平行四边形的判定二
平行四边形的判定(2)(课件)-八年级数学下册(人教版)
一组对边平行且相等的四边形是平行四边形吗?
如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵ AB∥CD
∴ ∠1=∠2
又∵ AB=CD,AC=CA
∴ △ABC≌△CDA (SAS)
∴ BC=DA
∴ 四边形ABCD的两组对边分别相等,它是平行四边形.
BQ=_________cm;CQ=_________cm.
15-2t
(3)当t为何值时,四边形PDCQ是平行四边形?
解:(3)∵AD//BC
∴当DP=CQ时,四边形PDCQ是平行四边形.
∴12-t=2t
解得t=4
∴t=4s时,四边形PDCQ是平行四边形.
平行四边形判定定理4:一组对边平行且相等的四边形是平行四边形.
t
12-t
AP=_________cm;DP=_________cm;
BQ=_________cm;CQ=_________cm.
2t
15-2t
(1)用含t的代数式表示:
12-t
t
AP=_________cm;DP=_________cm;
2t
BQ=_________cm;CQ=_________cm.
4.如图,在□ABCD中,E,F分别是边BC,AD上的点,有下列条件:
①AE//CF;②BE=FD;③∠1=∠2;④AE=CF.若要添加其中一个条件,使四边
形AECF一定是平行四边形,则添加的条件可以是( B )
A.①②③④
B.①②③
C.②③④
D.①③④
5.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC// AD;④
平行四边形的判定2练习题
9.3.3平行四边形的判定(2)知识点1定理3:对角线互相平分的四边形是平行四边形1.要做一个平行四边形框架,只要将两根木条AC,BD的中点重叠并用钉子固定,这样得到的四边形ABCD就是平行四边形,这种做法的依据是________________________.2.如图,AO=OC,BD=16 cm,则当OB=________cm时,四边形ABCD是平行四边形.第2题第3题3.如图,四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件:________(只添一个即可),使四边形ABCD是平行四边形.4.如图,在▱ABCD中,点E,F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC.求证:四边形ADCE是平行四边形.6.2017·睢宁月考如图,在四边形ABCD中,对角线AC,BD交于点O,点E,F分别在线段OA,OC上,且OB=OD,∠1=∠2,AE=CF.求证:四边形ABCD是平行四边形.知识点2反证法7.若用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”时,第一步应假设() A.∠A=60°B.∠A<60°C.∠A≠60°D.∠A≤60°8.用反证法证明命题“三角形最多有一个钝角”的第一步是________________________.9.用反证法证明“三角形中至少有一个角不小于60°”.10.2018·玉林在四边形ABCD中:①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种11.如图,在△ABC中,D是BC边的中点,点F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)连接BF,CE,试证明四边形BECF是平行四边形.12.如图,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.求证:四边形ABCD是平行四边形.13.如图,在▱ABCD中,两条对角线相交于点O,AE⊥BD,CF⊥BD,垂足分别为E,F,BG⊥AC,DH⊥AC,垂足分别为G,H.判断四边形GEHF14.如图①,▱ABCD中,O是对角线AC的中点,EF过点O分别与AD,BC交于点E,F,GH过点O分别与AB,CD交于点G,H,连接EG,GF,FH,HE.(1)求证:四边形EGFH是平行四边形;(2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD面积相等的所有平行四边形.。
平行四边形的判定(二)
19.1.2 平行四边形的判定(二)一、 教学目标:1.掌握用一组对边平行且相等来判定平行四边形的方法. 2.会综合使用平行四边形的五种判定方法和性质来证明问题. 3.通过平行四边形的性质与判定的应用,启迪学生的思维,提升分析问题的水平. 二、重点、难点1.重点:平行四边形各种判定方法及其应用。
2.难点:平行四边形的判定定理与性质定理的综合应用. 复习:1. 平行四边形的性质; 2. 平行四边形的判定方法;命题1:(课本87p 练习2)两组对角分别相等的四边形是平行四边形;已知:如图, D B C A ∠=∠∠=∠,求证:四边形ABCD 为平行四边形。
命题2命题2:一组对边平行且相等的四边形是平行四边形. 已知:如图,四边形ABCD ,AD//BC 且AD=BC 求证:四边形ABCD 是平行四边形。
证明:于是,我们又得到平行四边形的两个判定定理: 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形 所以,平行四边形共有五个判定定理。
从边看:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形. 从角看:两组对角分别相等的四边形是平行四边形.A B CDABCD例1 :已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.练习1:如图, A 、B、E在一直线上,AB=CD , CBEC∠=∠,试证明AD//BC。
例2:练习2:CDA B E作业:1、判断题:(1)相邻的两个角都互补的四边形是平行四边形;( )(2)两组对角分别相等的四边形是平行四边形;( )(3)一组对边平行,另一组对边相等的四边形是平行四边形;( )(4)一组对边平行且相等的四边形是平行四边形;( )(5)对角线相等的四边形是平行四边形;( )(6)对角线互相平分的四边形是平行四边形.( ) 2 、在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CDP练习2)3、(课本90P习题4)4、(课本91P习题10)5、(课本92。
平行四边形的判定2
不一定是D∥BC且AB=DC,但四边形ABCD不是平行四边形。
阅读思考题
如图,在四边形ABCD中 ⑴若∠A=100°,∠B=80°, ∠C=100°,∠D=80°, 则四边形ABCD是平行四边形吗? B C
A
D
为什么?
⑵若∠A=120°,∠B=60°,∠C=120°,∠D=60°,则 四边形ABCD是平行四边形吗?为什么?
如图,在 平行四边形ABCD中, 点E、F分别在BC,AD上,且AF= CE,求证,四边形AECF是平行四 边形。
A
F D
B
E
C
⑶若∠A=χ°,∠B=y°,∠C=χ°,∠D=y°,则四边形
ABCD是平行四边形吗?为什么? 综上可知,当∠A与∠C,∠B与∠D分别满足什么关系时,四
边形ABCD是平行四边形?
练
1、补充一个合适的条件使⑴—⑶小题成立:
A O B C
D
如图,四边形ABCD对角线AC、BD相交于点O ⑴若AB∥CD,______,则得 ABCD; ⑵若AB=CD,______,则得 ABCD; ⑶若AC=8,BD=10,AO=4,_______, 则得 ABCD
A
E O F C
D
B
若将“E、F分别为OA、OC中点”改为“AE=CF”,四边形 BEDF还是平行四边形吗?
已知:平行四边形ABCD,对角线AC、 BD相交于点O,AE=CF,求证:四边形
BEDF是平行四边形。
学习小结:
完成下列问题清单:
⑴判定一个四边形是平行四边形的方法有哪几
种,这些方法是从什么角度考虑的? ⑵平行四边形的判定与性质定理有何联系? ⑶如何判断一个命题的正确与否? 小结
定理一:两组对边分别相等的四边形是平行四边形
《平行四边形的判定(2)》评课稿
《平行四边形的判定(2)》评课稿
授课人
评课人
《平行四边形的判定(2)》评课稿
聆听了周老师的课。
下面就周老师执教的《平行四边形的判定(2)》这一课谈谈自己的看法。
周老师这堂课紧凑有序,首先创设以被誉为我国新四大发明之一的高铁的情景,引发学生思考工人如何确保两条铁轨是平行的。
周教师与学生合作探究一组对边如何特殊才能确保四边形是平行四边形,之后再用证明的方法验证猜想的正确性。
至此,平行四边形的几个判定已经讲完,学生对一个定义和四个判定的掌握还不是那么牢固,之后必须经过复习巩固才能保证做题顺畅。
在巩固练习环节,一道以梯形为问题背景的动点问题将平心四边形的判定推向升华,充分提升了学生综合分析问题的能力。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:在遇到图形稍微复杂一些的题目时,学生就显得无从下手。
平行四边形的判定2
第六章平行四边形6.2平行四边形的判定(2)【课程标准要求】探索并证明平行四边形的判定定理:对角线互相平分的四边形是平行四边形。
【教材分析】平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.【学情分析】由于学生在前面学段已经接触过四边形,在七年级下册“三角形”一章中也研究了一般多边形及其内角和等内容,因此本章没有从一般的四边形讲起,而是在引言后直接进入特殊四边形的学习。
对于特殊的四边形,教科书按对边之间的平行关系把它们分成了两类:一类是两组对边分别平行的四边形——平行四边形,同时学生已经学习了三角形全等的判定以及一组对边平行且相等的四边形是平行四边形,两组对边分别相等的四边形的平行四边形,这也为本节课的证明打下了基础。
【学习目标:】知识与技能:经历平行四边形判定定理的探索过程,发展合情推理的能力。
过程与方法:探索并证明平行四边形的判定定理及其它相关结论,发展演绎推理能力。
情感与态度:体会归纳、类比、转化等数学思想。
【教学重点:】平行四边形的判定定理【教学难点:】掌握平行四边形的判定定理并能熟练应用一、课前预习1、预习143-145页课本内容。
2、记住平行四边形的判定定理。
3、看会144页的例题2。
4、完成144页的随堂练习。
二、课内检查1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD 于点O .求证:EO=OF .三、合作探究探究一、如图,四边形ABCD 的两对角线AC 、BD 相交于点O ,并且OA =OC ,OB =OD 。
平行四边形的判定方法5个
平行四边形的判定方法5个平行四边形是一种特殊的四边形,其相邻两边互相平行。
在数学中,有多种方法可以判断一个四边形是否为平行四边形。
下面将介绍五种常见的判定方法。
方法一:利用对角线性质如果一个四边形的对角线互相垂直且平分彼此,那么这个四边形就是一个平行四边形。
假设四边形ABCD的对角线AC和BD互相垂直且平分彼此,那么我们可以得出AB∥CD和AD∥BC。
这个方法一般用于已知对角线情况。
方法二:利用四边形相对角性质如果一个四边形的相对角相等,那么这个四边形就是一个平行四边形。
假设四边形ABCD的∠A=∠C且∠B=∠D,那么我们可以得出AB∥CD和AD∥BC。
这个方法一般用于已知内角情况。
方法三:利用同位角性质如果两条平行线被一组直线所截,那么这两条平行线的同位角相等。
假设直线l和m分别平行于直线n,且l和m被直线n所截,那么我们可以得出l∥m。
这个方法可以用于平行线的判定。
方法四:利用向量性质如果四边形的对应边向量平行,那么这个四边形就是一个平行四边形。
假设四边形ABCD的向量→AB和向量→CD平行,那么我们可以得出AB∥CD。
这个方法可以用于已知向量情况。
方法五:利用线段比值如果一个四边形两组对应边的线段比值相等,那么这个四边形就是一个平行四边形。
假设四边形ABCD中,AB/CD=AD/BC,那么我们可以得出AB∥CD。
这个方法可以用于已知边长比值情况。
需要注意的是,以上方法都是单程性质,即如果一个四边形满足了这些条件,那么它是一个平行四边形;但是如果一个四边形是平行四边形,未必满足以上所有条件。
所以在进行判断时,需要综合多个条件来得出结论。
平行四边形具有许多重要的性质和特点,如对角线平分每个其他对角线、对角线长度相等等。
平行四边形在几何学中有广泛的应用,在计算几何和平面几何中经常出现。
因此,准确判断一个四边形是否为平行四边形对于我们理解和应用相应的几何知识至关重要。
平行四边形的判定2
问题:一组对边平行另一组对边相等的四边形不一定是平行四边形吗?
学生探究,回答。
培养学生合情推理能力和严谨的逻辑表达能力
(四)小组合作
例1(47页例4补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
分析:证明BE=DF,可以证明两个三角形全等,也可以证明
判定一个四边形是平行四边形可从哪些角度思考?
具体有哪些方法?
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
九、作业
十、课后反思
2、过程与方法:经历探索、猜想、证明的过程,体会归纳、转化的数学思想.
3、情感目标:培养学生合情推理能力和严谨的逻辑表达能力
四、教学重点
平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法
五、教学难点
平行四边形的判定定理与性质定理的综合应用
六、教学方法
自主、合作、探究
七、教具
多媒体
四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
例2如图,四边形AEFD和EBCF都是平行四边形.
求证:四边形ABCD是平行四边形.
例3如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.且∠BAC=30°,EF
⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.
平行四边形的判定(2)
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课题 平行四边形的判定(2) 课型 新课 八年级下 2014 年 月 日 人教版 1.掌握用一组对边平行且相等来判定平行四边形的方法. 2.会综合运用平行四边形的四种判定方法和性质来证明问题. 平行四边形各种判定方法及其应用, 尤其是根据不同条件能正确地选择判定方法.
9.四边形 ABCD 是平行四边形,BE 平分∠ ABC 交 AD 于 E, DF 平分∠ ADC 交 BC 于点 F,求证:四边形 BFDE 是平行四边形。
10.已知□ABCD 中,E、F 分别是 AD、BC 的中点,AF 与 EB 交于 G, CE 与 DF 交于 H,求证:四边形 EGFH 为平行四边形。
证明:一组对边平行且相等的四边形是平行四边形. 已知:如图,在 中,AB=CD AB∥CD, 求证: . 证明:
A B C
D
判定定理五:一组对边平行且相等的四边形是平行四边形. 几何语言表述:∵AB=CD,AB∥CD ∴四边形ABCD是平行四边形. 例 1:已知:如图,□ABCD 中,E、F 分别是 AD、BC 的中点,求证:BE=DF
11.如图,在四边形 ABCD 中,AB=6,BC=8,∠ A=120° ,∠ B=60° , ∠ BCD=150° ,求 AD 的长。
A D
B
C
12.如图,在□ABCD 中,E、F 分别是边 AD、BC 上的点,已知 AE=CF, AF 与 BE 相交于点 G,CE 与 DF 相交于点 H, 求证:四边形 EGFH 是平行
C
1
鸡西市第十九中学初三数学组
例2:已知:如图,□ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF ⊥AC于F.求证:四边形BEDF是平行四边形.
平行四边形的判定2
让我们一起来总结
你知道哪些判定平 行四边形的方法?
让我们一起来总结
●两组对边分别平行 性质 平行四边形 判定 ●两组对边分别相等 ●一组对边平行且相等 ●两组对角分别相等 ●对角线互相平分 角 对角线 边
例2 比较线路长短
如图是某区部分街道示意图,其中CE垂直平分AF, BC=DA,BC∥DF,FD=BC.从B站乘车到E站只 有两条路线有直接到达的公交车,路线1是B---D--A---E,路线2是B---C---F---E,请比较两条路线路 程的长短,并说明理由.
B
C
判定方法(4)
一组对边平行且相等 (记作:“ = ”)
∥
的四边形是平行四边形
例1、已知:如图,平行四边形 ABCD中,E、F分别是AD、BC的 中点,求证:BE=DF.
证明:∵ 四边形ABCD是平行四边形, ∴ AD∥CB,AD=CB.
∵ E、F分别是AD、BC的中点,
∴ DE∥BF,且DE=BF. ∴ 四边形BEDF是平行四边形(一组对边平行且相等的四 边形是平行 四边形). ∴ BE=DF.
解:两条线路相等。
理 由 : 因 为 DE 垂 直 平 分 AF , 所 以 DF=DA,FE=AE,
又 BC∥DF , FD=BC , 所 以 四 边 形 FDBC是平行四边形,所以BD=CF, CB=DF=DA , 所以BD+DA+AE=CF+BC+FE,所以 线路1与线路2的路程相等。
平行四边形的判定(二)
平行四边形的判定2
平行四边形的判定21.以下四个命题:(D两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有( )A.4个B.3个C.2个D.1个2.能判定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等3.不能判定四边形4¾笫为平行四边形的题设是()A.AB=CD,AB//CDB.AA=AC,/B=ZDC.AB=AD,BC=CDD.AB=CD,AD=BC4一四边形4¾力中,4。
交勿于点Q,如果只给条件’,那么还不能判定四边形4腼为平行四边形,给出以下四种说法:(1)如果再加上条件«BC=AU',那么四边形/1阅9一定是平行四边形;(2)如果再加上条件"ZBAD=ZBCD",那么四边,形4%力一定是平行四边形;(3)如果再加上条件"AO=OC',那么四边形月时一定是平行四边形;(4)如果再加上条件"ND班=Ne46",那么四边形力AR一定是平行四边形其中正确的说法有()个.D. 1 B.2 C.3 D.A5.如图,在平行四边形/发力中,点反尸分别在边8。
、上,请添加一个条件,使四边形力的是平行四边形(只填一个即可).6.如图,在四边形力中,对角线4G加交于点0,49〃%,请添加一个条件:,使四边形力犯9为平行四边形(不添加任何辅助线).7.:如图,□ABCD中,E、〃分别是边被09的中点.(1)求证:四边形能叨是平行四边形;⑵假设力〃刃生2,/住60°,求四边形砌力的周长.8.:如图,点£,尸是5阅9中科,如边上的点,且AE=CF,蛛结DE,BF.求证:DE=BF.1.以下命题中,真命题的个数有().①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.O个2.能判定四边形力版是平行四,边形的是( )A.AB//CD t AD=BCB./A=/B,/C=ZDC.AB=CD,AD=BCD.AB=AD,CB=CD3.在四边形4ra中,根据下面选项中N4N反NG 的度数比,可以判定四边形4¾力是平行四边形的是()A.1:2:3:4B.2:3:2:3C.2:2:3:3D.1:2:2:34.四边形/腼中,对角线力C、协相交于『点0,给出以下四个条件.:①AAC戾②AD=BC•,③曲=玄;®0B=OD.从中任选两个条件,能使四边形川?如为平行四边形的选法有( )A.1种B.2种C.3种D.4种5.四边形4¾力中,力,请补充一个条件,使得四边形/1腼是平行四边形.7.如图,在四边形力比9中M8=6Z?"C交加于点0,如果想使该四边形成为平行四边形,那么只需添加的条件是(添一个即可).8.如图,在平行四边形4¾券中,E、厂分别在力反刃边上,且丝=6F.(1)求证:4ADEq2CBF∙,(2)求证:四边形皮,泥、是平行四边形。
北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题
2020-2021学年北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AC,BD相交于点O,E,F分别为OB,OD上的点,且OE=OF,再由OC=OA,即可得到四边形AECF是平行四边形,理由是________________________.2.如图,AC,BD是相交的两条线段,点O为它们的中点.当BD绕点O旋转时,连接AB,BC,CD,DA,所得到的四边形ABCD始终为______.3.在四边形ABCD中,对角线AC,BD相交于点O,下列条件中能判定这个四边形是平行四边形的是______.(填序号)①AB=CD,AD=BC;②AB=CD,AD∥BC;③AB=CD,AB∥CD;④AD∥BC,AB∥CD.4.如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF,有以下结论:①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE.这些结论中正确的是______.(填序号)二、选择题5.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E,G为垂足,则下列说法不正确的是( ) A.AB=CDB.EC=GFC.A,B两点的距离就是线段AB的长度D.a与b的距离就是线段CD的长度6.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DOD.AB=DC,AD∥BC7.根据下列条件,能作出平行四边形的是( )A.两组对边的长分别是3和5B.相邻两边的长分别是3和5,且一条对角线长为9C.一边的长为7,两条对角线的长分别为6和8D.一边的长为7,两条对角线的长分别为6和58.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )A.6 B.12 C.20 D.24三、解答题9.(1)如图,▱ABCD的对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,连接DE,BF.求证:四边形DEBF是平行四边形.(2)如图,四边形ABCD的对角线AC,BD相交于点O,AO=CO,EF过点O且与AD,BC 分别相交于点E,F,OE=OF.求证:四边形ABCD是平行四边形.10.(1)如图,H,G是▱ABCD对角线上的点,且AG=CH,E,F分别是AB,CD的中点.求证:四边形EHFG是平行四边形.(2)如图,在四边形ABCD中,BC∥AD,∠ABC=90°,AD=5,BC=13,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.①求证:四边形BDFC是平行四边形;②若BD=BC,求四边形BDFC的面积.B组(中档题)一、填空题11.在如图所示的▱ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC 所在平面内的点E处,且AE过BC的中点O.则△ADE的周长等于______.12.如图,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图所示.若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有______个.13.如图,Rt△OAB的两直角边OA,OB分别在x轴和y轴上,A(-2,0),B(0,4),将△OAB绕点O顺时针旋转90°得到△OCD,直线AC,BD交于点E.点M为直线BD上的动点,点N为x轴上的点.若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为______.二、解答题14.如图,已知AC是▱ABCD的对角线,△ACP和△ACQ都是等边三角形.求证:四边形BPDQ是平行四边形.C组(综合题)15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.参考答案2020-2021学年北师大版八年级数学下册第六章 6.2.2平行四边形的判定(二) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AC,BD相交于点O,E,F分别为OB,OD上的点,且OE=OF,再由OC=OA,即可得到四边形AECF是平行四边形,理由是对角线互相平分的四边形是平行四边形.2.如图,AC,BD是相交的两条线段,点O为它们的中点.当BD绕点O旋转时,连接AB,BC,CD,DA,所得到的四边形ABCD始终为平行四边形.3.在四边形ABCD中,对角线AC,BD相交于点O,下列条件中能判定这个四边形是平行四边形的是①③④.(填序号)①AB=CD,AD=BC;②AB=CD,AD∥BC;③AB=CD,AB∥CD;④AD∥BC,AB∥CD.4.如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF,有以下结论:①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE.这些结论中正确的是①②④⑤.(填序号)二、选择题5.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,E,G为垂足,则下列说法不正确的是(D) A.AB=CDB.EC=GFC.A,B两点的距离就是线段AB的长度D.a与b的距离就是线段CD的长度6.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(D)A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DOD.AB=DC,AD∥BC7.根据下列条件,能作出平行四边形的是(A)A.两组对边的长分别是3和5B .相邻两边的长分别是3和5,且一条对角线长为9C .一边的长为7,两条对角线的长分别为6和8D .一边的长为7,两条对角线的长分别为6和58.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D)A .6B .12C .20D .24三、解答题9.(1)如图,▱ABCD 的对角线AC ,BD 相交于点O ,过点O 的直线EF 分别交AB ,CD 于点E ,F ,连接DE ,BF.求证:四边形DEBF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,OD =OB , AO =OC.∴∠DCO =∠BAO.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠FCO =∠EAO ,CO =AO ,∠COF =∠AOE ,∴△AEO ≌△CFO(ASA).∴OE =OF.∵OD =OB ,∴四边形DEBF 是平行四边形.(2)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AO =CO ,EF 过点O 且与AD ,BC 分别相交于点E ,F ,OE =OF.求证:四边形ABCD 是平行四边形.证明:∵AO =CO ,OE =OF ,∠AOE =∠COF , ∴△AOE ≌△COF(SAS). ∴∠OAE =∠OCF.∴AD ∥BC. ∴∠EDO =∠FBO.又∵OE =OF ,∠EOD =∠FOB , ∴△EOD ≌△FOB(AAS). ∴OB =OD.又∵OA =OC ,∴四边形ABCD 是平行四边形.10.(1)如图,H ,G 是▱ABCD 对角线上的点,且AG =CH ,E ,F 分别是AB ,CD 的中点.求证:四边形EHFG 是平行四边形.证明:连接CE ,AF ,EF ,EF 与AC 交于点O. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD.∵E ,F 分别是AB ,CD 的中点, ∴AE =CF ,AE ∥CF.∴四边形AECF 是平行四边形. ∴OA =OC ,OE =OF. ∵AG =CH ,∴OG =OH.∴四边形EHFG 是平行四边形.(2)如图,在四边形ABCD 中,BC ∥AD ,∠ABC =90°,AD =5,BC =13,E 是边CD 的中点,连接BE 并延长与AD 的延长线相交于点F.①求证:四边形BDFC 是平行四边形; ②若BD =BC ,求四边形BDFC 的面积.解:①证明:∵BC ∥AF , ∴∠CBE =∠DFE.∵E 是边CD 的中点,∴CE =DE. 在△BEC 和△FED 中, ⎩⎪⎨⎪⎧∠CBE =∠DFE ,∠BEC =∠FED ,CE =DE ,∴△BEC ≌△FED(AAS).∴BE =FE. ∴四边形BDFC 是平行四边形.②由(1)得:△BEC ≌△FED ,∴DF =BC =13.∵BC ∥AF ,∠ABC =90°,∴∠BAD +∠ABC =180°. ∴∠BAD =90°.∵BD =BC =13,AD =5,∴AB =BD 2-AD 2=132-52=12. ∴S 四边形BDFC =DF ·AB =13×12=156.B 组(中档题)一、填空题 11.在如图所示的▱ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O.则△ADE 的周长等于10.12.如图,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图所示.若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有11个.13.如图,Rt△OAB的两直角边OA,OB分别在x轴和y轴上,A(-2,0),B(0,4),将△OAB绕点O顺时针旋转90°得到△OCD,直线AC,BD交于点E.点M为直线BD上的动点,点N为x轴上的点.若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为(2,2)或(6,-2).二、解答题14.如图,已知AC是▱ABCD的对角线,△ACP和△ACQ都是等边三角形.求证:四边形BPDQ是平行四边形.证明:方法一:(利用全等得两组对边相等)∵AC是▱ABCD的对角线,∴∠DAC=∠BCA.∵∠ACP=∠CAQ=60°,∴∠DAQ=∠BCP.又∵AD=CB,AQ=CP,∴△ADQ≌△CBP.∴DQ=BP.同理可证△ABQ≌△CDP.∴BQ=DP.∴四边形BPDQ是平行四边形.方法二:(利用对角线互相平分证明结论)连接BD交AC于点O,连接PO,QO.利用△ACP和△ACQ是全等等边三角形可得P,O,Q三点共线,且PO=QO.又∵BO=DO,∴四边形BPDQ是平行四边形.C组(综合题)15.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.解:(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C.∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形.∴∠DEG=∠C.∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC.∴∠F=∠DEG.∴BF∥DE.又∵EF∥BD,∴四边形BDEF为平行四边形.(2)作FM⊥BD于点M,连接DF.∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°.∴△BDE,△BEF是等腰直角三角形.∴BF=BE=22BD=2 2.易得△BFM是等腰直角三角形.∴FM=BM=22BF=2.∴DM=6.在Rt△DFM中,DF=FM2+DM2=22+62=210.。
平行四边形的判定2
6.22平行四边形的判定(2)学案班级______________________姓名______________________一、知识回顾【平行四边形的判定】判定1:的四边形是平行四边形.几何语言:判定2:的四边形是平行四边形.几何语言:判定3:的四边形是平行四边形.几何语言:二、探究学习【探究活动】下面是a、b两条卡纸,能否合理摆放这两条卡纸,使它们的四个端点顺次连接起来,形成一个平行四边形?【猜想】的四边形是平行四边形.【几何验证】已知:求证:证明:【归纳结论】平行四边形的判定4:的四边形是平行四边形.几何语言:三、学以致用例1、如图,在□ABCD中,对角线AC与BD相交于点O,E,F分别是OA和OC的中点,四边形BFDE是平行四边形吗?请说明理由.例2、已知:E ,F 是□ABCD 对角线AC 上的两点,且AE=CF .求证:四边形BFDE 是平行四边形.变式1、对于上述例题,若E ,F 继续移动至OA ,OC 的延长线上,仍使AE=CF (如图),则结论还成立吗?变式2、 在例2中,把AE=CF 改为BE//DF ,其余条件不变.求证:四边形BEDF 为平行四边形.变式3、在例2中,把AE=CF 改为BE ⊥AC 于E ,DF ⊥AC 于F ,其余条件不变.求证:四边形BEDF 为平行四边形.变式4、如图,在□ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 、G 、H 分别在AO 、BO 、CO 、DO 上。
(1)如果AE= AO , BF= BO, CG= CO, DH= DO, 那么四边形EFGH 是平行四边形吗?证明你的结论。
(2)如果AE= AO , BF= BO, CG= CO, DH= DO, 那么四边形EFGH 是平行四边形吗?证明你的结论。
(3)如果AE= AO , BF= BO, CG= CO, DH= DO, 其中n 为大于1的正整数,那么上述结论还成立吗?12121212131313131n 1n 1n 1n【B组】1、已知四边形ABCD中,AC与BD交于点O,AB∥CD,再添加一个条件使四边形ABCD为平行四边形。
平行四边形的性质与判定(2)
平行四边形的判定与性质(2)知识点梳理1.判别方法一:有两组对边分别平行的四边形是平行四边形,这是平行四边形的定义,也是判别平行四边形的根本方法,也是其他判别方法的基础。
2.判别方法二:两条对角线互相平分的四边形是平行四边形。
3.判别方法三:一组对边平行且相等的四边形是平行四边形。
4.判别方法四:两组对边分别相等的四边形是平行四边形.提示:(1)当题目中涉及四边形的边比较多时,往往借助于这种方法说明一个四边形是平行四边形.(2)必须是两组对边分别相等,而不是邻边.5.判别方法五:两组对角分别相等的四边形是平行四边形.提示:这种方法需要把握住两点:(1)“两组对角分别相等”,只有“一组对角相等”结论不成立.(2)必须是对角,而不是邻角.6.平行四边形判别方法的选择例1.能判别一个四边形是平行四边形的是()A.一组对边相等,另一组对边平行B.对角线相等C.对角线互相垂直平分D.一条对角线平分另一条对角线变式:1.已知四边形ABCD中,对角线AC、BD相交于O,且OA=OC,OB=OD,下列结论不成立的是()A. AB=ACB.AB∥CDC. ∠A=∠CD.AD=BC2.四边形ABCD中,AD平行且等于CB,则下列结论中错误的是()A. ∠A=∠BB.AB=CDC. AB∥CDD.对角线互相平分3.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边平行B.两条对角线互相平分C. 一组对边平行D.两条对角线互相垂直例2.如上右图所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD ,所以ABCD 是平行四边形.( ) (2)因为AB∥CD,AD=BC ,所以ABCD 是平行四边形.( ) (3)因为AD∥BC,AD=BC ,所以ABCD 是平行四边形.( ) (4)因为AB∥CD,AD∥BC,所以ABCD 是平行四边形.( ) (5)因为AB=CD ,AD=BC ,所以ABCD 是平行四边形.( ) (6)因为AD=CD ,AB=AC ,所以ABCD 是平行四边形.( )平行四边形的判定1.两组对边分别平行的四边形为平行四边形例3.如图,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗.为什么.变式:1.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD 是不是平行四边形.2.如图所示:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.提高:如图,在平行四边形ABCD 中,AC 的平行线MN 交DA 的延长线于M,交DC 的延长线于N,交AB,BC 于P ,Q.(1) 请指出图中平行四边形的个数,并说明理由.(2) MP 与QN 能相等吗?2.两组对边分别相等的四边形为平行四边形NM Q PD C BA例4.如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,则四边形KLMN 为平行四边形吗.说明理由.变式:已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.求证:四边形EGFH是平四边形.3.一组对边平行且相对的四边形为平行四边形例5.如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE =21AB ,CF =21CD ,试证明AECF 为平行四边形.变式:1.如图所示,在ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连接CE 和AF ,试说明四边形AFCE 是平行四边形.2.如图14,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)⊿AFD ≌⊿CEB .(2)四边形ABCD 是平行四边形.4.两组对角分别相等的四边形为平行四边形BCG例6.如图,在平行四边形ABCD中,∠ABC的平分线交CD于E,∠ADC的平分线交AB于点F.试证明四边形DFBE为平行四边形.5.对角线互相平分的四边形为平行四边形例7.如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.变式:如图所示,在ABCD中,AC、BD相交于点O.E、F分别在OB、OD上,且OE=OF,又OC= ,所以是平行四边形,理由是 .应用:例8.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.变式:1.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.2.如图所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE ,DF ,相交于点M .求证:CD=CM .3.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作ACED ,延长DC•交EB 于F ,求证:EF=FB .提高:1.已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC =CF.求证:AF⊥DE.2.已知:如图,△ABC中,D是AB的中点,E是AC上的一点,EF∥AB,DF∥BE.(1)猜想:DF与AE间的关系是______. (2)证明你的猜想.作业:E FB C1. 下列条件中,不能判别四边形是平行四边形的是()A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 对角线互相平分D. 一组对边平行且相等2. 下面是四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A. 1:2:3:4B.2:2:3:4C. 2:3:2:3D. 2:3:3:23.四边形ABCD中,已知AB=CD,再添加一个条件可以判定四边形ABCD为平行四边形.4. 已知四边形ABCD,AD∥BC,分别添加下列条件:①AB∥CD;②AB=CD;③AD=BC;④∠A=∠C;⑤∠B=∠C,能使四边形ABCD为平行四边形的有(填序号).5.已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。
平行四边形的判定(2)++课件+2022—2023学年人教版数学八年级下册++
∥
=
∥ =
四边形是平行四边形
平行四边形
的判定
应用新知
基础
训练
平行四边形的性质与判定
. 如图,在平行四边形中,是对角线,过、两点分别
作 ⊥ , ⊥ ,、为垂足.
求证:四边形是平行四边形
∵ = ∥
∴ 四边形是平行四边形
平行四边形
的判定
应用新知
基础
训练
平行四边形的性质与判定
. 已知:如图四边形和四边形都是平行四边形.
求证:四边形是平行四边形.
证明: ∵
∴
∵
平行四边形
∴
的性质
∴
∴
四边形是平行四边形
∥
=
D
B
C
学习新知
一组对边平行且相等的四边形是平行四边形
平行四边形的任意一组对边平行且相等
已知:在四边形中, ∥ , = .
求证:四边形是平行四边形.
证明:连接
∵ ∥
∴ ∠ = ∠
又 ∵ = =
∴ △ ≌△
∴ =
18.1.2平行四边形的判定
第二课时
第十八章
平
行
四
边
形
作业
. 如图,将平行四边形的对角线向两个方向延长至
点和点,使 = .
求证:四边形是平行四边形.
O
证明:连接AC交EF于点O
∵ 四边形ABCD是平行四边形
∴ = =
∵ =
∴ + = +
∵ = =
∴ 四边形是平行四边形
A
D
1
5.5平行四边形的判定(2) (2)
§5、5 平行四边形的判定(2)教学目标设计:1、经历平行四边形判别条件的探索过程,掌握平行四边形的判定定理“对角线互相平分的四边形是平行四边形”;2、会应用判定定理判断一个四边形是不是平行四边形;并在与他人交流的过程中,能合理清晰地表达自己的思维过程;3、会综合应用平行四边形的性质定理和判定定理解决简单的几何问题,通过探索式证明法,开拓学生的思路,发展学生的思维能力;4、在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
教学重点、难点:教学重点是平行四边形的判定定理;由于例2的证明步骤较多,且要综合运用平行四边形的判定定理和性质定理,是本节教学的难点。
教学策略及教法设计:活动策略:课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判定”的方法。
学生学习策略:明确学习目标,了解所需掌握的知识,在组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。
教法:A、讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。
B、练习法:精心设计随堂变式练习,巩固和提高学生的认知水平。
教学过程设计:一、首先复习性质和判定,从寻找相关的联系入手:如果在前一课的教学中,已经对平行四边形的判定定理3有一定的发现,那么本课就可以直接引入,或视学生的具体情况而定。
教师结合下图性质与判定的对比,一方面给学生以总结,巩固学生的旧知,也为本课的引入奠定基础:或可以采用情境引入:小明的爸爸在钉制平行四边形框架时采用了下面的方法。
方法:如图,将两根木条AC,BD的中点重叠,并用钉子固定,(当然上述的方法也可以让学生进则四边形ABCD就是平行四边形。
行操作,让学生在在拼摆各种图形的过程中,积累数学活动经验,增强学生的创新意识,培养学生团结协作的精神,并满足他们的好胜心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
D
A
D
B
如图,四边形ABCD中,AD=BC,且AB=CD, 平行四边形 则四边形ABCD是___________,理由是 两组对边分别相等的四边形是平行四 ____________________________
边形。
A
D
B
C
如图,四边形ABCD中,AB//CD,且AB=CD, 平行四边形 则四边形ABCD是___________,理由是 ____________________________ 一组对边平行且相等的四边形是平行 四边形
不一定。如右图
一组对边平行,另一组对边相等的 四边形一定是平行四边形吗?
不一定。如等腰梯形。
用两根长为40cm的木条和两根长30cm 的木条作为四边形的四条边,能否拼 成一个平行四边形?
小明拼成的四边形如图所示,图中 的四边形ABCD是平行四边形吗?理 由是什么?
将两根同样长的木条AB,CD平行放置 ,再用木条AD,BC加固,得到的四边 形ABCD 是平行四边形吗?为什么?
在图中,AC=BD=16, AB=CD=EF=15, CE=DF=9。 图中有哪些互相平 行的线段?为什么?
作业:课本107页 习题 4.4 第1题
补充:
平行四边形ABCD,M是AD的中点,N是BC的中 点, (1)四边形ANCM是平行四边形吗?为什么?
(2)四边形BMDN是平行四边形吗?为什么?
A D O B C
(1)两组对边分别平行的四边形是平 行四边形。 (2)两组对边分别相等的四边形是平 行四边形。 (3)一组对边平行且相等的四边形是 平行四边形。 (4)两条对角线互相平分的四边形是 平行四边形。
小明的爸爸在钉制平行四边形框架时 采用了下面的方法,将两根木条AC, BD的中点重叠,并用钉子固定,则四 边形ABCD就是平行四边形,你同意吗? 为什么?
A
D
B
C
(3)四边形MENF是平行四边形吗?为什么?
1、两组对边分别平行的四边形是平行 四边形。 2、两组对边分别相等的四边形是平行 四边形。 3、一组对边平行且相等的四边形是平 行四边形 4、两条对角线互相平分的四边形是平 行四边形
如图,四边形ABCD,AC、BD相交于 点O,若OA=OC,OB=OD,则四边形ABCD是 平行四边形 __________,根据是 两条对角线互相平分的 _____________________ 四边形是平行四边形
如图,AC∥ED, E D 点B在AC上且 AB=ED=BC 。找 出图中的平行四 边形。 A B C
在 ABCD中,点E、F分别是BC、AD的 中点,四边形ABEF,四边形ECDF是平 行四边形吗?说说你的理由。
A
B
F
D
C
E
如图,四个全等三角形拼成一个 大的三角形,找出图中所有的平 行四边形,并说明理由。
如图,平行四边形ABCD,AC、BD相 交于点O,过点O的EF与AD、BC交于E、F 两点,OE与OF,相等吗?为什么?
A
E
O
D
B
F
C
1、两组对边分别平行的四边形是平 行四边形。 2、两组对边分别相等的四边形是平 行四边形。 3、一组对边平行且相等的四边形是 平行四边形
有两条边相等,并且另外的两条 边也相等的四边形一定是平行四边形 吗?