智能电梯控制系统设计
智能控制PID算法的电梯系统设计
智能控制PID算法的电梯系统设计本文介绍一种基于智能控制PID算法的电梯系统设计。
使用单片机作为核心控制,设计仿人智能控制的PID算法,利用拖动技术实现调频、调压、调速,实现较为理想的电梯控制效果。
标签:电梯控制;单片机;智能控制;PID算法一、系统整体设计整个电梯控制系统按照总线式,控制结构分成主控制器,轿厢控制器和门厅控制器,各组成部分均围绕单片机构建而成,承担不同的系统任务,由RS-485总线连接成有机的控制系统。
二、电梯控制系统的组成设计电梯控制系统可分为三个主要功能模块:电梯操作系统控制模块,由单片机及外围接口电路组成,是电梯逻辑运行的控制核心;拖动系统控制模块,由模拟电路组成的交流调压调速装置;继电器、接触器开关量控制模块,由电梯的状态、保护继电器及主电路接触器组成。
三、电梯控制系统结构设计(一)电梯的逻辑控制系统主要完成的是采集来自厅層、轿厢、井道、机房等不同位置、不同性质的外部信号,将它们按一定的逻辑关系进行综合处理,得到对应的处理结果,进而输出给各控制器件实现控制具体的操作。
其具体的系统包括轿厢内指令系统、厅外呼梯系统、选层定向系统、显示系统、安全保护系统、检修系统等。
(二)电梯的拖动系统接收来自逻辑控制系统的信号,在没有发现故障的情况下,控制电梯拖动系统以速度给定曲线为依据,利用模拟或数字控制装置,针对曳引电机的不同调速方式构成的闭环速度控制系统,实现电梯运动状态的控制。
(三)电梯的附属装置系统应急装置系统,是当电梯运行中发生故障时,使电梯能够按预先设定能够的救援程序运行,在最短的时间内将梯内乘客放出,保障乘客的人身安全。
四、系统各控制器的设计(一)主控制器的设计以AT89S52单片机为核心主控制器,负责整个电梯的运行控制。
位于楼房的顶部电梯机房内,与电梯动力装置曳引机构成了整个电梯控制系统的核心。
采用变频器对轿厢拽动电机实施控制,由编码器反馈轿厢运行速度,系统设置了轿厢位置上、下限位开关,速度上下限开关以提供安全保障,设置光电隔离的继电器输出接口实现相应设备的控制。
毕业设计(论文)-基于51单片机的电梯智能控制系统设计
摘要在现代电梯智能控制系统大多采用PLC智能控制,PLC具有稳定的多I/O 口输出控制,容易操作与调试,易于远程操作及监控等优点,但PLC造价高,市场上一般16点的PLC造价就至少上百元,而大多进口的西门子,欧姆龙系列就不用说了,故在小系统中,采用PLC控制不太合适。
本系统采用AT89C51进行智能控制,成本超低,但性能亦很稳定,并具有系统崩溃自锁功能,整体性能比利用PLC更优惠。
关键字:AT89C51,电机控制,24c02目录摘要 (1)目录 (2)一系统设计方案 (3)1.单片机控制系统总体框图 (3)2.电机驱动系统设计框图 (3)二元器件简介 (4)1.AT89C51的单片机简介 (4)(1)主要特性 (5)(2)管脚说明 (5)(3)振荡器特性 (8)(4)芯片擦除 (8)2.存储器24c02 (9)三电梯智能控制系统设计 (13)1.硬件电路设计 (13)(1)单片机最小系统 (13)(2)继电器控制电路的设计 (14)(3)红外检测系统 (14)(4)系统供电电源 (15)2.系统软件设计 (15)(1)软件介绍 (15)(2)程序流程图 (15)(3)程序清单 (16)四调试过程 (17)1.检测AT89C51运行否 (17)2.红外检测测试 (17)总结 (18)参考文献 (19)一系统设计方案1.单片机控制系统总体框图2.电机驱动系统设计框图二元器件简介1.AT89C51的单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
基于PLC的电梯控制系统设计及优化方案
基于PLC的电梯控制系统设计及优化方案一、引言电梯作为现代城市生活中不可或缺的交通工具之一,其安全性和可靠性对于人们的生活质量起着重要的作用。
本文就基于可编程逻辑控制器(PLC)的电梯控制系统进行设计和优化,旨在提高电梯的运行效率和安全性。
二、电梯控制系统的设计1. 系统结构设计电梯控制系统主要由PLC、人机界面(HMI)、电机驱动器和传感器组成。
其中,PLC负责控制电梯的运行状态,HMI用于操作和显示电梯的运行信息,电机驱动器控制电梯的运行方向和速度,传感器用于感知电梯的位置和负载情况。
2. 控制逻辑设计基于PLC的电梯控制系统需要考虑多重因素,包括电梯的运行状态、外部乘客需求和电梯的安全性。
可以采用以下控制逻辑进行设计:- 根据外部信号确定电梯的运行方向:当电梯处于静止状态时,根据上下行按钮的信号确定电梯的运行方向。
- 响应楼层请求:当电梯处于运行状态时,监测电梯上下移动过程中每一层的请求,根据最近楼层请求和电梯当前所处楼层确定是否停靠。
- 控制电梯的加速度和减速度:根据电梯的负载情况和运行状态,控制电梯的加速度和减速度,以平稳地进行上下运动。
3. 安全保护设计为了保证电梯的安全性,需要在电梯控制系统中设计各种安全保护机制,包括速度保护、超载保护、门把手保护和故障诊断等。
- 速度保护:通过传感器监测电梯的速度,设置速度上下限,一旦检测到速度超出设定范围,立即停止电梯运行。
- 超载保护:通过传感器监测电梯的负载情况,设置负载上限,一旦检测到超载,禁止进入更多的乘客,确保电梯的正常运行。
- 门把手保护:在电梯门上设置安全传感器,一旦检测到门把手或其他物体卡住,立即停止电梯门的关闭过程。
- 故障诊断:通过PLC的自动故障诊断功能,可以及时发现电梯控制系统的故障,并进行报警或者自动处理。
三、电梯控制系统的优化方案1. 智能调度算法在电梯控制系统中,采用智能调度算法可以优化电梯的运行效率和乘客的等待时间。
智能电梯的安防联动控制系统设计
智能电梯的安防联动控制系统设计摘要:随着社会的快速发展与进步,人们对生活的要求越来越高。
电梯作为必不可少的一种运输工具,其安防联动控制系统也被受关注。
智能电梯安防联动控制系统是由IC卡读写系统、安防控制系统、数字对讲系统共同组成的安防系统,系统间有着一定的联动控制性。
智能电梯安防联动控制系统不仅为电梯使用者和管理者带来了方便,同时也有效确保电梯系统运行安全。
基于此,本文主要分析了智能电梯的安防联动控制系统设计。
关键词:智能电梯;控制系统;安防引言:电梯使用的智能化和自动化是当今时代的发展要求,而其中,智能电梯安防联动控制系统的研制更是受到了越来越多人的广泛关注。
作为一种便捷的运输设备,其构造原理及运转机制十分复杂。
若稍有不慎都可能会出现事故,造成难以挽回的财产损失和人身安全问题。
我们应该深入分析智能电梯安防联动控制系统的具体要求和研制流程,对其功能性需求进行分析和设计,从而提升智能电梯的用户体验和安全性能,防止智能电梯在使用过程中发生人为风险和机械故障的可能性,提升智能电梯的总体安全系数。
1、智能电梯安防联动控制系统概述电梯作为人们日常生活中最重要的运输工具,其安全性能是其使用安全的重要保证。
当前,在电气设备智能化的号召之下,对于电梯的功能也提出了智能化、一体化以及自动化的多种要求,越来越多的智能化电梯被应用在办公楼和居民楼之中,其中,智能电梯的安防联动控制系统是智能电梯安全性的有效保证。
它是由电梯IC卡读写系统以及安防控制系统与数字对讲系统共同组成的安防系统,各个系统之间有着较高的联动性,因此被称之为安防联动控制系统。
系统中主要应用的技术为单片机控制技术、串行通信技术以及针对音频的传输和处理技术。
这种安防控制系统能够防止无关人员使用电梯,增加了电梯使用的安全性和稳定性,降低了建筑物使用者的使用电梯的风险,也对我国的安全城市建设和文明城市建设起到了一定的助推作用。
2、智能电梯的安防联动控制系统设计2.1系统设计的主要内容包含这四部分:2.1(1)对智能电梯安防联动控制系统的功能和相关设备的性能需要进行分析和研究,为之后的开发做铺垫。
基于单片机的电梯控制系统设计
基于单片机的电梯控制系统设计随着现代社会的快速发展,电梯已成为人们日常生活中不可或缺的运输工具。
为了提高电梯的运行效率,保证其安全可靠性,设计一种基于单片机的电梯控制系统。
该系统以单片机为核心,结合传感器、按键、显示等模块,实现对电梯的运行状态、楼层信号、呼梯信号的实时监控与显示。
一、系统硬件设计1、单片机选择本设计选用AT89S52单片机作为主控芯片,该芯片具有低功耗、高性能的特点,内部集成了丰富的外围设备,方便开发与调试。
2、输入模块设计输入模块主要包括楼层传感器和呼梯按钮。
楼层传感器采用光电式传感器,安装在各楼层,用于检测电梯的运行状态和位置;呼梯按钮安装在电梯轿厢内,用于收集用户的呼梯信号。
3、输出模块设计输出模块主要包括显示模块和驱动模块。
显示模块采用LED数码管,用于实时显示电梯的运行状态、楼层位置等信息;驱动模块包括继电器和指示灯,用于控制电梯的运行和指示状态。
4、通信模块设计通信模块采用RS485总线,实现单片机与上位机之间的数据传输与通信。
二、系统软件设计1、主程序流程图主程序主要实现电梯控制系统的初始化、数据采集、处理与输出等功能。
主程序流程图如图1所示。
图1主程序流程图2、中断处理程序中断处理程序主要包括外部中断0和定时器0的中断处理。
外部中断0用于处理楼层传感器的信号,定时器0用于计时和速度控制。
三、系统调试与性能分析1、硬件调试首先对电路板进行常规检查,包括元器件的焊接、电源的稳定性等;然后分别调试输入、输出、通信等模块,确保各部分功能正常。
2、软件调试在硬件调试的基础上,对软件进行调试。
通过编写调试程序,检查各模块的功能是否正常;利用串口调试工具,对通信模块进行调试。
3、性能分析经过调试后的电梯控制系统,其性能稳定、运行可靠。
该系统能够实现对电梯运行状态、楼层信号、呼梯信号的实时监控与显示,并且具有速度快、安全可靠等特点。
该系统还具有成本低、易于维护等优点,适用于各种场合的电梯控制。
智能电梯控制系统设计毕业设计
智能电梯控制系统设计毕业设计智能电梯控制系统设计毕业设计?哎呀,听起来是不是有点高大上?说白了就是想让电梯更聪明,让它在咱们楼里跑来跑去的时候,不再是像个傻小子一样,等得人心焦,或者站错楼层,搞得自己也懵圈。
你看啊,现在的楼层越来越高,人口越来越密集,电梯作为咱们日常生活的得力小帮手,能否顺利地运行,直接关系到大家的心情,甚至工作效率。
所以呢,这个智能电梯的设计,其实不仅仅是技术上的挑战,还涉及到咱们日常生活的细节,关乎“等一会儿”、“还没到”这样的生活小烦恼。
咱们就来聊聊这个事儿,看看这个“智能电梯控制系统”怎么能让咱们的生活更美好!电梯嘛,大家都用过,不是吧?反正我用过好几回,电梯门一关,突然停住,居然在半路被卡住了,心里那个焦急,恨不得自己去推一推电梯。
再比如说那种,按了上去的按钮,电梯却停在了下面,简直是笑话!不过如果有了智能电梯控制系统,就可以大大减少这种烦人的“意外”。
像是一些聪明的控制系统可以通过智能算法预测楼层的需求,提前调配电梯,甚至根据楼层的流量来自动选择最佳路线。
这样一来,你再也不用站在那儿发呆了,电梯总能准时在你面前出现,给你一种“哇,真是太懂我了”的感觉。
再说说智能系统的“眼睛”——传感器。
你要知道,以前的电梯控制系统,都是靠按钮来操作的。
咱们按下一个按钮,它就开始工作,但往往一按错,电梯就开错门,搞得自己都尴尬得不行。
但是,智能电梯就不一样了,它可以通过传感器感知楼层的变化、人员的上下情况。
换句话说,咱们进入电梯时,传感器就会立马知道是哪个方向需要前往,甚至在你进电梯的一瞬间,系统就能预测到你是想去几楼,这种精准程度,简直让人拍手称赞!就像是你进了店里,老板就知道你想要什么,不用多问,直接拿出来,简直舒服得不要不要的。
不仅如此,智能电梯还可以根据每个楼层的繁忙程度,智能分配电梯的运行路径和时间,避免高峰时段出现拥挤的情况。
想象一下,如果有了这种智能系统,大家都可以迅速、安稳地进出电梯,不用担心被别人挤来挤去。
智慧电梯系统设计与分析设计方案
智慧电梯系统设计与分析设计方案智慧电梯系统是一种基于人工智能和物联网技术的电梯管理系统,通过对电梯进行智能化监控和管理,实现电梯的高效运行和维护。
本文将从系统设计和分析两个方面,对智慧电梯系统进行详细的介绍。
一、系统设计智慧电梯系统主要包括以下几个模块:数据采集模块、数据传输模块、数据处理模块、数据展示模块和控制执行模块。
1. 数据采集模块数据采集模块主要用于采集电梯相关的各种数据,包括电梯的运行状态、故障信息、乘客数量等。
这些数据可以通过传感器或者监控设备来实现采集。
2. 数据传输模块数据传输模块主要负责将采集到的数据传输给数据处理模块进行处理。
可以使用有线或无线的方式进行数据传输,例如使用以太网或者无线局域网进行数据传输。
3. 数据处理模块数据处理模块是智慧电梯系统的核心模块,主要负责对采集到的数据进行处理和分析。
通过分析数据,可以实现对电梯的状态监测、故障诊断等功能。
同时,可以根据数据分析的结果,进行智能调度和优化。
4. 数据展示模块数据展示模块用于将处理后的数据进行展示,提供给用户进行查看和分析。
可以使用图表、报表等方式展示数据,以便用户更直观地了解电梯的运行状态和维护情况。
5. 控制执行模块控制执行模块主要用于控制电梯的运行和维护。
通过与电梯控制系统的集成,可以实现对电梯的远程控制和智能调度。
同时,可以根据数据分析的结果,进行故障预测和维护计划的制定。
二、系统分析智慧电梯系统的设计与分析包括以下几个方面:1. 电梯的智能调度:通过对电梯运行状态和乘客需求进行分析,实现智能调度,提高电梯的运行效率。
可以考虑使用遗传算法、模糊控制等方法,进行电梯调度的优化。
2. 故障诊断和预测:通过对电梯的运行数据进行分析,实现对电梯故障的诊断和预测。
可以使用机器学习算法、神经网络等方法,进行故障识别和预测。
3. 安全监控和报警:通过对电梯运行状态和乘客行为进行监控,实时掌握电梯的安全状况。
同时,可以设置报警机制,及时响应电梯故障和紧急情况。
基于PLC的智能电梯控制系统设计
基于PLC的智能电梯控制系统设计智能电梯控制系统是现代城市中不可或缺的一部分。
本文将介绍基于可编程逻辑控制器(PLC)的智能电梯控制系统设计。
1. 系统概述及需求分析智能电梯控制系统的主要功能是根据用户的需求和楼层的情况,实现电梯的安全、高效地运行。
该系统应具备以下特点:- 自动调度:根据乘客分布和楼层需求,合理分配电梯资源,降低等待时间和能源消耗。
-故障检测与报警:及时监测电梯的故障情况,并通过声音或显示屏等方式向用户发出警报。
- 安全保护:通过检测电梯内外的重量和限制人数,确保电梯的安全运行。
- 软启动和软停止:通过控制电梯的加速度和减速度,实现舒适的乘坐体验。
2. 硬件设计基于PLC的智能电梯控制系统的硬件设计需要包括以下部分:- PLC:作为控制系统的核心,负责接收和处理传感器和按钮的输入信号,并控制电梯的运行。
- 传感器:包括电梯内外的按钮、楼层传感器、重量传感器等,用于获取电梯和乘客的状态信息。
- 电梯主机:电梯的驱动设备,包括电机和减速器等,负责实现电梯的移动。
- 显示屏和声音设备:用于向用户显示当前楼层、电梯状态和发出报警声音等。
- 通信设备:可选的设备,用于与外部系统进行通信,如远程监控和管理系统。
3. 软件设计基于PLC的智能电梯控制系统的软件设计包括以下方面:- 输入信号处理:PLC需要接收来自各个传感器和按钮的输入信号,并根据信号类型进行处理。
- 运行调度算法:根据乘客分布和楼层需求,采用合适的调度算法来实现电梯的自动调度功能。
- 运动控制:根据输入信号和调度算法,控制电梯主机的运动,实现电梯的平稳启动、停止和运行。
- 状态监测和故障检测:监测电梯的状态,包括位置、速度、载荷等,及时检测故障并发出警报。
- 用户接口设计:通过显示屏和声音设备,向用户显示当前楼层、电梯状态以及发出报警声音等。
4. 系统测试与调试设计完智能电梯控制系统后,需要进行系统的测试和调试。
包括以下步骤:- 验证输入信号的传输和处理是否正确,如按钮的响应、传感器的准确性等。
智能变速电梯系统的设计与实现
智能变速电梯系统的设计与实现一、智能变速电梯系统概述智能变速电梯系统是一种新型的电梯控制系统,它利用先进的传感器技术和计算机算法,实现电梯运行速度的智能调节,以适应不同乘客的需求和提高电梯运行效率。
这种系统不仅能够提高乘客的乘坐体验,还能够在一定程度上降低能耗,减少电梯的维护成本。
1.1 智能变速电梯系统的核心特性智能变速电梯系统的核心特性主要包括以下几个方面:- 智能调速:系统能够根据乘客数量、楼层高度、等待时间等因素,智能调整电梯的运行速度。
- 高效节能:通过优化运行速度,减少不必要的能耗,实现节能降耗。
- 安全可靠:系统具备多重安全保护机制,确保电梯运行的安全性。
- 用户友好:系统提供直观的用户界面,方便乘客操作和使用。
1.2 智能变速电梯系统的应用场景智能变速电梯系统的应用场景非常广泛,包括但不限于以下几个方面:- 商业楼宇:为商业楼宇提供高效的垂直运输解决方案,提高楼宇的使用效率。
- 住宅小区:改善居民的出行体验,减少等待时间,提升居住舒适度。
- 公共设施:在医院、学校等公共设施中,提供快速、平稳的电梯服务。
二、智能变速电梯系统的设计与实现智能变速电梯系统的设计与实现是一个涉及多个学科的综合工程,需要考虑电梯的机械结构、电子控制、软件算法等多个方面。
2.1 系统设计智能变速电梯系统的设计主要包括以下几个部分:- 传感器系统:安装在电梯内部和外部的传感器,用于收集乘客数量、楼层信息等数据。
- 控制器:作为系统的大脑,负责处理传感器收集的数据,并发出相应的控制指令。
- 驱动系统:根据控制器的指令,调整电梯的运行速度。
- 用户界面:提供给乘客操作的界面,包括楼层选择、紧急呼叫等功能。
2.2 系统实现智能变速电梯系统的实现需要经过以下几个步骤:- 需求分析:分析电梯使用场景和用户需求,确定系统的设计目标。
- 硬件选择:根据设计目标,选择合适的传感器、控制器、驱动器等硬件设备。
- 软件开发:开发电梯控制系统的软件,包括数据采集、处理算法、用户界面等。
智能电梯语音识别控制系统设计
第14卷㊀第3期Vol.14No.3㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2024年3月㊀Mar.2024㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2024)03-0199-04中图分类号:TP391.4文献标志码:A智能电梯语音识别控制系统设计王金硕,张紫阳,郑昌威,宋㊀蕾(辽宁科技大学电子与信息工程学院,辽宁鞍山114051)摘㊀要:随着语音识别技术的不断发展,无接触语音控制模式在公共设施上的应用也不断普及㊂为实现无接触语音控制模式在电梯控制系统上的应用,本文设计智能电梯语音识别控制系统,通过语音识别模块配合单片机实现对电梯的基本控制,并添加部分辅助功能以实现电梯的智能化设计,提高对于多种电梯应用环境的功能性㊁简化结构㊁拓展应用范围㊁实现电梯的自动化㊁智能化发展㊂关键词:电梯;语音识别;无接触语音控制;单片机DesignofintelligentelevatorspeechrecognitioncontrolsystemWANGJinshuo,ZHANGZiyang,ZHENGChangwei,SONGLei(SchoolofElectronicandInformationEngineering,UniversityofScienceandTechnologyLiaoning,Anshan114051,Liaoning,China)Abstract:Withthecontinuousdevelopmentofvoicerecognitiontechnology,theapplicationofcontactlessvoicecontrolmodeinpublicfacilitiesisalsobecomingmoreandmorepopular.Inordertorealizetheapplicationofthecontactlessvoicecontrolmodeintheelevatorcontrolsystem,theintelligentelevatorvoicerecognitioncontrolsystemisproposed,whichmainlyrealizesthebasiccontroloftheelevatorthroughthevoicerecognitionmodulewiththesingle-chipmicrocomputer,andaddssomeauxiliaryfunctionstorealizetheintelligentdesignoftheelevator.Theresearchfruitsimprovethefunctionalityoftheelevatorapplicationenvironment,simplifythestructure,expandtheapplicationrange,andrealizetheautomationandintelligentdevelopmentoftheelevator.Keywords:elevator;speechrecognition;contact-freevoicecontrol;microcontroller基金项目:大学生创新创业训练计划项目(2023年立项)㊂作者简介:王金硕(2004-),男,本科生,主要研究方向:电子工程;张紫阳(2003-),男,本科生,主要研究方向:电子工程;郑昌威(2003-),男,本科生,主要研究方向:电子工程㊂通讯作者:宋㊀蕾(1976-),女,博士,副教授,主要研究方向:冶金工程㊂Email:2327603962@qq.com收稿日期:2023-03-300㊀引㊀言随着人工智能和边缘计算的不断普及与发展,人们的生活水平日渐提高,语音识别技术作为智能化发展的一个重要分支已经成为了社会发展的潮流方向[1]㊂从生产方面来说,通过语音智能控制电梯的模式能够克服传统电梯的局限性,进一步提高自动化和智能化水平[2];从生活方面来说,电梯具有使用频繁㊁使用人群复杂㊁空间狭小㊁空气难以流通等特点,使用者直接接触按键将可能造成病毒的传播,而无接触控制模式可以极大程度地减小病毒传播的风险[3]㊂另外,无接触式的电梯控制方式可以减少因频繁使用按键导致的按键损伤,减小维护成本[4]㊂智能电梯控制系统主要通过语音模块实现电梯的无接触控制,并结合面部识别进行人员认定,继而又添加了传感器模组结合单片机进行一般风险的处理㊂通过将语音识别和面部识别相结合的方式实现电梯的智能化控制,从而有效提高了电梯运行的安全性㊂1㊀设计思路为实现智能电梯语音识别控制系统的主要功能,在语音智能控制的基础上,通过加装人脸识别系统㊁语音识别功能㊁一般风险处理等辅助模块进一步实现电梯的智能化设计,其自动控制模式也极大地促进了电梯的智能化㊂首先,为了减小运营成本并保证人员安全,目前很多社区和办公场所通过门卡的方式限制外来人员使用电梯,但刷门卡通过有时候也会带来很多不便,比如忘带门卡等情况[5]㊂而通过人脸识别和语音识别的方式对外来人员进行区分,不仅可以使识别更精确,保证安全,还可以切实提升电梯使用的便捷性,防止因 丢卡 而无法使用电梯的情况发生[6]㊂同时,外来人员也可以语音申请㊁并在允准后使用电梯,避免了外来人员无法使用电梯的情况,从而提供了更好的使用体验㊂其次,通过添加对一般风险的预警㊁外界连接交流等功能实现对电梯突发状况的风险处理㊂当风险发生时电梯会自动向外部发送运行状态异常信号,同时电梯内人员也可选择与外界进行语音联络,有助于外部人员较快地了解电梯内部情况㊂智能无接触控制系统在语音唤醒后开始收集使用者的面部信息,在面部信息比对完成后开启对电梯的语音化控制,通过语音模组对声音进行收取并将相应的控制信号输出给单片机,由单片机处理并输出信号控制电梯㊂外来人员使用电梯时也可向系统发出请求,经允许后可以使用电梯㊂此外,当检测或者接收到紧急情况信息时,单片机也将开启应急处理模式,并将电梯内部情况实时传递到外部总控端,以利于外界了解电梯内部和人员情况,更加及时,便捷地应对和处理突发情况㊂2㊀语音模块设计2.1㊀语音模块硬件介绍电梯的无接触化控制由VC-02语音识别模组实现的㊂该模组使用了US516P6语音芯片,能够精确完成声音信号与数字信号的相互转换,从而实现语音识别的功能[7]㊂US516P6芯片支持数字信号处理(DSP)指令集以及浮点运算单元,可以定制语音算法算子,实现对音频信息的收集与处理,具有良好的稳定性[8]㊂该离线识别算法与芯片架构深度融合,在音频方面支持I2S总线输入输出及模拟和数字音频输入与双声道数字模拟输出,可以实现语音控制的个性化定制和精准识别功能㊂VC-02的应用电路如图1所示㊂D A C_RM I C-M I C+G P I O_B7/T X1G P I O_B6/R X1G P I O_A25N CS D A/G P I O_B3S C L/G P I O_B2T C K/G P I O_B O/T XS P K+S P K-G N DV C CG P I O_A27G P I O_B8D A C_LG P I O_A26N C T M S/G P I O_B1/R XM I C-M I C+S P K+ S P K-M I CS P KV C-02V C C图1㊀VC-02应用电路Fig.1㊀VC-02applicationcircuit2.2㊀语音识别模块设计系统的语音识别模块以VC-02语音识别模组为主控单元,在设置好命令词后通过识别声音与命令词比对输出相应的控制信号㊂命令词实现的功能主要分为电梯控制㊁用户注册和自动化转人工等多个方面㊂VC-02通过提前设置的声音命令词和声音播报,让使用者可以通过说出对应的命令词实现控制系统的启用㊁对电梯的控制以及进行相应的操作[9]㊂芯片对每一个命令词都有一个相应的控制信号,将信息发送至单片机以判断对电梯下一步的控制方案㊂如芯片在识别到使用者前往的楼层时,将通过串口向单片机发送控制信号,并由单片机发送对电梯的控制信息使电梯到达相应楼层㊂在使用过程中,语音模块将按照先后顺序依次读取命令词,以防止语音识别系统在复杂的使用环境下混淆命令词㊂在VC-02语音模组中还添加了特定识别词,以实现外来人员识别㊁人员信息注册㊁唤醒声音识别系统和应急通讯等功能㊂当语音识别模块接收到上述特殊命令词后,将相应的控制信息发送到单片机,在信息处理的单片机上预留了一个输入和输出端口,通过有线的方式将上述特殊信息传递给总控端对信息进行处理,处理后将控制信息发送到单片机中㊂当单片机接收到可以使用的信号时,语音识别的流程如图2所示㊂单片机收取信息执行对应操作特殊命令词V C-02收取声音选择操作方案退出录入完成申请录入信息是否为批准用户语音唤醒开始语音识别与人脸识别相结合是否图2㊀语音识别流程图Fig.2㊀Flowchartofspeechrecognition3㊀面部识别模块设计3.1㊀OpenMV的人脸识别OpenMV是一种可以通过编程语言实现其逻辑功能的可编程摄像头模块[10],其人脸识别的主要功能是通过局部二值模式(LocalBinaryPattern)特征描述的,LBP通过描述图像局部特征的算子,提取特征纹理,完成人脸识别[11]㊂人脸检测是通过002智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第14卷㊀OpenMV的构造函数进行匹配并判断对象是否处于图像中㊂通过该函数可以更精准地对电梯内部人员进行面部识别,OpenMV通过对每一位电梯使用者进行拍照记录,将使用者的面部信息与数据库中的人脸模型进行相似度匹配,匹配成功后发送命令信号,进行语音控制电梯的操作[13]㊂3.2㊀面部识别设计面部识别功能主要是由OpenMV摄像头模块进行数据采集,实现人脸信息录入和电梯进入人员的识别两个功能㊂在对语音电梯控制系统进行语音唤醒后,要对进入电梯人员进行识别㊂OpenMV将采集到的人脸信息与数据库中的人脸数据加以比对,找出比对符合率最大的,并判断符合率是否达到人脸匹配成功的要求㊂如果识别失败则转入人脸信息的录入,摄像头将采集不同角度和不同表情的人脸数据进行储存,并将录用的人脸信息进行备份㊂人脸识别流程如图3所示㊂单片机收取信息执行对应操作选择操作方案申请录入信息语音唤醒开始录入完成退出人脸识别识别成功识别失败图3㊀人脸识别流程图Fig.3㊀Flowchartoffacerecognitiondesign4㊀一般风险处理电梯成为人们日常生活中重要的组成部分,保证电梯安全运行是公共设施建设的必要要求[14]㊂而在电梯内发生的风险一般都是突发的,没有太多的反应时间,同时电梯封闭的环境也易导致营救人员对内部突发状况和人员情况不了解,增加了救援难度[15]㊂在智能电梯控制系统设计的过程中主要围绕对风险的及时感知与预警以及对突发情况的辅助通讯等方面展开㊂通过预警㊁通讯与辅助救援等方面增强电梯使用的安全性,使智能电梯控制系统成为电梯安全运行的保障之一[16]㊂4.1㊀风险预警风险预警模块在电梯开始运行时开启,将传感器传输出的电梯运行状况信号传递给单片机进行检测㊂由于电梯内部为封闭空间,为保证数据传输的稳定性,单片机检测到的运行状况数据将通过有线的方式传输到数据库中[17]㊂当系统监测到电梯运行异常时,将通知外界的总控端进行预警㊂风险预警的预警状态分为4种:电梯运行速度异常㊁火警故障㊁断电故障和电梯门异常,电梯的运行状态结构如图4所示㊂运行速度异常火警故障断电故障电梯门异常单片机对传感器信号进行检测并进行逻辑分析红外感应电源检测温度检测光电传感器开关门信号电源维修信号火警信号电梯运行状态图4㊀电梯运行状态Fig.4㊀Runningstateoftheelevator㊀㊀目前市面上大多数种类的电梯是由轿厢中的控制系统控制电梯运行的,该系统主要以单片机或者可编程逻辑控制器(PLC)作为控制核心[18]㊂电梯在运行过程中由电机带动钢丝绳控制轿厢升降,轿厢中的控制系统接收到系统命令后,串行总线和电梯顶部的电机进行通讯[19],电梯的位置是由轿厢中的控制系统来进行检测的,一般都采用增量编码器计数的方式配合双稳态磁开关或光电开关来识别轿厢位置,从而将电梯的位置信号传递给电梯控制系统[20]㊂系统通过接收电梯的位置信号计算电梯的运行速度,判断电梯运行状态是否异常㊂电梯运行速度由电梯通过楼层的时间决定,电梯平均速度计算公式如下:V-=ðni=1dnti㊀㊀其中,d为楼层宽度;n为电梯从开始运行到停止状态时通过的楼层数量;ti为电梯从开始运行到停止状态通过每一个楼层所用的时间㊂另外,系统还添加了温度传感器,当温度值高于预警值时系统将发送火警故障预警㊂系统的电源检测电路能够判断电梯是否为带电状态,当检测到电梯为无电状态时发送断电预警,并添加了12V的锂电池外加电源以确保预警功能的正常运行㊂在电梯门处添加红外感应模块,当电梯在停止状态时开启,开启后如果单片机延时一定时间无法检测到红外感应,则发送电梯门异常故障预警等㊂4.2㊀辅助通讯当电梯被判断为异常运行时,电梯内的人员可102第3期王金硕,等:智能电梯语音识别控制系统设计以通过语音控制或外界强制与电梯内部进行语音连接㊂电梯内部与外界的信息采用有线的方式以防止电梯内部封闭信号弱等问题㊂通过与内部人员的沟通了解电梯内部状况,以便于救援人员对电梯内人员精准㊁有效地开展救援㊂5 结束语智能电梯语音识别控制系统通过无接触化语音控制模式实现对电梯的运行㊁人员识别㊁故障检测等功能㊂系统结构相对简单,对于电梯的多种应用环境都有良好的功能性,泛用性强㊂系统的设计包括语音与面部双识别㊁无接触控制电梯㊁突发状况的预警通讯,符合了当下智能化发展的设计需求㊂智能电梯语音识别控制系统设计对基础设施智能化建设提供了新的解决方案,系统的具体设计细节也有待进一步完善㊂参考文献[1]吴哲顺.基于协同边缘计算的声纹识别系统的研究与实现[D].广州:广东工业大学,2020.[2]汪鑫,于浩,张雨婷,等.基于单片机的智能电梯系统的设计与研究[J].物联网技术,2022,12(9):68-69.[3]陈伍昌,蒋政培.应对新冠肺炎疫情的电梯防疫包和无接触式呼梯选层技术[J].中国电梯,2021,32(24):63-65.[4]郝天玥.基于神经网络的无接触电梯控制系统的应用研究[D].大连:大连交通大学,2021.[5]骆凯.浅谈电梯IC卡刷卡系统[J].特种设备安全技术,2020(2):45-46.[6]赵慧,张伟,郝喆.基于OpenMV视觉模块的人脸识别监控系统研究[J].信息化研究,2022,48(1):55-58.[7]刘金凤.基于DSP的语音转换系统研究[D].长春:吉林大学,2006.[8]曾铮.基于DSP和USB的声音信号采集系统设计[D].北京:北方工业大学,2006.[9]郭罡,李锦宇,李小兵,等.嵌入式命令词语音识别系统[J].信号处理,2004(5):525-528,474.[10]王大伟,陈章玲.基于LBP与卷积神经网络的人脸识别[J].天津理工大学学报,2017,33(6):41-45.[11]姜煜杰.改进的LBP算法在人脸识别中的研究与应用[J].湖北师范大学学报(自然科学版),2023,43(2):51-59.[12]刘庆婷,陈梅.基于OpenMV的智能门卫系统[J].信息技术与信息化,2021(6):273-277.[13]胡徐胜,陶彬彬,曾胜.基于STM32的测温与身份识别系统设计[J].天津理工大学学报,2021,37(4):36-39.[14]王壹创,冯顺念,成龙,等.关于疫情期间免接触电梯的设计[J].电子制作,2022,30(12):6-8.[15]李宇杰,段二明.分析电梯检验中的控制系统常见问题及解决措施[J].中国设备工程,2023(24):173-175.[16]王恩亮,华驰,陈洁.基于STM32F103ZET6的自定义通信协议电梯监控系统设计[J].中国安全生产科学技术,2016,12(12):160-165.[17]陈军.基于ARM嵌入式的电梯信息采集及微投系统优化与研究[D].武汉:武汉纺织大学,2021.[18]闫妍.智能电梯控制中的PLC节能设计与实现[J].电子制作,2015(16):17.[19]申玉宏,刘丽.单片机在电梯自动控制中的应用分析[J].电子制作,2015(1):54.[20]孔庆鹏.电梯轿厢井道精密位置检测与变频驱动系统的研究[D].杭州:浙江工业大学,2002.202智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第14卷㊀。
基于51单片机的电梯智能控制系统设计与实现
基于51单片机的电梯智能控制系统设计与实现电梯智能控制系统是一种基于微控制器的设计,它的主要目的是帮助电梯自动化运行并保证运行的安全性。
本文将介绍基于51单片机的电梯智能控制系统的设计和实现。
一、电梯智能控制系统的设计思路若要设计一款电梯智能控制系统,我们需要考虑以下方面:1. 电梯的联动性:我们需要让电梯在呼叫系统和在楼层之间进行联动通信,从而实现自动化操作。
2. 速度控制器:电梯的电控系统中应该包括速度控制器以及对所有电动机和电脑设备的功率管理。
3. 安全保障:此类系统应该包括底层的传感器和控制器,以预防电梯陷入危险的情况。
基于这些方面,我们可以设计出以下的电梯智能控制系统:1. 位于每个楼层的面板将包括两个按钮:上行/下行和电梯呼叫。
2. 每个电梯都有自己的控制器,可以预测每个乘客的目标楼层以及电梯运动的方向。
3. 运动速度应该根据电梯的位置或者方向进行控制。
当电梯靠近楼层之后,速度应该降低并使电梯到达目的地。
4. 当电梯遇到紧急情况,如被卡住或者有人挡住,控制器应该立即响应并阻止电梯运动,避免任何可能危险的事件发生。
二、电梯智能控制系统的硬件设计以下是电梯智能控制系统的基本硬件设计:1. 单片机:电梯智能控制系统需要恰当的单片机来控制每个电梯的速度和位置,同时实现通信功能。
在本例中,我们使用51单片机。
2. 传感器:控制电梯位置和速度的传感器包括霍尔传感器和光电传感器。
3. 驱动器:驱动器是一种组件,可以调节电器负载的功率流量。
在电梯中,我们使用电动机和变频器驱动器来控制电梯的运动。
4. LED 显示器:该显示器用于指示电梯的运动状态,例如方向的指示灯、上行/下行箭头、电梯当前位置的数字等。
5. 按钮面板:面板应该在每个楼层提供上行/下行按钮和呼叫按钮,以允许乘客控制电梯。
三、电梯智能控制系统的软件设计以下是电梯智能控制系统的基本软件设计:1. 定时器:使用定时器来控制每个电梯的位置和速度,例如电梯到达楼层时,应该停止电梯并允许乘客离开或进入电梯。
智慧电梯管理系统设计方案,1200字
智慧电梯管理系统设计方案设计方案:智慧电梯管理系统一、引言随着城市化进程的加快和人口的增长,电梯成为现代建筑中必不可少的设施。
然而,电梯的管理和维护是一项繁琐而重要的工作,传统的电梯管理方式已经不能很好地满足现代社会的需求。
因此,利用现代技术研发智慧电梯管理系统,对电梯进行实时监控和管理,具有重要的意义。
二、系统架构智慧电梯管理系统是基于互联网和物联网技术的一种综合管理平台,主要包括以下几个组成部分:1. 电梯终端设备:安装在电梯内部的终端设备,用于收集电梯的数据和状态信息。
2. 数据传输网络:通过网络连接电梯终端设备和管理服务器,实现数据的传输和通信。
3. 管理服务器:集中管理所有电梯的数据和状态信息,提供远程监控和管理功能。
4. 用户端设备:如手机APP或电脑客户端,用于用户远程监控电梯的状态和控制电梯运行。
三、系统功能1. 实时监控:通过电梯终端设备收集电梯的故障信息、运行状态、乘客数量等数据,通过管理服务器实现对电梯状态的实时监控,及时发现并解决问题。
2. 异常报警:当电梯出现故障或异常时,系统能够自动发出报警信号,并及时向管理人员发送故障信息,方便维修人员迅速处理。
3. 远程管理:管理服务器能够远程控制每部电梯的运行状态,包括开关门、调整速度等。
同时,用户也能通过手机APP或电脑客户端远程控制电梯的运行。
4. 维修管理:管理服务器通过对电梯故障信息进行分析和统计,实现对电梯的维修管理。
同时,系统还能够提供电梯维修记录和维护计划等功能。
5. 运行数据分析:通过对电梯的运行数据进行分析和统计,可以提供给管理人员一系列有关电梯运行的数据报表和图表,用于电梯的优化管理和运行效率的提升。
6. 用户服务:用户通过手机APP或电脑客户端能够查询电梯的运行状态、选择电梯运行模式等,提供更加便捷的电梯使用体验。
四、系统优势1. 实时监控:系统能够实现对电梯的实时监控和故障诊断,及时发现电梯故障并解决问题,提高电梯的安全性和稳定性。
基于物联网的智慧电梯控制系统设计
基于物联网的智慧电梯控制系统设计智慧电梯控制系统是基于物联网技术的重要应用之一,它能够提供更加安全、高效、智能的电梯服务。
本文将介绍基于物联网的智慧电梯控制系统的设计原理、应用场景和未来发展趋势。
一、设计原理基于物联网的智慧电梯控制系统是通过将电梯与各种传感器、设备、云平台等连接起来,实现电梯的远程监控、智能运行和数据分析等功能。
首先,通过各种传感器(如加速度传感器、温度传感器、湿度传感器等)实时监测电梯的运行状态和环境信息,并将这些数据传输到云平台。
云平台可以对这些数据进行实时分析和处理,判断电梯的运行状况和故障预警,并根据需要发出相应的指令。
同时,用户可以通过手机App或者Web页面远程监控电梯状态、呼叫电梯,并获取相关的统计数据和报警信息。
总之,基于物联网的智慧电梯控制系统通过实时监控、智能分析和远程控制,提升了电梯的安全性、可靠性和用户体验。
二、应用场景基于物联网的智慧电梯控制系统可以应用于各种场景,如商业楼宇、住宅小区、医院、地铁站等。
在商业楼宇中,电梯是承载员工和客户流动的重要通道,系统可以实时监控电梯的负载情况和运行状态,根据需求进行智能调度,减少等候时间,提高运行效率。
在住宅小区中,电梯是居民出行的主要交通工具,系统可以通过远程控制和数据分析,提供更加方便、安全的电梯服务,例如电梯预约、远程开门等功能。
在医院中,电梯是医患流动的重要通道,系统可以根据不同的需求,优先安排急诊病人或者病患的就诊需求,提供更加快捷方便的服务。
在地铁站中,系统可以通过远程控制和数据分析,实时监测地铁站的客流情况,智能调度电梯,提供更加便捷高效的出行体验。
三、未来发展趋势基于物联网的智慧电梯控制系统在未来将呈现以下发展趋势:1. 人工智能与大数据的应用:通过人工智能和大数据分析技术,智慧电梯控制系统可以更加准确地预测电梯的故障,并进行相应的维护处理,以提高电梯的可靠性和使用寿命。
2. 智能化安全防范:通过视频监控、人脸识别、指纹识别等技术,智慧电梯控制系统可以实现对电梯使用者身份的识别和授权,确保只有合法人员才能使用电梯,提高电梯的安全性。
智能电梯控制系统
智能电梯控制系统Revised on November 25, 2020智能电梯控制系统Intelligent elevator control system摘要电梯控制系统是一个相当辅助的逻辑控制系统,系统要同时对几百个信号进行接收处理。
随着科学技术的进步,基于FPGA、单片机、PLC等微机化控制已经被广泛应用于电梯电路的设计与控制的各方面。
我设计构想是:不采用微控制器编程实现(如单片机,PLC等),而采用逻辑门芯片和分立模拟器件实现。
利用八线-三线优先级编码器74148,译码器CD4511及比较器CD4585、计数器CD4510等来实现其电梯控制功能。
电路使用555的定时功能来控制上一层楼或下一层楼所用的时间,利用数码管来显示所到楼层数,并用四个发光二极管来表示四层楼。
以此来设计了一个八层电梯控制系统。
关键词:译码器CD4511;优先编码器74148;数码管,ABSTRACTAs an auxiliary logic control system, elevator control system receives and deals with hundreds of signals at the same time. In the wake of developments in science and technology, microcomputer-based control such as FPGA, single-chip microcomputer and PLC all have been widely applied in elevator design, circuit control and other respects . My concept here in this text is: no to adopt micro controller for the programming (such as single-chip microcomputer and PLC, etc) but to use logic gate chip and discrete simulator to fulfill our task. To be specific, we use 74148 Eight Line - Third-Line priority encoder as a control button (namely triggering level), decoder CD4511, comparator CD4585 and counter CD4510 to achieve its control functions. And we use the control function of 555 to control the timing on going up and downstairs, digital tube to display the storey we get and four luminous diodes to represent the four floors respectively, thus fulfilling the task of designing a four- layer elevator control system.Key Words:Decoder CD4511;Priority Encoder74148; Digital Tube目录第一章绪论课题的背景简介电梯是高层宾馆、商店、住宅、多层厂房和仓库等高层建筑不可缺少的垂直方向的交通工具。
《智能电梯控制系统设计》论文
/**************蜂鸣器开函数******************/
void bee_on()
{
bee=0;
}
/**************蜂鸣器关函数******************/
void bee_off()
{
bee=1;
}
/**************led1亮函数******************/
项目功能,现象与要求 · · ··· · · · · · · · · · · · · · · · · · · · · · · 3
设计思路流程·· · · ··· · · · · · · · · · · · ·· · · · · ·· · · · · · · · ·3
硬件电路图设计 ·· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5
key_test();
}
}
/***************向数组写存入数函数*****************/
void adjust_jingtai(uchar *dat)
{
uchar i;
for(i=0;i<8;i++)
{
temp[i]=*dat;
为解决智能电梯扩展性较差,更新升级复杂,效率较低等问题,设计了一种新型的智能电梯控制系统。该系统具有与通用的电梯控制系统不同的体系结构,采用接口扩展方式,将智能电梯控制系统的通用控制器与特殊功能控制器分开,提高了智能电梯的系统扩展性和通用性。经过仿真验证,其结果表明:该系统能够实现减少无效开门、满载检测、自动节能、低速自救等智能化功能。且该设计易于实现,能够大幅度提高智能电梯的可靠性与智能化水平。
智能电梯控制系统的设计与实现
智能电梯控制系统的设计与实现随着科技的不断进步,智能电梯的出现为人们的生活带来了很大的便利。
智能电梯控制系统作为电梯系统中的核心,具有关键的作用。
对于一台电梯而言,其控制系统主要由硬件和软件两个部分组成。
硬件部分主要包括电梯的电路控制板和驱动器等,而软件部分则是电梯的控制算法和人机交互界面。
在设计和实现智能电梯控制系统时,需要考虑到电梯的安全性、可靠性以及效率等方面。
这些目标可以通过以下几个方面的设计和优化来实现。
一、电梯的控制算法设计在电梯的控制算法设计中,需要考虑到电梯的乘客数量、乘客的目的楼层、电梯的速度等多个因素。
对于一部智能电梯而言,其控制算法应该具备自适应调整的能力,能够根据电梯当前的运行状态自适应地调整电梯的运行速度和楼层选择。
基于这种需求,一些先进的电梯控制算法被广泛应用于电梯系统之中,例如PID控制器、Fuzzy控制器、神经网络控制器等。
通过这些控制器的应用,电梯的控制效率、准确性和安全性都可以得到大大的提升。
二、电梯的监控与安全保护智能电梯控制系统除了需要具备高效的控制能力外,还需要具备强大的监控和安全保护机制。
一方面,电梯控制系统需要具备故障自诊功能,能够自动诊断电梯故障并给予相应的报警提示;另一方面,电梯控制系统还需要对电梯内部各组件进行监控。
在保证电梯运行安全的前提下,电梯中应该还配备有监控和报警机制,例如红外感应探头、视频监控系统等,能够及时发现并解决电梯中出现的问题。
同时,电梯控制系统还应该设计完善的安全结构,例如电梯上下行速度的限制、人员数量和载重量的限制等,以确保电梯运行的安全性。
三、人机交互界面的设计电梯系统除了需要高效的控制和安全机制外,还需要友好的人机交互界面。
一个良好的人机交互界面不仅能够提升电梯的易用性和便捷性,还可以大大增加电梯的使用舒适度。
为了使电梯的使用体验更加友好,智能电梯控制系统的人机交互界面应该具备以下几个特点:1. 易于操作:用户在使用电梯时,应该能够轻松、快速地完成他所期望的操作,例如拨号,楼层的选择等。
智能电梯的控制策略设计与优化
智能电梯的控制策略设计与优化随着城市化进程的加快和建筑高层化的发展,电梯成为现代生活中必不可少的交通工具。
为了提高电梯的效率和乘坐体验,智能电梯的控制策略设计与优化显得尤为重要。
本文将讨论智能电梯的控制策略设计与优化,并提出一些改进方案。
1. 传统电梯控制策略的局限性传统电梯常采用的控制策略主要有两种,一种是单纯地按呼叫顺序依次响应,一种是采用基于电梯流量的优化算法。
然而,这些控制策略存在着一些局限性。
首先,按呼叫顺序依次响应的策略无法灵活地适应不同的情况。
当遇到高峰期或者人群集中在某一层时,电梯的响应速度会变慢,导致乘客等待时间过长。
其次,基于电梯流量的优化算法虽然能够提高电梯的运行效率,但存在计算复杂度高、实时性差等问题。
2. 智能电梯控制策略的设计原则智能电梯的控制策略应该具备以下几个设计原则。
首先,高效性原则。
智能电梯控制策略应能够最大程度地提高电梯的运行效率,减少乘客的等待时间和电梯的空闲时间。
其次,公平性原则。
智能电梯控制策略应能够合理分配电梯资源,确保每个乘客都能够享有公平的服务。
再次,安全性原则。
智能电梯控制策略应确保电梯在运行过程中的安全性,避免发生危险情况。
最后,节能性原则。
智能电梯控制策略应考虑电梯的能源消耗,尽量减少能源浪费。
3. 基于优化算法的电梯控制策略改进为了改进传统电梯控制策略的局限性,可以采用一些基于优化算法的智能电梯控制策略。
首先,可以采用基于遗传算法的电梯控制策略。
遗传算法能够通过模拟生物进化过程来搜索最优解,通过对电梯状态的实时监测和分析,根据乘客的需求和电梯的运行情况,动态调整电梯的调度策略,从而提高电梯的运行效率。
其次,可以采用基于人工神经网络的电梯控制策略。
人工神经网络能够模拟人脑神经元之间的连接和传递过程,通过对电梯运行数据的学习和分析,建立起一个电梯调度模型,根据实时的情况来预测乘客的行为和需求,从而优化电梯的调度和运行。
另外,可以采用基于模糊控制的电梯控制策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南文理学院课程设计报告课程名称:自动化系统课程设计专业班级:自动化11班学号学生姓名:指导教师:完成时间:2014年11月20日报告成绩:目录一、设计题目智能电梯控制系统设计二、设计要求利用PLC与变频器实现电梯的变频调速控制,该电梯控制系统具有同时呼梯控制、各楼层单独呼梯控制、上升、下降运行控制、轿厢位置显示等功能,电梯至少五层以上。
三、电梯控制系统控制系统设计作用与目的随着我国经济的高速发展,微电子技术、计算机技术和自动控制技术也得到了迅速发展,电梯也已成为人类现代生活中广泛使用的运输工具。
随着人们对电梯运行的安全性、舒适性等要求的提高,电梯得到了快速发展,其拖动技术已经发展到了调频调压调速,其逻辑控制也由PLC代替原来的继电器控制。
可编程控制器(PLC)因为稳定可靠、结构简单、成本低廉、简单易学、功能强大和使用方便已经成为应用最广泛的通用工业控制装置,成为当代工业自动化的主要支柱之一。
电梯控制要求接入设备使用简便,对应系统组态的编程简单,具有人性化的人机界面,配备应用程序库,加快编程和调试速度。
通过PLC对程序设计,提高了电梯的控制水平,并改善了电梯的电梯运行的舒适感。
本文争对以上优点,对电梯运行进行了改进,使其达到了比较理想的控制效果。
四、所用设备及软件本设计除了需要计算机,实验设备THPFSL-1/2还会用到两款软件:作图软件Altim Desinger、编程软件GX-developer。
简介如表1所示。
表1 软件简介系统总体结构原理图主控制器是整个电梯的核心。
不但要保证整个系统的稳定运行,而且要在极短的时间内对系统所有的任务进行响应。
其任务包括:接收、处理电梯的各种状态,并做出相应的动作,控制电梯的总体运行,实施对电梯驱动部分的控制,包括抱闸的松放、门机的开关、变频器低、中、高速的给出等控制。
接收轿厢控制器送来的内选信号,执行内选外呼指令,向轿厢控制器、呼梯控制器发送楼层指示信号,实施安全保护等。
为了实现电梯状态监控的需要,主控制器还加入了基于LCD显示的电梯参数设置、监控系统。
程序流程图模块式PLC包括CPU模块,I/O模块,内存模块,电源模块,底板或机架。
这些图 PLC结构框图2.系统工作原理采用循环扫描方式。
在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。
当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。
完成上述三个阶段称作一个扫描周期。
在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。
输入采样阶段在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。
输入采样结束后,转入用户程序执行和输出刷新阶段。
在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。
因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。
用户程序执行阶段在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。
在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
输出刷新阶段当扫描用户程序结束后,PLC就进入输出刷新阶段。
在此期间,CPU按照I/O 映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。
这时,才是PLC的真正输出。
向,而且遵守或一直向上,或一直向下的原则。
并且在每次平层的时候都能够换速。
楼层位置的指示:选用发光二极管作为指示灯显示的方法。
当电梯平层的时候,电梯门自动打开,经过2秒钟后电梯门自动关上。
如果遇到有人在门中间的情况,电梯会因为机械安全触板开关的作用而自动开门,也可以手动控制开门和关门。
为了避免乘客被正在关闭的门扇伤害,在门系统中大都设置安全检测系统,以检测关门时是否还有乘客从电梯门上通过。
当轿厢门正在关闭时,如果此时有乘客欲进、出入电梯轿厢(包括乘客位于轿厢门前某段距离或乘客阻挡轿厢门关闭),则轿厢门应该停止关闭,且重新打开。
轿厢门打开则不必有此过程。
目前的安全系统主要大都采用光电式装置(如光敏元件),也有的采用电磁式装置。
在一些高性能的电梯系统中,都设置了大厅内乘客检测装置,确定乘客是否全部进入电梯。
当乘客或物体仍在门检测区域内时,电梯的门系统能自动延时关门,确保乘客全部进入电梯。
目前主要采用光电装置和红外光幕保护装置来检测乘客或物体。
有的门机系统还采用热敏电磁装置和图像采集系统检测乘客或物体,由于受到性能和成本的限制,应用的并不多。
主电路的设计电力拖动系统是电梯的动力来源,它驱动电梯部件完成相应的运动。
在电梯中主要有如下两个运动:轿厢的升降运动,轿门及厅门的开关运动。
轿厢的运动由曳引电动机产生动力,经曳引传动系统进行减速、改变运动形式(将旋转运动改变为直线运动)来实现驱动,其功率在几千瓦到几十千瓦,是电梯的主驱动。
轿门及厅门的开与关则由开门电动机产生动力,经开门机构进行减速、改变运动形式来实现驱动,其驱动功率较小(通常在200W以下),是电梯的辅助驱动。
电梯的电力拖动系统对电梯的起动加速、稳速运行、制动减速起着控制作用。
拖动系统的优势直接影响电梯的起动,制动加减速度,平层精度,乘坐的舒适性等指标。
电梯的拖动系统经历了由简单到复杂的过程。
到目前为止应用于电梯的拖动系统主要有:(1)单、双速交流电动机拖动系统;(2)交流电动机定子调压调速拖动系统;(3)直流发电机-电动机可控硅励磁拖动系统;(4)可控硅直接供电拖动系统;(5)VVVF变频变压调速拖动系统。
交流电动机具有结构紧凑,维修简单等特点。
单、双速交流电动机拖动系统采用开环方式控制,线路简单,价格较低,因此在电梯上广泛应用。
交流双速电梯拖动电机控制主电路如图6-2所示。
电梯启动时,首先接通上行或下行的接触器(KMs或KMx),同时也接通快速接触器KMk,这样就接通了快速绕组,电梯快速启动。
为了减小电梯启动的加速度,提高乘坐的舒适感,接触器KM2断开,将电抗接入电路,当电动机的转速达到一定数值后,闭合接触器KM2将电抗短路,电动机逐步加速至额定转速,电梯最后稳定运行。
当电梯需要减速时,先断开快速接触器KMK,闭合慢速接触器KMM,此时接通了慢速绕组,电动机开始减速。
为了降低在减速过程中的加速度,接触器KM1断开,电路中接入了电抗器,在电动机的转速降到一定程度后,将解除其KM1闭合,将电抗器短路使电动机逐步减速至停止。
图6-2拖动电机控制主电路图电梯门机拖动系统作为一个子系统,相对整个电梯系统来说,是不容忽视的。
它是电梯系统中动作最频繁,也是直接面对乘客的部分。
因此在实际应用中需要一个运行安全可靠、性能稳定的电梯门机控制系统,其设计就显得尤为重要。
门机拖动系统从电流型式上分为直流调速拖动和交流调速拖动两大类,在交流调速拖动中,异步电动机门机调速拖动系统和同步电动机门机调速拖动系统已发展成为占有相当比例的两类调速拖动系统。
门电机主电路如图6-3所示,通过电动机的正反转来实现门的开关。
图6-3 门电机主电路图七、智能电梯控制系统设计软件设计 PLC 单台电梯控制系统的工作流程电梯的运行是根据楼层和轿厢的呼叫信号、行程信号进行控制的,在以顺序逻辑控制实现电梯的基本控制要求的基础上,根据随机的输入信号,以及电梯的相应状态适时的控制电梯的运行。
电梯控制系统工作流程如图7-1所示。
图7-1 PLC 单台电梯控制系统工作流程图电梯的控制系统实现如下功能:1)行车方向由内选信号决定,顺向优先执行;2)行车途中如遇呼梯信号时,顺向截车,反向不截车; 3)内选信号、呼梯信号具有记忆功能,执行后解除;4)内选信号、呼梯信号、行车方向、行车楼层位置均由信号灯指示; 5)停层时可延时自动开门、手动开门、(关门过程中)本层顺向呼梯开门; 6)有内选信号时延时自动关门,关门后延时自动行车; 7)无内选时延时2s 自动关门,但不能自动行车; 8)行车时不能手动开门或本层呼梯开门,开门不能行车。
控制面板在电梯控制系统的工作流程图中,控制面板包括两个部分:一部分安置于电梯厢内,用于乘客选择所要到的楼层;另一部分清 除清 除置位 置位 来自轿厢 控制面来自井道 行程开来自轿厢 控制面来自层面 控制按控制信号 层楼信号指令信号 召唤信号 层楼定位 指令登记召唤登记显 示显 示显 示自动定向运行控制(开/关门、上/下行、停站) 运行显示 电动机驱动控制置于每个楼层,用于呼叫电梯,如右图7-2所示。
在图7-2所示的面板示意图中,每个楼层的控制按钮只有两个按键,即上行键和下行键,以及相关的显示单元,在底楼只有一个上行键,在顶楼只有一个下行键;在电梯厢内有楼层按键和开关门按键,以及相关显示单元。
图7-2 电梯控制系统面板示意图超重报警在电梯运行过程中,需要时刻测量电梯厢内的重量,以防止超过最大载重量,造成安全事故,为此使用了传感器。
通过不断地调试将传感器安装在适当的位置,使其能准确地判断出厢内重量是否超标,从而达到保护电梯安全运行的目的。
如果厢内重量超过标准,则无法关门,电梯无法上/下运行。
超重报警采用声光报警,选用既可发出闪烁信号,又可发出蜂鸣声的指示灯。
PLC I/O地址分配表7-2 模拟量输入部分表7-3 数字量输出部分PLC的外部接线图如下图7-3所示。
图7-3 五层电梯控制的I/O接线图总流程设计根据控制系统的功能要求,交流双速电梯工作时主要可分为两个部分:一是维修状态;二是正常运行状态。
在旋钮置于维修状态时,不论电梯处于任何位置,都将直接运行到楼层底部,忽略用户的其它指令。
其工作流程如图5-1所示。
至于正常运行状态时,可根据电梯内外及各个楼层之间的用户指令,以及电梯现在所处的位置,自动判断电梯的运行方向,根据PLC接收到的其它外围设备的控制信号,完成用户的控制要求运行至指定的楼层。
交流双速电梯控制系统流程图如7-3-1所示图7-3-1 维修状态流程图图7-3-2 交流双速电梯控制系统流程图各模块梯形图设计根据上述流程图,采用模块化的程序设计,为了便于程序设计,以及程序修改和完善,简历如表7-4-1所示的元件设置表。
表7-4-1 元件设置电梯运行状态选择程序旋钮的默认开关状态为,在断开时中间继电器闭合,不论电梯处于什么位置,电梯都直接下行到底层,如果电梯就在底层,则闸门上的限位器传送信号到PLC 中,表示电梯已到达目标位置,延时一段时间后,闸门开启进行维修维护工作,其维修状态时的梯形图程序如图7-4-1所示。