
u ( x, 0) = sin( x) , u (0, t ) = 0, u (π , t ) = 0
利用线上法数值求解 u ( x, t ) 随时间的演化关系 解:取 Δx = π /15 ,计算程序:demo_MOL.m,和结果见右图。
对于 a > 0 ,波从 k − 1 点过来, k − 1 点状态已变化, k + 1 点状态还未变化。差分只能 uk − uk −1 。同样意
n n
义可分析 a < 0 情况。见图 6.1.1。迎风格式的精度为 O(Δt , Δx) ,稳定性条件为 Δt < Δx / | a | 。
% Upwind_Method L = 15;dx = 0.1;dt = 0.05;a = -1.; x =[-L+dx:dx:0]';n=length(x); %Initial value u1=zeros(1,n-20);u2=ones(1,10);u3 = zeros(1,10); u = [u1 u2 u3]';r = a*dt/dx; u0 = u; plot(x,u','LineWidth',2);axis([-15 0 -1 2]);pause(1); for t=dt:dt:10. u(1:n-1) = (1+r)*u(1:n-1)-r*u(2:n); % u(2:n-1)=0.5*((1.-r)*u(3:n)… % +(1.+r)*u(1:n-2)); % Lax scheme hold off;plot(x,u,'LineWidth',2); axis([-15 0 -1 2]);pause(0.05) end hold on; plot(x,u0','r','LineWidth',2);axis([-15 0 -1 2]); xlabel('position');ylabel('u(x,t)'); legend('传播的波','初始方波'); title('Upwind')
偏微分方程数值解PPT课件
从(1)得到:
u(ti)u(ti1)hu(ti)O(h)
精选
14
从(2)得到:
u(ti)u(ti1)hu(ti)O(h)
从(1)-(2)得到:
u(ti)u(ti1)2 hu(ti1)O (h2)
从(1)+(2)得到:
u (ti)u (ti 1) 2 u h (2 ti) u (ti 1 ) O (h 2)
精选
15
对经典的初值问题
du
dt
f (t,u )
u ( 0 ) u 0
t (0,T)
满足Lipschitz条件
4
常微分方程的数值解
大气科学中
常微分方程和偏微分方程的关系
1. 大气行星边界层(近地面具有湍流运动特性的大 气薄层,1—1.5km), 埃克曼(V.W.Ekman)(瑞典) 螺线的导出;
2. 1963年,美国气象学家Lorenz在研究热对流的 不稳定问题时,使用高截断的谱方法,由 Boussinesq流体的闭合方程组得到了一个完全确 定的三阶常微分方程组,即著名的Lorenz系统。
2. Curtis F.Gerald and Patrick O., Applied Numerical Analysis, Person Education, Inc., 2004.
3. Eugenia Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, the press Syndicate of the University of Cambridge,2003.
ìïïïïïïïïïíïïïïïïïïî
x1¢=
x
¢
《偏微分方程》课件
非线性偏微 分方程:方 程中含有偏 导数,且偏 导数项的系 数不是常数
椭圆型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数
抛物型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 不是常数
双曲型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数,但 方程的解不 是实数
边界条件:确定求解区域和边界条件,如Dirichlet边界条件、 Neumann边界条件等
初值条件:确定求解区域的初值条件,如Cauchy问题、初边值问题等
稳定性和收敛性:分析求解方法的稳定性和收敛性,确保解的准确性和 可靠性
应用实例:通过具体实例,展示求解方法的应用和效果
课件结构
课件目录
偏微分方程的应用
物理领域:描述 流体力学、热力 学、电磁学等现 象
工程领域:解决 结构力学、材料 力学、电子工程 等问题
生物领域:模拟 生物系统的生长、 扩散、反应等过 程
经济领域:用于 金融、经济模型、 风险管理等方面
偏微分方程的求解方法
分析法:通过分析方程的性质,寻找解的性质和形式
数值法:通过数值计算,求解偏微分方程的数值解
偏微分方程的求解方法:展示偏微分方程的求解方法,如分离变量法、积分因子法等
公式素材
偏微分方程的 定义和性质
偏微分方程的 应用实例
偏微分方程的 求解方法
偏微分方程的 扩展和研究进
展
动画素材
动画类型:2D动画、3D动画、Flash动画等 动画内容:偏微分方程的求解过程、应用实例等 动画风格:简洁明了、生动有趣、易于理解 动画时长:根据课件内容需要,控制在5-10分钟以内
偏微分方程PPT课件
第5章偏微分方程值解ppt课件
t
t nt , x ix , y jy , z kz
总目录
本章目录
5.1
5.2
5.3
5.4
5.2 基本离散化公式
以3对于二阶偏导,我们可以通过对泰勒展开式处 理技术得到下面离散化计算公式:
2u t 2 2u x 2 2u y 2 2u z 2
总目录
本章目录
5.1
5.2
5.3
5.4
5.3 几种常见偏微分方程的离散化计算
例下面介绍3种迭代格式: 1 u (u u u u (1)同步迭代: 4 1 u (u u u u (2)异步迭代: 4 1 u u u ) u (u 4 (3)超松弛迭代:
(5-4) (计算实例VB程序见课本)
总目录
本章目录
5.1
5.2
5.3
5.4
5.3 几种常见偏微分方程的离散化计算
2、一维流动传热传导方程的混合问题 一维流动传热传导方程的混合问题:
2 u u 2 u b f (u, t ) a 2 t x x u t 0 (x), u 0 x x l u x 0 μ1(t)
u
x0
1 (t ),u xt 2 (t )
为初值条件 为边值条件
当该波动方程只提初值条件时,称此方程为波动 方程的初值问题,二者均提时,称为波动方程的 混合问题。
总目录 本章目录
5.1
5.2
5.3
5.4
5.3 几种常见偏微分方程的离散化计算
t t
x
0
x
0
l
(a)初值问题
2偏微分方程数值解法引论精品PPT课件
u , y
u1
, u2
T
u
x x x
则方程组(2)可表示为
u
A
u
h
0
y x
(2)多维一阶方程组方程组
见8页
同理
u1
y
a1
u1 x
h1
0
u
p
y
ap
u p x
hp
0
(3)
可表示为
u
A
u
h
0
y x
(4)
其中
u1 y
,,
u p y
T
u , y
h1,, hp T h
n
考虑两个自变量的二阶偏微分方程
2u
2u 2u u u
a x2
2b xy
c
y 2
d
x
e y
fu
g
线性: a,b,c,d ,e, f , g 是x,y的二元函数;
拟线性:
a, b, c, d , e,
f
,
g
是
x,
y, u,
u x
,
u y
的函数;
对于二阶线性偏微分方程
2u
2u 2u u u
a x2
ui xk
1
p xi
ui ,
i 1, 2,(3 动量守恒)
3
uk
k1 xk
(0 质量守恒)
其中,u (u1, u2 , u3 )表示速度, 表示粘滞系数
(二)定解问题
1.
定解条件
边界条件 初始条件
2.定解问题 方程 定解条件
初值问题(Cauchy问题) 定解问题 边值问题(Drichlet / Numann / Robin)
偏微分方程数值解PPT课件
t
t
n j
tn j1
x x
EXCEL
0.01, x 0.1
t n1 j
t
n j
2(TW
t
n j
)
3
t
n j
t
n j1
x
t n1 j
0.02TW
0.68t
n j
0.3t
n j1
此微分方程,是在不考虑流体本身热传 导时的套管传热微分方程.由计算结果可 知,当计算的时间序列进行到72时,传 热过程已达到稳态,各点上的温度已不 随时间的增加而改变。如果改变套管长 度或传热系数,则达到稳态的时间亦会 改变。
b2 4ac 0 b2 4ac 0 b2 4ac 0
• 物理实际问题的归类:
• 波动方程(双曲型)一维弦振动模型:
2u t 2
2
2u x 2
• 热传导方程(抛物线型)一维线性热传导方程
u t
2u x 2
• 拉普拉斯方程(椭圆型ux22)稳态y2u2 静 电0 场或稳态温度分布场)
第4页/共32页
un i 1
b
un i1
uin
x
f (ix, nt)
ui0
(i x )
un m1
umn
x
0
u0n 1(nt )
(i 1,2, ,m) (n 0,1, 2, ) (n 0,1,2, )
第13页/共32页
一维流动热传导方程
将上式进行处理得到:
un1 i
t
f
(ix, nt )
(a2
t (x)2
1的)偏t )
微
分
采
用
向
后
欧
偏微分方程数值解_图文_图文
估计误差
这种误差称为“局部截断误差”,如图。
局部截断误差是以点 的精确解 而产生的误差。
为出发值,用数值方法推进到下一个点
2.整体截断误差—收敛性
整体截断误差是以点 的初始值 为出发值,用数值方法推进i+1步到点
,所得的近似值 与精确值
的偏差:
称为整体截断误差。
特例,若不计初始误差,即 则
即 3.舍入误差—稳定性
五、线性多步(Linear Multistep Method)法
1. 预备知识:插值多项式
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况, 估算出函数在其他点处的近似值。
从几何上理解:对一维而言,已知平面上n+1个不同点,要寻找一条n次多项式 曲线通过这些点。插值多项式一般常见的是拉格朗日插值多项式。
把
代入 中,有
经比较得到
取 为自由参数: 从而得到不同的但都是二阶的R-K方法,对应的有中点法、Heun(亨)法 以及改进的Euler法。
基于相同的过程,通过比较五次Taylor多项式,得到更加复杂的结果,给出了包含 13个未知数的11个方程。得到多组系数,其中常用的是以下四阶R-K法:
改进的Euler法、R-K法以及解析解的比较:
是待定的系数。
Euler法就是
的R-K法。
其系数的确定如下:将 展开成 的幂级数,并与微分方程的精确解
在点 的Taylor展开式相比较,使两者的前
项相同,这样确定的R-K法,
其局部截断误差为
,根据所得关于待定系数的方程组,求出它们的值后
代入公式,就成为一个 阶R-K方法。
例题 以二阶R-K法为例说明上述过程
2. Curtis F.Gerald and Patrick O., Applied Numerical Analysis, Person Education, Inc., 2004.
计算方法 偏微分方程数值解34页PPT
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
计算方法 偏微分方程数值解不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
计算方法 偏微分方程数值解不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页
下一页
回目录
休 息
本章要求
教学目的
讲解: 偏微分方程离散格式及求解的一般过程
教学要求
熟记 精通 探索 延伸
一阶及二阶偏微分方程的离散格式; 用EXCEL迭代对偏微分方程求解; 用两数组交替更新的办法进行编程求解; 对化学反应工程中物理场的模拟进行尝试。
教学重点
各种il: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.2 离散化公式
对于二阶偏导,我们可以通过对泰勒展开式处理技术得到下面离散化 计算公式:
2u t 2
un1 i , j,k
2uin, j,k (t )2
un1 i , j,k
上一页
下一页
回目录
休 息
5.1 偏微分方程简介
偏微分方程的分类
2u
2u
2u
u
u
a() x2
b() xy
c() y2
d() x
e() y
f ()u
g() 0
线性微分方程 Linear partial differencial equation
x, y
拟线性微分方程 Quasilinear partial differencial equation
un i , j,k1
2uin, j,k (z)2
un i , j ,k 1
t nt ,xix , y jy ,zkz
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.2 离散化公式推导
将uk+1在uk处按二阶泰勒式展开:
数学上的分类:
椭圆方程 Elliptic
b2 4ac 0
抛物线方程 Parabolic b2 4ac 0
双曲线方程 Hyperbolic b2 4ac 0
物理实际问题的归类:
波动方程(双曲型)一维弦振动模型:
2u t 2
2
2u x 2
热传导方程(抛物线型)一维线性热传导方程
u t
些离散变量的函数。
un i , j,k
u(t, x,
y, z)tnt ,xix, y jy,zkz
一阶偏导的离散化公式
u
un1 i , j,k
un i , j,k
t tnt ,xix , y jy,zkz
t
一般采用欧拉公式表示
有时为了保证系统和稳定性, 对时间的差分往往采用向后公式
u
un i1, j,k
在化工或化学动态模拟方程中,常常有一个自变量是时间, 其它的自变量为空间位置。如果只考虑一维空间,则只有 两个自变量;如果考虑两维空间,则有3个自变量。 许多 化工过程均是通过对偏微分方程的求解进行工艺参数的确 定或数值模拟。
Email: Jansweili@ Phone: 029—85583997
2u x 2
拉普拉斯方程(椭圆型)稳态静电场或稳态温度分布场)
u2 x2
2u y2
0
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.1 微分方程的求解思路
求微分方程数值解的一般步骤:
Step1区域剖分:首先按一定规则将整个定义域分成若干小块 Step2微分方程离散:构造离散点或片的函数值递推公式或方程 Step3初始、边界条件离散:根据递推公式,将初值或边界值离
x, y,un1 / x,y
非线性微分方程 Nonlinear partial differencial equation
x, y,un / x,y
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.1 偏微分方程简介
第五章 偏微分方程数值解 Numerical Methods for Partial Differential Equations
5.1 偏微分方程简介 5.2 离散化公式 5.3 几种常见偏微分方程的离散化计算 5.4吸附床传热传质模型中偏微分方程求解
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.3几种常见偏微分方程的离散化计算
t nt ,xix , y jy ,zkz
2u x 2
un i1, j,k
2uin, j,k (x)2
un i1, j ,k
t nt ,xix , y jy ,zkz
2u y2
un i , j1,k
2uin, j,k (y)2
un i1, j ,k
t nt ,xix , y jy ,zkz
2u z 2
散化,补充方程,启动递推运算
Step4 数值解计算:求解离散系统问题
微分方程的定解问题
离散系统的求解问题
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5.2 离散化公式
将自变量在时间和空间上以一定的间隔进行离散化,则应变量就变成了这
uk 1
uk
h uk x
h2 2!
2uk x 2
O(h3 )
将uk-1在uk处按二阶泰勒式展开:
uk 1
uk
h uk x
h2
2!
2uk x 2
O(h3 )
二式相加得:
2u x2
uk1
2uk (x)2
uk1
Email: Jansweili@ Phone: 029—85583997
un i , j,k
x tnt ,xix , y jy,zkz
x
u
un i , j1,k
un i , j,k
y tnt ,xix , y jy,zkz
y
u
un1 i , j,k
un i , j,k
t t(n1)t ,xix, y jy,zkz
t
u
un i , j,k1
un i , j,k
z tnt ,xix , y jy,zkz
EXCEL 循环迭代问题
教学难点
特殊边界条件的引入与应用
Email: Jansweili@ Phone: 029—85583997
上一页
下一页
回目录
休 息
5. 1 偏微分方程简介
偏微分方程
如果一个微分方程中出现多元函数的偏导数,或者说如果 未知函数和几个变量有关,而且方程中出现未知函数对几 个变量的导数,那么这种微分方程就是偏微分方程。