《 数学分析续论 》试题 (A卷)
《 数学分析续论 》模拟试题复习辅导课件模板
2019-5-11
谢谢观赏
18
设 f (x) x7 x5 x,显然它在 ( , ) 上连续.
因
lim
x
f (x) lim x7 ( 1
x
1 x2
1 x6
)
,故由无穷大
量的定义,对于任意的 c 0 , X 0 ,使得 x X 时 ,
y a 时 x 3 a ,这时所求三角形的面积为最大:
2
2
S max
3
3 4
a
2.
[注] 用 a2 x2 y2 代入 S Smax , 将得到一个不等式
x
x2 y2
y
33 4
x2 y2
.
[思考题] 当把题中的圆改为椭圆 x2 y2 1 时,得
n 1
1 n
却为发散.
2019-5-11
谢谢观赏
21
2019-5-11
谢谢观赏
22
至多只有有限个项 ” .
an
再有, 因 C 中未假设
的极限相等;
a2k1 与 a2k
而D中所说的 “无穷多个子列 ”并不等同于“ 所有子
列 ”,
所以这些都是错误的.
2019-5-11
谢谢观赏
5
(3)设 f (x) 在 R 上为一连续函数.这时下面正确
的
是 ·······································[
的项都落在邻域
之内;
a2k1 , a2k
C.
都收敛;
an
a
D. 中有无穷多个子列都收敛于 .
《数值分析》A卷期末考试试题及参考答案
一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
兰州文理学院2018-2019学年第二学期 期末考试《数学分析Ⅱ》(A)卷
二、判断题(每题1分,共8分)11. 函数)(xf在[a,b]上可积的必要条件是连续. ( )12. 函数项级数一致收敛的必要条件是通项收敛. ( )13. 若)(xf在[a,b]上可积,则|)(xf|在[a,b]上必可积. ( ) 14. dxxfa⎰+∞)(收敛,则0)(lim=∞→xfx. ( )15.nnn1)1(1∑+∞=-收敛,∑+∞=11nn也收敛. ( )16. 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.( )17. 设级数∑n u与∑n v都发散,则∑+)(nnvu也一定发散. ( )18.311x+的幂级数展开式为∑+∞=03nnx. ( )三、选择题(每题2分,共12分)19. 设xexf-=)(,则:=⎰dxxxf)(ln( )A cx+1B cx+ln C cx+-1D cx+-ln20. 设)(xf是[a,b]上可积的奇函数,则dttf x⎰0)(是( )A 连续的奇函数B 连续的偶函数C 未必连续的奇函数D 未必连续的偶函数21.nnxn)1(11-∑+∞=的收敛域为( )A (-1,1)B [-1,1)C (0,2]D [0,2)22. 下列说法错误的是 ( )A 函数列{fn}收敛的全体收敛点集合,称为函数列{fn}的收敛域B 若函数列{fn}在区间I 上一致收敛且每项都连续,则其极限函数在I 上也连续C 若连续函数列{fn}在区间I 上内闭一致收敛,则极限函数在I 上连续D 一致收敛性是极限运算与求导运算的交换的充要条件23. xe xf =)(在[0,1]上绕x 旋转一周生成体的体积是 ( ) A22e πBe 2πC)1(22-e πD 12-e24. ∑=3sin )(n nxx f 在),(+∞-∞上 ( )A f 连续但f '不连续B f 连续且f '连续C f 不连续D f 不可导四、计算题(每题10分,共20分)25. 计算 1) 620sin limx dt t xx ⎰→(5分) 2) dx e e xx ⎰+-1(5分).26. 求由摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的平面图形的面积.五、证明题(每题10分,共20分)27. 证明:若正项级数∑+∞=1n na收敛,且数列n a 单调,则n n na 0lim →=0.41.10分,共20分). 30. 将x x f =)(在[0,2]上展开成余弦级数,并由此推出++++=222271513118π.。
学历自考模拟试卷-《数学分析II》期末考查试卷【附答案】
x
3xdx +
y x cos ydy (5 分)
M0M
0
0
= 3 x2 + x sin y (6 分)(说明:原函数可以直接观察得出!) 2
五、应用题(7 分)
一页长方形白纸,要求印刷面积占 Acm2 ,并使所留页边空白为:上部与下部宽度之和为: a + b = h cm,左部与右部宽度之和为: c + d = r cm (A,r,h 为已知数),求页面的长(y)和宽(x), 使它的面积最小.
(3 分)
L = (x − r)(y − h) − A = 0.
于是有
x = r , 1+
y = h , 1+
= − 1+
Ah r
(5
分)
根据问题的实际意义知,此时页面的面积是最小的.(7 分)
x = Ar + r, y = Ah + h. (6 分)
h
r
3
= ar cos , y
= br sin
(3
分),则
D
可表示为: 0
2 , 0 r
1(4
分),所以,
S =
2
d
1abrdr (5 分),所以 S = ab (7 分).
0
0
4、计算第二型曲面积分: I
=
S
1 dxdy ,其中 S 是椭球面 x2
z
a2
+
y2 b2
+
z2 c2
= 1 的外侧
解:由题意,目标函数与约束条件分别为 S = xy 与 x r, y h, (x − r)(y − h) = A. (1 分)作 Lagrange 函数 L = xy + [(x − r)(y − h) − A], (2 分)则有
数学分析A试卷参考答案(高数)
数学分析考试题学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共七道大题,如有不对,请与监考老师调换试卷! 一、单项选择题(每小题2分,满分10分) 1.当0x →时,函数211sin x x是( D ). (A )无穷小 (B )无穷大 (C )有界但不是无穷小 D )无界的,但不是无穷大 2.设()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是(D )(A )1lim [()()]h h f a f a h →+∞+-存在;(B )0(2)()lim h f a h f a h h →+-+存在;(C )0()()lim 2h f a h f a h h →+--存在;(D )0()()lim h f a f a h h→--存在;3.下列说法中与lim n n x a →∞=定义等价的说法是(A ).(A )(0,1),,,100;n N n N x a εε∀∈∃∀≥-< (B )1,,,;n N n N x a εε∀>∃∀>-< (C ),0,,;n N n N x a εε∀∃>∀>-< (D ),0,,;n N n N x a εε∃∀>∀>-<cos sin 22()(1)()222()(1)()22( D )x t t t y t tA y xB y xC y xD y xπππππππ=⎧=⎨=⎩=+=+=-=-4.曲线在处的切线方程为. .. . 答 5.设数列,n n x y 满足lim 0n n n x y →∞=,下列结论正确的是(D ).(A )若n x 收敛,则n y 必发散;. (B )若n x 无界,则n y 必有界; (C )若n x 有界,则n y 必为无穷小; (D )若1nx 为无穷小,则n y 必为无穷小; 二、填空题(每小题2分,满分10分)6.设1(0)2f '=,则332lim (0)n n ff n →∞⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦1 . 7.设(1)(2)()()(1)(2)()x x x n f x x x x n ---=+++,则(1)f '= 11(1)(1)n n n --+.8.极坐标方程(1cos )a ρθ=+在(,)2a π点处的切线的直角坐标方程为y x a =+.9.若212lim 1,11x ax x →⎛⎫-=⎪--⎝⎭则a 4 . 10.设(),0,,0x xe e xf x xk x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则k 2 .三、求下列极限(每小题5分,满分25分)11.求)lim .x xx →-∞解:)1lim limlim.2x x x xx →-∞→-∞===-12.求1402sin lim 1x x xe x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭解: 14144002sin (2)sin lim lim 01111x x xx x x x e x e e x x x e e ++-→→-⎛⎫⎛⎫++ ⎪ ⎪+=+=+= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭; 1402sin lim 2111x x x e x x e -→⎛⎫+ ⎪+=-= ⎪- ⎪+⎝⎭, 所以1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭=1. 13.求tan sin x x x →解:3sin tan sin tan sin 3300011tan sin 2lim lim 244xx xxxx x x x x e e x xx x -→→→→--====。
数学分析续论A卷复习资料
数学分析续论A 卷复习资料一. 计算题1.求函数11(,)f x y y x=+在点(0,0)处的二次极限与二重极限. 解:11(,)f x y y x ==,因此二重极限为0.因为011x y x →与011y y x→均不存在,故二次极限均不存在。
2. 设(),()y y x z z x =⎧⎨=⎩ 是由方程组(),(,,)0z xf x y F x y z =+⎧⎨=⎩所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dzdx.3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z zz x x y x ∂∂∂++=∂∂∂∂。
设,,22y x y x yw ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下:,(,),,22y w x y x y z w w e μνμν+-====。
代人原方程,并将,,x y z 变换为,,w μν。
整理得:2222w ww μμν∂∂+=∂∂∂。
4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中目标函数: 222S rh r ππ=+表, 约束条件: 21r h π=。
构造Lagrange 函数:22(,,)22(1)F r h rh r r h λππλπ=++-。
令 22420,20.r h F h r rh F r r πππλππλ=++=⎧⎨=+=⎩ 解得2h r =,故有r h == 由题意知问题的最小值必存在,当底面半径为r =高为h =时,制作圆桶用料最省。
5. 设322()y x y y F y e dx -=⎰,计算()F y '.解:由含参积分的求导公式332222322222()32y y x yx y x yxy x yx y y yyF y e dx x e dx y e ye ----=='⎛⎫'==-+- ⎪⎝⎭⎰⎰327522232y x y y y y x e dx y e ye ---=-+-⎰375222751222y y y x y y y e ye e dx y ---=--⎰。
《 数学分析续论 》模拟试题(一) .doc
《 数学分析续论 》模拟试题(一)一、 单项选择题(56⨯')(1)设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有 ............[ ] A.j n j n n a a ∞→∞→=lim lim ; B.{}n a 不一定收敛; C.{}n a 不一定有界;D.当且仅当预先假设了{}n a 为有界数列时,才有A成立.(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U 内可导.这时有 .....................[ ] A.若A x f x x ='→)(lim 0存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;C.若A x f =')(0存在,则A x f x x ='→)(lim 0;D.以上A、B、C都不一定成立.(4)设)(x f 在],[b a 上可积,则有 ..................................[ ] A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.(5)设∑∞=1n nu 为一正项级数.这时有 ..................................[ ]A.若0lim =∞→n n u ,则 ∑∞=1n n u 收敛; B.若∑∞=1n n u 收敛,则1lim1<+∞→nn n u u ; C .若∑∞=1n nu 收敛,则1lim<∞→nn n u ; D.以上A、B、C都不一定成立.二、计算题(401⨯')(1)试求下列极限:①⎪⎭⎫⎝⎛-+-+++∞→n n n n 3)12(31lim ; ② ⎰⎰⎪⎭⎫⎝⎛∞+→xt x t x tt 022022lim d ed e .(2)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=+x y u f u y x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=x y ,直线2=x ,以及二坐标轴所围曲边梯形的面积 S .(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线0=++C y B x A 的距离计算公式.三、证明题(301⨯')(1)设)()(x g x f 与在],[b a 上都连续.试证:若)()(,)()(b g b f a g a f ><,则必存在),(0b a x ∈,满足)()(00x g x f =.(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3, 其中 c b a ,,均为正数.( 提示:利用詹森不等式.)(3) 证明:∑∞=π=+-0412)1(n n n .解 答一、[答](1)A; (2)C; (3)B; (4)D; (5)D. 二、[解](1) ① 333lim 3)12(31lim -=+-=⎪⎭⎫⎝⎛-+-+++∞→∞→n n n n n n n ;②.022limd 2limd 2limd e d e lim222222222020220====⎪⎭⎫⎝⎛∞+→∞+→∞+→∞+→⎰⎰⎰⎰x x x x x t x xxt x x xt xt x x t ttt ee ee e e e(2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-='++515242)(,e 2e 2)(55022222222e e u f y x xy x y y x u f y x y x .(3)所围曲边梯形如右图所示.其面积为.212)3(01)3()1()1(33102122=-+-=-+-=⎰⎰x x x x xx x x S d d(4)由题意,所求距离的平方(2d )为020)()(y y x x -+-的最小值,其中),(y x 需满足0=++C By Ax ,故此为一条件极小值问题.依据 Lagrange 乘数法,设)()()(2020C By Ax y y x x L ++λ+-+-=,并令⎪⎩⎪⎨⎧.0,0)(2,0)(200=++==λ+-==λ+-=λC y B x A L B y y L A x x L y x (F)由方程组(F)可依次解出:.2200202022200222202022********)()(,)()(4)()(,2,)(2,2,2BA Cy B x A y y x x d BA C yB x A B A y y x x BA C yB x A B A y B Ax y B x AC By y Ax x +++=-+-=⇒+++=+λ=-+-⇒+++=λ⇒+λ-+=+=-λ-=λ-=最后结果就是所求距离d 的计算公式.注 上面的求解过程是由(F)求出λ后直接得到2d ,而不再去算出y x 与的值,这是一种目标明确而又简捷的解法. 三、[证](1)只需引入辅助函数:)()()(x g x f x h -=.易知)(x h 在],[b a 上连续,满足0)(,0)(><b h a h ,故由介值性定理(或根的存在定理),必存在),(0b a x ∈,满足0)(0=x h ,即)()(00x g x f =.(2)x x x f ln )(=的定义域为),0(∞+,在其上满足:),0(,01)(,1ln )(∞+∈>=''+='x xx f x x f , 所以)(x f 为一严格凸函数.根据詹森不等式,对任何正数c b a ,,,恒有.)(ln )3(ln )ln ln ln (31)3(ln 3cb ac b a c b a c b a c c b b a a c b a c b a <++⇒++<++++++最后借助函数x ln 的严格递增性,便证得不等式c b a cb ac b a c b a <⎪⎭⎫ ⎝⎛++++3.(3)由于较难直接求出该级数的部分和,因此无法利用部分和的极限来计算级数的和.此时可以考虑把该级数的和看作幂级数=)(x S ∑∞=++-01212)1(n n n n x 在1=x 处的值,于是问题转为计算)(x S .不难知道上述幂级数的收敛域为]1,1[-,经逐项求导得到]1,1[,)1()(02-∈-='∑∞=x x x S n n n ;这已是一个几何级数,其和为]1,1[,11)()(22-∈+=-='∑∞=x xx x S n n .再通过两边求积分,还原得⎰⎰=+='=-xxx t tt t S S x S 02,arctan 11)()0()(d d由于这里的0)0(=S ,于是求得∑∞=π===+-041arctan )1(12)1(n n S n .。
大学专业试卷数学分析(二)A卷
第1页 共2页数学分析(二)课程考试A 卷适用专业 考试日期:试卷所需时间120分钟 闭卷 试卷总分100分一、判断题:(对的打√,错的打×,每小题2分,共12分)1、若lim 0n n na a →∞=≠,则级数n a ∑收敛。
( )2、若()f x 在[,]a b 上连续,2()0baf x dx =⎰,则[,]x a b ∀∈,()0f x ≡。
( )3、若00(,)(,)lim(,)x y x y f x y a →=,则00lim lim (,)x x y y f x y a →→=。
( )4、级数2(1)sin nn n x ∞=-+∑在[0,2]x π∈上一致收敛。
( )5、级数,n n a b ∑∑均发散,则级数min(,)n n a b ∑也发散。
( )6、若在可积,则在可积。
( )二、填空题:(共6小题,每小题2分,共12分)1、函数1x e x-在0x =处的幂级数展开式为 。
2、函数222(,)y f x y x y=+在点(0,0)的重极限和累次极限分别为 、 、 。
3、定积分211(sin 2)x ex dx --+⎰等于 。
4、若反常积分11x dx xα+∞-+⎰收敛时,则α的取值范围是 。
5、幂级数2nn x n∑的收敛半径和收敛区域分别为 、 。
6、函数2x 在(,)ππ-上展开成傅立叶级数为 。
三、计算题:(共4小题,每小题5分,共20分)1、1ln eex dx ⎰ 2、1201x dx -3、1xe + 4、!lim lnnn n n→∞四、(10分)计算由sin ,0,2,0y x x x y π====所围成的平面图形,绕x 轴旋转一周所得旋转体的体积。
院系: 专业班级: 姓名: 学号:装 订 线第2页 共2页五、(10分)求幂级数1nn nx ∞=∑的和函数()s x ,并利用该结果求级数12nn n∞=∑的值。
六、(10分)判别:(1)级数3!n n n n∑是否收敛;(2)级数2nx n n+∑在[0,1]x ∈上是否一致收敛。
最新数学分析1-期末考试试卷(A卷)
数学分析1 期末考试试卷(A 卷)一、填空题(本题共5个小题,每小题3分,满分15分)1、设 82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x , 则 =a 。
2、设函数)2(1)(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点是 。
3、设)1ln(2x x y ++=,则=dy 。
4、设)(x f 是连续函数,且dt t f x x f )(2)(10⎰+=,则=)(x f 。
5、xdx arctan 1⎰= 。
二、单项选择题(本题共5个小题,每小题3分,满分15分)1、设数列n x 与数列n y 满足0lim =∞→n n n y x ,则下列断言正确的是( )。
(A )若n x 发散,则n y 必发散。
(B )若n x 无界,则n y 必无界。
(C )若n x 有界,则n y 必为无穷小。
(D )若nx 1为无穷小,则n y 必为无穷小。
2、设函数x x x f =)(,则)0(f '为( )。
(A ) 1。
(B )不存在。
(C ) 0。
(D ) -1。
3、若),()()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则)(x f 在),0(+∞内有( )。
(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
4、设)(x f 是连续函数,且⎰-=dt t f x F x e x)()(,则)(x F '等于( )。
(A )())(x f e f e x x ----。
文鼎教育系统乐山师范学院数学分析续论所有答案
文鼎教育系统乐山师范学院数学分析续论所有答案13、设{an} 为单调数列,若存在一收敛子列 {a,f},这时有 Aliman=liman; B {an}不一定收敛; C {an}不一定有界;D当且仅当预先假设了 {an}为有界数列时,才有A成立答案是:参参考考答答案案:: A12、设 fX的一个原函数为 sin,则∫fXd=。
A0 Cπ/21 Dπ/2-1答案是:参参考考答答案案:: D11、设 fX在R上为一连续函数,则有 A当 i为开区间时 fl必为开区间;B当fl为闭区间时l 必为闭区间; C当fl为开区间时必为开区间; D以上ABC都不一定成立答案是:参参考考答答案案:: C10、 f 在0 点可导是 f 在0 , f 0点有切线的条件。
A充分 B必要 C充分必要 D非充分亦非必要答案是:参参考考答答案案:: A9、若ln/为f的一个原函数,则∫fd= 。
A ln/c B1ln/2c c c答案是:参参考考答答案案:: D8、设Σ为一正项级数这时有 A limua=0若 ,则Σun 收敛; B若Σun 收敛,则limun1/un<1 ; C若Σun收敛,则lim√un<1; D以上ABC都不一定成立答案是:参参考考答答案案:: D7、f=ln√12是()函数。
A奇B偶C既奇又偶 D非奇非偶答案是:参参考考答答案案:: A6、幂级数Σ-1/2n的收敛域为。
A-2,3 B[-2,2 C [-1,3D -1,3答案是:参参考考答答案案:: C5、设f在上必定连续; BfX在上至多只有有限个间断点; C f的间断点不能处处稠密; D fX在上的连续点必定处处稠密答案是:参参考考答答案案:: D4、设∫ftdt=ln5-2 ,则f= 。
2 2 2答案是:参参考考答答案案:: C2、级数Σlnn1-lnn /ln2 为级数。
A收敛 B绝对收敛 C条件收敛 D发散答案是:参参考考答答案案:: B1、设f0 在某去心邻域u(0内可导这时有 A若 limf=A存在,则 f0=A;B若f 在0 连续,则A成立; C若 f=A存在,则 limf=A; D以上ABC 答案是:参参考考答答案案:: B。
数学分析续论
二、填空题1.已知},{},,{d c B b a A ==,则________________=⨯A B .2.设R 为X 中的关系,若R 是反身的、对称的、传递的,则称关系R是 .3.若集合A 能与其任意真子集1A 之间建立一个双射,则集合A是 .4.=ix e . 5.设n n n x n x f ∑∞=--=11)1()(,则ln(_____))(=x f . 三、计算题1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 四、解答题1.已知函数)(x f 满足34)1(2+-=+x x x f ,求)(x f .2.求函数xx x f 1)(+=的极值.五、证明题1.设)(x f y =是从]1,0[到]1,0[的连续函数,则存在点]1,0[0∈x ,使n x x f 00)(=,其中n 是一个非零自然数.2.设C B A ,,为三角形的三个内角,求证:812sin 2sin 2sin≤⋅⋅C B A .《数学分析》二、填空题1.)},(),,(),,(),,{(b d a d b c a c 2.等价关系;3.无限集;4. x i x sin cos +; 5. x +1.三、计算题1、解2、解 :由分部积分公式得: 111 (1)1x x x x=-++ 231ln ln 3x xdx xdx =⎰⎰ 1 (1)dx x x ∴+⎰3311ln ln 33x x x d x =-⎰ 11()1dx x x=-+⎰ 33111ln 33x x x dx x=-⋅⎰ ln ln 1.x x C =-++3211ln 33x x x dx =-⎰3311ln 39x x x C =-+ 四、解答题 1.解 34)1(2+-=+x x x f8)1(6)1(2++-+=x x故86)(2+-=x x x f2.解 令 011)(2=-='xx f 解得 1±=x312)(xx f ⋅='',,02)1(>=''f 故1=x 是极小值点,2)1(=f 是极小值 ; ,02)1(<-=-''f 故1-=x 是极大值点,2)1(-=-f 是极大值。
2020-2021《数学分析 》(二)期末课程考试试卷A(含答案)
2020-2021《数学分析》(二)期末课程考试试卷A一、 填空题(3分⨯5=15分).1.(ln )[1(ln )]f x dx x f x '=+⎰ln (ln )1f x c ++ .2.45522[sin cos ]x x x dx ππ-+=⎰8/15 . 3.22limarcsin x x x e dxx x--->⎰=1 .4.设()f x C =+⎰则 )(x f ''= .5. 2()xf x e -=的麦克劳林级数为()f x = 0(1)2!nnn n x n ∞=-∑二、 选择题(3分⨯5=15分).1.若反常积分1a xx e dx +∞-⎰收敛,则 ( A ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a . 2. 若反常积分011(1)adx x -⎰收敛,则 ( D ).(A )0>a , (B) R a ∈, (C) 1>a , (D) 1<a . 3. 若反常积分1sin axdx x +∞⎰绝对收敛,则 ( C ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 0<a .4. 若级数∑∞=+-031)1(n annn 条件收敛,则 ( D ). (A )0>a , (B) R a ∈, (C) 1>a , (D) 2/3>3/1>a .5. 设函数()f x =⎪⎩⎪⎨⎧-11 ππ<≤<≤-x x 00以2T π=为周期,其傅里叶级数的和函数为()S x ,则(6)4S ππ+=( B ).(A )-1 , (B) 1 , (C) 0 , (D)不存在.三、计算题(6分⨯5=30分)1.求ln(1)x dx +⎰. 解:原式=ln(1)1xx x dx x +-+⎰-------------------4分 =ln(1)ln(1)x x x x C +-+++-----------------6分 2.求312x xdx -⎰.解:原式=21(2)x x dx -⎰+32(2)x x dx -⎰--------------2分=43--------------6分 3.求)1sin 2sin (sin 1lim πππn n n n n n -+++∞>- .解:原式=n k n n k n π)1(sin 1lim 1-∑=∞>-=⎰1sin xdx π-------------2分院系 班级 序号 姓名 装 订 线=10)cos (1x -π-------------4分=2/π-------------6分4.求21⎰.解:原式=22sin cos cos ttdx tπ⎰-------4分=4π-------6分5. 求反常积分211(1)dx x x +∞+⎰的值. 解:因为211(1)dx x x +∞+⎰21111111dx dx dx x x x +∞+∞+∞=-++⎰⎰⎰------------4分 1ln 2=--------------6分四、(1)求由曲线2y x =与直线0,1,1x x y ===-所围图形的面积. (2)求上述图形绕直线1y =-旋转一周而得立体体积. (10分).解:(1)120413s x dx =+=⎰--------------------5分(2)122028(1)15v x dx ππ=+=⎰--------------------10分 五、证明:若级数∑∞=12n n a 收敛,)0(1>∑∞=n n na na 也收敛. (4分) 证明:因为级数 ∑∞=121n n,∑∞=12n na收敛------------2分所以)1(212n n a n +∑∞=收敛,又(21≤n a n )122n a n+ 则)0(1>∑∞=n n na n a 也收敛. ----------------4分 六、求幂级数0(1)1n nn x n ∞=-+∑的收敛半径、收敛域与和函数,又求01(1)(1)2n nn n ∞=-+∑的 和(10分)解: 令 =)(x s ∑∞=+-01)1(n n n x n=)(x xs ∑∞=+-+01)1(1n n n x n , ])(['x xs =∑∞=-0)1(n n n x =x+11,)1,1(-∈x=)(x xs ⎰+=+xx dx x 0)1ln(11=)(x s xx )1ln(+0≠x0)(,0==x s x ------------------4分收敛半径为1 ,收敛域为(-1,1]。
数学分析试题及答案解析
2014 ---2015学年度第二学期《数学分析2》A 试卷学院 班级 学号(后两位) 姓名一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1、若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()C dt t f xa+⎰( )、2、若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( )、3、 若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( )、 4、 若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5、 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( )、6、 若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( )、7、 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( )、二. 单项选择题(每小题3分,共15分)1、若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A 、不连续B 、 连续C 、可微D 、不能确定2、 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )A 、 ()x f 在[]b a ,上一定不可积;B 、 ()x f 在[]b a ,上一定可积,但就是()()⎰⎰≠babadx x g dx x f ;C 、 ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D 、 ()x f 在[]b a ,上的可积性不能确定、3、级数()∑∞=--+12111n n n nA 、发散B 、绝对收敛C 、条件收敛D 、 不确定 4、设∑n u 为任一项级数,则下列说法正确的就是( ) A 、若0lim =∞→n n u ,则级数∑nu 一定收敛;B 、 若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;C 、 若1,1<>∃+n n u uN n N ,时有当,则级数∑n u 一定收敛;D 、 若1,1>>∃+nn u uN n N ,时有当,则级数∑n u 一定发散;5、关于幂级数∑n n x a 的说法正确的就是( ) A 、 ∑nnxa 在收敛区间上各点就是绝对收敛的; B 、 ∑nnxa 在收敛域上各点就是绝对收敛的; C 、 ∑nn xa 的与函数在收敛域上各点存在各阶导数; D 、∑nnxa 在收敛域上就是绝对并且一致收敛的;三、计算与求值(每小题5分,共10分) 1、 ()()()nn n n n n n +++∞→Λ211lim2、 ()⎰dx x x 2cos sin ln 四、 判断敛散性(每小题5分,共15分)1、dx xx x ⎰∞+++-021132、∑∞=1!n nnn 3、()nnn nn21211+-∑∞= 五、 判别在数集D 上的一致收敛性(每小题5分,共10分) 1、()()+∞∞-===,,2,1,sin D n nnxx f n Λ 2、 (][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面030角向斜上方切割,求从圆柱体上切下的这块立体的体积。
考研_2020年云南昆明理工大学数学分析考研真题A卷
2020年云南昆明理工大学数学分析考研真题A卷
考生答题须知
1.所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。
请考生务必在答题纸上写清题号。
2.评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。
3.答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。
4.答题时不准使用涂改液等具有明显标记的涂改用品。
1、(15分)设为非空有上界的数集. 证明:当且仅当,其中和分别表示的上确界和最大值.
2、(15分)求下列极限
3、(15分)已知函数在点处连续,计算和.
4、(15分)证明函数在点处可微当且仅当函数在点处可导.
5、(15分)利用微分中值定理证明:,其中.
6、(15分)求幂级数
的收敛域与和函数.
7、(15分)求曲线在点处的切线方程.
8、(15分)证明在点连续且偏导数存在,但在此点不可微.
9、(15分)计算曲线积分,其中是由和所围成的闭曲线.
10、(15分)设某流体的流速为(为常数),求单位时间内从球面
的内部流过球面的流量.。
数学分析续论模拟试题
《 数学分析续论 》模拟试题(三)一、 实数完备性问题.(15分)( 1 ) 叙述单调有界定理与区间套定理; ( 2 ) 用区间套定理证明单调有界定理.[答(1)]单调有界定理:单调有界数列必定存在极限. 区间套定理:若{}],[n n b a 为一区间套,即满足:① ,2,1,],[],[11=⊂++n b a b a n n n n ; ②0)(lim =-∞→n n n a b ,则存在惟一的∈ξ],[n n b a , ,2,1=n .[证(2)]设{}n x 为递减且有下界M 的数列,欲证{}n x 收敛.为此构造区间套如下:令],[],[111x M b a =;记2111b a c +=,再令{}{}⎪⎩⎪⎨⎧=;,],[,,],[],[11111122的下界不是若的下界是若n n x c c a x c b c b a……,用逐次二等分法继续做下去,构造得一区间套{}],[n n b a ,使得 ,2,1,=n a n 恒为{}n x 的下界,而 ,2,1,=n b n 不是{}n x 的下界. 由区间套定理,∈ξ∃],[n n b a ,,2,1=n .下面进一步证明 ξ=∞→n n x lim .根据区间套定理的推论,K k K ≥∈∃>ε∀+当使,,0Ν时,);(],[εξ⊂ U b a k k .由于 ,2,1,=k a k 恒为{}n x 的下界,而 ,2,1,=k b k 不是{}n x 的下界,故对上述K ,必有K K b x <;且因{}n x 为递减数列,当K n >时满足K K n K b x x a <≤≤,于是{}n x );(εξ⊂U ,这就证得ξ=∞→n n x lim .同理可证{}n x 为递增而有上界的情形,请读者自行写出它的证明. □二、(10分)( 1 ) 写出2R 中点集E 为开集的定义;( 2 ) 用定义证明:若E 、2R ⊂F 都为开集,则并集F E H ⋃=与交集F E G ⋂= 亦都为开集.[答(1)]所谓2R ⊂E 是开集,是指E 中所有点都是E 的内点.即p ∀E ∈,0>δ∃,满足E p U ⊂δ);(.[证(2)]设E 、2R ⊂F 都为开集,下面证明F E H ⋃=为开集.为此任取H p ∈,由F E H ⋃=,则E p ∈或F p ∈.根据开集定义,0>δ∃,使得E p U ⊂δ);(,或F p U ⊂δ);(,从而H p U ⊂δ);(.这就证得F E H ⋃=为2R 中的一个开集.类似地可证F E G ⋂=亦为开集,请读者自行写出它的证明. □三、(10分)已知f 在区间I 上连续,且为一一映射.证明:f 在I 上必为严格单调函数.(提示:使用反证法,并借助连续函数的介值性.)[证]倘若f 在I 上不是严格单调函数,则I x x x ∈∃321,,)(321x x x <<,使得[][]0)()()()(2312<--x f x f x f x f .,不失一般性,设)()()(132x f x f x f >>.现任取μ满足)()(32x f x f >μ>,则由连续函数的介值性,),(,),(3221x x x x ∈η∈ξ∃,使得μ=η=ξ)()(f f .而这与f 在I 上为一一映射的假设相矛盾,所以f 在I 上必为严格单调函数. □注意 在函数f 为连续的前提下,严格 单调与一一映射才是等价的;而在一般情形下, 一一映射的f 不一定是严格单调的.例如右 图所示的函数)(x f y =,它在],[b a 上是一 一映射,但却不是严格单调的.四、(10分) 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=)(ln )(,43,220y x y x u f u y x u . 试求)()(0u f u f ''与.[解]根据向量函数的导数的定义,容易求得:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂+∂∂+∂∂='yxy x y y x x y x yy x x y x y y x xu f 11ln ln )(22222222, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-='41315453)(0u f . □五、(15分) 证明:在n 个正数的乘积为定值的条件a x x x n = 21之下,这n 个正数的和n x x x +++ 21的最小值为n a n .并由此结果推出以下不等式:nx x x x x x nnn +++≤2121.[证]用 Lagrange 乘数法,设)(2121a x x x x x x L n n -λ++++= ,并令nn n n x n x a x x x a x x x L x x L x x L n ====⇒⎪⎪⎭⎪⎪⎬⎫=-='=λ+='=λ+='λ- 2121112,0,01,011..............由于n x x x +++ 21的最大值不存在)(+∞,最小值存在,因此()n n a n x x x =+++ 21min ;并有n n a n x x x ≥+++ 21.以 a x x x n = 21代入上式,则得所求之不等式nx x x x x x nnn +++≤2121. □六、积分问题.(20分)(1) 画出曲线 )2(||x x y -=;并求由该曲线和直线,1-=x 以及x 轴 所围图形的面积S ;(2)设f 为连续函数,证明:⎰⎰πππ=)sin (2)sin (x x f x x f x d d .[解(1)]为画出曲线,可先改写其方程为⎩⎨⎧<--≥--=.0,1)1(,0,)1(122x x x x y 此曲线和直线,1-=x 以及x 轴所围图形如右图 所示.其面积计算如下:.383434)3()3(d )2(d )2(2032102322012=+=-+-=-+-=--⎰⎰x x x x x x x x x x S[证(2)]作变换x u -π=,把原积分化为.⎰⎰⎰⎰ππππ-π=--π-π=00d )sin (d )sin ()d ())sin(()(d )sin (u u f u u u f u u f u x x f x由此移项后即得 ⎰⎰πππ=00)sin (2)sin (x x f x x f x d d . □七、级数问题.(20分) (1) 证明:0!3lim=∞→n n nnn ;y(2) 证明:∑∞==+11!)1(n n n.提示:利用幂级数∑∞=++=11!)1()(n n n x n x S ,∑∑∞=∞=+=-='101!!)1()(n n n n n x n x x S .[证(1)]考察级数∑∑∞=∞==113n n n n n n n a !.由于)(13e1313)1(3)1(111∞→<→⎪⎭⎫ ⎝⎛+=++=+++n n n n n n n a a n n n n n n n .!.!, 故此级数收敛.依据级数收敛的必要条件,便证得0!3lim=∞→n n nnn .[证(2)]考察幂级数∑∞=++=11)1()(n n n x n x S !.由于x 01e )1()(x n x x n x x S n nn n ==-='∑∑∞=∞=!!,因此1e e 0d e )0()(0+-+=+=⎰x xx u x u u S x S .从而求得1)1()1(1∑∞===+n S n n!. □。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 数学分析续论 》模拟试题(一)
一、 单项选择题(56⨯')
(1)设{}
n a 为单调数列,若存在一收敛子列{}
j n a ,这时有 ............[ ] A.j n j n n a a ∞
→∞
→=lim lim ; B.{}
n a 不一定收敛; C.{}
n a 不一定有界;
D.当且仅当预先假设了{}
n a 为有界数列时,才有A成立.
(2)设)(x f 在R 上为一连续函数,则有 ..............................[ ]
A.当I 为开区间时)(I f 必为开区间; B.当)(I f 为闭区间时I 必为闭区间; C.当)(I f 为开区间时I 必为开区间; D.以上A、B、C都不一定成立. (3)设)(x f 在某去心邻域)(0x U ο内可导.这时有 .....................[ ]
A.若A x f x x ='→)(lim 0
存在,则A x f =')(0;B.若f 在0x 连续,则A 成立;
C.若A x f =')(0存在,则A x f x x ='→)(lim 0
;D.以上A、B、C都不一定成立.
(4)设)(x f 在],[b a 上可积,则有 ..................................[ ]
A.)(x f 在],[b a 上必定连续; B.)(x f 在],[b a 上至多只有有限个间断点; C.)(x f 的间断点不能处处稠密; D.)(x f 在],[b a 上的连续点必定处处稠密.
(5)设
∑∞
=1
n n
u 为一正项级数.这时有 ..................................[ ]
A.若0lim =∞
→n n u ,则 ∑∞
=1n n u 收敛; B.若
∑∞
=1
n n u 收敛,则1lim
1
<+∞→n
n n u u ; C .若
∑∞
=1
n n
u 收敛,则1lim
<∞
→n
n n u ; D.以上A、B、C都不一定成立.
二、计算题(401⨯')
(1)试求下列极限:
①⎪⎭
⎫
⎝⎛-+-+++∞→n n n n 3)12(31lim Λ; ② ⎰⎰⎪⎭
⎫
⎝⎛∞+→x
t x t x t
t 022
02
2lim d e
d e .
(2)设
⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=⎥⎦
⎤⎢⎣⎡-=
⎥⎦
⎤
⎢⎣⎡=+x y u f u y x u y x arctan e )(,21,220. 试求)()(0u f u f ''与. (3)试求由曲线 12-=x y ,直线2=x ,以及二坐标轴所围曲
边梯形的面积 S .
(4)用条件极值方法(Lagrange 乘数法)导出从固定点),(00y x 到直线
0=++C y B x A 的距离计算公式.
三、证明题(301⨯')
(1)设)()(x g x f 与在],[b a 上都连续.试证:若
)()(,)()(b g b f a g a f ><,
则必存在),(0b a x ∈,满足)()(00x g x f =.
(2)证明x x x f ln )(=在其定义域上为一严格凸函数,并导出不等式:
c b a c
b a
c b a c b a <⎪
⎭
⎫ ⎝⎛++++3, 其中 c b a ,,均为正数.( 提示:利用詹森不等式.)
(3) 证明:
∑
∞
=π
=
+-0
4
12)1(n n n .
解 答
一、[答](1)A; (2)C; (3)B; (4)D; (5)D.
二、[解] (1) ① 333lim 3)12(31lim -=+-=⎪⎭
⎫
⎝⎛-+-+++∞→∞→n n n n n n n Λ;
②
.
022lim
d 2lim
d 2lim
d e d e lim
2
2
2
2
2
2
2
2
2020
22
0====⎪⎭
⎫
⎝⎛∞
+→∞
+→∞
+→∞
+→⎰⎰⎰⎰x x x x x t x x
x
t x x x
t x
t x x t t
t
t e
e e
e e e e
(2) ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-='⎥⎥⎥⎦
⎤
⎢⎢⎢
⎣
⎡++-='++5
15
2
42)(,e 2e 2)(5
5
022222222e e u f y x x
y x y y x u f y x y x .
(3)所围曲边梯形如右图所示.其面积为
.
212)3(0
1)3()1()1(3
31
2
1
22=-+-=-+-=⎰⎰x x x x x
x x x S d d
(4)由题意,所求距离的平方(2d )为2
020)()(y y x x -+-的最小值,其中)
,(y x 需满足0=++C By Ax ,故此为一条件极小值问题.
依据 Lagrange 乘数法,设
)()()(2020C By Ax y y x x L ++λ+-+-=,
并令
⎪⎩⎪
⎨⎧.0,0)(2,
0)(200=++==λ+-==λ+-=λ
C y B x A L B y y L A x x L y x (F)。