高一数学指数_对数_幂函数知识点

合集下载

指数,对数,幂函数知识点

指数,对数,幂函数知识点
指数,对数,幂函数知识点
1. 指数函数
函数名称 定义 指数函数 函数 y a x (a 0 且 a 1) 叫做指数函数
a 1
y ax
图象
0 a 1
y
y ax
y
y 1
(0,1)
y 1
(0,1)
O
定义域 值域 过定点 奇偶性 单调性
1
x 0
R
O
1
0x
(0, )
图象过定点 (0,1) ,即当 x 0 时, y 1 . 非奇非偶 在 R 上是增函数 在 R 上是减函数
r r
2. 对数函数
函数 名称 定义 对数函数 函数 y log a x(a 0 且 a 1) 叫做对数函数
a 1
y
0 a 1
y loga x
x 1
y
x 1
y loga x
图象
O
(1, 0) 1 0
x
O
1
(1, 0)
0
x
定义域 值域 过定点 奇偶性 单调性 在 (0, ) 上是增函数
(1)分数指数幂的概念 ①正数的正分数指数幂的意义是:a n 数指数幂等于 0. ②正数的负分数指数幂的意义是: a
m n
m n
a m (a 0, m, n N , 且 n 1) .0 的正分
1 m 1 ( ) n n ( )m (a 0, m, n N , 且 a a
①加法: loga M loga N loga (MN )
M N
3. 幂函数
a x 1 ( x 0)
函数值的 变化情况
a x 1 ( x 0) a x 1 ( x 0) a x 1 ( x 0)

指数与对数函数幂函数知识点总结

指数与对数函数幂函数知识点总结

指数与对数函数幂函数知识点总结指数函数、对数函数和幂函数是高中数学中的重要内容,是数学中常见的数学函数类型。

下面将对这三种函数进行详细介绍和总结。

1.指数函数指数函数是以底数为常数,指数为自变量的函数。

通常表示为f(x)=a^x,其中a>0且不等于1、指数函数的特点有:-当a>1时,函数为增函数,曲线向上开口。

-当0<a<1时,函数为减函数,曲线向下开口。

-当x=0时,f(0)=1,即指数为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。

指数函数的应用广泛,例如在金融领域中的复利计算、生物学中的生长模型、物理学中的放射性衰变等都可以使用指数函数模型来描述。

2.对数函数对数函数是指输出的指数与给定的底数相等的函数,常用的对数函数有以e为底的自然对数函数ln(x)和以10为底的通用对数函数log(x)。

对数函数的特点有:-对数函数的定义域为正实数。

- 对数函数的基本性质是函数值等于对应的指数值,即log_a(a^x) = x。

- 自然对数函数ln(x)与指数函数e^x互为反函数。

-对数函数可以帮助解决指数方程和指数不等式等问题。

对数函数在数学中广泛应用,例如在科学计算、数据压缩、信号传输和信息论等领域都有应用。

3.幂函数幂函数是形如f(x)=a^x的函数,其中a是常数且大于0。

幂函数的特点有:-当a>1时,函数为增函数,曲线向上开口。

-当0<a<1时,函数为减函数,曲线向下开口。

-当x=0时,f(0)=1,即幂为0时,函数值等于1-当x为正无穷大时,函数趋于正无穷大;当x为负无穷大时,函数趋于0。

幂函数与指数函数相似,但是幂函数的底数是常数。

幂函数在自然科学领域中经常出现,例如在物理学中的速度、加速度和质量等计算中经常使用幂函数模型。

指数函数、对数函数和幂函数是数学中的基本函数类型,它们在实际问题中有着广泛的应用。

在学习指数函数、对数函数和幂函数时,需要熟练掌握其定义、性质和应用。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理一、幂函数1.定义:幂函数是形如f(x)=x^n的函数,其中n为常数,x为自变量,n可以是整数、分数或实数。

2.性质:-当n为正偶数时,幂函数是单调递增函数,图像呈现开口向上的抛物线形状。

-当n为正奇数时,幂函数是单调递增函数,图像呈现开口向上的直线形状。

-当n为负偶数时,幂函数是单调递减函数,图像呈现开口向下的抛物线形状。

-当n为负奇数时,幂函数是单调递减函数,图像呈现开口向下的直线形状。

-当n=0时,幂函数f(x)=x^0恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-幂函数常用于描述成比例关系,如面积和边长的关系、体积和边长的关系等。

-幂函数还用于经济学、物理学、化学等学科中的一些数学模型。

二、指数函数1.定义:指数函数是形如f(x)=a^x的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-指数函数的值域为正实数,图像始终位于y轴的上方。

-当a>1时,指数函数是单调递增函数,图像呈现开口向上的曲线形状。

-当0<a<1时,指数函数是单调递减函数,图像呈现开口向下的曲线形状。

-当a=1时,指数函数f(x)=1^x恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-指数函数常用于描述指数增长或指数衰减的情况,如人口增长、放射性物质衰变等。

-指数函数还用于描述复利、投资和经济增长等问题。

三、对数函数1. 定义:对数函数是形如f(x)=loga(x)的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-对数函数的定义域为正实数,值域为实数。

-对数函数的图像呈现开口向右的曲线形状。

-对数函数关于直线y=x对称。

-对数函数的导数为1/x。

3.应用:-对数函数常用于解决指数方程和指数不等式,将复杂的指数问题转化为相对简单的对数问题。

-对数函数还广泛应用于科学、工程、经济等领域的数据处理和模型建立。

综上所述,幂函数、指数函数和对数函数是高中数学中的重要函数类型。

(完整版)指数函数、对数函数和幂函数知识点归纳

(完整版)指数函数、对数函数和幂函数知识点归纳

一、幂函数1、幂的有关概念正整数指数幂:...()nna a a a n N=∈零指数幂:01(0)a a=≠负整数指数幂:1(0,)ppa a p Na-=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n=>∈>且负分数指数幂的意义是:11(0,,,1) mnm n mna a m n N naa-==>∈>且2、幂函数的定义一般地,函数ay x=叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况).3、幂函数的图象幂函数ay x=当11,,1,2,332a=时的图象见左图;当12,1,2a=---时的图象见上图:由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质: (1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >). 1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-.log log n a a M n M =.(00M N >>,,0a >,1a ≠)( a, b > 0且均不为1)2.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯= ; .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3), (4)对数恒等式.一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R ; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)b mnb a n am log log =1log log log =⋅⋅a c b c b a 01log =a 1log =a a N a N a =log()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结

1.幂函数知识点总结一、幂函数(power function ):函数y x α= (x 是自变量,α是常数)二、幂函数的性质对于幂函数,我们只研究 11,2,3,,12α=- 时的图象与性质.1232,,,y x y x y x y x ==== 和 1y x -=共同性质:图像都过点(1,1)不同性质:α为奇数时幂函数为奇函数;α为偶数时幂函数为偶函数。

2.指数函数知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换知识点一 指数函数的概念一般地,函数x a y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R .1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,x a 无意义;若0<a ,则对于x 的某些值,x a 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义.2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R .3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下:(1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)x a 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.知识点二 指数函数的图象和性质一般地,指数函数x a y =(0>a 且1≠a )的图象和性质如下表所示:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数x a y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x 时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数x a y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大.(2)由于指数函数x a y =(0>a 且1≠a )的图象经过点⎪⎭⎫ ⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小.2. 函数x a y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数xy 2=与xy ⎪⎭⎫ ⎝⎛=21的图象关于y 轴对称.(1)指数函数x a y =(0>a 且1≠a )与函数x a y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数x y 2=与函数x y 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数x a y --=(0>a 且1≠a )(即xa y ⎪⎭⎫⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数x y --=2(即xy ⎪⎭⎫⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数x a y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.4.指数函数x a y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快; (2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图y = 1高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b )的图象特点 (1)若1>>b a ,则当0<x 时,总有10<<<x x b a ;当0=x 时,总有1==x x b a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>x x a b ;当0=x 时,总有1==x x b a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a <.6. 指数函数x a y =(0>a 且1≠a )的图象和性质再说明 指数函数x a y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0. 图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交;(2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数x a y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间.(2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.知识点三 指数函数的定义域和值域1 定义域(1)指数函数x a y =(0>a 且1≠a )的定义域为R .(2)函数()x f a y =(0>a 且1≠a )的定义域与函数()x f 的定义域相同. (3)函数()x a f y =的定义域与函数()x f 的定义域不一定相同. 例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R. 注意:求指数型复合函数的定义域时,先观察函数是()x a f y =型还是()x f a y =型. 2 值域(1)指数函数x a y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f a y =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()x a f y =的函数的值域时,转化为求()+∞∈=,0x a t 时,函数()t f y =的值域.知识点四 指数函数的单调性及其应用1 单调性当1>a 时,函数x a y =在R 上为增函数;当10<<a 时,函数x a y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减. 2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较; 类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高; 类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小. (2)应用于解简单不等式不等式可化为()()x g x f a a <的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.3.对数函数及其性质知识点总结本节知识点(1)对数函数的概念; (2)对数函数的图象及其性质; (3)与对数函数有关的函数的定义域; (4)与对数函数有关的函数的值域;(5)与对数函数有关的函数的单调性及其应用; (6)与对数函数有关的函数的奇偶性; (7)反函数.知识点一 对数函数的概念一般地,函数x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量,函数的定义域是()+∞,0. 对数函数概念的理解 (1)形如x y a log =;(2)底数a 满足0>a 且1≠a ; (3)真数是x ,而不是含x 的表达式; (4)函数的定义域为()+∞,0. 两种特殊的对数函数特别地,以10为底的对数函数x y lg =叫做常用对数函数;以无理数e 为底的对数函数x y ln =叫做自然对数函数.知识点二 对数函数的图象及其性质一般地,对数函数x y a log =(0>a 且1≠a )的图象和性质如下表所示:(+∞,0对数函数x y a log =(0>a 且1≠a )的图象经过三个关键点:()0,1,()1,a 和⎪⎭⎫⎝⎛-1,1a .利用对数函数图象的三个关键点,可以快速地作出对数函数图象的简图. 特别提醒指数函数x a y =(0>a 且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.根据这三个关键点,可以快速地作出指数函数图象的简图.不难得出:在同一平面直角坐标系中,对数函数x y a log =(0>a 且1≠a )图象的三个关键点与指数函数x a y =(0>a 且1≠a )图象的三个关键点关于直线x y =对称.底数对对数函数图象的影响 (1)对数函数的对称性结论 函数x y a log =(0>a 且1≠a )的图象与函数x y a1log =(0>a 且1≠a )的图象关于x 轴对称.事实上,x x x y a a alog log log 111-===-,因为函数()x f y =与函数()x f y -=的图象关于x 轴对称,所以函数x y a log =与函数x y a1log =的图象关于x 轴对称.观察在同一平面直角坐标系在,分别画出函数x y 2log =,x y 3log =,x y 21log =和x y 31log =的图象,如图所示,体会对数函数图象的对称性.(2)底数a 决定对数函数的单调性 当1>a 时,对数函数的图象从左到右是上升的,函数在()∞+0上为增函数;当10<<a 时,对数函数的图象从左到右是下降的,函数在()∞+0上为减函数.(3)底数a 的大小决定对数函数图象相对位置的高低不论是1>a ,还是10<<a ,在第一象限内,取相同的函数值时,图象所对应的对数函数的底数从左到右逐渐变大.(1)上下比较 在直线1=x 的右侧,a 越大,图象越靠近x 轴;当10<<a 时,a 越小,图象越靠近x 轴.(2)左右比较 比较图象与直线1=y 的交点,交点的横坐标越大,对应的函数的底数越大.注意 若比较图象与直线1-=y 的交点,交点的横坐标越大,对应的函数的底数越小.说明 在平面直角坐标系中,对数函数x y a log =的图象与直线1=y 的交点为()1,a ,即交点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就越大;对数函数x y a log =与直线1-=y 的交点为⎪⎭⎫⎝⎛-1,1a ,故在= log 13x12x3x2x第四象限内,交点的横坐标越大(即a1越大),对数函数的底数反而越小. 关于对数函数函数值正负的判断根据对数函数的图象,当1>a ,1>x ,或10<<a ,10<<x 时,函数值0>y ,简记为同区间为正;当1>a ,10<<x ,或10<<a ,1>x 时,函数值0<y ,简记为异区间为负.即同区间为正,异区间为负.特别地,当1=x 时,0=y ,即对数函数的图象恒过点()0,1. 指数函数与对数函数的关系指数函数与对数函数的性质的比较如下表所示:知识点三 与对数函数有关的函数的定义域(1)对数函数x y a log =的定义域为()+∞,0. (2)形如()()x f y x g log =的函数,其定义域由()()()⎪⎩⎪⎨⎧≠>>100x g x g x f 确定.(3)形如()x f y a log =的函数的定义域,必须保证每一部分都有意义. 知识点四 对数型函数的值域(1)对数函数x y a log =(0>a 且1≠a )的值域利用函数的单调性求解; (2)求形如()x f y a log =的复合函数的值域,先求出()x f 的值域,然后结合对数函数的单调性求出函数()x f y a log =的值域;(3)求形如()x f y a log =的复合函数的值域,其中复合函数()x f y a log =一般是关于x a log 的二次函数,故可以采用换元法求解,注意新元的取值范围. 知识点五 与对数函数有关的函数的单调性及其应用 1.对数值大小的比较(1)同底数的利用函数的单调性; (2)同真数的利用函数的图象;(3)底数与真数都不同的,利用中间数0和1(介值法). 2.解简单的对数不等式(1)底数确定时,利用对数函数的单调性求解; (2)当底数不确定时,注意对底数进行分类讨论.注意 求解时注意“定义域优先”的原则,要保证每个真数都大于0.点评 简单的对数不等式经过适当的变形一般都可化为()()x g x f a a log log <的形式,当1>a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧<>>x g x f x g x f 00;当10<<a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧>>>x g x f x g x f 0. 3.对数型复合函数的单调性对数型复合函数一般分为两类:()x f y a log =型和()x f y a log =型.(1)研究()x f y a log =型复合函数的单调性,令x t a log =,则只需研究x t a log =及()t f y =的单调性即可;(2)研究()x f y a log =型复合函数的单调性,首先由()0>x f 确定函数的定义域,然后判断()x f t =在定义域上的单调性,再结合对数函数的单调性,判断函数()x f y a log =的单调性,其核心是:同增异减.4.三角函数知识点总结一、基础概念 1、正角、负角和零角正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角正角 负角 零角2、象限角、轴线角象限角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在第几象限就说这个角是第几象限角.轴线角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在坐标轴上就说这个角是轴线角,这个角不属于任何项限3、角的集合:与任意角α终边相同的角构成一个集合 {}Z k k ∈⋅+=,360 αββ常见结论:(1)第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}Z k k k ∈+<<+⋅,36018090360αα第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z(2)终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 终边在x y =上的角的集合为{}Z k k ∈⋅+=,18045 αα 终边在x y -=上的角的集合为{}Z k k ∈⋅+=,180135 αα(3)任何一个象限角有可能是正角,也有可能是负角;任何轴线角有可能是正角、负角、零角; 小于 90的角不一定是锐角; 大于 90的角不一定是钝角; 终边相同的角不一定相等4、已知α是第几象限角,确定nα)(Z n ∈所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上数学必修一第四章《4.4幂函数》知识点梳理

高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结

最全的高中幂_指数_对数_三角函数知识点总结高中数学中的幂、指数、对数和三角函数是重要的数学概念和知识点。

这些知识点涉及到数学的基本运算、函数的性质和变化规律等内容。

下面是对这些知识点的详细总结:一、幂和指数1.幂函数:幂函数是以底数为自变量的函数,形如f(x)=a^x,其中a为常数,x为实数。

幂函数的图像为指数增长或指数衰减的曲线。

2.指数函数:指数函数是以指数为自变量的函数,形如f(x)=a^x,其中a为底数,x为实数。

指数函数的图像为单调递增或单调递减的曲线。

3.指数运算法则:-a^m*a^n=a^(m+n)-(a^m)^n=a^(m*n)-(a*b)^n=a^n*b^n-a^(-n)=1/a^n-a^0=1,其中a不等于0-a^1=a二、对数1. 对数函数:对数函数是指以对数为自变量的函数,形如f(x)=loga(x),其中a为底数,x为正实数。

对数函数的图像为单调递增的曲线。

2.对数运算法则:- loga(m * n) = loga(m) + loga(n)- loga(m / n) = loga(m) - loga(n)- loga(m^n) = n * loga(m)三、三角函数1.三角比:- 正弦函数 sin(x):在单位圆上,横坐标为x点对应的边长除以圆的半径。

- 余弦函数 cos(x):在单位圆上,纵坐标为x点对应的边长除以圆的半径。

- 正切函数 tan(x):在单位圆上,横坐标为x点对应的边长除以纵坐标对应的边长。

2.三角函数的基本性质:-三角函数的定义域为全体实数,值域为[-1,1]。

- 三角函数的周期性:sin(x + 2π) = sin(x), cos(x + 2π) = cos(x), tan(x + π) = tan(x)。

- 三角函数的奇偶性:sin(-x) = -sin(x), cos(-x) = cos(x),tan(-x) = -tan(x)。

- 三角函数的反函数:反正弦函数 arcsin(x),反余弦函数arccos(x),反正切函数 arctan(x)。

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数一、幂函数1、函数k x y =(k 为常数,Q k ∈)叫做幂函数2、单调性: 当k>0时,单调递增;当k<0时,单调递减3、幂函数的图像都经过点(1,1)二、指数函数1、xa y =(0>a 且1≠a )叫做指数函数,定义域为R ,x 作为指数2、指数函数的值域:),(∞+03、指数函数的图像都经过点(0,1)4、当a>1时,为增函数;当0<a<1时,为减函数5、指数函xa y =数的图像:a>1 0<a<1三、对数1、如果a(a>0,且a ≠-1)的b 次幂等于N ,即N a b=,那么b 叫做以a 为底N 的对数,记作b N a =log ,其中,a 叫做底数,N 叫做真数2、零与负数没有对数,即N>03、对数恒等式:N aNa =log4、(重点强调)a>0,且a ≠-1,N>05、常用对数:以十为底的对数,记作lg N6、自然对数:以e 为底的对数,记作in N7、对数的运算性质:如果a>0,a ≠1,M>0,N>0,那么(1)N M MN a a a log log )(log += (2)N M NMa a alog log log -= (3)M n M a n a log log = 8、对数换底公式:)01,01,(log log log >≠>≠>=N b b a o a NNN b a b ,,其中9、指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b四、反函数1、对于函数)(x f y =,设它的定义域为D ,值域为A ,如果A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应(即一个x 对应一个y ),且满足)(x f y =,这样得到的x 关于y 的函数叫做)(x f y =的反函数,记作)(1y f x -=,习惯上,自变量用x 表示,而函数用y 表示,说以把它改写为))((1A x x fy ∈=-函数)(x f y = 反函数)(1x f y -=定义域 D A 值域AD3、函数)(x f y =的图像与反函数)(1x f y -=的图像关于直线x y =对称五、对数函数1、函数)1,0(log ≠>=a a x y a 且叫做对数函数,是指数函数的反函数2、对数函数的图像都在y 轴的右方3、对数函数的图像都经过点(1,0)4、当a,x 范围相同时,y>0;当a,x 范围不同是,y<0,(范围指的是0<x<1和x>1两个范围)5、对数函数)1,0(log ≠>=a a x y a 且的图像6、对数函数的定义域:x>07、对数函数的单调性:当a>1时,单调递增;当0<a<1时,单调递减六、简单指数方程指数里含有未知数的方程叫做指数方程1、819252=+-x x(1)将方程化为同底数幂的形式:225992=+-x x2252=+-∴x x 解得:5,021==x x(2)指对互换:281log 2592==+-x x ,解得:5,021==x x2、0155252=-⋅-x x换元法:令)05>=t t x(,则原方程化为01522=--t t ,解得:(舍)3,521-==t t 1,55==∴x x3、11235-+=x x两边同取以十为底的对数,得:1123lg 5lg -+=xx ,3lg )1)(1(5lg )1+-=+∴x x x (0)3lg 3lg 5)(lg 1(=+-+∴x x ,解得:5log 13lg 5lg 113+=+=-=x x 或七、简单对数方程对数符号后面含有未知数的方程叫做对数方程(解对数方程须检验,真数>0)1、化为同底:2)532(log 2)1(=-++x x x2)1(2)1()1(log )532(log +=-+++x x x x x ,532)1(22-+=+x x x062=-+x x ,3,221-==x x经检验,x=2为原方程的解2、换元:1log 325log 225=-x x令t x =25log ,则t x 125log =,所以原方程化为:1312=-t t0232=-+∴t t ,解得32,121=-=t t当1-=t 时,1log 25-=x ,251=∴x当32=t 时,32log 25=x ,3165=∴x经检验,它们都是原方程的根 所以原方程的解为321165,32==x x。

指数对数幂函数知识点汇总

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.(5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.。

最全的高中幂指数对数三角函数知识点总结

最全的高中幂指数对数三角函数知识点总结

最全的高中幂指数对数三角函数知识点总结幂的基本概念:幂指的是将一个数乘以自己多次,即n个相同的数相乘的结果。

幂数指的是幂运算中的指数,表示要相乘的次数。

一、幂运算的基本性质:1.乘法法则:a^n*a^m=a^(n+m)将相同的底数的幂相乘,指数的和等于新的指数。

2.乘方法则:(a^n)^m=a^(n*m)将一个数的幂再次取幂,指数相乘得到新的指数。

3.幂函数的定义域:对于非零实数a,a^x在定义域上为全体实数。

二、指数的基本概念:1.指数是幂运算中的表示次数的数。

2.指数的性质:a^0=1(a≠0)a^(-n)=1/a^n三、指数函数:指数函数是以常数e为底的指数幂函数,记作f(x)=e^x。

指数函数的性质:1.指数函数的定义域为全体实数,值域为正实数。

2.指数函数的图像是递增的指数曲线,永远在x轴上方。

四、对数的基本概念:1.对数是指数运算的逆运算,表示求底数为其中一数的幂等于给定数。

2.对数的性质:loga(1) = 0loga(a) = 1loga(M * N) = loga(M) + loga(N)loga(M / N) = loga(M) - loga(N)loga(M^p) = p * loga(M)五、常用对数和自然对数:1. 常用对数:底数为10的对数,记作lg(x)。

2. 自然对数:底数为e的对数,记作ln(x)。

六、三角函数的基本概念:1. 正弦函数sin(x):它的值等于直角三角形中对边与斜边的比值,定义域为全体实数。

2. 余弦函数cos(x):它的值等于直角三角形中邻边与斜边的比值,定义域为全体实数。

3. 正切函数tan(x):它的值等于正弦值与余弦值的比值,定义域为全体实数,但在x = (2n + 1)π/2 (n为整数)处无定义。

4. cosec(x):它的值等于正弦函数的倒数,定义域为全体实数,但在x = nπ (n为整数)处无定义。

5. sec(x):它的值等于余弦函数的倒数,定义域为全体实数,但在x = (2n + 1)π/2 (n为整数)处无定义。

高一数学必修二知识点总结log

高一数学必修二知识点总结log

高一数学必修二知识点总结log一、对数与指数1. 概念和性质对数的定义、指数的定义、对数与指数的关系、对数的性质(对数的基本运算、幂函数的求值、对数函数的图像)2. 常用对数与自然对数常用对数的定义、自然对数的定义、常用对数与自然对数的换算、对数、指数与幂函数的图像二、指数函数与对数函数的分析1. 指数函数的性质指数函数的定义、指数函数的图像、指数函数的性质(增减性、奇偶性、单调性、零点、极限)2. 对数函数的性质对数函数的定义、对数函数的图像、对数函数的性质(增减性、奇偶性、单调性、零点、极限)三、对数与指数方程1. 对数方程对数方程的定义、对数方程的解法(变底公式、利用对数性质化简)2. 指数方程指数方程的定义、指数方程的解法(变底公式、变量转换)四、对数与指数不等式1. 对数不等式对数不等式的定义、对数不等式的解法(基本不等式、利用对数性质化简)2. 指数不等式指数不等式的定义、指数不等式的解法(基本不等式、变量转换)五、指数函数、对数函数与幂函数的应用1. 复利问题复利的概念、复利公式的推导与应用、连续复利的概念与应用2. 半衰期问题半衰期的概念、半衰期公式的推导与应用、放射性元素的衰变六、对数尺度与指数尺度1. 对数尺度对数尺度的定义、对数尺度的转换、对数尺度的应用(音量、测震等)2. 指数尺度指数尺度的定义、指数尺度的转换、指数尺度的应用(星等系统等)七、指数函数的增长速度与单调性1. 指数函数增长速度指数函数的导数与斜率、指数函数的限制性与趋势2. 指数函数的单调性指数函数的增减性、极值、拐点与曲线段数八、对数函数与指数函数的应用1. 相关变量的变化关系对数函数与指数函数的引入、基本模型与实际应用2. 模型的建立与求解实际问题的数学模型、通过对数函数与指数函数进行建模与求解以上是高一数学必修二知识点总结log,希望对你的学习有所帮助。

祝你取得优异的成绩!。

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.幂 函 数一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。

注意:幂函数与指数函数有何不同?【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。

0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。

探究:整数m,n 的奇偶与幂函数nm x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?结果:形如nmx y =),,,(互质且n m Z n m ∈的幂函数的奇偶性(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 四、规律方法总结:1、幂函数)1,0(==ααx y 的图像:2、幂函数),,,,(互质q p Z q p p qx y ∈==αα的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.二.指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n。

指数函数、对数函数、幂函数的图像和性质知识点总结

指数函数、对数函数、幂函数的图像和性质知识点总结
i
当xo>l时,按交点的高低,从高到低依次为y=x3, y=x2, y=x ,y x2,y=x-1;
1
当0<xo<1时,按交点的高低,从高到低依次为y=x-1,y x2,y=x , y=x2, y=x3。
3、藉函数的性质
段X数
y=x
2y=x
3y=x
1
yx,
-1y=x
定义域
R
R
R
[0,)
x| x Rflx 0
值域
R
[0,)
R
[0,)
y | y Rfi y 0
奇偶性



非奇非偶

单调性

x € [0 ,)时,增;
xe(,0]时,减


x C (0,+)时,减;
x C (- ,0)时,减
定点
(1 , 1)
叫做对数的底数,N叫做真数。
(2)几种常见对数
对数形式
特点
记法
一般对数
底数为aa 0,且a 1
logaN
常用对数
底数为10
lg N
自然对数
底数为e
ln N
2、对数的性质与运算法则
(1)
(2)对数的重要公式:
lonN
-^b(a,b均为大丁零且不等丁1,N 0);loga
指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称。
(三)籍函数
1、藉函数的定义
形如y=x " (a£ R)的函数称为藉函数,其中x是自变量,a为常数
注:藉函数与指数函数有本质区别在于自变量的位置不同,备函数的自变量在底数位置,而

指数对数幂函数知识点总结精选

指数对数幂函数知识点总结精选

指数对数幂函数知识点总结精选篇一:指数、对数、幂函数知识点指数、对数、幂函数知识归纳知识要点梳理知识点一:指数及指数幂的运算 1.根式的概念的次方根的定义:一般地,如果;当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.;,那么叫做的次方根,其中次方根的性质: (1)当为奇数时,;(2)当为偶数时,3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3)知点二:指数函数及其性质 1.指数函数概念:一般地,函数变量,函数的定义域为.叫做指数函数,其中是自1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) +1 +12.(2013·上海高考文科·T8)方程3.(2013·湖南高考理科·T16)设函数f(x)?ax?bx?cx,其中c?a?0,c?b?0.9x的实数解为 . ?1?3x3?1且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长,则(a,b,c)?M所对应的f(x)的零点的取值集合为____.(2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号)①?x,1?,f?x??0;②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0.知识点三:对数与对数运算 1.对数的定义(1)若叫做底数,叫做真数.,则叫做以为底的对数,记作,(2)负数和零没有对数.(3)对数式与指数式的互化:2.几个重要的对数恒等式:,,..3.常用对数与自然对数:常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果①加法:,那么②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质 1.对数函数定义一般地,函数数的定义域.叫做对数函数,其中是自变量,函2.对数函数性质:4.(2013·广东高考理科·T2)函数f(x)?的定义域是() x?1A.(?1,??) B.[?1,??) C.(?1,1)(1,??) D.[?1,1)(1,??)5.(2013·陕西高考文科·T3)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是 A.logab·logcb?logcaB. logab?logca?logcb篇二:指数_对数_幂函数必备知识点几种特殊的函数知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等于0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点五:反函数1.反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.2.反函数的性质(1)原函数与反函数的图象关于直线对称.(2)函数的定义域、值域分别是其反函数的值域、定义域.(3)若在原函数的图象上,则在反函数的图象上.(4)一般地,函数要有反函数则它必须为单调函数.3.反函数的求法(1)确定反函数的定义域,即原函数的值域;(2)从原函数式中反解出;(3)将改写成,并注明反函数的定义域.知识点六:幂函数1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.(5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.篇三:指数对数幂函数知识点汇总知识点一:根式、指数幂的运算1、根式的概念:若x?a,则x叫做a的次方根, n?1,n?Nn???(1)当n为奇数时,正数的n次方根为正,负数的n次方根为负,记作na;(2)当n为偶数时,正数的n次方根有两个(互为相反数),记作(3)负数没有偶次方根,0的任何次方根都是0. 2、n次方根的性质:(1)n?an为奇数. ?a;(2???|a|n为偶数3、分数指数幂的意义:(1)a?;(2)amnm?n?1amn?a?0,m,n?N?,n?1?.注意:0的正指数幂等于0,负指数幂没有意义. 4、指数幂的运算性质:?a?0,b?0,r,s?R?rrs)ras?a? (1a;(2)a??s?ars; (3)?ab??arbrr知识点二:对数与对数运算b1、指数式与对数式的互化:a?N?logaN?b(a?0,a?1,N?0)2、几个重要的对数恒等式(1)负数和0没有对数;(2)loga1?0(a?1)(3)logaa?1(a?a);(4)对数恒等式:a3、对数的运算性质(1)loga(MN)?logaM?logaN;(2)logan1logaN?NM?logaM-logaN; NlogmN;logma(3)logaM?nlogaM(n?R);(4)换底公式:logaN?(5)logab?logba?1 ;(6)logab?logbc?logac ;(7)logab?logbc?logcd?logad ;(8)logambn?nlogab;m知识点四:对数函数及其性质x注:指数函数y?a与对数函数y?logax互为反函数(1)互为反函数的两函数图象关于y?x对称,即(a,b)在原函数图象上,则(b,a)在其反函数图象上;(2)互为反函数的两函数在各自的定义域上单调性相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学指数对数幂函数知识点
知识点一:指数及指数幂的运算
1.根式的概念
的次方根的定义:一般地,如果,那么叫做的次方根,其中
当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.
负数没有偶次方根,0的任何次方根都是0.
式子叫做根式,叫做根指数,叫做被开方数.
2.n次方根的性质:
(1)当为奇数时,;当为偶数时,
(2)
3.分数指数幂的意义:

注意:0的正分数指数幂等于0,负分数指数幂没有意义.
4.有理数指数幂的运算性质:
(1) (2) (3)
知识点二:指数函数及其性质
1.指数函数概念
一般地,函数叫做指数函数,其中是自变量,函数的定义域为.
函数
指数函数
名称
定义函数且叫做指数函数
图象
定义域
值域
过定点图象过定点,即当时,.
奇偶性非奇非偶
单调性在上是增函数在上是减函数
函数值的
变化情况
变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.
知识点三:对数与对数运算
1.对数的定义
(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.
(2)负数和零没有对数.
(3)对数式与指数式的互化:.
2.几个重要的对数恒等式
,,.
3.常用对数与自然对数
常用对数:,即;自然对数:,即(其中…).
4.对数的运算性质
如果,那么
①加法:②减法:
③数乘:④

⑥换底公式:
知识点四:对数函数及其性质
1.对数函数定义
一般地,函数叫做对数函数,其中是自变量,函数的定义域.
函数
名称
对数函数
定义函数且叫做对数函数图象
定义域
值域
过定点图象过定点,即当时,.
奇偶性非奇非偶
单调性在上是增函数在上是减函数
函数值的
变化情况
变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.
知识点五:反函数
1.反函数的概念
设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.
2.反函数的性质
(1)原函数与反函数的图象关于直线对称.
(2)函数的定义域、值域分别是其反函数的值域、定义域.
(3)若在原函数的图象上,则在反函数的图象上.
(4)一般地,函数要有反函数则它必须为单调函数.
3.反函数的求法
(1)确定反函数的定义域,即原函数的值域;
(2)从原函数式中反解出;
(3)将改写成,并注明反函数的定义域.
知识点六:幂函数
1.幂函数概念
形如的函数,叫做幂函数,其中为常数.
2.幂函数的性质
(1)图象分布:幂函数图象分布在第一、二、三象限,
第四象限无图象.幂函数是偶函数时,图象分布
在第一、二象限(图象关于轴对称);是奇函数
时,图象分布在第一、三象限(图象关于原点对称);是非
奇非偶函数时,图象只分布在第一象限.
(2)过定点:所有的幂函数在都有定义,并且图象都通过点.
(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果
,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.
(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当
(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.
(5)图象特征:幂函数,当时,若,其图象在直线
下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.。

相关文档
最新文档