QBZ-80开关原理图详解要点

合集下载

QBZ-80开关原理资料

QBZ-80开关原理资料
QBZ-80(660V)
矿用隔爆型真空电磁起动器
型号、用途及工作条件
1、矿用隔爆型真空电磁起动器(以下简称起动器),用于交流
50Hz,电压380V、660V、1140V的电路中作直接或远距离控制
三相鼠笼型异步电动机,并可在停止时进行换向,起动器具 有:
1.1 失压保护;
1.2 过载保护; 1.3 短路保护; 1.4 过电压保护; 1.5 断相保护; 1.6 主电路漏电闭锁保护。
中间继电器
电动机综合保护器
保护器所提供的保护
• 1、过载保护:保护电流可任意设定,当 运行电流值大于设定值时,按动作特性 曲线动作。 2、漏电(接地)保护:漏电电流大于设 定值时保护器在3秒内动作。 3、短路保护:任意一相电流达到8Ie电 流时,保护器在2秒内动作。

• 用于吸收和消耗电路断开时感性负载产生的自感电 动势,可防止过电压造成的负载绝缘击穿
BLX KN3-3 LX1-11K LX1-02K BK-200 RL1-15 RC JZ7-44
S3 S2 S1 T F1 F
F
K3 K2 K1 Q
电动机综合保护器 JDB-80、120、225 真空接触器 隔离换向开关 名 称 CKJ5-125、250 DH7-80、125、250 型号
D3
D2
开关内部结构
真空接触器
真空接触器常见的故障
• 故障现象 原因分析 排除方法 接触不良: 没有可靠固定 检查连接是否 紧固,保持规定的电气间隙和爬电距离 接触器声音不对: 可能弹簧松动 查看弹 簧,并做适当调整 通电没反应: 可能控制电路板烧坏 查看 电路板是否有脱焊,测量整流桥是否完好 有缺相现象: 可能是某只真空管已烧坏 更换真空管

QBZ-80开关的原理及故障处理要点

QBZ-80开关的原理及故障处理要点

实操培训教案第三节型号含义型号中的大写字母代表起动器的型式及其特征,主要参数由阿拉伯数字表示。

示例:额定主电压为1140V备用电压为660V、额定电流为80A的矿用隔爆型真空电磁起动器,其型号标记为:QBZ —80/1140(660 )。

第四节技术参数电源电压不低于额定值的75%,起动器应能可靠的工作;电源电压超过或达到额定值的10%时允许短时工作。

起动器的技术参数起动器的过载保护动作吋间起动器的短路保护动件时间起动器的断相保护动作时闻f i M覆艰护K « S港京s-?二S 画W ^Q (099)寸 LI7O0L 58N 8O结构、原理及电流整定说明按以下说明进行:结构:起动器外壳采用圆形快开门结构。

内部装一块控制底板,底板的正面装有一个真空接触器、一个中间继电器、电机综合保护器和熔断器,底板的背面装有隔离开关、阻容过电压吸收器、控制变压器和停止按钮。

起动器的盖子和隔离开关的手柄有机械闭锁,保证断电源后开盖,未盖上盖子不能送电。

JO13- . Z25也站羽L稣停佛L护器疤电樺理禺波段开关SA 和电阻IR1-IR11组成了电流整定电路,它利用串 联电阻的分压作用使得整定在任一档时都能保证在额定负载时输 出同样的信号电压VA 。

(面板上A点)过载保护:过载保护电路由信号比较放大电路,延时电路、定时鉴幅电 路等组成。

在额定负载下,VA 信号电压为+3V ,它与设定的比较 电压3V 相平衡。

因而输出端VB (面板上B 点)也为0V 。

运算 放大器11脚输出为高电平。

当发生过载时,VA 信号电压升高。

1.2倍过载时,VA 为 3.6V,VB 为3V (此电压由22K 可调电位器调整)经过由R28、R24、 D16、C1组成的延时电路延时约5-20分钟,充电到12脚的门槛电 压,11脚输出变为低电平,经D17使三级管Q1截止,继电器K 释 放,电磁起动器跳闸,电动机得到保护。

当1.5倍过载时,VA 为4.5V,VB 为7.5V ,经过由R28、DB8、 D16、C1组成的延时电路约延时1-3分钟,充电到12脚的门槛电 压,11脚输出变为低电平,Q1截止,继电器K 释放,起动器跳闸, 保护了电动机。

QBZ-80N开关原理详解

QBZ-80N开关原理详解

这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

接线方法如图中的线号所标示的一样,开关的1#与按钮的1# 、2#与2#、3#与3#、4#与4#分别连接。

若要电机正向旋转,按正向启动按钮,36V电源——JDB综保的4#——3#——开关本地停止按钮TA——8#——ZJ中间继电器线圈——FJ中间继电器常闭触点——开关1#线——远控按钮1#线——反向按钮常闭点——启动按钮常开点(现在已经按下闭合)——远控停止按钮——远控按钮4#——开关本身4#——36V电源另一端,形成回路。

中间继电器ZJ 吸合。

中间继电器ZJ吸合以后,接通正转接触器ZC的线圈回路,ZC吸合,其回路为:36V 电源——JDB综保的4#——3#——ZJ中间继电器常开点(现在已经闭合)——ZC线圈——36V电源另一端。

ZC接触器吸合之后,接通主回路,电机正转。

同时ZC接触器的辅助常开点也闭合了,短接了1#线与2#线,开关自保。

其自保回路为:36V电源——JDB综保的4#——3#——开关本地停止按钮TA——8#——ZJ中间继电器线圈——FJ中间继电器常闭触点——ZC接触器常开点——开关自身2#线——远控按钮2#线——远控停止按钮——远控按钮4#——开关本身4#——36V电源另一端,形成回路。

中间继电器ZJ维持吸合。

当需要停止时,按下远控停止按钮或开关自身的停止按钮,都可切断控制回路。

反转的控制回路,与正转相似,大家可以自己试着分析一下。

最新QBZ-80N开关原理详解

最新QBZ-80N开关原理详解

QBZ-80N 开关的作用QBZ-80开关的原理与维修讲完啦,我们现在讲QBZ-80N开关。

这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪。

N:代表可逆。

即80N开关可以方便的使所控制的电机正转和反转。

举个例子:上图中的绞车,是在上山的时候牵引矿车常用的设备。

当牵引矿车上坡时,电机要正转。

当下放矿车时,电机要反转。

电机正转与反转是通过换相实现的。

如上图,左图,假如电机按照U、V、W的相续接线电机正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,电机就会反转。

当然,我们不可能每改变一次电机的旋转方向,就到电机接线柱上去改接线,这也太麻烦了。

我们是通过两个接触器的切换来实现电机的正反转的。

上图中,当KM1吸合时,L1与U相连,L2与V相连、L3与W相连。

当KM2吸合时,L1变为与W相连、L2不变,还是与V相连,L3变为与U相连。

这就相当于改变了U与W的接线位置。

从而改变了电机的旋转方向。

这就是80N开关的换相原理,他主要应用于控制需要频繁改变电机旋转方向的设备。

对于不经常改变电机旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用80、120等开关的隔离换向开关进行换向。

QBZ-80N开关原理在上一贴,我们讲了QBZ-80N开关主电路换相的原理:/forum.php?mod=viewthread&tid=11265&fromuid=1这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

煤矿井下80开关原理介绍(井工程)

煤矿井下80开关原理介绍(井工程)

我们介绍QBZ-80、120、225三种(即QBZ-80、QBZ-120、QBZ-225)防爆磁力启动器原理与维修。

因为这三种开关虽然型号不同,但是他们的大致结构及工作原理是相同的,只是他们可以控制的设备容量不同。

QBZ-80最大可以控制额定电流80A的设备、QBZ-120最大可以控制额定电流120A的设备。

就像大人与小孩,虽然他们的力气不一样,大人可以搬起更重的东西,小孩只能搬比较轻的东西。

但是内部器官以及外部特征都是一样的。

首先,说一下型号的含义:QBZ-80/1140(660) 、QBZ-120/660(380) 这是常见的磁力启动器的型号全称,那么这些型号是什么意思哪?我们通过这些型号可以获得哪些信息哪?Q:启动器B:隔爆型Z:真空(是指使用的是真空接触器,而不是整个开关内部是真空的哟!稍后将详细讲解真空接触器)80:额定电流80A (最大可以控制额定电流是80A的设备、120、225等数字是相同的含义)1140(660):额定电压1140V或660V)(可以控制额定电压是1140V或660V的设备,需要通过调整接线,稍后详解)开关的外部结构及功能上面这张图片,就是常见的80开关,不同厂家生产的开关,可能在外形及内部结构上,稍稍有一点点差别。

但是万变不离其宗,你学完了这个教程,它再变,你也知道怎么回事。

按照图上指示的各部件的名称,我们一一讲解。

1、接线腔:打开这个盖子,你就会看到里面有6个大接线柱和几个小接线柱,六个大接线柱有三个是进电源的,另外三个是接负载的。

几个小接线柱是接远程控制线的。

2、电源进线喇叭口:电源电缆线通过这个喇叭口,进入接线腔内,接在电源接线柱上。

在电源喇嘛口的对面还有一个喇叭口(就是上图中没有标注的那个大喇叭口),他是方便两台开关,进行电源并联时使用的。

如果还有一台开关需要电源,就可以从这台开关的电源接线柱上引出去。

3、负载线喇叭口:通过这个喇叭口,将开关腔内的负载接线柱与电机接线柱4、远程控制线喇叭口:接远程控制按钮或两台开关联机时通过此喇叭口与开关内的小接线柱连接喇叭口结构:喇叭口内有密封胶圈、金属挡环和挡板。

QBZ-80N开关原理详解

QBZ-80N开关原理详解

本教程为《防爆磁力启动器原理与维修》系列教程之一之马矢奏春创作QBZ80N 开关的作用QBZ80开关的原理与维修讲完啦,我们现在讲QBZ80N开关.这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪.N:代表可逆.即80N开关可以方便的使所控制的机电正转和反转.举个例子:上图中的绞车,是在上山的时候牵引矿车经常使用的设备.当牵引矿车上坡时,机电要正转.当下放矿车时,机电要反转.机电正转与反转是通过换相实现的.如上图,左图,假如机电依照U、V、W的相续接线机电正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,机电就会反转.固然,我们不成能每改变一次机电的旋转方向,就到机电接线柱上去改接线,这也太麻烦了.我们是通过两个接触器的切换来实现机电的正反转的.上图中,当KM 吸合时,L 与U相连,L 与V相连、L??与W相连.当KM 吸合时,L 酿成与W相连、L 不变,还是与V相连,L??酿成与U 相连.这就相当于改变了U与W的接线位置.从而改变了机电的旋转方向.这就是?? N开关的换相原理,他主要应用于控制需要频繁改变机电旋转方向的设备.对不经常改变机电旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用??、等开关的隔离换向开关进行换向.第一张图是QNZ80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮.主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述.HK是隔离开关,JDB80电念头综合呵护器与RC阻容呵护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了.说说控制电路:第一张图中,上半部份,是80N开关内部的原理,右下角是远控双联按钮的内部原理图.由于80N开关自己不带控制控制按钮,所以使用的时候,必需接远控按钮.接线方法如图中的线号所标示的一样,开关的1#与按钮的1# 、2#与2#、3#与3#、4#与4#分别连接.若要机电正向旋转,按正向启动按钮,36V电源——JDB综保的4#——3#——开关本地停止按钮TA——8#——ZJ中间继电器线圈——FJ中间继电器常闭触点——开关1#线——远控按钮1#线——反向按钮常闭点——启动按钮常开点(现在已经按下闭合)——远控停止按钮——远控按钮4#——开关自己4#——36V电源另一端,形成回路.中间继电器ZJ吸合.中间继电器ZJ吸合以后,接通正转接触器ZC的线圈回路,ZC吸合,其回路为:36V电源——JDB综保的4#——3#——ZJ中间继电器常开点(现在已经闭合)——ZC线圈——36V电源另一端.ZC接触器吸合之后,接通主回路,机电正转.同时ZC接触器的辅助常开点也闭合了,短接了1#线与2#线,开关自保.其自保回路为:36V电源——JDB综保的4#——3#——开关本地停止按钮TA——8#——ZJ中间继电器线圈——FJ中间继电器常闭触点——ZC接触器常开点——开关自身2#线——远控按钮2#线——远控停止按钮——远控按钮4#——开关自己4#——36V电源另一端,形成回路.中间继电器ZJ维持吸合.当需要停止时,按下远控停止按钮或开关自身的停止按钮,都可切断控制回路.反转的控制回路,与正转相似,年夜家可以自己试着分析一下.80N开关还有一个区别于其他开关的电路,就是互锁电路.在正转控制回路中串接的FJ中间继电器的常闭点,以及反转控制回路中串接的ZJ中间继电器常闭点,就是互锁电路,他们的作用是防止正转和反转的两个接触器同时吸合.正转是,ZJ吸合,串接在反转控制回路中的ZJ常闭点翻开,切断了反转控制回路,是FJ不能吸合.当反转时,FJ吸合,串接在正转控制回路中的FJ触点翻开,切断了正转控制回路,ZJ不能吸合.为什么要防止正转和反转两个接触器同时吸合哪.因为他们俩同时吸合,会造成短路.我们看下图,当正转和反转接触器同时吸合时,也就是下面的六个触点全通了,电源X1通过触点1——触点6——电源X3 电源X1与X3没有经过任何负载,直接相通,短路了.本教程为《防爆磁力启动器原理与维修》系列教程之一。

QBZ-80(120)ND电气原理图

QBZ-80(120)ND电气原理图
主要元器件表
序号
代号
名称
1
KM1
KM2
真空接触器
2
QS
隔离开关
3
RC
阻容
4
JDB
电机综合保护器
5
TC
电源控制变压器
6
KA1
KA2中间继电器7源自SB1SB2外接起动按钮
8
SBS1
SBS2
停止按钮
9
FU
熔断器
QBZ-80(120)ND电气原理图
工作原理:启动时,按下SB1(SB2)→KA1(KA2)线圈得电吸合→KA1—1(KA2—1)闭合,(KA1—3或KA2—3分开,避免两台接触器同时吸合,实现电气联锁)→KM1(KM2)线圈得电吸合,KA1—2(KA2—2)在接触器触头闭合前分开,以避免高电压对JDB保护器我冲击→KM1(KM2)主触头闭合→主回路接通→电动机工作;当运行中的起动器出现过载、断相、短路故障时,JDB综合保护器触点3、4断开,使整个控制电路断电,主回路断开从而实现过载、短路保护。

QBZ-80系列开关

QBZ-80系列开关

吸合,真空接触器吸合。真空接触器吸合以后,与33号线连接的KM3和ZJ2
常闭接点断开,切断了JDB的漏电检查回路。这时,即使设备漏电,80开关
也不会跳闸。这时的漏电保护由80开关上一级的馈电开关来完成。
这种在开关合闸之前首先检查设备绝缘情况,绝缘低于要求时,开关不
能合闸的功能叫做漏电闭锁。大家一定要和漏电保护区分开来。
1、通上电不吸合 2、通上电,虽然有吸合的现象。但是电磁
铁吸不动衔铁。 3、启动时,接触器衔铁呈连击状态,吸合
不上。 4、吸合以后有较大的嗡嗡(交流)声。 5、线圈发烫或烧坏 6、启动后,运行一段时间就跳闸 。
1.1、通上电按启动按钮开关不吸合
有些故障,是由于使用者的粗心,开关没有设置好。 如果是新安装的开关遇到这情况: (1)、应首先检查远近控开关(2、5号线的钮子开关) 位置是否正确,没有钮子开关的,看看2、5号线短接了没 有。 (2)、2、9号线连接了没有,是不是都接地了, (3)、电动机综合保护器的试验开关位置是否正确, 如果拨到试验位置了,保护器会动作致使无法吸合。 (4)、熔断器有没有松动,由于运输中的颠簸,经常 会是熔断器松动,接触不良。 (5)、如果是远控,按钮接线是否正确。 (6)、控制变压器一次侧的电源电压选择位置是否正 确。现在的开关多数都是两种电压。如1140V和660V。
电动机综合保护
电动机综合保护器在使用 中的安装接线如原理图中 红线所圈的地方。保护器 的底端是三个电流互感器 (本图中 底部黑色的塑料 壳内),三条铜排穿过电 流互感器线圈,铜排的一 端与真空接触器的主触点 连接,另一端与负荷接线 端子U、V、W相连(原理 图中 1#红圈。这样保护 器就可以对主回路中的电 流进行取样。
接线腔内部结构

QBZ-80N开关原理详解

QBZ-80N开关原理详解

QBZ-80开关的原理与维修讲完啦,我们现在讲QBZ-80N开关。

这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪。

N:代表可逆。

即80N开关可以方便的使所控制的电机正转和反转。

举个例子:上图中的绞车,是在上山的时候牵引矿车常用的设备。

当牵引矿车上坡时,电机要正转。

当下放矿车时,电机要反转。

电机正转与反转是通过换相实现的。

如上图,左图,假如电机按照U、V、W的相续接线电机正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,电机就会反转。

当然,我们不可能每改变一次电机的旋转方向,就到电机接线柱上去改接线,这也太麻烦了。

我们是通过两个接触器的切换来实现电机的正反转的。

上图中,当KM1吸合时,L1与U相连,L2与V相连、L3与W相连。

当KM2吸合时,L1变为与W相连、L2不变,还是与V相连,L3变为与U相连。

这就相当于改变了U与W的接线位置。

从而改变了电机的旋转方向。

这就是80N开关的换相原理,他主要应用于控制需要频繁改变电机旋转方向的设备。

对于不经常改变电机旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用80、120等开关的隔离换向开关进行换向。

QBZ-80N开关原理在上一贴,我们讲了QBZ-80N开关主电路换相的原理:这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

接线方法如图中的线号所标示的一样,开关的1#与按钮的1# 、2#与2#、3#与3#、4#与4#分别连接。

QBZ-80N开关原理详解

QBZ-80N开关原理详解

本教程为《防爆磁力启动器原理与维修》系列教程之一QBZ-80N 开关的作用QBZ-80开关的原理与维修讲完啦,我们现在讲QBZ-80N开关。

这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪。

N:代表可逆。

即80N开关可以方便的使所控制的电机正转和反转。

举个例子:上图中的绞车,是在上山的时候牵引矿车常用的设备。

当牵引矿车上坡时,电机要正转。

当下放矿车时,电机要反转。

电机正转与反转是通过换相实现的。

如上图,左图,假如电机按照U、V、W的相续接线电机正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,电机就会反转。

当然,我们不可能每改变一次电机的旋转方向,就到电机接线柱上去改接线,这也太麻烦了。

我们是通过两个接触器的切换来实现电机的正反转的。

上图中,当KM1吸合时,L1与U相连,L2与V相连、L3与W相连。

当KM2吸合时,L1变为与W相连、L2不变,还是与V相连,L3变为与U相连。

这就相当于改变了U与W的接线位置。

从而改变了电机的旋转方向。

这就是80N开关的换相原理,他主要应用于控制需要频繁改变电机旋转方向的设备。

对于不经常改变电机旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用80、120等开关的隔离换向开关进行换向。

QBZ-80N开关原理在上一贴,我们讲了QBZ-80N开关主电路换相的原理:这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

接线方法如图中的线号所标示的一样,开关的1#与按钮的1# 、2#与2#、3#与3#、4#与4#分别连接。

QBZ-80开关原理图详解

QBZ-80开关原理图详解

QBZ-80、120、225开关原理与维修教程图一 QBZ-80、120、225内部结构图图二 QBZ-80、120、225原理图上面两张图就是QBZ-80、120、225开关得内部结构与电气原理图。

也就就是实物与原理图得对照。

其中得核心部件,就就是真空接触器。

它起到接通与断开主回路得作用。

开关内部得大部分元件,都就是为了控制真空接触器触点得接通与断开而工作得。

现在,我们由简至繁得来分析这个电路。

图三大家瞧一下上面两个电路。

左边得就是一个真空接触器控制一个电动机,右边就是一个开关控制一盏灯。

原理都就是一样:右边得电路中,开关闭合,灯亮。

断开,灯灭。

左边得电路中,接触器KM得触点闭合,电动机得电旋转。

接触器断开,电动机断电停止旋转。

我们都知道,右边电灯电路中得开关,就是通过手动来控制。

那么左边得真空接触器就是如何工作得哪?再瞧下图:图四图五真空接触器结构图图四得那个白方框,她代表得就是真空接触器得线圈。

线圈实质上就就是一个电磁铁,给电磁铁通上电,电磁铁产生磁力,使真空接触器上得衔铁动作,从而带动真空管内得触点动作(如图五)。

现在,问题又指向了如何给电磁铁线圈通电。

图六图七 QBZ-80开关按钮结构图图六就是一个最简答得让真空接触器吸合得原理图,只要按下按钮SB1,真空接触器就会吸合。

但就是QBZ-80开关里用得按钮不像家里控制灯得开关一样。

QBZ-80开关里得按钮您按下去得时候,按钮上得接通,只要您一松手,按钮就又断开了(如图七)。

那如何才能让接触器长时间吸合哪?图八原理图八很好得解决了这个问题。

对比发现,图八比图七多了一对触点KM。

这对触点就就是图五中得辅助触点,当按下按钮SB1时,线圈得电,衔铁在带动真空管内触点闭合得同时,也带动了辅助触点中得常开点KM闭合。

这就是,即使您松开了按钮,由于辅助触点闭合了,为吸合线圈提供了通路,线圈也会维持吸合。

这时,电流流过得途径如图九中箭头所示。

图九图八中得原理图很好得解决了按钮松开后,吸合线圈断电得问题。

QBZ80N开关原理详解

QBZ80N开关原理详解

QBZ-80开关的原理与维修讲完啦,我们现在讲QBZ-80N开关。

这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪。

N:代表可逆。

即80N开关可以方便的使所控制的电机正转和反转。

举个例子:上图中的绞车,是在上山的时候牵引矿车常用的设备。

当牵引矿车上坡时,电机要正转。

当下放矿车时,电机要反转。

电机正转与反转是通过换相实现的。

如上图,左图,假如电机按照U、V、W的相续接线电机正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,电机就会反转。

当然,我们不可能每改变一次电机的旋转方向,就到电机接线柱上去改接线,这也太麻烦了。

我们是通过两个接触器的切换来实现电机的正反转的。

上图中,当KM1吸合时,L1与U相连,L2与V相连、L3与W相连。

当KM2吸合时,L1变为与W相连、L2不变,还是与V相连,L3变为与U相连。

这就相当于改变了U与W的接线位置。

从而改变了电机的旋转方向。

这就是80N开关的换相原理,他主要应用于控制需要频繁改变电机旋转方向的设备。

对于不经常改变电机旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用80、120等开关的隔离换向开关进行换向。

在上一贴,我们讲了QBZ-80N开关主电路换相的原理:这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

接线方法如图中的线号所标示的一样,开关的1#与按钮的1# 、2#与2#、3#与3#、4#与4#分别连接。

若要电机正向旋转,按正向启动按钮,36V电源——JDB综保的4#——3#——开关本地停止按钮TA——8#——ZJ中间继电器线圈——FJ中间继电器常闭触点——开关1#线——远控按钮1#线——反向按钮常闭点——启动按钮常开点(现在已经按下闭合)——远控停止按钮——远控按钮4#——开关本身4#——36V电源另一端,形成回路。

80开关-可逆-三联按钮-远近控--原理详解.

80开关-可逆-三联按钮-远近控--原理详解.

80开关原理详解图一QBZ-80、120、225内部结构图二 QBZ-80、120、225原理图上面两张图是QBZ-80、120、225开关的内部结构和电气原理图。

也就是实物与原理图的对照。

其中的核心部件,就是真空接触器。

它起到接通与断开主回路的作用。

开关内部的大部分元件,都是为了控制真空接触器触点的接通断开而工作的。

大家看一下上面两个电路。

左边的是一个真空接触器控制一个电动机,右边是一个开关控制一盏灯。

原理都是一样:右边的电路中,开关闭合,灯亮。

断开,灯灭。

左边的电路中,接触器KM的触点闭合,电动机得电旋转。

接触器断再看下图:图四图五真空接触器结构图图六图四的那个白方框,他代表的是真空接触器的线圈。

线圈实质上就是一个电磁铁,给电磁铁通上电,电磁铁产生磁力,使真空接触器上的衔铁动作,从而带动真空管内的触点动作(如图五)。

图八图七QBZ-80开关按钮结构图图六是一个最简答的让真空接触器吸合的原理图,只要按下按钮SB1,真空接触器就会吸合。

但是QBZ-80开关里用的按钮不像家里控制灯的开关一样。

QBZ-80开关里的按钮你按下去的时候,按钮上的接通,只要你一松手,按钮就又断开了(如图七)。

图八比图七多了一对触点KM。

这对触点就是图五中的辅助触点,当按下按钮SB1时,线圈得电,衔铁在带动真空管内触点闭合的同时,也带动了辅助触点中的常开点KM闭合。

这时,即使你松开了按钮,由于辅助触点闭合了,为吸合线圈提供了通路,线圈也会维持吸合。

这时,电流流过的途径如图九中箭头所示。

图九图十接触器控制原理图图八中的原理图很好的解决了按钮松开后,吸合线圈断电的问题。

再对比一下,发现图十比图八又多了一个元件,按钮SB2。

他的实物如图十一。

正常情况下,按钮SB2是接通的,KM 接触器的线圈可以正常工作。

当按下SB2时,SB2断开,从而断开了KM线圈的回路。

线圈断电,接触器的真空管触点和常开辅助触点全部断开。

电路回到初始状态。

图十一图十四中间继电器图十二图十二是前面几个原理图汇总起来的一张完整的电路图。

QBZ-80N开关原理详解

QBZ-80N开关原理详解

QBZ-80N 开关的作用QBZ-80开关的原理与维修讲完啦,我们现在讲QBZ-80N开关。

这两种开关在型号上,只差了一个N字,那么这个N字代表什么意思哪。

N:代表可逆。

即80N开关可以方便的使所控制的电机正转和反转。

举个例子:上图中的绞车,是在上山的时候牵引矿车常用的设备。

当牵引矿车上坡时,电机要正转。

当下放矿车时,电机要反转。

电机正转与反转是通过换相实现的。

如上图,左图,假如电机按照U、V、W的相续接线电机正转,那么,你只要随便调换两根线的位置如V、U、W进行接线,电机就会反转。

当然,我们不可能每改变一次电机的旋转方向,就到电机接线柱上去改接线,这也太麻烦了。

我们是通过两个接触器的切换来实现电机的正反转的。

上图中,当KM1吸合时,L1与U相连,L2与V相连、L3与W相连。

当KM2吸合时,L1变为与W相连、L2不变,还是与V相连,L3变为与U相连。

这就相当于改变了U与W的接线位置。

从而改变了电机的旋转方向。

这就是80N开关的换相原理,他主要应用于控制需要频繁改变电机旋转方向的设备。

对于不经常改变电机旋转方向的设备,当偶尔需要改变一下旋转方向时,可以使用80、120等开关的隔离换向开关进行换向。

QBZ-80N开关原理在上一贴,我们讲了QBZ-80N开关主电路换相的原理:/forum.php?mod=viewthread&tid=11265&fromuid=1这一贴,我们来讲控制电路:第一张图是QNZ-80N开关的原理图,第二张图是一个开关的本体,第三张是一个双联控制按钮。

主回路中的ZC、FC 接触器换相的原理,上一贴已经讲了,这里不再赘述。

HK是隔离开关,JDB-80电动机综合保护器与RC阻容保护等原理都与前几贴讲的80开关的原理是一样的,在这里也不讲了。

说说控制电路:第一张图中,上半部分,是80N开关内部的原理,右下角是远控双联按钮的内部原理图。

由于80N开关本身不带控制控制按钮,所以使用的时候,必须接远控按钮。

QBZ-80开关原理详解、故障排除

QBZ-80开关原理详解、故障排除

上一贴我们讲了80开关的最基本的电路。

也就是去除所有的附件电路后的本地控制。

这样贴我们讲一下远程控制电路,他是附加电路的一部分。

一个开关要想有较多的功能,就必须在基本的电路上添加其它线路。

弄清楚了基本的电路之后,就比较好理解附加电路的功能了。

有时候,80开关多安放的位置,并不适合操作者操作。

为了方便操作,我们外接一个控制按钮放在操作者附近。

这就是远程控制。

下图是远程控制原理图:图 15 80开关远控接线图图 16图15与上一贴的图13比较一下,其主要区别就是方框中标出的部分,多了一个1号线和一个开挂K。

他们两个就是为远程控制而设置的。

在图13中,我们把开关K用蓝线短接了,并擦除了1号线,同时将2号线和9号线也用蓝线短接了。

主要是便于分析。

在实际使用中,近控的时(即使用开关本身的按钮控制),是把开关K打到合的位置,2号线和9号线分别接地(开关外壳)或者用导线相连后再接地。

也就等效于图13中用蓝线短接了。

图15中,红色框中是远控按钮(实物如图16), 3根蓝线线为连接线远控时:开关K打到分的位置,这样就切断了开关本身的启动按钮回路,防止别人误操作。

开关的1、2、9号线分别与远控按钮的1、2、9号线相连。

如图15。

其控制回路为:按下远程启动按钮:36V电源4端——ZJ线圈——本机停止按钮SB2——SB1——1#线——远控启动按钮SB2——远控停止按钮SB1——9#端子至电源另一端。

线圈ZJ得电吸合。

使中间继电器的触点闭合,从而使真空接触的的线圈的电。

其线圈回路为:36V 电源4端——真空接触器线圈——ZJ1——电源另一端9#。

真空接触器吸合后,带动主触点和辅助触点KM2闭合。

松开远程启动按钮SB1后,由于KM2已经闭合,为中间继电器的线圈ZJ维持吸合提供了回路,其回路为:36V电源4端——ZJ线圈——本机停止按钮SB2——KM2——2#线——远程停止按钮SB1——9#端子至电源另一端。

当需要停止时,按下远程或本机的任何一个停止按钮,都可以断开了中间继电器吸合线圈ZJ的回路,ZJ释放,中间继电器触点ZJ1断开,切断了真空接触器线圈的回路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QBZ-80、120、225开关原理与维修教程图一QBZ-80、120、225内部结构图图二QBZ-80、120、225原理图上面两张图是QBZ-80、120、225开关的内部结构和电气原理图。

也就是实物与原理图的对照。

其中的核心部件,就是真空接触器。

它起到接通与断开主回路的作用。

开关内部的大部分元件,都是为了控制真空接触器触点的接通与断开而工作的。

现在,我们由简至繁的来分析这个电路。

图三大家看一下上面两个电路。

左边的是一个真空接触器控制一个电动机,右边是一个开关控制一盏灯。

原理都是一样:右边的电路中,开关闭合,灯亮。

断开,灯灭。

左边的电路中,接触器KM的触点闭合,电动机得电旋转。

接触器断开,电动机断电停止旋转。

我们都知道,右边电灯电路中的开关,是通过手动来控制。

那么左边的真空接触器是如何工作的哪?再看下图:图四图五真空接触器结构图图四的那个白方框,他代表的是真空接触器的线圈。

线圈实质上就是一个电磁铁,给电磁铁通上电,电磁铁产生磁力,使真空接触器上的衔铁动作,从而带动真空管内的触点动作(如图五)。

现在,问题又指向了如何给电磁铁线圈通电。

图六图七QBZ-80开关按钮结构图图六是一个最简答的让真空接触器吸合的原理图,只要按下按钮SB1,真空接触器就会吸合。

但是QBZ-80开关里用的按钮不像家里控制灯的开关一样。

QBZ-80开关里的按钮你按下去的时候,按钮上的接通,只要你一松手,按钮就又断开了(如图七)。

那如何才能让接触器长时间吸合哪?图八原理图八很好的解决了这个问题。

对比发现,图八比图七多了一对触点KM。

这对触点就是图五中的辅助触点,当按下按钮SB1时,线圈得电,衔铁在带动真空管内触点闭合的同时,也带动了辅助触点中的常开点KM闭合。

这是,即使你松开了按钮,由于辅助触点闭合了,为吸合线圈提供了通路,线圈也会维持吸合。

这时,电流流过的途径如图九中箭头所示。

图九图八中的原理图很好的解决了按钮松开后,吸合线圈断电的问题。

但是你想过没有,现在线圈吸合之后,能够维持住了,我们应该怎样把它停下来哪?图十接触器控制原理图再对比一下,发现图十比图八又多了一个元件,按钮SB2。

他的实物如图十一。

正常情况下,按钮SB2是接通的,KM接触器的线圈可以正常工作。

当按下SB2时,SB2断开,从而断开了KM线圈的回路。

线圈断电,接触器的真空管触点和常开辅助触点全部断开。

电路回到初始状态。

图十一图十二现在我们来总结一下前面所讲的内容。

图十二是前面几个原理图汇总起来的一张完整的电路图。

这个图就是典型的接触器控制原理图。

看懂了这个图,以后再分析防爆开关原理图的时候,就会非常容易。

按下按钮SB1,36V电源通过SB1——SB2——KM吸合线圈——回到36V电源的另一端。

线圈得电吸合。

带动主触点和辅助触点闭合。

松开按钮SB1后,由于线圈已经将辅助触点闭合,这是的电流回路为:36V电源——KM辅助触点——SB2——KM吸合线圈——36V 电源另一端。

线圈维持吸合。

当需要停止时,按下SB2,回路断开,线圈释放,主触点和辅助触点断开。

松开SB2后,SB2恢复到原来的接通状态,由于这时辅助触点已经断开了,所以这时线圈也不会吸合。

只有再次按下启动按钮才会重新启动。

在学会了典型的接触器控制电路之后,我们再来看看QBZ-80开关的原理图。

两张图对比一下,你会发现很多相似之处。

其中,主触点KM是一样的。

线圈ZJ、SB1、SB2、KM2和图十二中的KM线圈、SB1、SB2、KM辅助触点连接方式是一样的。

只不过画法不一样,一个横着画,一个竖着画。

图十三QBZ-80开关简化原理图对比了两张图之后,再看图十三是不是要容易些?即使我不讲解,相信你也看懂了一部分。

为了方便原理分析,我对开关原图进行了简化,图十三是简化之后的(原图可以查看上一贴中的图二)。

图中的蓝色线,在分析时视为通路。

红色框中的部分,请视为图十二中那样的吸合线圈。

介绍一下图中的元件:QS:隔离换向开关FU:熔断器,就是常说的保险丝KM:真空接触器主触点KM2:真空接触器辅助触点红色方框内:真空接触器的吸合线圈ZJ:中间继电器吸合线圈ZJ1:中间继电器的触点图十四中间继电器合上隔离开关QS,控制变压器T得电,在变压器器的副边(即4、9端)变换出36V的电压。

为控制电路提供电源。

按下启动按钮SB1,线圈ZJ的电,其回路为:36V电源4端——ZJ线圈——SB2——SB1——2#——9#端子至电源另一端。

线圈ZJ得电吸合。

使中间继电器的触点闭合,从而使真空接触的的线圈的电(图中的色框内)。

其线圈回路为:36V电源4端——真空接触器线圈——ZJ1——电源另一端9#。

真空接触器吸合后,带动主触点和辅助触点KM2闭合。

松开启动按钮SB1后,由于KM2已经闭合,为中间继电器的线圈ZJ维持吸合提供了回路,其回路为:36V电源4端——ZJ线圈——SB2——KM2——2#——9#端子至电源另一端。

当需要停止时,按下停止按钮SB2,断开了中间继电器吸合线圈ZJ的回路,ZJ释放,中间继电器触点ZJ1断开,切断了真空接触器线圈的回路。

真空接触器释放。

主回路中的KM断开。

电机停止旋转。

80开关主要原理就是这样,当然还有很多的辅助电路,我们讲一下远程控制电路,他是附加电路的一部分。

一个开关要想有较多的功能,就必须在基本的电路上添加其它线路。

弄清楚了基本的电路之后,就比较好理解附加电路的功能了。

有时候,80开关多安放的位置,并不适合操作者操作。

为了方便操作,我们外接一个控制按钮放在操作者附近。

这就是远程控制。

下图是远程控制原理图:图15 80开关远控接线图图16图15与上一贴的图13比较一下,其主要区别就是方框中标出的部分,多了一个1号线和一个开挂K。

他们两个就是为远程控制而设置的。

在图13中,我们把开关K用蓝线短接了,并擦除了1号线,同时将2号线和9号线也用蓝线短接了。

主要是便于分析。

在实际使用中,近控的时(即使用开关本身的按钮控制),是把开关K打到合的位置,2号线和9号线分别接地(开关外壳)或者用导线相连后再接地。

也就等效于图13中用蓝线短接了。

图15中,红色框中是远控按钮(实物如图16),3根蓝线线为连接线远控时:开关K打到分的位置,这样就切断了开关本身的启动按钮回路,防止别人误操作。

开关的1、2、9号线分别与远控按钮的1、2、9号线相连。

如图15。

其控制回路为:按下远程启动按钮:36V电源4端——ZJ线圈——本机停止按钮SB2——1#线——远控启动按钮SB2——远控停止按钮SB1——9#端子至电源另一端。

线圈ZJ得电吸合。

使中间继电器的触点闭合,从而使真空接触的的线圈的电。

其线圈回路为:36V电源4端——真空接触器线圈——ZJ1——电源另一端9#。

真空接触器吸合后,带动主触点和辅助触点KM2闭合。

松开远程启动按钮SB1后,由于KM2已经闭合,为中间继电器的线圈ZJ维持吸合提供了回路,其回路为:36V电源4端——ZJ 线圈——本机停止按钮SB2——KM2——2#线——远程停止按钮SB1——9#端子至电源另一端。

当需要停止时,按下远程或本机的任何一个停止按钮,都可以断开了中间继电器吸合线圈ZJ的回路,ZJ释放,中间继电器触点ZJ1断开,切断了真空接触器线圈的回路。

真空接触器释放。

主回路中的KM断开。

80开关除了本帖所讲的远控电路外,还有照明电路、双台连锁控制电路、阻容保护以及电动机综合保护器等。

将在后几贴中介绍。

上一贴我们介绍了QBZ-80开关最基础的电路部分、近控及远控的原理。

一台开关,紧紧能够控制用电设备电源的通与断是不行的。

还要对被控制的电气有保护作用,如:当设备漏电了、过载了,能够及时的切断电源。

将事故最小化。

QBZ-80开关中起保护作用的是JDB-80-A型电动机综合保护器,这是最常用的一种保护器。

QBZ-120开关中是JDB-120-A型,QBZ-225开关中是JDB-225-A。

这三种型号的保护器外型、结构、功能以及接线方式都是一样的,区别仅在于额定电流不一样。

图17 JDB-80-A 电动机综合保护器电动机综合保护器在使用中的安装接线如图18中红线所圈的地方。

保护器的底端是三个电流互感器(图17中底部黑色的塑料壳内),三条铜排穿过电流互感器线圈,铜排的一端与真空接触器的主触点连接,另一端与负荷接线端子U、V、W相连(图18中 1#红圈。

这样保护器就可以对主回路中的电流进行取样。

保护器有5个控制线接线端子,分别是3、4、9、33(分为660V 和380V两个端子)。

它们的接线如图18所示,3和4号端子的接线如红圈2所以。

圈2中标着JDB的触点,就是保护器内部的一对触点。

9号线接变压器上的9号端子。

33号线是检漏端子,通过主接触器的一对常闭触点KM3和中间继电器的一对常闭触点ZJ2接到负荷端U、V、W任一相即可。

33号线两个端子的区别是:当设备额定电压是660V时,接到660V端子上,额定电压是380V,就接到380V 端子上保护器的工作过程是:4、9号线为保护器提供了工作所需的电源。

合上隔离开关之后,保护器工作,首先通过33号线检查设备及线路是否漏电,如果检测到设备有漏电现象,则红圈2中的3、4号接点不闭合(即JDB保护器内部的继电器不吸合),启动控制回路,则无法启动。

如果检测到设备的绝缘良好,没有其他故障,则3、4号接点闭合。

为开关的启动做好准备。

这时按启动按钮,中间继电器吸合,真空接触器吸合。

真空接触器吸合以后,与33号线连接的KM3和ZJ2常闭接点断开,切断了JDB的漏电检查回路。

这时,即使设备漏电,80开关也不会跳闸。

这时的漏电保护由80开关上一级的馈电开关来完成。

这种在开关合闸之前首先检查设备绝缘情况,绝缘低于要求时,开关不能合闸的功能叫做漏电闭锁。

大家一定要和漏电保护区分开来。

80开关吸合之后,设备工作。

JDB保护器通过电流互感器(见图17)对开关主回路的工作电流进行取样。

然后与设定的电流进行比较。

当设备的工作电流大于JDB设定电流的8倍(一般都是8倍,有的智能型综合保护器可以对倍数进行设定),JDB保护器就会认为主回路有短路现象,立即断开3、4接点,开关跳闸。

当主回路电流大于设定电流的1.05倍以上,8倍以下时,JDB 保护器会认为设备有过载现象,然后延时一段时间,如果主回路的电流还没有降下来,保护器就会断开3、4点。

延时时间根据过载倍数来定,过载倍数越大,延时时间越短。

过载倍数越小,延时时间较长。

这叫过载保护的反时限特性。

图18 电动机综合保护器在原理图中的接线JDB-80-A保护器的设定:电流设定:保护器的电流大小设定值一般与被控制设备的额定值一样或稍大即可。

例如,被控制电机额定电流为39A,如果保护器的电流档有39A,则调至39A即可。

相关文档
最新文档