材料力学答案3扭转42页PPT
材料力学土木类扭转PPT课件
符号T表示。
扭矩大小可利用截面法来确定。
Me
1
Me
A Me
A
1
B
1
T
x 1 1
T Me
Me
T
1
B
第4页/共42页
扭矩的符号规定 按右手螺旋法则确定: 扭矩矢量离开截面为正,指向截面为负。
T T
T (+)
T T
T (-)
仿照轴力图的做法,可作扭矩图,表明沿杆 轴线各横截面上扭矩的变化情况。
第5页/共42页
l
Me (b)
D2
Ⅱ
Me
l
第31页/共42页
解:Wp1
πd13 16
Wp2
πD23 16
1 4
t 1,max
T1 Wp1
Me Wp1
16M πd13
e
t 2,max
T2 Wp 2
Me Wp 2
16M e
πD23 1 4
t t 1,max
2,max
已知 0.8
得
D2 d1
3
Me
A Me
A
1
Me
1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图
第6页/共42页
例 3-1 一传动轴如图,转速n = 300r/min; 主动轮 输入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
第7页/共42页
e
t
t
x
f b
t'
材料力学第四版 第三章 扭转PPT课件
分析:微体既无轴向正应变,也无横向正应 变,只是相邻横截面之间发生相对错动,既 只有剪切变形。
结论: 1)横截面上无正应力σ
2)横截面上有切应力τ,
切应力垂直于半径方向。
(薄壁圆筒)切应力的计算公式: R0
切应力沿壁厚均匀分布于横截面上
平均半径:r
壁厚:δ
dArd
§3-2 外力偶矩的计算 扭矩
一、外力偶矩的计算
力偶矩M作功:W Me
功率: P Me n2
已知轴的传递功率P:kW(千瓦) 轴的转速n:r/min(转/分钟)
外力偶矩2:6nM 0eM Ne m P91504090nPkW r/min
二、扭矩与扭矩图
n
M
M
n
采用“截面法” 求横截面上的内力:
MeB 1 MeC 2
MeA 3 MeD
由平衡方程
B1 C 2 A 3 D
Mx 0 T1MeB0 Me2
T 1M eB 35 N m 0
同理,在 CA 段内
B
T1 x MeB
M x 0 T 2 M e C M e B 0
MeC T2 x
BC
T 2 M e 2 M e 3 7N 0 m 0
MeB
MeC
MeA n
MeD
B
C
A
D
MeB 1
MeC 2
MeA 3
n
MeD
B1C 2 A
3D
解: (1)计算外力M偶e矩9549npkw
Me1 15915Nm
r/min
Me2 Me3 4774.5 Nm
Me4 6366Nm (2)计算 BC、CA、AD段内任一横截面上的扭矩
《材料力学》第3章 扭转 习题解
第三章扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。
试作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW) 转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。
钻杆钻入土层的深度m l 40=。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。
解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图T 图(kN.m)x x lM mx x T e0133.0)(-=-=-=。
]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。
[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。
若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。
材料力学 第三章 扭转PPT课件
(Torsion)
9
(Torsion)
10
(Torsion) 轴: 工程中以扭转为主要变形的构件。
齿轮轴
11
(Torsion)
二、受力特点(Character of external force)
杆件的两端作用两个大小相等、方
向相反、且作用平面垂直于杆件轴
线的力偶.
me
三、变形特点(Character of deformation)
4
(Torsion)
§3-1 扭转的概念及实例 (Concepts and example problem of torsion)
一、工程实例(Example problems)
1、螺丝刀杆工作时受扭。
5
(Torsion)
6
(Torsion)
2、汽车方向盘的转动轴工作时受扭。
7
(Torsion)
MA ml
2、截面法求扭矩 TMAmx
Tm (lx)
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
21
(Torsion)
§3-3 薄壁圆筒的扭转
(Tors
薄壁圆筒:壁厚
1 10
r0(r0—圆筒的平均半径)
一、应力分析 (Analysis of stress)
杆件的任意两个横截面都发生绕轴线的相对转动.
Me
Me
12
(Torsion)
§3-2 扭转的内力的计算 (Calculating internal force of torsion)
一、外力偶矩的计算 (Calculation of external moment)
1秒钟输入(出)的功:P×1000N•m
材料力学习题册答案-第3章 扭转
第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)For personal use only in study and research; not for commercial use4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
《材料力学》课件——第三章 扭转
F
Me
F
M'e
汽车的转向操纵杆
3.1 扭转的概念和实例
Me
A'
A
B
B'
Me
扭转:在一对大小相等、转向相反、作用面垂直于 直杆轴线的外力偶Me作用下,直杆的相邻横截面将 绕轴线发生相对转动,杆件表面纵向线将成斜线, 而轴线仍维持直线。
3.1 扭转的概念和实例
Me
A'
g
A
B
j
B'
Me
外力偶作用平面和杆件横截面平行
M2
M3
M1
M4
解:①计算外力偶矩
M1
9.55
P1 n
9.55 500 300
A
15.9(kN m)
B
C
M2
M3
9.55
P2 n
9.55 150 300
4.78
(kN m)
M4
9.55
P4 n
9.55 200 300
6.37
(kN m)
n D
3.2 外力偶矩的计算 扭矩和扭矩图
②求扭矩(扭矩按正方向设)
M 0 , C
T1 M 2 0
T1 M 2 4.78kN m
M2 1 M2
A1 M2
M3
M1
2
3M4
n B 2 C 3D
T2 M 2 M 3 0 ,
T2 M 2 M 3
A
(4.78 4.78)
9.56kN m
T3-M4=0
T3=M4=6.37KN·m
T1
T2
T3
3.2 外力偶矩的计算 扭矩和扭矩图
代入上式得:
G g
材料力学扭转教学课件PPT
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
材料力学第3章 扭转幻灯片PPT
第3章 扭 转 图3-4
第3章 扭 转 例3-1 传动轴〔见图3-5(a)〕的转速n=300r/min,主动轮 为A,输入功率PA=50kW,两个从动轮为B、C,其中B轮输 出功率PB=30kW。试作轴的扭矩图。 解 (1〕扭力偶矩计算。A轮为主动轮,故MA的方向与 轴的转向一致;而作用在从动轮B、C上的扭力偶矩MB、 MC的方向与轴的转向相反。MA、MB的大小分别为
第3章 扭 转
图3-6
第3章 扭 转
由于圆筒两横截面间的距离不变,故横截面上没有正应 力;圆筒的半径不变,故在通过轴线的纵向截面上亦无正应 力。在变形过程中,相邻横截面p-p与q-q发生相对错动,矩 形变成了平行四边形,这种变形称为剪切变形。纵向线倾斜 的角度γ是矩形方格变形前后直角的改变量,即为切应变 〔见图3-6(e)〕,故横截面上只有切应力,它组成与扭力偶 矩平衡的内力系。由于筒壁很薄,可认为切应力沿壁厚均匀 分布〔见图3-6(c)〕,q-q 截面上切应力组成的内力是横截 面的扭矩T,由q-q截面以左局部圆3
第3章 扭 转
3.2 扭力偶矩、扭矩与扭矩图
1.扭力偶矩的计算
在工程实际中,可以根据力偶与力矩的理论,计算轴承
受的扭力偶矩。对于传动轴等构件,往往只给出轴所传递的
功率和转速,可利用动力学知识,根据功率、转速和扭力偶
矩之间的关系
P=Meω
求出作用在轴上的扭力偶矩为
MeN?m9549nPr/kmwin
(3-1)
第3章 扭 转
2.扭矩与扭矩图 为了计算圆轴的应力和变形,首先要分析其横截面上 的内力。如图3-4(a)所示圆轴,承受外力偶矩Me作用,现用 截面法分析任意横截面n-n上的内力。在n-n截面处假想地将 圆轴截开,取其左段为研究对象,作用在轴左段上的外力 偶矩为Me,由平衡理论可知,作用在n-n截面上分布内力系 的合成结果必为一力偶,而且该力偶的作用面在横截面内。 将作用于横截面的内力偶矩称为该截面的扭矩,用T来表示 〔见图3-4(b)〕。由轴左段平衡条件
材料力学扭转概要PPT课件
j AC
=
M x2lAC GIP
=
320 0.5
80109 0.054
= 0.0033rad
第30页/3共259页
T
2
T1
d
T3
Mx1=0.5kN·m Mx2 =0.32kN·m
lAB=300mm
B
A
lAB
T
T1
2
φAB
B
A
lAB
C
lAC
d
T3
φAC
C
lAC
G=80GPa
d=50mm
j AB
单位长度扭转角[θ]=0.20/m。试求轴所需的直径。
解:(1)轴的扭矩图
7
Mx (kN·m)
+
第43页/共59页
3.5
+
(2)求直径
max
=
M xmax Wp
[ ]
Mx (kN·m)
7
+
3.5
+
Wp
M xmax
[ ]
=
7103 N m 40106 Pa
=
0.175106 mm 3
d 3 16WP = 3 16 0.175106 mm 3 = 96mm
= 51.0MPa
第22页/共59页
(2)空心圆截面
T
由面积相等,且内、外直径比
α =0.5
1 d 2 = D2 (1 2 )
4
4
D
D/2
T
D =115mm
WP
=
πD3 16
(1 4 )
=
3.14 (115)3 16
109 m3
[1 (0.5)4 ]
材料力学第三章_扭转 PPT课件
§6-3 圆杆扭转时的应力和强度条件
极惯性矩I p 2dA
A
实心圆轴
Ip
D 4
32
d
o
D
空心圆轴
Ip
(D4
32
d4)
D
4
(1
4)
32
dD
d
o
d D
§6-3 圆杆扭转时的应力和强度条件
强度条件:
max
T WP
圆轴扭转强度条件:
max
例6-3 图示轮C为主动轮,
A、B、D轮为从动轮,转 速为n=300r/min,TA=351N•m, TB=351N•m, TC=1170N•m, TD=468N•m, G=80GPa,
[]=40MPa,[]=0.3°/m,
试设计传动轴的直径d。
解: 1.绘扭矩图 Mnmax=702 N•m
2. 按强度条件设计直径d
参考坐标系如图所示,矩形1和2的面
积及形心位置分别为:
120 1
A1=10120=1200 mm2
A2=1070=700 mm2
2
10 z yc1 =120/2=60 mm
80
zc1 =10/2=5 mm
yc2 =10/2=5 mm,zc2 =10+70/2=45 mm
zc
Sy A
S y1 S y2 A1 A2
§6-3 圆杆扭转时的应力和强度条件
扭转平面假设:圆杆的横截面变形后仍保持为平面,直径变形后 仍为直径 推论:横截面上只有切应力,没有正应力
§6-3 圆杆扭转时的应力和强度条件
(二)圆轴扭转应力
材料力学课件第3章扭转
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C