七年级(下)期中学业评价数学试卷

合集下载

人教版七年级下册数学期中试题试卷

人教版七年级下册数学期中试题试卷

人教版七年级下册数学期中考试试卷一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+12.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)B.C.(3,4)D.(4,3)二、填空题(共8小题,每小题3分)11.2﹣的绝对值是.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=度.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=.16.﹣4是的立方根.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=°三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+1【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】常规题型.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.【点评】本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°【考点】平行线的性质.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:根据∠1=∠2,∠1=∠5得到:∠5=∠2,则a∥b∴∠4=∠3=80度.故选A.【点评】本题在证明两直线平行的基础上,进一步运用了平行线的性质,两直线平行,内错角相等.4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选D.【点评】本题考查邻补角的定义,是一个需要熟记的内容.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:在数﹣3.14,,0,π,,0.1010010001…中,∵=4,∴无理数有,π,0.1010010001…共3个.故选A.【点评】此题要熟记无理数的概念及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【考点】生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【考点】点的坐标.【分析】根据坐标轴上点的坐标特征解答即可.【解答】解:点(﹣1,0)在x轴的负半轴.故选B.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°【考点】平行线的性质.【专题】计算题.【分析】过点E作EF∥AB,根据平行线的性质,∠A+∠C+∠AEC就可以转化为两对同旁内角的和.【解答】解:过点E作EF∥AB,∴∠A+∠AEF=180°;∵AB∥CD,∴EF∥CD,∴∠C+∠FEC=180°,∴(∠A+∠AEF)+(∠C+∠FEC)=360°,即:∠A+∠C+∠AEC=360°.故选A.【点评】有两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣【考点】实数大小比较.【分析】根据两个负数绝对值大的反而小来比较即可解决问题.【解答】解:∵﹣2=﹣,又∵<<∴﹣2>﹣>﹣.故选C.【点评】本题考查了用绝对值比较实数的大小,比较简单.10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【考点】坐标确定位置.【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.二、填空题(共8小题,每小题3分,满分24分)11.2﹣的绝对值是﹣2.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:2﹣的绝对值是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为2.【考点】点的坐标.【分析】根据点到y轴的距离等于横坐标的长度解答.【解答】解:∵点P的坐标为(﹣2,3),∴点P到y轴的距离为2.故答案为:2.【点评】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=62度.【考点】垂线;对顶角、邻补角.【分析】根据垂直的性质可以得到∠BOC的度数,然后利用对顶角的性质即可求解.【解答】解:∵OE⊥AB,∴∠EOB=90°,∴∠BOC=90°﹣∠EOC=90°﹣28°=62°,∴∠AOD=∠BOC=62°.故答案是:62°.【点评】此题主要考查了垂线和角平分线的定义,要注意领会由直角得垂直这一要点.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(1,2).【考点】坐标与图形变化-平移.【专题】常规题型.【分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.【解答】解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=115°.【考点】平行线的性质.【分析】根据平行线性质求出∠BED,根据对顶角相等求出∠AEC即可.【解答】解:∵DF∥AB,∴∠BED=180°﹣∠D,∵∠D=65°,∴∠BED=115°,∴∠AEC=∠BED=115°,故答案为:115°.【点评】本题考查了对顶角和平行线的性质的应用,注意:两直线平行,同旁内角互补.16.﹣4是﹣64的立方根.【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:∵=﹣4,∴﹣4是﹣64的立方根.故答案为:﹣64.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=2.【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=110°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠3=∠5,故可得出∠4+∠5=110°,再由三角形外角的性质得出∠6的度数,根据三角形内角和定理即可得出结论.【解答】解:∵a∥b,∴∠3=∠5.∵∠1+∠2=70°,∴∠6=110°,∴∠3+∠4=∠4+∠5=∠6=110°,故答案为:110°.【点评】本题考查的是平行线的性质,在解答此题时熟知三角形内角和定理这一隐藏条件.三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用二次根式的性质化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=5﹣2++3=6+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.【考点】平方根.【分析】根据一个正数的平方根有两个,且互为相反数,可得出a的值,继而得出x的值.【解答】解:由题意得3a﹣4+1﹣6a=0,解得:a=﹣1,则3a﹣4=﹣7,故x的值是49.【点评】本题考查了平方根的知识,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.【考点】作图-平移变换.【分析】根据图形平移的性质画出△A2B2C2,并写出各点坐标即可.【解答】解:如图所示,△A2(6,4),B2(5,﹣1),C2(8,2).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.【考点】坐标与图形性质;三角形的面积.【分析】根据点A、B的坐标求出AC、CO、OE、BE、AF、EF的长度,然后根据S△AOB=S矩形ACOF+S梯形AFEB﹣S△ACO﹣S△BOE列式计算即可得解.【解答】解:∵A(2,4),B(7,2),∴AC=2、CO=4、OE=7、BE=2、AF=4、EF=OE﹣OF=7﹣2=5,由图可知,S △AOB =S 矩形ACOF +S 梯形AFEB ﹣S △ACO ﹣S △BOE ,=2×4+(2+4)×5﹣×2×4﹣×7×2,=8+15﹣4﹣7,=23﹣11,=12.【点评】本题考查了坐标与图形性质,三角形的面积,仔细观察图形,列出△AOB 的面积表达式是解题的关键.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C 与∠AED 的大小关系吗?并说明理由.【考点】平行线的判定与性质.【专题】探究型.【分析】∠C 与∠AED 相等,理由为:由邻补角定义得到∠1与∠DFE 互补,再由已知∠1与∠2互补,根据同角的补角相等可得出∠2与∠DFE 相等,根据内错角相等两直线平行,得到AB 与EF 平行,再根据两直线平行内错角相等可得出∠3与∠ADE 相等,由已知∠B 与∠3相等,利用等量代换可得出∠B 与∠ADE 相等,根据同位角相等两直线平行得到DE 与BC 平行,再根据两直线平行同位角相等可得证.【解答】解:∠C 与∠AED 相等,理由为:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE (同角的补角相等),∴AB ∥EF (内错角相等两直线平行),∴∠3=∠ADE (两直线平行内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行),∴∠C=∠AED(两直线平行同位角相等).【点评】此题考查了平行线的判定与性质,以及邻补角定义,利用了转化及等量代换的思想,灵活运用平行线的判定与性质是解本题的关键.。

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析

2023-2024学年江苏省南京市七年级(下)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果是()A. B. C. D.2.将一把直尺与一块三角板如图放置,若,则的度数是()A. B. C. D.3.在长方形ABCD中,放入5个形状大小相同的小长方形空白部分,其中,求阴影部分图形的总面积()A. B. C. D.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加B.外角和增加C.对角线增加一条D.内角和增加5.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,,当为度时,AM与CB平行.()A.16B.60C.66D.1146.如图,直线,点E在CD上,点O、点F在AB上,的角平分线OG交CD于点G,过点F作于点H,已知,则的度数为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。

7.若有意义,则m取值范围是___.8.如图所示,的外角等于,,则的度数是______.9.如图,直角三角形ABC的周长为2022,在其内部有5个小直角三角形,则这5个小直角三角形周长的和是_____.10.中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为______.11.比较大小:_12.已知的乘积项中不含和x项,则_____.13.将沿着平行于BC的直线折叠,点A落到点,若,,则的度数为_____.14.在一个数学九宫格中,当处于同一横行,同一竖行,同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x的值为_____.15.定义运算,下面给出了关于这种运算的四个结论:①;②;③若,则;④若,则其中正确结论的序号是__________填写你认为所有正确的结论的序号16.已知关于x,y的方程组的解为,则关于m、n的方程组的解为_____;三、计算题:本大题共3小题,共18分。

仁爱版七年级下册《数学》期中考试卷及答案【可打印】

仁爱版七年级下册《数学》期中考试卷及答案【可打印】

仁爱版七年级下册《数学》期中考试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. 5C. √3D. 0.52. 下列各式中,正确的是()A. 2^3 = 8^2B. (2)^3 = 8^2C. 3^2 = 9^2D. (3)^2 =9^23. 下列关于绝对值的概念,正确的是()A. 绝对值是一个数的正数部分B. 绝对值是一个数的负数部分C. 绝对值是一个数的正数或0D. 绝对值是一个数的负数或04. 下列关于相反数的概念,正确的是()A. 相反数是一个数的相反数B. 相反数是一个数的绝对值C. 相反数是一个数的相反数的绝对值D. 相反数是一个数的相反数的相反数5. 下列关于因数和倍数的关系,正确的是()A. 一个数的因数一定小于这个数B. 一个数的倍数一定大于这个数C. 一个数的因数和倍数之间没有必然联系D. 一个数的因数和倍数之间有必然联系6. 下列关于质数和合数的关系,正确的是()A. 质数是只有1和它本身两个因数的数B. 合数是只有1和它本身两个因数的数C. 质数和合数之间没有必然联系D. 质数和合数之间有必然联系7. 下列关于分数的概念,正确的是()A. 分数是一个数除以另一个数的商B. 分数是一个数除以另一个数的余数C. 分数是一个数除以另一个数的积D. 分数是一个数除以另一个数的和8. 下列关于分数的运算,正确的是()A. 分数相加,分母不变,分子相加B. 分数相减,分母不变,分子相减C. 分数相乘,分子相乘,分母相乘D. 分数相除,分子相除,分母相除9. 下列关于分数的大小比较,正确的是()A. 分子相同,分母大的分数大B. 分母相同,分子大的分数大C. 分子分母都相同,分数相等D. 分子分母都不相同,无法比较10. 下列关于分数的化简,正确的是()A. 分子分母同时除以它们的最大公约数B. 分子分母同时除以它们的最大公倍数C. 分子分母同时除以它们的和D. 分子分母同时除以它们的差二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身的相反数,这个数是()。

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)

2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

七年级期中学业质量检测(数学)考生须知:1.本卷评价内容范围是《数学》七年级下册第一章至第三章3.5节,全卷满分100分;2. 考试时间90分钟,不可以使用计算器.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个正确选项)1.下列方程是二元一次方程的是(▲ )―y=1 D. x-3y=-1A. 3x-2=0B.x²―3x=2C.1x2.将如图所示的图案通过平移后可以得到的图案是(▲ )3. 如图, ∠B的同旁内角是 ( ▲ )A. ∠4B. ∠3C. ∠2D. ∠14. 计算[(―10)³]⁴的结果是(▲ )A. 10⁷B.―10⁷C. 10¹²D.―10¹²5.下列运算中,计算结果正确的是(▲ )A.a²+a³=a⁵B.a²⋅a³=a⁶C.(2a²)³=6a⁶D.2a⁴×3a⁵=6a⁹6.下列各式中,不能用平方差公式计算的是(▲ )A. (a-b)(a+b)B. (-a+b)(-b-a)C. (-a-b)(a+b)D. (-a+b)(b+a)7. 如图所示, 点 E在AC的延长线上,下列条件中能判断AB∥CD的是( ▲ )A. ∠3=∠4B. ∠1=∠2C. ∠ECD=∠DD. ∠ABD+∠A=180°8.若关于x,y的二元一次方程组{x+2y=42x+y=5的解也是方程x+y=3k的解,则k的值为( ▲ )A. -2B. -1C. 1D. 29. 某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子是红色帽子的2倍,则该兴趣小组男女生分别有多少人?设男生有x人,女生有y人,则下列方程正确的是(▲ )A.{x―1=y+2x=2(y―1)B.{x―1=y+2x=2y C.{x―1=y+2x=2y―1D.{x=y+2x=2y10. 如图, 正方形AEIJ, 正方形EFGH, 正方形LMCK依次放在长为6,宽为4的长方形ABCD 中,要求出图中阴影两部分的周长之差,只需要知道下列哪条线段的长(▲ )A. AEB. EFC. CMD. NL二、填空题 (本题有8小题,每小题3分,共24分)11. 已知方程x+y=2, 用含x的代数式表示y, 则y= ▲ .12. 计算:(a―1)²=.13. 已知{x=a,y=1是方程x+3y=5的一组解, 则a的值为▲ .14. 计算:(―13)4×34=¯.15. 如图,将两块含30°角的三角板ABC 和含45°角的三角板BDE 按如图所示的位置放置,若BE∥AC,则∠DBA的度数为▲ °.16. 已知((2x―3y+1)²与|4x-3y-1|的值互为相反数, 则x-y的值为▲ .17. 已知2m+n-4=0, 则.4ᵐ×2ⁿ=.18. 如图1,将一张长方形纸片 ABCD 右端沿着 EF 折叠成如图2,再将纸片左端沿着 GH折叠成如图3, GD恰好经过点 F, 且GF平分∠HFB.在图3中, 若2∠GHF+∠BFE=135°,则∠BFE的度数为▲ ° .三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程)19. (本题6分) 化简(1)3x(xy―2y²+1) (2) (x+2)(x-2)-x(x-1)20. (本题8分) 解方程组(1){y=3x2x+y=10(2){3x―2y=7 4x+6y=521.(本题6分)如图是由边长为1的小正方形构成的8×8网格,线段AB端点和点 P均在格点上.(1)将线段AB 向上平移1 格,再向右平移2格,请在图甲中作出经上述两次平移后所得的线段 CD.(2) 请在图乙中找一格点E, 连结PB, PE, 使得∠PBA=∠EPB.22.(本题8分)如图,在△ABC中,点D在BC上,DE∥AB交AC于点E,点F在AB上,∠BFD=∠DEC.(1) 说明DF与AC平行的理由.理由如下:∵DE∥AB ( ▲ ),∴∠BFD=∠FDE ( ▲ ).∵∠BFD=∠DEC,∴∠FDE=▲ .∴DF∥AC ( ▲ ).(2) 若∠B+∠C=120°,求∠FDE的度数.23.(本题8分)某校为了喜迎新春,开展了“巧制花灯,福满校园”的活动,如图1为学生制作的其中一种花灯样式,它的四面是由四个完全相同的平面模板(如图2)折叠拼接而成的.模板是由2个长方形A、2个长方形C、1个长方形D和4个等腰梯形B构成的,其中尺寸如图2所示:长方形A的宽为m,长为n,等腰梯形的高与长方形A的宽大小一样,长方形C的长为(n―4),宽为(m―1.5),模板总高为32cm.(1)请用含m,n的代数式表示模板的面积(结果需化简).(2) 当2n―m=21时,请求出花灯模板的面积.单位: cm24.(本题10分)探究学校校服订购的方案.素材1:天气转热,不少学生的夏季校服有损坏或丢失,故学校联系了厂商订制一批校服衣服和裤子.下表是学校前两年的购买记录.年份/年衣服数量/件裤子数量/件总价/元20221008073002023120607500素材2:本届七年级使用的是改版后的校服,每件新版衣服和裤子的价格均比旧版多10元.为保证各年级段校服统一,学校要求七年级学生购买新版,八、九年级学生购买旧版.【任务1】分别求出旧版衣服和旧版裤子的单价.【任务2】依据往年八、九年级的数据统计,衣服数量不超过 80 件,裤子数量不超过50件.若学校恰好用了 4900 元为八、九年级购买旧版校服,则衣服和裤子各买了多少件?【任务3】学校统计各班的订购意向后,最终花费 9200 元订购这批校服.已知七年级订购的衣服数量占所有衣服和裤子总数量的1,且少于 50件,则八、九年级订购的裤子共有▲4件.(请直接写出答案)七年级期中学业质量检测数学参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案D B B C D C B C A B二、填空题 (本题有8小题,每小题3分,共24分)11. -x+2. 12.a²―2a+1. 13. 2. 14. 1.15. 15. 16. 0. 17. 16. 18. 22.5.三、解答题 (本题有6小题,共46分)19. (本题6分)(1)3x(xy―2y²+1)解:原式=3x²y―6xy²+3x ……………(3分)(2) (x+2)(x-2)-x(x-1)解:原式=x²―4―x²+x=x―4 ……………(3分) 20. (本题8分) (1){y=3x①2x+y=10②解: 将①代入②得: 2x+3x=10解得: x=2将x=2代入①得: y=6所以原方程组的解是{x=2y=6…(4分)(2){3x―2y=7circle14x+6y=5circle2解: ①×3+②得: 13x=26解得: x=2将x=2代入①得: y=―12所以原方程组的解是{x=2y=―12…(4分)21. (本题6分)………(3分)…………(3分)22. (本题8分)(1)理由如下:∵DE∥AB ( 已知 ),∴∠BFD=∠FDE (两直线平行, 内错角相等 ).∵∠BFD=∠DEC,∴∠FDE=∠DEC .∴DF∥AC(_内错角相等,两直线平行_).……………(4分)(2) 解: ∵DF∥AC∴∠FDB=∠C∵DE∥AB∴∠EDC=∠B∵∠B+∠C=120°∴∠FDB+∠EDC=120°∴∠FDE=180°―(∠FDB+∠EDC)=60° …(4分) (其它正确答案酌情给分)23. (本题8分)(1)2mn+4×12m(n―4+n)+2(m―1.5)(n―4)+n[32―6m―2(m―1.5)]=-16m+32n+12…………………(5分)(其它正确答案酌情给分)(2) 当2n-m=21时原式=-16m+32n+12=16(-m+2n)+12=16×21+12=348………………………(3分)24. (本题10分) :任务1 设一件旧版衣服x元,一件旧版裤子y元.由题意,得{100x+80y=7300120x+60y=7500解得{x=45 y=35答:一件旧版衣服45元,一件旧版裤子35元.……………(4分)任务2 设购买衣服m件,裤子n件.由题意, 得45m+35n=4900,化简,得n=140―97m.∵m≤80,n≤50且m, n均为正整数,∴{m=70n=50或{m=77 n=41答:衣服70件、裤子50件或衣服77件、裤子41件.………(4分)任务311.……………(2分)设新版衣服a件,旧版裤子b件.则所有衣服和裤子共4a件,旧版衣服和新版裤子共(3a-b)件.由题意,得55a+45(3a-b)+35b=9200,化简, 得b=19a-920.∵a<50,且a, b均为正整数,∴a=49, b=11.。

河南省南阳市邓州市2023-2024学年七年级下学期期中质量评估数学试卷(含答案)

河南省南阳市邓州市2023-2024学年七年级下学期期中质量评估数学试卷(含答案)

邓州市2023~2024学年第二学期期中质量评估七年级数学试卷注意事项:1.本试卷共4页,三个大题,满分120分,答题时间100分钟;2.请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上.1.下列方程是一元一次方程的是()A. B. C. D.2.下列结论错误的是()A.若,则B.若,则C.若,则D.若,则3.若方程mx+ny=3有两个解和,则的值为()A.3B.4C.5D.64.关于x的一元一次方程的解是则的值是()A.4B.5C.6D.75.关于x的一元一次方程和)的解相同,则k的值为()A. B.11 C. D.136.由方程组,可得x与y的关系是()A. B.C. D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A. B.C.D8.现有八个大小相同长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()A.30B.40C. 50D.609.为迎接学校举办的传统文化节,初一年级某班计划做一批“中国结”,若每人做6个,则比计划多做9个,若每人做4个,则比计划少7个.设计划做x个“中国结”,可列方程()A. B. C D.10.已知关于x的不等式组的整数解有5个,则a的取值范围是()A. B.C D.二、填空题(每小题3分,共15分)11.一个二元一次方程组的解是试写出一个符合要求的方程组:12.不等式组的最小整数解是13.已知关于x的一元一次方程的解是,那么关于y的一元一次方程的解是14.如图,已知°,10)°,°15.A、B两地相距450千米,甲、乙分别从A、B两地同时出发相向而行,已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米,则t=小时.三、解答题(本大题共8个小题,满分75分)16.(8分)请将下列解方程的过程补充完整并完成解答.解:原方程可变形为(①),得去括号,得②.(③),得④.(⑤)合并同类项,得⑥未知数的系数化为1,得⑦.(⑧)(其中①③填写变形步骤名称,②④⑥⑦填写变形结果,⑤⑧填写变形依据.)17.(9分)(1)解方程组:(2)解不等式组把解集在数轴上表示出来.18.(9分)小明解方程时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为.试求a的值,并求出方程的正确的解.19.(9分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:(3)在m的取值范围内,当m取何整数时,不等式的解集为x<1?20.(9分)为深入贯彻落实习近平总书记“绿水青山就是金山银山”的发展理念,某单位计划购买甲、乙两种树苗开展义务植树活动.若购买100棵甲树苗和200棵乙树苗需花费8000元,若购买甲树苗和乙树苗各150棵,则需花费7500元.(1)求甲、乙两种树苗每棵分别为多少元;(2)为提升绿化效果,单位决定购买甲、乙两种树苗共400棵,总费用不超过10000元,则最少购买多少棵甲树苗?21.(10分)(1)观察发现:材料:解方程组将①整体代入②,得解得把代入①,得所以②这种解法称“整体代入法”,你若留心观察,有很多方程组可采用此方法解答,请直接写出方程组的解为(2)实践运用:请用“整体代入法”解方程组(3)拓展运用:若关于的二元一次方程组的解满足,请直接写出满足条件的m的所有正整数值22.(10分)阅读与探究:如:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.如:,...,都是含有绝对值的方程,有绝对值的方程的解呢?基本思路是:把“含有绝对值的方程”转化为“不含有绝对值的方程”.例如:解方程解:当X≥0时,方程可化为:,解得,符合题意.当时,方程可化为:,解得,符合题意.所以,原方程的解为或根据以上材料解决下列问题:(1)若,则x的取值范围是;(2)方程的解的个数是;(3)方程|x+3|=2的解是;(4)解方程:(5)若关于x的方程有两个解,直接写出b的取值范围.23.(11分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.邓州市2023-2024学年第二学期期中质量评估七年级数学参考答案一、选择题(每小题3分,共30分)1.A2.D3.D4.B5.C6.B7.A8. D9.B 10.B二、填空题(每小题3分,共15分)11.(答案不唯一)12.―2 13. y=70 14. 70 15.2或2.5(4)三、解答题(本大题共8个小题,共75分)16.(8分)①去分母②915=2―418 ③移项④94x=2―18+15 ⑤等式的性质1⑥13x=-1 ⑦x=-⑧等式的性质2 (每空1分)17.(9分)(1)解:②×2,得86y=―20 ③①―③得11y=22y=2把y=2代入①,得810=2x=―1∴原方程组的解为. .........4分(2)解:由①得x≤2由②得x>―1∴原不等式组的解集为-1<x≤2..........3分在数轴表示如图:......5分18.(9分))解:由题意可知,x=4是方程2(21)+1=5()的解则2(21)+1=5()解得a=―1 ........3分则原方程为1=2(21)+10 = 5()42+10=55=―13x=13 ........8分所以a=―1,方程的正确解为x=13........9分19.(9分)解:(1)解关于的方程组得2分∵x为非正数,y为负数∴∴........4分(2)∵∴>0∴∣∣―∣∣........6分(3)∵不等式>即()x>的解集为1∴∴又∵∴又∵为整数∴当m=―1时该不等式的解集为1........9分20.(9分)解:(1)设甲种树苗的单价为x元,乙种树苗的单价为y元依题意得:........2分解得:经检验,符合题意........4分答:甲种树苗的单价为每棵20元,乙种树苗的单价为每棵30元。

南京玄武区2023-2024初一下学期期中数学试卷及答案

南京玄武区2023-2024初一下学期期中数学试卷及答案

2023~2024 学年度第二学期期中质量调研卷七年级数学(总分:100分)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列运算正确的是A .a 4+a 5=a 9B . a ·a 3=a 3C .(a 5)2=a 10D . a 6÷a 2=a 32.如图,已知直线a ∥b ,∠1=95°,则 ∠2的大小是 A .85° B .95° C .75°D .105°3.已知三角形的三边长分别为3,5,x ,则x 不可能是 A .3B .5C .7D .84.下列各式中,不能使用平方差公式计算的是A .(a +1) (-a -1)B .(a -1) (-a -1)C .(a +1) (a -1)D .(a +1) (1-a )5.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是A .110° B .105° C .108° D .100° 6.若a =-(0.2)2,b =-22,c =(-12 )-2,d =(-12)0,则它们的大小关系是A .a <b <d <cB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列三角形一定为直角三角形的有①△ABC 三个内角的关系为∠A +∠B =∠C ;②△ABC 三个内角的关系为∠A =12∠B =13∠C③三角形的三个内角之比为 2:3:4④三角形的一个外角与它不相邻的两个内角和为180°.A .1个B .2个C .3个D .4 个8.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1, ∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n -1BC 的平分线与∠A n -1CD 的bac12 (第2题)(第5题)ABCDE 2 41 3分,共20分.不需写出解答过程,请把答案直0.000 000 27用科学记数法可表示为= ▲ . 如图,将三角板与直尺贴在一起,使三角板的直角顶点A 与直尺的一边重合,若∠若2m =12,2n =8,则2m -n =▲ .如图,BD 是△ABC 的中线,点E 、F 分别为BD 、CE 3cm 2,则△ABC 的面积是 cm 2..若代数式x 2+ax +16是一个完全平方式(a 是常数),则a =.如图,七星形中∠A +∠B ++∠D +∠E +∠F +∠G =如图,两个正方形的边长分别为a ,b ,若a +b =10,ab =20,则阴影部分的面积为 ▲ .(第8题)(第12题)(第14题) EABCD FGC′D′(第18题) (第16题)ABCDEFG(第17题) a b。

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试卷一、单选题1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD 的度数等于()A.40°B.35°C.30°D.20°2.实数-2,0.3,-5,2,-π中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,由下列条件不能得到AB∥CD的是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠5 4.已知点P位于第二象限,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是()A.(-3,4)B.(3,-4)C.(4,-3)D.(-4,3) 5.如图,数轴上表示1,3的点分别为A和B,若A为BC的中点,则点C表示的数是()A.3-1B.1-3C.3-2D.2-3 6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠E=30°,则∠ACF的度数为()A.10°B.15°C.20°D.25°7.下列说法不正确的是()A .0.3±是0.09的平方根,即0.3=±B 的平方根是8±C .正数的两个平方根的积为负数D .存在立方根和平方根相等的数8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(﹣3,4),若以A 点为原点建立直角坐标系,则B 点坐标是()A .(﹣3,﹣4)B .(﹣3,4)C .(3,﹣4)D .(3,4)9.已知a 、b +2b +1=0,则a +b 的值是()A .12B .1C .−1D .010.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC .其中正确的个数为()A .1个B .2个C .3个D .4个二、填空题11,2__________.12.已知点P 的坐标为(﹣2,3),则点P 到y 轴的距离为______13.平面直角坐标系中,若A 、B 两点的坐标分别为(-2,3),(3,3),点C 也在直线AB 上,且距B 点有5个单位长度,则点C 的坐标为__________.14.已知直线a 、b 、c 相交于点O ,∠1=30°,∠2=70°,则∠3=________.15的整数部分是a ,小数部分是b ,则2+a b =______.16.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D=65°,则∠AEC=.17.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.18.实数在数轴上的位置如图,那么化简a −b −b 2的结果是_______三、解答题19.计算:(1)|2−3|+3−8+(−2)2(2)(3)(−3)2+(−6)2−(3−0.125)3+|1−2|20.如图,已知EF ∥AD ,∠1=∠2,∠BAC =70°,求∠AGD (请填空)解:∵EF ∥AD ∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB ∥()∴∠BAC+=180°()∵∠BAC =70°()∴∠AGD =()21.如图,三角形ABC 沿x 轴正方向平移2个单位长度,再沿y 轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG 的三个顶点坐标;(2)求三角形EFG 的面积.22.如图,已知AB ∥DE ,∠ABC +∠DEF =180°,求证:BC ∥EF.23.若23(2)0x z -+-=,求x y z ++的平方根和算术平方根。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

广东省东莞市香市中学2023-2024学年七年级下学期期中数学试卷(含答案)

广东省东莞市香市中学2023-2024学年七年级下学期期中数学试卷(含答案)

广东省东莞市香市中学2023-2024学年七年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)人体内的某种球状细胞的直径为0.0000156m,数据0.0000156用科学记数法可表示为( )A.1.56×10﹣6B.1.56×10﹣5C.156×10﹣5D.1.56×1062.(3分)下列各图中,∠1与∠2属于对顶角的是( )A.B.C.D.3.(3分)计算正确的是( )A.(m2)3=m5B.(mn)2=mn2C.m2•m3=m5D.m6÷m2=m34.(3分)如图,某地进行城市规划,在一条新修公路MN旁有一村庄P,现要建一个汽车站,且有A,B,C,D四个地点可供选择.若要使汽车站离村庄最近,则汽车站应建在( )A.点A处B.点B处C.点C处D.点D处5.(3分)多多从家步行到学校,离家的路程x(米)与步行时间t(分)的函数关系如图所示.若多多步行速度保持不变,则中途停留时间为( )A.5分B.5.6分C.6分D.6.4分6.(3分)下列计算正确的是( )A.6x3y÷2x=3x2B.(x﹣y)2=x2﹣y2C.(2x+y)(x﹣y)=2x2﹣y2D.(x+2)(x﹣2)=x2﹣47.(3分)周末,小明骑车从家出发去博物馆,途中突然发现钥匙不见了,于是原路折返,在刚才等红绿灯的路口找到了钥匙,便立即前往博物馆.小明从家出发到博物馆的过程中,离家距离y(m)与时间x (min)之间的关系如图所示,下列说法正确的是( )A.小明家到博物馆的距离为2400mB.小明等红绿灯的时间为6minC.小明发现钥匙不见后,原路折返找钥匙的骑车速度是120m/minD.小明从家出发到博物馆的过程中,离家距离y是自变量,时间x是因变量8.(3分)若a m=6,a n=2,则a m﹣n的值为( )A.8B.4C.12D.39.(3分)下列图形阴影部分的面积能够直观地解释(x﹣1)2=x2﹣2x+1的是( )A.B.C.D.10.(3分)如图,已知AD⊥BC,FG⊥BC,∠BAC=90°,DE∥AC.则结论:①FG∥AD;②DE平分∠ADB;③∠B=∠ADE;④∠CFG+∠BDE=90°.正确的是( )A.①②③B.①②④C.①③④D.②③④二.填空题(共5小题,满分15分,每小题3分)11.(3分)计算的结果为 .12.(3分)如图,点O在直线AB上,过点O作射线OC、OD,使OC⊥OD,当∠AOC=42°时,∠BOD 的度数为 .13.(3分)某地海拔高度h(km)与温度T(℃)的关系可用T=20﹣6h来表示,则该地区某海拔高度为2000m的山顶上的温度为 .14.(3分)如图,AB∥CD,AE,CD相交于点C.如果∠A=34°,那么∠ECF的度数为 .15.(3分)如图,在大长方形ABCD中放入5张相同的小长方形(图中空白部分).若大长方形的周长是48,图中阴影部分的面积是78,则一张小长方形的面积 .三.解答题(共9小题,满分75分)16.(5分)计算:(﹣1)3﹣|﹣3|+(π﹣2020)0+()﹣2.17.(5分)先化简,再求值:[4(x﹣1)2+(x﹣2)(x+2)]÷2x,其中x=﹣2.18.(6分)如图,已知AD∥BC,∠1+∠4=180°,求证:∠1=∠2.19.(8分)【问题背景】尽享春日好时光,张梅和家人去某自然景区游玩,在欣赏美景的同时张梅用所学过的知识来记录他们的行程.【收集信息】张梅从景区发的宣传册中发现了他们所走的线路图,如图①.【建立模型】张梅通过乘坐的观光车所走的路程,绘制了如图②所示的函数图象,观光车从入口出发,经过景点甲,在景点甲停留一段时间,然后继续行驶到达终点.折线AB﹣BC﹣CD表示观光车到终点的路程y(km)与行驶时间x(h)之间的关系.【解决问题】(1)请求出线段CD表示的函数表达式;(2)请通过计算求观光车在景点甲停留的时间.20.(8分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,四边形ABCD.求作:点E,使CE∥AB,CE=AB,且点E在四边形ABCD的内部.21.(8分)已知有甲、乙两个长方形纸片,它们的边长如图中所示(m是正整数),面积分别为S甲和S 乙.(1)含m的代数式表示S甲= ,S乙= ;(2)用“<”、“=”或“>”号填空:S甲 S乙;(3)若一个正方形纸片的周长与甲的周长相等,其面积设为S正小方同学发现“S正与S甲的差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由.22.(10分)假期,甲乙两人沿同一条笔直的马路同时从同一小区出发到南京博物院参观,小区与南京博物院的路程是4千米,甲骑自行车,乙步行,当甲从原路回到小区时,乙刚好到达南京博物院,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离小区的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)甲在南京博物院参观的时间为 分钟,甲返回小区的速度为 千米/分钟;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离为y千米,请画出y(千米)与所经过的时间t(分钟)之间的函数图象.23.(12分)综合运用已知A=(x+2y)2﹣(x+y)(x﹣2y),B=(x3y﹣+xy2﹣3xy3)÷xy.(1)化简A和B;(2)若变量y满足2x﹣A=B﹣6,求出y与x之间的关系式;(3)在(2)的条件下,求(x﹣y+2)2﹣x(x﹣2)(x+2)+x(xy﹣x﹣4)的值.24.(13分)(1)如图1,AC∥BD,点P在AC与BD之间,过P作PE∥AC,探究∠A、∠APB、∠B 之间的数量关系;(2)如图2,变换点P的位置,∠A、∠APB、∠B之间的数量关系发生了怎样的变化;写出关系式,并说明理由;(3)如图3,在(2)的基础上,AQ平分∠PAC,BQ平分∠PBD,写出∠APB与∠Q之间的关系式,并说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:0.0000156用科学记数法表示为1.56×10﹣5,故选:B.2.解:A.∠1与∠2不属于对顶角,故A选项不符合题意;B.∠1与∠2不属于对顶角,故B选项符合题意;C.∠1与∠2属于对顶角,故C选项不符合题意;D.∠1与∠2不属于对顶角,故D选项不符合题意,故选:C.3.解:A、(m2)3=m6,故该项不正确,不符合题意;B、(mn)2=m2n2,故该项不正确,不符合题意;C、m2•m3=m5,故该项正确,符合题意;D、m6÷m2=m4,故该项不正确,不符合题意;故选:C.4.解:建在点C处,根据垂线段最短,故选:C.5.解:由题意得,多多步行速度为:600÷6=100(米/分),(1240﹣600)÷100=6.4(分),18﹣6﹣6.4=5.6(分),即中途停留时间为5.6分.故选:B.6.解:A、6x3y÷2x=3x2y,故A不符合题意;B、(x﹣y)2=x2﹣2xy+y2,故B不符合题意;C、(2x+y)(x﹣y)=2x2﹣2xy+xy﹣y2=2x2﹣xy﹣y2,故C不符合题意;D、(x+2)(x﹣2)=x2﹣4,故D符合题意;故选:D.7.解:由题意可得:A.小明家到博物馆的距离为2400m,说法正确,故本选项符合题意;B.小明等红绿灯的时间为:6﹣5=1(min),原说法错误,故本选项不符合题意;C.小明发现钥匙不见后,原路折返找钥匙的骑车速度是:(1600﹣1000)÷(13﹣9)=150(m/min),原说法错误,故本选项不符合题意;D.小明从家出发到博物馆的过程中,离家距离y是因变量,时间x是自变量,原说法错误,故本选项不符合题意.故选:A.8.解:∵a m=6,a n=2,∴原式=a m÷a n=3,故选:D.9.解:选项A中的阴影部分的面积可以用(x﹣1)2=x2﹣2x+1来解释,故选:A.10.解:∵AD⊥BC,FG⊥BC,∴∠FGD=∠ADB=90°,∴FG∥AD,故①正确;∵DE∥AC,∠BAC=90°,∴DE⊥AB,不能证明DE为∠ADB的平分线,故②错误;∵AD⊥BC,∴∠B+∠BAD=90°,∵DE⊥AB,∴∠BAD+∠ADE=90°,∴∠B=∠ADE,故③正确;∵∠BAC=90°,DE⊥AB,∴∠CFG+∠C=90°,∠BDE+∠B=90°,∠C+∠B=90°,∴∠CFG+∠BDE=90°,故④正确,综上所述,正确的选项①③④,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:=•2x﹣×6=x2﹣3x.12.解:∵OC⊥OD,∴∠COD=90°,∵∠AOC=42°,∠AOC+∠COD+∠BOD=180°,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣42°=48°.故答案为:48°.13.解:2000米=2千米,T=20﹣6h=20﹣6×2=8(℃).故答案为:8°C.14.解:∵AB∥CD,∠A=34°,∴∠ECD=34°,∴∠ECF=180°﹣34°=146°,故答案为:146°.15.解:设小长方形的长为x,宽为y,依题意得:,整理得:,由(①2﹣②)÷2得:xy=,∴一张小长方形的面积为.故答案为:.三.解答题(共9小题,满分75分)16.解:原式=﹣1﹣3+1+4=1.17.解:[4(x﹣1)2+(x﹣2)(x+2)]÷2x=(4x2﹣8x+4+x2﹣4)÷2x=(5x2﹣8x)÷2x=x﹣4,当x=﹣2时,原式=×(﹣2)﹣4=﹣5﹣4=﹣9.18.证明:∵AD∥BC,∴∠1=∠3,∵∠1+∠4=180°,∴∠3+∠4=180°∴BE∥DF,∴∠3=∠2∴∠1=∠2.19.解:(1)设线段CD表示的函数表达式为y=kx+b,把(3,24),(4.5,0)分别代入,得:,解得:,∴线段CD表示的函数表达式为y=﹣16x+72.(2)由图可得,当y=40时,﹣16x+72=40,解得x=2,∴2﹣1=1(小时),∴观光车在景点甲停留了1小时.20.解:如图,连接AC,在AC的右侧作∠ACF=∠BAC,再以点C为圆心,AB的长为半径画弧,交CF 于点E,则点E即为所求.21.解:(1)根据长方形面积公式可得:S甲=(m+1)(m+7)=m2+8m+7,S乙=(m+2)(m+4)=m2+6m+8,故答案为:m2+8m+7,m2+6m+8;(2)由(1)可得:S甲﹣S乙=m2+8m+7﹣(m2+6m+8)=2m﹣1,∵m是正整数,即m≥1,∴2m≥2,2m﹣1>0,∴S甲﹣S乙>0,即S甲>S乙,故答案为>;(3)小方同学的发现正确,理由如下:由题意可得:S正=[2(m+1+m+7)÷4]2=(m+4)2=m2+8m+16,∴S正﹣S甲=m2+8m+16﹣m2﹣8m﹣7=9,为定值.22.解:(1)由题意,得甲在南京博物院参观的时间为20分钟,甲返回小区的速度为4÷(60﹣40)=0.2(千米/分钟),故答案为:20,0.2.(2)设直线OD的函数表达式为s=kt.∵D(60,4),∴60k=4,解得.∴直线OD的函数表达式为,当甲从图书馆返回时:设直线BC的函数表达式为s=k1t+b.∵B(40,4),C(60,0),∴,解得,∴直线BC的解析式为.∴,解得t=45.当t=45时,.∴P(45,3).答:P的坐标为(45,3),实际意义为当经过的时间为45分钟时,甲乙两人相遇,此时距离小区的路程为3千米.(3)如图,即为y(千米)与所经过的时间(分钟)之间的函数图象.23.解:(1)A=(x+2y)2﹣(x+y)(x﹣2y)=x2+4xy+4y2﹣(x2﹣xy﹣2y2)=x2+4xy+4y2﹣x2+xy+2y2=5xy+6y2,B=(x3y﹣+xy2﹣3xy3)÷xy=2x2﹣5xy+2y﹣6y2.(2)∵2x﹣A=B﹣6,∴2x﹣5xy﹣6y2=2x2﹣5xy+2y﹣6y2﹣6,∴y=﹣x2+x+3.(3)(x﹣y+2)2﹣x(x﹣2)(x+2)+x(xy﹣x﹣4)=x2+y2+4﹣2xy+4x﹣4y﹣x(x2﹣4)+x2y﹣x2﹣4x=x2+y2+4﹣2xy+4x﹣4y﹣x3+4x+x2y﹣x2﹣4x=﹣x3+x2y﹣2xy+4x+y2﹣4y+4.把y=﹣x2+x+3代入上式得,原式=﹣x3+x2(﹣x2+x+3)﹣2x(﹣x2+x+3)+4x+(﹣x2+x+3)2﹣4(﹣x2+x+3)+4=﹣x3﹣x4+x3+3x2+2x3﹣2x2﹣6x+4x+x4+x2+9﹣2x3﹣6x2+6x+4x2﹣4x﹣12+4=9﹣12+4=1.24.解:(1)∵PE∥AC,∴∠A+∠APE=180°,∴PE∥BD,∴∠B+∠BPE=180°,∴∠A+∠B+∠APE+∠BPE=360°,即∠A+∠B+∠APB=360°;(2)∠A+∠B=∠APB.理由如下:如图,过P作PF∥AC,∵PF∥AC,∴∠A=∠APF,∴PF∥BD,∴∠B=∠BPF,∴∠A+∠B=∠APF+∠BPF,即∠A+∠B=∠APB;(3)∠APB=2∠Q.理由如下:过Q作QG∥AC,如图,∵QG∥AC,∴∠CAQ=∠AQG,∵QG∥AC,AC∥BD,∴QG∥BD,∴∠DBQ=∠BQG,∴∠CAQ+∠DBQ=∠AQG+∠BQG,即∠CAQ+∠DBQ=∠AQB,∵AQ平分∠PAC,BQ平分∠PBD,∴,,∴,由(2)得∠PAC+∠PBD=∠APB,∴∠APB=2∠Q.。

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷

初一下学期数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个选项是实数?A. πB. iC. √2D. 0.33333...2. 以下哪个表达式表示了正确的乘法分配律?A. a(b + c) = ab + acB. a + bc = ab + acC. a(b - c) = ab - acD. a(b + c) = ab - ac3. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是4. 以下哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 圆D. 平行四边形5. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 以上都不是6. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 4)(x - 4)C. x^2 - 4 = (x + 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)7. 以下哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x < 2x + 1C. 3x = 2x + 1D. 3x ≤ 2x + 18. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:89. 以下哪个选项是正确的几何图形的面积公式?A. 正方形的面积 = 边长× 边长B. 长方形的面积 = 长× 宽C. 三角形的面积 = 底× 高÷ 2D. 以上都是10. 以下哪个选项是正确的几何图形的周长公式?A. 正方形的周长= 4 × 边长B. 长方形的周长= 2 × (长 + 宽)C. 圆形的周长= 2 × π × 半径D. 以上都是二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。

人教版七年级下学期期中考试数学试卷及答案解析(共3套)

人教版七年级下学期期中考试数学试卷及答案解析(共3套)

人教版七年级下学期期中考试数学试卷(一)一、选择题(共10小题,每小题4分,满分40分)1.(4分)4的算术平方根为()A.﹣2 B.2 C.±2 D.2.(4分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个3.(4分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.(4分)﹣8的立方根是()A.B.2 C.﹣2 D.6.(4分)下列图形都是由若干个相同的四边形组成的,则不能通过其中一个四边形平移得到的图形是()A.B.C.D.7.(4分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.(4分)经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴 B.平行于y轴 C..经过原点D.无法确定9.(4分)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)10.(4分)若m=,则m的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)如图,直线a,b相交,∠2=3∠1,则∠3= °.12.(5分)在实数0,﹣π,,﹣4中,最小的数是.13.(5分)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P 点的坐标是.14.(5分)如图,在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.现有下列说法:①点A4的坐标是(2,0);②点A10的坐标是(5,0);③点A4n(n为正整数)的坐标是(2n,0);④从点A100到点A101的移动方向与从点O到点A1的移动方向一致,其中正确的是.(把所有正确结论的序号都选上)三、(本题共9小题,每小题8分,满分90分)15.(8分)计算:﹣32+|﹣3|+2.16.(8分)如果一个数的平方根是a+1和2a﹣7,求这个数.17.(8分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移4格,请在图中画出平移后的三角形A′B′C′及其高C′D′.18.(8分)已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.19.(10分)完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,()又∵∠A=∠1,(已知)∴AC∥,()∴∠2= ,()∴∠C=∠E(等量代换)20.(10分)如图,直线EF,CD相交于点O,OA⊥OB,若∠AOE=35°,∠COF=85°,求∠BOD的度数.21.(12分)已知|x﹣1|=,求实数x的值.22.(12分)如图,一个小正方形网格的边长表示50m,A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)若C同学家的坐标为(﹣150,100),请你在你所建的直角坐标系中,描出表示C同学家的点.23.(14分)如图所示,A、B、C、D四点都在x轴上,C、D两点的横坐标分别为2,3,线段CD=1;B、D两点的横坐标分别为﹣2,3,线段BD=5;A、B两点的横坐标分别为﹣3,﹣2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?(3)如果|a|=3,b=2,且有A(a,0),B(b,0),那么线段AB的长为多少?参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分) 4的算术平方根为()A.﹣2 B.2 C.±2 D.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.(4分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的定义,可得答案.【解答】解:、、﹣1.010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(4分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)4.(4分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.5.(4分)﹣8的立方根是()A.B.2 C.﹣2 D.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选C.【点评】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6.(4分)下列图形都是由若干个相同的四边形组成的,则不能通过其中一个四边形平移得到的图形是()A.B.C.D.【分析】根据平移与旋转的性质即可得出结论.【解答】解:A、能通过其中一个四边形平移得到,不合题意;B、能通过其中一个四边形平移得到,不合题意;C、能通过其中一个四边形平移得到,不合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.【点评】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.7.(4分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.8.(4分)经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴 B.平行于y轴 C..经过原点D.无法确定【分析】根据平行于x轴的直线上的点的纵坐标相等解答.【解答】解:∵A(2,3)、B(﹣4,3)的纵坐标都是3,∴直线AB平行于x轴.故选A.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键.9.(4分)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.【点评】本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.10.(4分)若m=,则m的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【分析】先估计的整数部分和小数部分,然后即可判断﹣3的近似值.【解答】解:∵5<<6,∴5﹣3<﹣3<6﹣3,即2<m<3.故选B.【点评】此题主要考查了无理数的估算,一个无理数和一个有理数组成的无理数找范围时,应先找到带根号的数的范围.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)如图,直线a,b相交,∠2=3∠1,则∠3= 45 °.【分析】根据邻补角的定义和性质,结合图形可得∠1与∠2互为邻补角,即∠1+∠2=180°,又因∠2=3∠1,可求得∠1,再根据对顶角相等可得∠3.【解答】解:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°,又∵∠2=3∠1,∴∠1+3∠1=180°,∴∠1=45°,∴∠3=∠1=45°.故答案为:45.【点评】本题考查邻补角的定义和性质以及对顶角的性质,是一个需要熟记的内容.12.(5分)在实数0,﹣π,,﹣4中,最小的数是﹣4 .【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣π<0<,∴在﹣4,0,,﹣π中最小的数是﹣4,故答案为:﹣4.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.(5分)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是(﹣3,2),(﹣3,﹣2).【分析】根据直角坐标系中,某点到x轴的距离是它的纵坐标的绝对值,到y轴的确距离是它的横坐标的绝对值解答.【解答】解:∵P(x,y)到x轴的距离是2,到y轴的距离是3,∴x=±3,y=±2;又∵点P在y轴的左侧,∴点P的横坐标x=﹣3,∴点P的坐标为(﹣3,2)或(﹣3,﹣2).故填(﹣3,2)或(﹣3,﹣2).【点评】本题利用了直角坐标系中,某点到x轴的距离是它的纵坐标的绝对值,到y轴的确距离是它的横坐标的绝对值.14.(5分)如图,在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.现有下列说法:①点A4的坐标是(2,0);②点A10的坐标是(5,0);③点A4n(n为正整数)的坐标是(2n,0);④从点A100到点A101的移动方向与从点O到点A1的移动方向一致,其中正确的是①③④.(把所有正确结论的序号都选上)【分析】①观察图形可得出点A4的坐标,结论①正确;②观察图形可得出点A10的坐标,结论②错误;③观察图形可得出点A4、A8、A12的坐标,根据坐标的变化结合蚂蚁的运动规律即可得出点A4n(n为正整数)的坐标是(2n,0),结论③正确;④根据蚂蚁的运动规律即可得出运动方向四次一循环,依此即可得出从点A 100到点A101的移动方向与从点O到点A1的移动方向一致,结论④正确.综上即可得出结论.【解答】解:①观察图形,可知:点A4的坐标是(2,0),∴结论①正确;②观察图形,可知:点A10的坐标是(5,1),∴结论②错误;③观察图形,可知:A4(2,0),A8(4,0),A12(6,0),…,∴点A4n(n为正整数)的坐标是(2n,0),∴结论③正确;④∵蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,∴运动方向四次一循环.又∵100=25×4,∴从点A100到点A101的移动方向与从点O到点A1的移动方向一致,∴结论④正确.故答案为:①③④.【点评】本题考查了规律型中点的坐标,观察图形结合蚂蚁的运动逐一分析四条结论的正误是解题的关键.三、(本题共9小题,每小题8分,满分90分)15.(8分)计算:﹣32+|﹣3|+2.【分析】原式利用乘方的意义,绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣9+3﹣+2=﹣6+.【点评】此题考查了实数的运算,绝对值,注意区别﹣32与(﹣3)2.16.(8分)如果一个数的平方根是a+1和2a﹣7,求这个数.【分析】根据平方根的定义得到a+1+2a﹣7=0,然后解方程即可.【解答】解:根据题意得a+1+2a﹣7=0,解得a=2.则这个数是:(a+1)2=9.【点评】本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±.17.(8分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移4格,请在图中画出平移后的三角形A′B′C′及其高C′D′.【分析】根据图形平移的性质画出平移后的△A′B′C′,再作出高C′D′即可.【解答】解:如图,△A′B′C′及高C′D′即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.(8分)已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.【分析】根据第二象限内的点的横坐标小于零,可得a的值,根据第二象限内点的纵坐标大于零,可得b的值.【解答】解:由第二象限内的点的横坐标小于零,得a=﹣3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(﹣3,8).【点评】本题考查了点的坐标,利用了第二象限内的点的横坐标小于零,第二象限内点的纵坐标大于零.19.(10分)完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE ,(内错角相等,两直线平行)∴∠2= ∠E ,(两直线平行,内错角相等)∴∠C=∠E(等量代换)【分析】首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.【解答】证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等【点评】此题考查了平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行;内错角相等⇔两直线平行;同旁内角互补⇔两直线平行.20.(10分)如图,直线EF,CD相交于点O,OA⊥OB,若∠AOE=35°,∠COF=85°,求∠BOD的度数.【分析】由对顶角相等得∠DOE=85°,由垂直得∠BOE=55°,则∠BOD=∠DOE﹣∠BOE,代入计算.【解答】解:∵∠COF=85°,∴∠DOE=∠COF=85°,∵OA⊥OB,∴∠AOB=90°,又∵∠AOE=35°,∴∠BOE=∠AOB﹣∠AOE=90°﹣35°=55°,∴∠BOD=∠DOE﹣∠BOE=85°﹣55°=35°.【点评】本题考查了垂线的定义和对顶角的性质,属于基础题;注意观察图形利用角的和、差关系或对顶角相等的性质求角的度数,同时步骤书写要合理,既不能太麻烦,也不能太简单.21.(12分)已知|x﹣1|=,求实数x的值.【分析】依据绝对值的性质可知:x﹣1=±,然后再解关于x的方程即可.【解答】解:∵|x﹣1|=,∴x﹣1=±.解得:x=+1或x=﹣+1.∴x的值为1﹣或1+.【点评】本题主要考查的是实数的性质,依据绝对值的性质得到关于x的方程是解题的关键.22.(12分)如图,一个小正方形网格的边长表示50m,A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是(200,150);(3)若C同学家的坐标为(﹣150,100),请你在你所建的直角坐标系中,描出表示C同学家的点.【分析】(1)根据题意得出A点坐标,进而建立平面直角坐标系;(2)利用平面直角坐标系得出B点坐标;(3)利用C点坐标进而得出C点位置.【解答】解:(1)建立平面直角坐标系,如图所示:(2)B同学家的坐标为:(200,150);故答案为:(200,150);(3)如图所示:C同学家所在的点坐标为:(200,150).【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.23.(14分)如图所示,A、B、C、D四点都在x轴上,C、D两点的横坐标分别为2,3,线段CD=1;B、D两点的横坐标分别为﹣2,3,线段BD=5;A、B两点的横坐标分别为﹣3,﹣2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?(3)如果|a|=3,b=2,且有A(a,0),B(b,0),那么线段AB的长为多少?【分析】(1)根据已知条件可知,x轴上两点之间的距离等于这两点横坐标差的绝对值,依此可得线段MN的长;(2)y轴上有两点之间的距离等于这两点纵坐标差的绝对值,依此可得线段PQ 的长;(3)先由|a|=3,得出a=±3,再根据x轴上两点之间的距离等于这两点横坐标差的绝对值即可求出线段AB的长.【解答】解:(1)∵x轴上有两点M(x1,0),N(x2,0)(x1<x2),∴线段MN=|x1﹣x2|=x2﹣x1;(2)∵y轴上有两点P(0,y1),Q(0,y2)(y1<y2),∴线段PQ=|y1﹣y2|=y2﹣y1;(3)∵|a|=3,∴a=±3,∴A(±3,0),B(2,0),∴线段AB=|±3﹣2|=1或5.【点评】本题考查了坐标与图形性质,两点间的距离,正确理解题意利用数形结合是解决本题的关键.人教版七年级下学期期中考试数学试卷(二)一.选择题(每小题3,共36分)1.(3分)计算的结果是()A.﹣2 B.±2 C.2 D.42.(3分)在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.43.(3分)在下图中,∠1,∠2是对顶角的图形是()A. B.C. D.4.(3分)点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±66.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°7.(3分)如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°8.(3分)下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补9.(3分)下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.4911.(3分)下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c12.(3分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|二.填空题(每小题4分,共24分)13.(4分)若x的立方根是﹣,则x= .14.(4分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.15.(4分)的相反数是.16.(4分)点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为.17.(4分)的算术平方根是.18.(4分)在数轴上表示a的点到原点的距离为3,则a﹣3= .三、计算(共90分)19.(20分)计算求值:(1)+﹣(2)﹣(3)|﹣|+2(4)3(x﹣1)3=﹣24.20.(8分)若a、b满足|a﹣2|+=0,求代数式的值.21.(8分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.22.(8分)已知:如图,a∥b,∠1=55°,∠2=40°,求∠3和∠4的度数.23.(8分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.24.(12分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 ,且∠1=∠CGD ,∴∠2=∠CG ,∴CE∥BF ,∴∠=∠C 两直线平行,同位角相等;又∵∠B=∠C(已知),∴∠BFD=∠B,∴AB∥CD .25.(12分)如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标.26.(14分)如图,AB∥CD,直L交AB、CD分别于点E、F,点M在线段EF上(点M不与E、F重合),N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时(F点除外),则∠FMN+∠FNM=∠AEF,说明理由?(2)当点N在射线FD上运动时(F点除外),∠FMN+∠FNM与∠AEF有什么关系?画出图形,猜想结论并证明.参考答案与试题解析一.选择题(每小题3,共36分)1.(3分)计算的结果是()A.﹣2 B.±2 C.2 D.4【分析】根据算术平方根的定义把原式进行化简即可.【解答】解:∵22=4,∴=2.故选C.【点评】本题考查的是二次根式的性质与化简,熟知算术平方根的定义是解答此题的关键.2.(3分)在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.4【分析】根据无理数的定义求解即可.【解答】解:,π,2+,3.212212221…(按照规律,两个1之间增加一个2)是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(3分)在下图中,∠1,∠2是对顶角的图形是()A. B.C. D.【分析】此题在于考查对顶角的定义,作为对顶角,首先是由两条直线相交形成的,其次才是对顶角相等.【解答】解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误;C是由两条直线相交构成的图形,正确.故选C.【点评】此类题目的正确解答,在于对对顶角定义的掌握.4.(3分)点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号的特点解答.【解答】解:点P(1,﹣5)在第四象限.故选D.【点评】本题考查了点的坐标,熟记各象限内点的坐标的符号是解决的关键,四个象限的符号特点是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±6【分析】A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C根据算术平方根的性质化简即可判定;D、根据算术平方根定义即可判定.【解答】解:A,=﹣,故A选项正确;B、﹣≈﹣1.9,故B选项错误;C、=13,故C选项错误;D、=6,故D选项错误.故选:A.【点评】本题主要考查了平方根与算术平方根的区别.注意一个数的平方根有两个,正值为算术平方根.6.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.【解答】解:∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选:C.【点评】利用补角和余角的定义来计算,本题较简单.7.(3分)如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b;故本选项正确,不符合题意;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b;故本选项正确,不符合题意;C、∵∠2与∠3是同旁内角,∴∠2=∠3,不能证明两直线平行;故本选项错误,符合题意;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b.故本选项正确,不符合题意;故选C.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.(3分)下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补【分析】根据垂线、平行线的性质,对顶角和补角的定义作答.【解答】解:A、一条直线的垂线可以作无数条,故错误;B、对顶角一定相等,但不相等的两个角一定不是对顶角,故正确;C、∵180°﹣90°=90°,∴直角的补角必是直角,故正确;D、符合平行线的性质,故正确;故选A.【点评】本题主要考查对定理概念的记忆,是需要熟记的内容.9.(3分)下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【分析】A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.【点评】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.49【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.(3分)下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c【分析】根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”和“在同一平面内垂直于同一直线的两条直线互相平行”解答即可.【解答】解:A、正确,根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.B、错误,因为“在同一平面内垂直于同一直线的两条直线互相平行”.C、错误,a,b,c是直线,且a∥b,b⊥c则a⊥c;D、错误,b,c是直线,且a∥b,b∥c,则a∥c.故选A.【点评】此题考查的是平行线的判定和性质定理,比较简单.12.(3分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.二.填空题(每小题4分,共24分)13.(4分)若x的立方根是﹣,则x= ﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣,故答案为:﹣.【点评】本题考查了立方根的应用,主要考查学生的计算能力.14.(4分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.(4分)的相反数是﹣2 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.16.(4分)点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).【分析】根据题中所给的点的位置,可以确定点的纵横坐标的符号,结合其到坐标轴的距离得到它的坐标.【解答】解:根据题意,点A在y轴左侧,在y轴的上侧,则点A横坐标为负,纵坐标为正;又由距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).故答案为(﹣4,4).【点评】本题考查点的坐标的确定与意义,点到x轴的距离是其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值.。

七年级下学期期中考试数学试卷(附参考答案与解析)

七年级下学期期中考试数学试卷(附参考答案与解析)

七年级下学期期中考试数学试卷(附参考答案与解析)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( )A. (−a2)3=−a5B. a3⋅a5=a15C. (−a2b3)2=a4b6D. 3a2−2a2=a2. 若∠A=130°,则它的补角的余角为( )A. 30°B. 35°C. 40°D. 45°3. 成人体内成熟的红细胞的平均直径一般为0.000007245m,数0.000007245用科学记数法表示是( )A. 7.245×10−5B. 7.245×10−6C. 7.245×10−7D. 7.245×10−94. 如图,直线a//b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交∠1=40°,则∠2=( )A. 40°B. 50°C. 60°D. 65°5. 若(x+4)(x−2)=x2+mx+n,则m,n的值分别是( )A. 2,8B. −2,−8C. −2,8D. 26. 如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是A. ∠2=90°B. ∠3=90°C. ∠4=90°D. ∠5=90°7. 如图,直线AB,CD相交于点O,OE⊥AB若∠DOE=2∠AOC,则∠BOD的度数为( )A. 25°B. 30°C. 60°D. 75°8. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是( )A.B.C.D.9. 如图,在边长为a的正方形纸板的一角,剪去一个边长为b的正方形,再将剩余图形沿虚线剪开,拼成一个长方形,依据这一过程可得到的公式是( )A. (a±b)2=a2±2ab+b2B. a2±2ab+b2=(a+b)2C. a(a+b)=a2+abD. a2−b2=(a+b)(a−b)10. 甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分)之间的函数关系如图所示.根据图中信息,下列说法正确的是( )A. 前10分钟,甲比乙的速度快B. 甲的平均速度为0.06千米/分钟C. 经过30分钟,甲比乙走过的路程少D. 经过20分钟,甲、乙都走了1.6千米二、填空题(本大题共6小题,共18.0分)11. 计算:(9x2y−6xy2)÷3xy=______12. 如图,直线AB、CD被直线EF所截,AB//CD,∠1=120°则∠2=______.13. 已知代数式a2+(2t−1)ab+4b2是一个完全平方式,则实数t的值为______.14. 如图1是某景区电动升降门,将其抽象为几何图形,如图2所示,BA垂直于地面AE于A,当CD平行于地面AE时,则∠ABC+∠BCD=______ .15. 按图(1)−(3)的方式摆放餐桌和椅子,照这样的方式继续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为______ .16. 为了提醒司机不要疲劳驾驶,高速公路上安装了如图1所示的激光灯,图2是激光位于初始位置时的平面示意图,其中P,Q是直线MN上的两个发射点∠APQ=∠BQP=60°现激光PA 绕点P以每秒3度的速度逆时针旋转,同时激光QB绕点Q以每秒2度的速度顺时针旋转,设旋转时间为t秒(0≤t≤40),当PA//QB时,t的值为______.三、解答题(本大题共8小题,共72.0分。

江苏省南京市玄武区2023-2024学年七年级下学期期中数学试题(解析版)

江苏省南京市玄武区2023-2024学年七年级下学期期中数学试题(解析版)

2023~2024学年度第二学期期中质量调研卷七年级数学(总分:100分)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法以及幂的乘除法法则对各项进行计算后再判断即可.A.与不是同类项,不能合并,故此选项错误;B.,故此选项错误;C.,正确;D.,故此选项错误.故选:C .【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.2. 如图,已知直线,,则的大小是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质、利用邻补角求角的度数,先求出,再利用平行线的性质即可得出答案.解:如图,459a a a +=33a a a ⋅=5210()a a =623a a a ÷=4a 5a 31+34=a a a a ⋅=5210()a a =62624a a a a -÷==ab 195∠=︒2∠85︒95︒75︒105︒3180185∠=︒-∠=︒,,,,,故选:A .3. 已知三角形的三边长分别为3,5,,则不可能是( )A. 3B. 5C. 7D. 8【答案】D【解析】【分析】已知两边时,第三边的范围是大于两边的差,小于两边的和.这样就可以确定x 的范围,也就可以求出x 的不可能取得的值.解:∵,,∴.故选:D .【点睛】本题主要考查了三角形的三边关系,熟记三角形任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4. 下列各式中,不能使用平方差公式计算的是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平方差公式,根据平方差公式的结构逐项判断即可,熟练掌握平方差公式是解此题的关键.解:A 、不能使用平方差公式计算,故此选项符合题意;B 、能使用平方差公式计算,故此选项不符合题意;195∠=︒ 3181850∴∠=︒∠=-︒a b 2385∴∠=∠=︒x x 358+=532-=28x <<()()11a a +--()()11a a ---()()11a a +-()()11a a +-()()22a b a b a b +-=-()()11a a +--()()11a a ---C 、能使用平方差公式计算,故此选项不符合题意;D 、能使用平方差公式计算,故此选项不符合题意;故选:A .5. 如图,∠1、∠2、∠3、∠4、∠5是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( )A. 110°B. 108°C. 105°D. 100°【答案】D【解析】∠AED 的外角为:360°-∠1-∠2-∠3-∠4=80°,多边形外角与相邻的内角互为邻补角,所以∠AED =180°-80°=100°.6. 若,则它们的大小关系是( )A. B. C. D. 【答案】B【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.∵a=-0.22=-0.04;b=-2-2=-=-0.25,c=(-)-2=4,d=(-)0=1,∴-0.25<-0.04<1<4,∴b <a <d <c ,故选:B .【点睛】题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.7. 下列三角形一定为直角三角形的有()①三个内角关系为;②三个内角的关系为;的()()11a a +-()()11a a +-2220110.2,2,(,()22a b c d --=-=-=-=-a b d c<<<b a d c <<<a d c b<<<c a d b <<<141212ABC A B C ∠∠=∠+ABC 1123A B C ∠=∠=∠③三角形的三个内角之比为;④三角形一个外角与它不相邻的两个内角和为.A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了三角形内角和定理,根据三角形内角和定理逐项判断即可得出答案.解:①,,,故①正确,符合题意;②,,,故②正确,符合题意;③三角形的三个内角之比为,设三个内角分别为,,,由题意得:,解得:,三个角分别为,,,故③错误,不符合题意;④三角形的一个外角与它不相邻的两个内角和为,这两个内角和等于剩余的内角,剩余的内角的度数为,故④正确,符合题意;综上所述,正确的有①②④,共个,故选:C .8. 如图,是的外角,的平分线与的平分线交于点,的平分线与的平分线交于点,…,的平分线与的平分线交于点,点为延长线上一动点,连接,的平分线与的平分线交于点,设.下列结论正确的是()的2:3:4180︒A B C ∠+∠=∠ 180A B C ∠+∠+∠=︒90C ∴∠=︒1123A B C ∠=∠=∠ 180A B C ∠+∠+∠=︒90C ∴∠=︒ 2:3:4∴()2x ︒()3x ︒()4x ︒234180x x x ++=20x =∴40︒60︒80︒ 180︒∴∴90︒3ACD ∠ABC ABC ∠ACD ∠1A 1A BC ∠1A CD ∠2A 1n A BC -∠1n A CD -∠n A E BA EC AEC ∠ACE ∠M BAC α∠=A. B. C. 的值为定值D. 的值为定值【答案】C【解析】【分析】本题考查了角平分线的定义、三角形外角的定义及性质、三角形内角和定理,由角平分线的定义结合三角形外角的定义及性质得出,从而得出,再由角平分线的定义结合三角形内角和定理得出,从而得出为定值.解:是的平分线,是的平分线,,,,,,,,,同理可得:,,…,,故A 、B 错误,不符合题意;平分,平分,,,,,,,,的值为定值,其值是,故C 正确,D 错误,12n n A α-∠=12n n A α+∠=1M A ∠+∠1M A ∠-∠1122A BAC α∠=∠=2n n A α∠=()11802M MEC MCE ∠=︒-∠+∠1M A ∠+∠ 1A B ABC ∠1AC ACD ∠112A BC ABC ∴∠=∠112ACD ACD ∠=∠ACD BAC ABC ∠=∠+∠ 111A CD A BC A ∠=∠+∠()11122BAC ABC ABC A ∴∠+∠=∠+∠112A BAC ∴∠=∠BAC α∠= 12A α∴∠=212112222A A αα∠=∠=⨯=3223112222A A αα∠=∠=⨯=2n n A α∴∠= EM AEC ∠CM ACE ∠12MEC AEC ∴∠=∠12MCE ACE ∠=∠()180M MEC MCE ∠=︒-∠+∠ ()11802M MEC MCE ∴∠=︒-∠+∠BAC AEC ACE ∠=∠+∠ 112A BAC ∠=∠11118018022M BAC B A AC ∴∠+︒-∠+∠=∠=︒1A M ∴∠+∠180︒故选:C .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 流感病毒的直径约为,其中0.00000027用科学记数法可表示为______.【答案】【解析】【分析】本题考查了科学记数法的表示方法,科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,是非负数,当原数绝对值小于1时,是负数,表示时关键是要正确确定的值以及的值.解:0.00000027用科学记数法可表示为,故答案为:.10. 一个凸边形的内角和为,则_____.【答案】9【解析】【分析】根据多边形内角和公式即可求解.解:由题意得:,解得:,故答案为:9.【点睛】本题考查了多边形内角和,熟练掌握多边形内角和公式是解题关键.11. 计算______.【答案】【解析】【分析】本题考查了积的乘方与幂的乘方,根据积的乘方与幂的乘方的运算法则计算即可.】解:,故答案为:.12. 如图,将三角板与直尺贴在一起,使三角板的直角顶点与直尺的一边重合,若,则的度数是______°.0.00000027m 72.710-⨯10n a ⨯110a ≤<n n a n n n a n 72.710-⨯72.710-⨯n 1260︒n =()21801260n -⨯︒=︒9n =()202120220.25-⨯=5-()()()2021202120222022021150.250.250.255515⨯=-⨯⨯=-⨯-⨯-⨯=-=5-A 130∠=︒2∠【答案】60【解析】【分析】本题考查了平行线的性质,互余关系;由互余可求得,再由平行线的性质即可求得结果.解:如图,∵,,∴;∵直尺的两边平行,∴,故答案为:60.13. 若,,则______.【答案】####1.5【解析】【分析】根据同底数幂除法逆用法则计算即可;解:.故答案为:.【点睛】本题考查同底数幂除法的逆用.掌握同底数幂除法的逆用法则是解题关键.14. 如图,是的中线,点E 、F 分别为的中点,若的面积为,则的面积是_______.的13∠∠,3∠1+3=90∠∠︒130∠=︒390160∠=︒-∠=︒2360∠=∠=︒212m =28n =2m n -=3211232221282m n m n -=÷=÷=32BD ABC BD CE 、AEF △23cm ABC 2cm【答案】12【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.是的中点,,,是的中点,,,,∴的面积.故答案为:12.15. 若代数式x 2+ax +16是一个完全平方式,则a =_____.【答案】±8【解析】【分析】利用完全平方公式的结构特征判断即可得到a 的值.∵x 2+ax +16是一个完全平方式,∴a =±8.故答案为±8.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16. 如图,_______.F CE 2m 3c AEF S = ∴226cm ACE AEF S S == E BD ADE ABE S S ∴= CDE BCE S S = ∴12ACE ABC S S =△△ABC 212cm =A B C D E F G ∠+∠+∠+∠+∠+∠+∠=【答案】【解析】【分析】利用三角形的外角性质以及三角形内角和定理即可求解.如图:∠1是△ADH 的一个外角,∴∠1=∠A+∠D ,同理:∠2=∠B+∠E ,∠3=∠C+∠G ,∠4=∠2+∠F ,∵∠1+∠3+∠4=∠A+∠D+∠C+∠G+∠2+∠F=∠A+∠D+∠C+∠G+∠B+∠E +∠F=180,∴∠A+∠B +∠C +∠D +∠E +∠F+∠G=180.故答案为:180.【点睛】本题考查了三角形的外角性质以及三角形内角和定理,正确的识别图形是解题的关键.17. 如图,两个正方形的边长分别为a 、b ,若a +b =10,ab =20,则图中阴影部分的面积为_______.【答案】20【解析】【分析】用含有a 、b 的代数式表示阴影部分的面积,再根据完全平方公式进行代数式的变形,进而求出答案.解:阴影部分的面积为180︒22211()22a b a a b b +--+⋅22111222a ab b =-+22)1(2ab b a -+=,当a +b =10,ab =20时,原式=(100-60)=20.故答案为:20.【点睛】本题考查完全平方公式的应用,正确的表示阴影部分的面积和适当的变形,是得到正确答案的关键.18. 如图,在四边形中,,E 、F 分别是、上的点,将四边形沿直线翻折,得到四边形,交于点G ,若有两个相等的角,则______.【答案】或【解析】【分析】根据题意有两个角相等,于是有三种情况,分别令不同的两个角相等,利用折叠的性质和四边形的内角和列方程,最后综合得出答案.解:分三种情况:(1)当时,设,则,,在四边形中,由内角和为得:,∵,∴,解得:;(2)当时,,21()32a b ab ⎡⎤=+-⎣⎦12ABCD 240C D ∠+∠=︒AD BC CDEF EF C D EF ''C F 'AD EFG EFG ∠=20︒40︒EFG FGE FEG ∠=∠EFG x ∠=EFC x ∠=()11802FGE F x EG ∠=∠︒-=GFCD 360︒()180223601x x C D ︒-++∠+∠=︒240C D ∠+∠=︒()118023602402x x ︒-+=︒-︒20x =︒∠=∠GFE FEG 1802FGE x ∠=︒-在四边形中,由内角和为得:,得,显然不成立,即此种情况不存在;(3)当时,同理有:,∵,∴,解得:;综上分析可知,的度数为:或.故答案为:或.【点睛】本题主要考查了图形的翻折,三角形和四边形的内角和,有一定难度,熟悉三角形和四边形的内角和定理以及正确的分情况讨论是解题关键.三、解答题(本大题共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算.(1);(2);(3);(4).【答案】(1)(2)(3)(4)【解析】【分析】本题考查了幂的混合运算、零指数幂、负整数指数幂、多项式乘以多项式、完全平方公式以及多项式乘以单项式,熟练掌握运算法则是解此题的关键.(1)先幂的混合运算法则计算即可得出答案;(2)先计算乘方、零指数幂、负整数指数幂,再计算加减即可;GFCD 360︒18022360x x C D ︒-++∠+∠=︒180240420360︒+︒=︒≠︒FGE GFE ∠=∠2360x x C D ++∠+∠=︒240C D ∠+∠=︒2240360x x ++︒=︒40x =︒EFG ∠20︒40︒20︒40︒()()()333232x x x -+÷-1201233-⎛⎫-+-- ⎪⎝⎭()()23m n m n -+()()2243a b a a b ---69x -022253m mn n +-28b ab+(3)利用多项式乘以多项式的运算法则去括号,再合并同类项即可;(4)利用完全平方公式以及多项式乘以单项式的运算法则去括号,再合并同类项即可.【小问1】解:;【小问2】解:;【小问3】解:;【小问4】解:.20. 先化简,再求值:,其中,,.【答案】,【解析】【分析】本题考查了整式的混合运算—化简求值,平方差公式,完全平方公式,先利用平方差公式和完全平方公式去括号,再合并即可化简,最后代入的值计算即可.解:,当,时,原式.21. 画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.()()()33323666289x x x x x x =---=-+÷-()12012341303-⎛⎫-+--=-+--= ⎪⎝⎭()()222223263253m n m n m mn mn n m mn n -+=+--=+-()()22222243444128a b a a b a ab b a ab b ab ---=-+-+=+()()()2222a b a b a b +-+-+12a =1b =-224a ab -52a b ,()()()2222a b a b a b +-+-+2222444a b a ab b =-+-+224a ab =-12a =1b =-()2111524122222⎛⎫=⨯-⨯⨯-=+= ⎪⎝⎭(1)利用网格在图中画出的中线,高线;(2)将向左平移7格,再向下平移1格.请在图中画出平移后的;(3)的面积为______;(4)连接,,则与的关系是______.【答案】(1)见解析(2)见解析(3)(4),【解析】【分析】本题考查了作图—平移变换、画三角形的高、三角形面积公式、平移的性质,熟练掌握以上知识点并灵活运用,是解此题的关键.(1)利用网格即可在图中画出的中线,高线;(2)根据平移的性质得出,再顺次链接即可得出答案;(3)利用三角形面积公式计算即可;(4)由平移的性质即可得出答案.【小问1】解:如图,中线,高线即为所作,;【小问2】解:如图,即为所作,;【小问3】ABC CD AE ABC A B C ''' A B C ''' AA 'BB 'AA 'BB '8AA BB ''=AA BB ''∥ABC CD AE A B C '''、、CD AE A B C '''解:的面积为:,故答案为:;【小问4】解:如图:,由平移的性质可得:与的关系是,,故答案为:,.22. 把下面的证明补充完整.已知:如图,在四边形中,,,平分,交于点,平分,交于点.求证:.证明:平分,(______),平分,,______(等量代换)(已知),(______),______,.【答案】角平分线定义;;两直线平行,内错角相等;【解析】A B C ''' 14482⨯⨯=8AA 'BB 'AA BB ''=AA BB ''∥AA BB ''=AA BB ''∥ABCD AB CD ABC CDA ∠=∠DF ADC ∠AB F BE ABC ∠CD E DF BE ∥DF ADC ∠12EDF CDA ∴∠=∠BE ABC ∠12EBA ABC ∴∠=∠ABC CDA∠=∠ ∴∥ AB CD EDF DFA ∴∠=∠∴DF BE ∴∥EDF EBA ∠=∠DFA EBA∠=∠【分析】本题考查了平行线的判定与性质、角平分线的定义,由角平分线的定义得出,,从而得出,由平行线的性质得出,即可得出,从而得证.证明:平分,(角平分线定义),平分,,(等量代换)(已知),(两直线平行,内错角相等),,,故答案:角平分线定义;;两直线平行,内错角相等;.23. 如图,在中,是高,是角平分线,它们相交于点O ,.(1)求的度数;(2)若,求的度数.【答案】(1)(2)【解析】【分析】此题主要考查三角形的内角和定理、三角形的角平分线和高线的性质:(1)在中,根据,可得,再根据是角平分线,,即可求解;为12EDF CDA ∠=∠12EBA ABC ∠=∠EDF EBA ∠=∠EDF DFA ∠=∠DFA EBA ∠=∠DF ADC ∠12EDF CDA ∴∠=∠BE ABC ∠12EBA ABC ∴∠=∠ABC CDA∠=∠ ∴EDF EBA ∠=∠∥ AB CD EDF DFA ∴∠=∠∴DFA EBA ∠=∠DF BE ∴∥EDF EBA ∠=∠DFA EBA ∠=∠ABC AD AE BF 、70C ∠=︒AOB ∠60ABC ∠=︒DAE ∠125AOB ∠=︒5DAE ∠=︒ABC 70C ∠=︒110ABC BAC ∠+∠=︒AE BF 、55ABO BAO ∠+∠=︒(2)在中,根据,,可得,再根据是角平分线,可得,又因为是高,在中,根据,可得,即可求解.【小问1】解:在中,∵∴∵是角平分线,∴∴【小问2】解:在中,∵,∴∵是角平分线,∴∵是高,在中,∵∴∴24. (1)已知,求的值;(2)已知,求的值.【答案】(1);(2)【解析】【分析】本题考查了幂的乘方、同底数幂的乘法,熟练掌握运算法则是解此题的关键.(1)利用幂的乘方与同底数幂的乘法法则解答即可;(2)利用幂的乘方与同底数幂的乘法法则得出,解方程即可.解:(1),;ABC 60ABC ∠=︒70C ∠=︒BA =50C ∠︒AE AE 25C ∠=︒AD D Rt A C 70C ∠=︒20CAD ∠=︒ABC 70C ∠=︒110ABC BAC ∠+∠=︒AE BF 、55ABO BAO ∠+∠=︒18055125AOB ∠=︒-︒=︒ABC 60ABC ∠=︒70C ∠=︒BA 1806070=50C ∠=︒-︒-︒︒AE AE 25C ∠=︒AD D Rt A C 70C ∠=︒20CAD ∠=︒25205DAE CAE CAD ∠=∠-∠=︒-︒=︒3260m n +-=84m n ⋅2328162x ⨯⨯=x 646x =3523x +=3260m n +-=Q 326m n ∴+=∴()()32323268422222264m nm n m n m n +⋅=⋅=⋅===(2),,,,,解得:.25. 如图,点、、在一条直线上,,.求证:平分.【答案】见解析【解析】【分析】本题考查了平行线的性质、角平分线的定义,由平行线的性质得出,,证明出,即可得证.解:,,,,,,,平分.26. 综合与实践.学习整式乘法时,老师拿出三种型号的卡片,如图1,型卡片是边长为的正方形,型卡片是边长为的正方形,型卡片是长和宽分别为,的长方形.2328162x ⨯⨯= 34232222x ∴⨯⨯=1342322x ++∴=352322x +∴=3523x ∴+=6x =E A C EG AD ∥12180∠+∠=︒AD BAC ∠1DAC ∠=∠2180FAD ∠+∠=︒DAC FAD ∠=∠EG AD ∥1DAC ∴∠=∠2180FAD ∠+∠=︒12180∠+∠=︒ 1FAD ∴∠=∠1DAC ∠=∠ DAC FAD ∴∠=∠AD ∴BAC ∠A a B b C a b(1)选取1张型卡片,2张型卡片,1张型卡片,在纸上抆照图2的方式排成一个边长为的大正方形,通过用不同方式表示大正方形的面积,可得到乘法公式______.(2)如果用若干张,,三种卡片拼成的一个长方形,边长分别为和,在虚线框中画出你的拼图.(3)选取1张型卡片,4张型卡片按图3的方式不重叠地放在长方形框架内,已知的长度固定不变,的长度可以变化,图中两阴影部分(长方形)的面积分别表示为,,若,且为定值,则与的关系是______.【答案】(1)(2)见解析(3)【解析】【分析】本题考查了完全平方公式、多项式乘以多项式、整式的加减中的无关题型,熟练掌握运算法则,采用数形结合的思想是解此题的关键.(1)依据题意,用两种方法表示图2的面积,即可得出公式;(2)根据题意画出图形即可;(3)设的长为,表示出,从而得出,结合为定值,即可得出答案.【小问1】解:方法1:大正方形的面积为,方法2:图2中四部分的面积为:,故有:,A C B ()a b +A B C ()2a b +()2a b +A C MNPQ NP MN 1S 2S 12Q S S =-Q a b ()2222a b a ab b +=++3a b=MN x 12S S 、Q Q ()2a b +222a ab b ++()2222a b a ab b +=++故答案为:;【小问2】解:拼图如图所示:;【小问3】解:设的长为,,,,为定值,,,故答案为:.27. 如图,,、分别为直线、上两点,且,若射线绕点顺时针旋转至后立即回转,射线绕点逆时针旋转至后立即回转,两射线分别绕点、点不停地旋转,若射线转动的速度是秒,射线转动的速度是1°/秒.(1)射线顺时针旋转______秒,射线第一次成为的角平分线;(2)若射线、射线同时旋转秒,此时射线、射线有怎样的位置关系?请说明理由.(3)若射线绕点顺时针先转动15秒,射线才开始绕点逆时针旋转,在射线到达之前,问射线再转动______秒时,射线、射线互相平行.【答案】(1)25(2),见解析()2222a b a ab b +=++MN x ()21S a x a b ax a ab ⎡⎤=-+=--⎣⎦()2333S b x a bx ab =-=-()21232Q S S a b x a ab ∴=-=--+ Q 30a b ∴-=3a b ∴=3a b =PQ MN ∥A B MN PQ 60BAN ∠=︒AM A AN BQ B BP A B AM 6/︒BQ AM AM BAN ∠AM BQ 907AM BQ AM A BQ B BQ BA AM AM BQ AM BQ ⊥(3)或18【解析】【分析】本题考查了平行线的判定与性质、角平分线的定义、一元一次方程的应用、三角形内角和定理,熟练掌握以上知识点并灵活运用,采用分类讨论的思想是解此题的关键.(1)先求出,射线顺时针旋转到时,第一次成为的角平分线,由角平分线的定义得出,求出旋转角度,结合射线转动的速度是秒,计算即可得解;(2)利用旋转的性质、平行线的性质结合三角形内角和定理,计算即可得出答案;(3)分两种情况:当时,,;当时,,,利用平行线的判定列出一元一次方程,解方程即可得出答案.【小问1】解:,,如图,射线顺时针旋转到时,第一次成为的角平分线,,则,,射线转动的速度是秒,旋转时间为:(秒),射线顺时针旋转秒,射线第一次成为的角平分线,故答案为:;【小问2】解:如图,射线、射线同时旋转秒,分别到达、的位置,令、相交于,907120BAM ∠=︒AM AM 'BAN ∠1302BAM BAN '∠=∠=︒150MAM '∠=︒AM 6/︒015t <<QBQ t '∠=︒()6M AM t '''∠=︒45152t <<QBQ t '∠=︒()690NAM t ''∠=-︒60BAN ∠=︒ 180120BAM BAN ∴∠=︒-∠=︒AM AM 'BAN ∠1302BAM BAN '∠=∠=︒150MAM MAB BAM ''∴∠=∠+∠=︒ AM 6/︒∴150625÷=∴AM 25AM BAN ∠25AM BQ 907AM ''BQ 'AM ''BQ 'C,则,,,,,,,射线、射线同时旋转秒,此时;【小问3】解:如图,射线绕点顺时针先转动15秒后,转动至的位置,,设射线再转动秒时,射线、射线互相平行,当时,,,,则,,90540677MAM ⎛⎫''∠=︒⨯=︒ ⎪⎝⎭9090177QBQ ⎛⎫'∠=︒⨯=︒ ⎪⎝⎭54030012077BAM MAB MAM ⎛⎫⎛⎫''''∴∠=∠-∠=︒-︒=︒ ⎪ ⎪⎝⎭⎝⎭PQ MN ∥60ABQ BAN ∴∠=∠=︒903306077Q BA ABQ QBQ ⎛⎫⎛⎫''∴∠=∠-∠=︒-︒=︒ ⎪ ⎪⎝⎭⎝⎭3303001801809077BCA Q BA BAM ⎛⎫⎛⎫'''∴∠=︒-∠-∠=︒-︒-︒=︒ ⎪ ⎪⎝⎭⎝⎭∴AM BQ 907AM BQ ⊥AM A AM AM '15690MAM '∠=︒⨯=︒AM AM BQ 015t <<QBQ t '∠=︒()6M AM t '''∠=︒9030M AB BAN '∠=︒-∠=︒()()630630M AB M AM BAM t t ''''''∴∠=∠-∠=︒-︒=-︒,,,当时,,,解得:;当时,,,,,,当时,,,解得:;综上所述,射线再转动或秒时,射线、射线互相平行,故答案为:或.PQ MN ∥60ABQ BAN ∴∠=∠=︒()6060Q BA ABQ QBQ t t ''∴∠=∠-∠=︒-︒=-︒M AB Q BA '''∠=∠BQ AM ''' 63060t t ∴-=-907t =45152t <<QBQ t '∠=︒()690NAM t ''∠=-︒()()606901506M AB BAN NAM t t ''''∴∠=∠-∠=︒--︒=-︒()6060Q BA ABQ QBQ t t ''∠=∠-∠=︒-︒=-︒M AB Q BA '''∠=∠BQ AM ''' 150660t t ∴-=-18t =AM 90718AM BQ 90718。

河南省开封市兰考县2022-2023学年七年级下学期期中学业评价数学试卷(含答案)

河南省开封市兰考县2022-2023学年七年级下学期期中学业评价数学试卷(含答案)

兰考县2022—2023学年度第二学期期中七年级数学学科学业评价试题一、选择题(每小题4分,共40分)1.下列各项中,是一元一次方程的是( )A.Error! Digit expected.B. xy=4C.D.14x―42.关于x 的方程2(x -1)-a=0的根是3,则a的值为( )A.4B.- 4C.5D.- 53.方程组的解为则被遮盖的前后两个数分别为( )A.1 、2B.1、5C.5、1D.2、44.已知x>y,则下列不等式成立的是( )A.x―1<y―1B.Error! Digit expected.C.―x<―yD.x2<y25.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x 元,根据题意,可得到的方程是( )A. B.C. D.6.用“加减法”将方程组Error! Digit expected.中的x 消去后得到的方程是( )A.Error! Digit expected.B.Error! Digit expected.C.―7y=2D.Error! Digit expected.7.已知x=1y=1是方程组Error! Digit expected.的解,则(m+n)²⁰²³ 的值为( )A.2²⁰²³B.- 1C.1D.08.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.349.已知方程组y―2x=m2y+3x=m+1的解x、y满足2x+y0,则m的取值范围是( )C. m 110.某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A.3分钟B.4分钟C.4.5分钟D.5分钟二、填空题(每空2分,共30分)11.若方程4x-1=3x+1和2m+x=1的解相同,则m的值为.12.把二元一次方程2x+y—3=0化成用x表示y的形式,则y= .13.不等式1-2x<6的负整数解是.14.x的3倍与5的和大于8,用不等式表示为.15.若x=ay=b是方程2x+y=0的解,则6a+3b+2= .16.如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是.17.已知方程(a―4)x|a|―3+2=0是关于x的一元一次方程,则a= .18.若Error! Digit expected.的值比Error! Digit expected.的值小1,则x的值为.19.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样5小时与乙采样6小时所采样人数相等,问:甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年七年级(下)期中学业评价
数 学 试 卷
友情提示: Hi ,亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!
一. 精心选一选:(本题共30分,每小题3分)
1、下列图形中与左边已知图形全等的是………………( )
2、下列长度的三条线段能首尾相接构成三角形的是………………( )
A 、4,2,2
B 、1,2,3,
C 、2,3,6
D 、3,6,6 3、下列方程是二元一次方程的是……………………………………( )
A 、21=+y x
B 、221
=-
y
x C 、3z y x 25=- D 、253=+xy x 4、现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取1
只是一等品的概率等于…………………………………………( ) A 、
121 B 、61 C 、41 D 、12
7 5、下列是2x+y=7的解的是………………………………( )
A 、⎩⎨⎧==11y x
B 、⎩⎨⎧==32y x
C 、⎩⎨⎧==23y x
D 、⎩
⎨⎧==04y x
6、下列事件中是不可能事件的为……………………………………( )
A 、3人分成两组,一定有2人分在同一组
B 、射击运动员射击一次击中靶心
C 、摸彩票不中大奖
D 、你只用3秒跑完100米 7、如图,图形至少旋转多少度后能与原图形重合,答……………………( )
A 、45°
B 、60°
C 、72°
D 、90°
8、如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为 ……………… ( )
A 、14 cm
B 、13 cm
C 、11 cm
D 、9 cm
9、如图,在△ABC中,AD⊥BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的
面积为………………()
A、30
B、15
C、7.5
D、6
10、用9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余重叠和折断,则能摆出不
同的三角形的个数是………………()
A、1 个
B、2 个
C、3 个
D、4个
★1、全等三角形又叫做合同三角形.平面内的合同三角形分为真正合同三角形和镜面合同三角形.假如ΔABC和ΔA1B1C1是全等三角形,且点A与点A1对应,点B与点B1对应,点C 与点C1对应.当沿周界A—B—C—A及A1—B1—C1—A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图①);若运动方向相反,则称它们为镜面合同三角形(如图②).
()
两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中的一个翻转180O.下列各组合同三角形中,属于镜面合同三角形
二. 耐心填一填:(把正确答案填在空格内,本题共30分,每小题3分)
11、三角形的内角和等于度。

12、将方程3x+y=5变形成用含x的代数式表示y,则y= 。

13、三角形三个内角的度数比为1:2:3,则这是三角形(填锐角、直角、钝角)。

14、据云和气象预报,明天下雨的概率为80%,后天下雨的概率为30%,你校准备在这两
天里选择一天举行运动会,应选择天(仅从天气角度考虑)。

15、如图,已知DE由线段AB平移而得,AB=DC=4 cm, EC=5 cm, 则△DCE的周长是
cm。

16、如图,在△ABC中,∠A=90°,BE平分∠ABC,DE⊥BC,垂足为D,若DE=3cm,
则AE=cm。

17、如图是在镜子中看到的一个号码,它的实际号码是。

18、已知⎩⎨⎧-==1
2
y x 是方程a y x =-32的一个解,则a = 。

19、如图是由8块相同的等腰直角三角形黑白瓷砖拼成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留某块瓷砖上,则停留在黑色瓷砖上的概率为 。

20、如图,在图1中,互不重叠....的三角形共有4个,在图2中,互不重叠....
的三角形共有7个,在图3中,互不重叠....的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。

★2、我们把形如abba 的四位数称为“对称数”,如1991、2002等。

在1000~10000之间 有 个“对称数”
三. 细心做一做:(本大题有6小题,共40分)
21、解下列方程组(10分)
(1)⎪⎩

⎨⎧
=-=35632y x y x (2)⎩⎨
⎧=+=-73144y x y x 22、如图,在△ABC 和△DEF 中,AC=DF ,AE=BD ,BC=EF ,则∠C=∠F ,请说明
理由(填空)。

(6分) 解:∵ AE=BD (已知)
∴ = 在△ABC 和△DEF 中
= = =
∴△ABC ≌△DEF ( )
∴∠C=∠F ( )
23、请按下列要求画图(6分)
(1)在图1中,直线m 是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

(2)在图2中,将三角形绕点O 按顺时针方向旋转90°画出旋转后的图形。

24、某校七年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池
塘两端的距离。

有一位同学设计了如下测量方案。

设计方案如下:先在平地上取一个可直接到达A ,B 的点E ,连结AE ,BE ,并分别延长AE 至D ,BE 至C ,使ED=AE ,EC=BE 。

测出CD 的长作为A ,B 之间的距离。

请说明AB=CD 的理由。

(6分)
25、小明与小林在玩这样一种游戏:用3张扑克牌,分别是红桃2,3,4,从中任意抽取两次,一次抽一张牌,第一次抽出的牌,记下数字后再放回,再抽第二次,小明的取胜条件是:抽取的两张扑克牌上的数之和为偶数;小林的取胜条件是:抽取的两张扑克牌上的数之和为奇数。

你认为这个游戏公平吗?为什么?请画图说明理由。

(6分)
26
为了吸引游客,实行团体入住五折(按原价的50%计算)优惠,一个50人的旅游团体按优惠价到该酒店入住,住了一些三人客房和双人客房,若每间客房正好住满,且一天共计住宿费1510元,则旅游团住了三人客房和双人客房各多少间?(6分)
★3、如图,△ABC
中,∠
ACB=90o
,直角边AC=BC=5厘米,把
△ABC 沿CB 方向平移5厘米,再绕点D 按顺时针方向旋转45o
,则△ABC 在变换过程中所经过
的面积是多少?(AB
云和二中七年级下册期中数学答题卷
一.选择题(本题共30分,每小题3分)
二. 耐心填一填:(把正确答案填在空格内,本题共30分,每小题3分)
11. 12. 13. 14. 15.
16. 17. 18. 19. 20. ★2. 三.答解题
21.(10分)(1)解
(2)解
22、如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明
理由(填空)。

(6分)
解:∵AE=BD(已知)
∴=
在△ABC和△DEF中
=
=
=
∴△ABC≌△DEF ( )
∴∠C=∠F ( )
23、请按下列要求画图(6分)
(1)在图1中,直线m是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

(2)在图2中,将三角形绕点O按顺时针方向旋转90°画出旋转后的图形。

24.(6分)解
25.(6分)解:
]
26.(6分)解:
★3。

相关文档
最新文档