大学高等数学下考试题库附复习资料

合集下载

大学高等数学下考试题库(附答案).pptx

大学高等数学下考试题库(附答案).pptx

试卷 1 参考答案
2. cosxyydx xdy .
3. 6x 2 y 9 y 2 1 .
4.
n0
1 2n1
n
xn
.
5. y C1 C2 xe 2x .
三.计算题
1. z exy ysinx y cosx y , z e xy xsinx y cosx y.
x
y
z 2 x z 2y
参考答案
一、选择题 1、D 2、C 10,A 二、填空题
3、C
4、A
5、B
6、D
7、C
8、A
9、B
9
学海无 涯
1、 ar cos 2 , arcsin 8
18
21
2、0.96,0.17365
3 、 л 4 、 0,+
x2
5、 y ce 2 , cx 1
1
y
三、计算题 1 、 -3 2 -8
解 : △= 2 -5 3 = (-3)× -5 3 -2× 2 3 +(-8)2 -5 =-138
1 7 -5
7 -5
1 -5
17 2 -8
△x= 3 -5 3 =17× -5 3 -2× 3 3 +(-8)× 3 -5 =-138
2 7 -5
7 -5
2 -5
27
同理:
-3 17 -8
△y= 2 3 3 =276 , △z= 414 1
2 -5
x
y
z
所以,方程组的解为 x 1, y 2, z 3
n0
5. y x3 .
三.计算题
1. 8i 3 j 2k .
2. z 3x 2 sin y cos ycos y sin y, z 2x3 sin y cos ysin y cos y x3 sin3 y cos3 y .

高等数学(下册)期末复习试题及答案

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)

欢迎阅读《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥b3. (A )6π4.A.=⋅b a 5.函数z A.2 6.设z =A.227. 级数(A 8.幂级数=1n nA.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x x x y -+-=⎰Ñ____________. 5. .级数n ∞三.1.设z =2.3.计算D⎰⎰4. .一.二.1.2-y x 2.(xy cos 3.62-y x 4. ()n n n n ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x x e e y 23-=. 四.应用题1.2.31x y =一.1.点(1M A.12 2.A.6π 3.点(-P A.3 4.A.1≤r 8.幂级数A.[]1,1- B.[)1,1- C.(]1,1- D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续(3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( ) (A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数(3)nn x ∞-∑的收敛区间为____________.2.函数z3.曲面z4.211x+三.1.设i a =2.设z =3.4. 设∑四.一.二.填空题1.211212+=-=-z y x . 2.()xdy ydx e xy +. 3.488=--z y x . 4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-. 2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂.4.332a 5.C y =四.1.316. 2. x =1A 、10 2、设A 、3、点P A 、2 4、函数z=xsiny 在点(1,4)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22-,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=0(n 9A 、一阶10A 、-2,1、直线 直线2、(0.9834512、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线及法平面方程. 3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n 收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分) 1、求表面积为a 2而体积最大的长方体体积。

大学高等数学下考试题库附答案

大学高等数学下考试题库附答案

高等数学?试卷1〔下〕一.选择题〔3分⨯10〕1M ()1,3,2到点()4,7,22M 的间隔 =21M M 〔 〕.j i b k j i a+=++-=2,2,那么有〔 〕.A.a ∥bB.a ⊥bC.3,π=b a D.4,π=b a1122222-++--=y x y x y 的定义域是〔 〕.A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y xa及b 垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a xy y x z 333-+=的微小值是〔 〕.A.2B.2-C.1D.1-y x z sin =,那么⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22 B.22-C.2 D.2-p 级数∑∞=11n pn收敛,那么〔 〕.A.p 1<B.1≤pC.1>pD.1≥p∑∞=1n n nx 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-nn x ∑∞=⎪⎭⎫ ⎝⎛02在收敛域内的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x-210ln =-'y y y x 的通解为〔 〕.A.x ce y =B.x e y =C.x cxe y =D.cx e y = 二.填空题〔4分⨯5〕()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,那么此平面方程为. ()xy z sin =的全微分是.13323+--=xy xy y x z ,那么=∂∂∂yx z 2.4.x+21的麦克劳林级数是. 044=+'+''y y y 的通解为.三.计算题〔5分⨯6〕v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ ()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积〔R 为半径〕.x e y y 23=-'在00==x y条件下的特解.四.应用题〔10分⨯2〕3m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能运用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .高数?试卷2〔下〕一.选择题〔3分⨯10〕()1,3,41M ,()2,1,72M 的间隔 =21M M 〔 〕.A.12B.13C.14D.150122=++-z y x 和05=++-y x ,那么两平面的夹角为〔 〕.A.6πB.4πC.3πD.2π()22arcsin y x z +=的定义域为〔 〕.A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x()1,2,1--P 到平面0522=--+z y x 的间隔 为〔 〕.22232y x xy z --=的极大值为〔 〕.A.0B.1C.1-D.21223y xy x z ++=,那么()=∂∂2,1xz 〔 〕.∑∞=0n nar 是收敛的,那么〔 〕.A.1≤rB. 1≥rC.1<rD.1≤r()nn x n ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-∑∞=14sin n n na是〔 〕.0ln =-'y y y x 的通解为〔 〕.A.cx e y =B.x ce y =C.x e y =D.x cxe y = 二.填空题〔4分⨯5〕l 过点()1,2,2-A 且及直线⎪⎩⎪⎨⎧-==+=t z ty tx 213平行,那么直线l 的方程为. xy e z =的全微分为.2242y x z -=在点()4,1,2处的切平面方程为.4.211x +的麦克劳林级数是.03=-ydx xdy 在11==x y 条件下的特解为.三.计算题〔5分⨯6〕k j b k j i a32,2+=-+=,求.b a ⨯22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂ ()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++及圆柱面ax y x 222=+〔0>a 〕所围的几何体的体积.023=+'+''y y y 的通解.四.应用题〔10分⨯2〕x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =〔提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=〕高等数学?试卷3〔下〕一、选择题〔此题共10小题,每题3分,共30分〕 1、二阶行列式 2 -3 的值为〔 〕4 5A 、10B 、20C 、24D 、222、设223k ,那么a 及b 的向量积为〔 〕 A 、2k B 、82k C 、832k D 、833、点P 〔-1、-2、1〕到平面225=0的间隔 为〔 〕 A 、2 B 、3 C 、4 D 、54、函数在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22 ,22 B 、,2222- C 、22-22-D 、22-,22 5、设x 222=2,那么yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、zy z R x ---, C 、z yz R x ,-- D 、zyz R x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为〔 〕〔面积2R π〕A 、R 2AB 、2R 2AC 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21 C 、1 D 、3 8、的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5`+2=0的阶数是〔 〕 A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+20的特征根为〔 〕 A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题〔此题共5小题,每题4分,共20分〕 1、直线L 1:及直线L 2:的夹角为z y x =-+=-1321。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)一、填空题(每题2分,共20分)1. 设函数f(x)在区间I上单调递增,若a < b,则必有__________。

【答案】f(a) < f(b)2. 函数y = e^x在区间(-∞,+∞)上的最小值为__________。

【答案】03. 设函数f(x) = x^3 - 6x + 9,则f'(x) =__________。

【答案】3x^2 - 64. 设矩阵A = [a_{ij}],则矩阵A的行列式det(A) = __________。

【答案】a_{11}a_{22}...a_{nn} -a_{11}a_{23}...a_{n2} + a_{12}a_{21}...a_{n3} - ... + (-1)^(n+1)a_{1n}a_{21}...a_{n1}5. 向量组α = (α1, α2, α3)和β = (β1, β2, β3)垂直的条件是__________。

【答案】α1β1 + α2β2 + α3β3 = 06. 设线性方程组Ax = b的解集为N,则N是__________。

【答案】向量空间7. 若函数f(x)在区间(a,b)上连续,且f(a) = f(b),则函数f(x)在区间(a,b)上必有零点,此结论称为__________。

【答案】零点定理8. 设函数f(x)在区间I上单调递减,若a < b,则必有__________。

【答案】f(a) > f(b)9. 设函数f(x) = ln(x),则f''(x) =__________。

【答案】1/x10. 设矩阵A = [a_{ij}],则矩阵A的逆矩阵A^-1 = __________。

【答案】(1/det(A))[c_{ij}],其中c_{ij} = (-1)^(i+j)det(A)/a_{ii}a_{jj}二、选择题(每题2分,共20分)1. 下列函数在区间(0,1)上单调递增的是__________。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

《高等数学》试卷6(下)一.选择题(3 分10)1.点M1 2,3,1 到点M 2 2, 7,4 的距离M1M 2 ().A.3B.4C.5D.62.向量a i 2 j k,b 2i j ,则有().A. a ∥bB. a ⊥bC. a,bD.3 a, b4x 1 y 5 z 83. 设有直线 1L : 和 2L1 2 1 :x y 62y z 3,则L 与L2 的夹角为()1(A);(B);(C);(D).6 4 3 24.两个向量 a 与b 垂直的充要条件是().A. a b 0B. a b 0C. a b 0D. a b 03 35.函数z x y 3xy的极小值是().A.2B. 2C.1D. 16.设z x s in y ,则zy 1,4=() .A.22B.22C. 2D. 27. 级数n( 1) (1 cos ) ( 0)n n1是()(A)发散;(B)条件收敛;(C)绝对收敛;(D)敛散性与有关.8.幂级数n 1nxn的收敛域为().A. 1,1 B 1,1 C. 1,1 D. 1,19.幂级数nx0 2n在收敛域内的和函数是().1 2 2 1A. B. C. D.1 x2 x 1 x 2 x 二.填空题(4 分5)10.一平面过点 A 0, 0,3 且垂直于直线AB ,其中点 B 2, 1,1 ,则此平面方程为______________________.11.函数z sin xy 的全微分是______________________________.3 y xy3 xy212.设z x 3 1,则2zx y_____________________________.13. 设L 为取正向的圆周: 2 2 1x y ,则曲线积分2? (2 xy 2 y)dx (x 4 x)dy ____________.L14. . 级数n 1n( x 2)n的收敛区间为____________.三.计算题(5 分6)z z1.设z e vu sin ,而u xy, v x y ,求, .x yz z2 y z x z2 22.已知隐函数z z x,y 由方程x 2 4 2 5 0确定,求, .x y2 23.计算sin x y d ,其中D2 42 2 2D : x y .4. .计算1y sin x dy dxyx.试卷6参考答案一.选择题CBCAD ACCBD二.填空题1. 2x y 2z 6 0.2.cos xy ydx xdy .3.6x 9 1 .2 y y 24.n 0n1n 12nx .5. y2 xC C x e1 .2三.计算题z xy z xy1. e y sin x y cos x y , e x sin x y cos x y .x y15.z x2 z x 1 ,z y2 z y 1. 16.2 02d sin d26.17.16 33 R .18.y 3xe 2x .e四.应用题 5.长、宽、高均为m3 2 时,用料最省 .126. yx . 3《高数》试卷 7(下)一.选择题( 3 分 10) 6.点 M 1 4, 3,1,M 2 7,1, 2 的距离 M 1M 2( ) .A.12B.13C.14 D.157.设两平面方程分别为 x 2y 2z 1 0和 x y 5 0 ,则两平面的夹角为().A.B.C.D.64 3 28.点 P 1, 2,1 到平面 x 2y 2z 5 0的距离为().A.3B.4C.5D.6 9.若几何级数nar 是收敛的,则().n 0A. r 1B. r 1C. r 1D. r 12.幂级数n n1x 的收敛域为().n 0A.1,1B.1,1C.1,1D.1,13.级数sinna4n n1是( ).A. 条件收敛B.绝对收敛C.发散D.不能确定19. .考虑二元函数 f (x, y) 的下列四条性质:(1) f (x, y) 在点(x , y ) 连续;(2)f x( x, y), f y (x, y) 在点(x0 ,y0 ) 连续0 0(3) f (x, y) 在点(x , y ) 可微分;(4)f x (x0, y0), f y (x0 , y0 ) 存在.0 0若用“P Q ”表示有性质P 推出性质Q,则有()(A)(2) (3) (1);(B)(3) (2) (1)(C)(3) (4) (1);(D)(3) (1) (4)二.填空题(4 分5)7. 级数n 1n(x 3)n的收敛区间为____________.8.函数xyz e 的全微分为___________________________.9.曲面 2 4 2z 2x y 在点2,1, 4处的切平面方程为_____________________________________.10. 1 12x的麦克劳林级数是______________________.三.计算题(5 分6)10.设a i 2j k,b 2j3k ,求a b.11.设z z 2z u ,而u x cos y,v x sin y ,求, .2v uvx yz z3 xyz12.已知隐函数z z x,y 由x 3 2确定,求, .x y13. 设是锥面 2 2 (0 1)z x y z 下侧,计算xdy d z 2 ydzdx 3(z 1)dxd y 四.应用题(10 分2)试用二重积分计算由y x,y 2 x 和x 4 所围图形的面积.试卷7参考答案一.选择题CBABA CCDBA.二.填空题20.x 2 y 2 z 1121. xy. 2.eydx xdy11.8x 8y z 4 .12.1n 0nx .2n13.3y x .三.计算题 14.8i3j 2k .z2z 3 3 3 315.3x sin ycos y cosy sin y , 2x sin ycos y sin y cos y x sin y cos y .xy16.z xxy yz 2 , zz y xy xz 2 z. 17.32 3 2 a.32318.2 xxC ey C e21.四.应用题4. 16 3.125.0 0xgt v t x .2《高等数学》试卷 3(下)一、选择题(本题共 10 小题,每题 3 分,共 30 分) 1、二阶行列式 2-3 的值为( )45 A 、10B 、20C 、24D 、222、设 a=i+2j-k,b=2j+3k ,则 a 与 b 的向量积为()A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P(-1、-2、1)到平面x+2y-2z-5=0 的距离为()A 、2 B、3 C、4 D、54、函数z=xsiny 在点(1,)处的两个偏导数分别为()42 A 、,222,2B、,222C、2222D、2222,5、设x2+y2+z2=2Rx,则2+y2+z2=2Rx,则zxz, 分别为()yA 、x Rzy x, B、zzR y, C、zx R y, D、z zxzR,yz6、设圆心在原点,半径为R,面密度为 2 y2x 的薄板的质量为()(面积A=2 R )1A 、R2A B、2R2A C、3R2A D、R A22nx n7、级数( 1)的收敛半径为()n n 1A 、2 B、12C、1D、38、cosx 的麦克劳林级数为()A 、( 1)n 0 n(2nx2n)!B、( 1)n 1n2nx(2n)!C、n 0( 1) n2nx(2n)!D、n 0( 1)n(2nx2n11)!9、微分方程(y``) 4+(y`) 5+y`+2=0 的阶数是()A 、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0 的特征根为()A 、-2,-1 B、2,1 C、-2,1 D、1,-2二、填空题(本题共 5 小题,每题 4 分,共20 分)x 1 y 31、直线L1:x=y=z 与直线L 2:z的夹角为2 1___________。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)一、选择题1. 设函数 f(x) 在区间 I 上连续,则下列命题正确的是()A. 函数 f(x) 在区间 I 上必定存在零点B. 函数 f(x) 在区间 I 上必定单调C. 函数 f(x) 在区间 I 上必定有界D. 若f(a)· f(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = 0答案:D2. 设函数 f(x) 在区间 I 上可导,则下列命题正确的是()A. 函数 f(x) 在区间 I 上必定连续B. 函数 f(x) 在区间 I 上必定单调C. 函数 f(x) 在区间 I 上必定有界D. 若f'(a)· f'(b) < 0,则函数 f(x) 在区间(a,b) 内至少存在一点 c,使得 f'(c) = 0答案:A3. 下列极限中,极限存在的是()A. lim(x→∞) (1 + 1/x)^xB. lim(x→0) sin x/xC. li m(x→1) (x - 1)/(x^2 - 1)D. lim(x→π) (π - x)/x答案:B4. 下列函数中,奇函数的是()A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = e^x答案:A5. 下列导数中,导数不存在的是()A. f(x) = x^2 的导数B. f(x) = sin x 的导数C. f(x) = ln x 的导数D. f(x) = |x| 的导数答案:D二、填空题1. 设函数 f(x) 在区间 I 上连续,若f(a)· f(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = ______.答案:02. 设函数 f(x) 在区间 I 上可导,若f'(a)· f'(b) < 0,则函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f'(c) = ______.答案:03. 极限lim(x→∞) (1 + 1/x)^x = ______.答案:e4. 极限lim(x→0) sin x/x = ______.答案:15. 函数 f(x) = |x| 的导数 f'(x) = ______.答案:x / |x|(x ≠ 0)三、解答题1. 求极限lim(x→0) (sin x - x)/x^2.答案:lim(x→0) (sin x - x)/x^2 = -1/22. 求函数 f(x) = x^3 的单调区间.答案:函数 f(x) = x^3 在 (-∞,+∞) 上单调递增.3. 求函数 f(x) = ln x 的定义域.答案:函数 f(x) = ln x 的定义域为 (0,+∞).4. 求极限lim(x→π) (π - x)/x.答案:lim(x→π) (π - x)/x = -15. 设函数 f(x) 在区间 I 上连续,且f(a)· f(b) < 0,证明函数 f(x) 在区间 (a,b) 内至少存在一点 c,使得 f(c) = 0.答案:根据零点存在性定理,函数 f(x) 在区间(a,b) 内至少存在一点 c,使得 f(c) = 0.四、应用题1. 一物体从静止开始沿着直线运动,其加速度a(t) = 4t(单位:m/s^2),求物体在时间 t 内的位移 s(t).答案:s(t) = 1/2 a(t) t^2 = 1/2 4t t^2 = 2t^3(单位:m)2. 一质点在平面直角坐标系中的运动方程为 x(t) = t^2 - 3t + 2,y(t) = t^3 - 2t^2 + t,求质点在时间 t 内的速度 v(t) 和加速度 a(t).答案:v(t) = x'(t) = 2t - 3,a(t) = v'(t) = 2(单位:m/s)3. 某企业生产一种产品,固定成本为 10000 元,每生产一件产品的成本为 50 元,设该企业的生产量为x(件),求该企业的利润函数 L(x).答案:L(x) = 销售收入 - 固定成本 - 变动成本= (50x) - 10000 - 50x = -10000(元)。

高等数学下册试题(题库)及参考答案

高等数学下册试题(题库)及参考答案

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9…解 AB ={1-1,2-0,1-2}={0,2,-1},|AB |=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .—4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4π C )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 【解 由于平面平行于z 轴,因此可设这平面的方程为0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)一、选择题(每题5分,共25分)1. 设函数f(x)在区间[a, b]上单调递增,且f(a) = 1,f(b) = 2,则下列不等式成立的是:A. f(x) ≥ 1,a ≤ x ≤ bB. f(x) ≤ 2,a ≤ x ≤ bC. f(x) ≥ f(a),a ≤ x ≤ bD. f(x) ≤ f(b),a ≤ x ≤ b答案:C2. 设函数f(x) = x^3 - 3x,其导函数f'(x) =3x^2 - 3,则f'(x)的符号变化点为:A. x = -1 和 x = 1B. x = 0 和 x = 2C. x = -1 和 x = 1D. x = 0 和 x = 1答案:A3. 下列关于极限的叙述正确的是:A. 当x → 0时,sinx → 0B. 当x → ∞时,e^x → ∞C. 当x → -∞时,|x| → ∞D. 当x → a时,x^2 → a^2答案:B4. 设函数f(x) = (x - 1)^2,则f(x)的极值点为:A. x = 1B. x = -1C. x = 0D. x = 2答案:A5. 下列关于积分计算的叙述正确的是:A. 定积分与不定积分具有相同的计算法则B. 定积分的计算结果为数值,不定积分的计算结果为函数C. 被积函数为偶函数时,定积分的计算结果为非负数D. 被积函数为奇函数时,定积分的计算结果为0答案:D二、填空题(每题5分,共25分)1. 设函数f(x) = x^3 - 3x,其导函数为f'(x) = ______。

答案:3x^2 - 32. 函数y = e^x的导数为y' = ______。

答案:e^x3. 定积分$$ ∫_{ a }^{ b }$$f(x)dx的定义为f(x)在[a, b]上的______。

答案:面积4. 设函数f(x) = x^2,则f(x)的极值点为______。

答案:x = 05. 设函数f(x) = sinx,则f(x)的周期为______。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

《高等数学》试卷1(下)一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC. a,bD.3 a,b43.函数122y2xy的定义域是().22xy12y2y22A.x,y1x2B.x,y1x22y2y22C.x,y1x2Dx,y1x24.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab0335.函数zxy3xy 的极小值是().A.2B.2C.1D.16.设zxsiny,则zy 1, 4=().A.22B.22C.2D.27.若p级数n1 1 pn收敛,则().A.p1B.p1C.p1D.p18.幂级数n1nxn的收敛域为().A.1,1B1,1C.1,1D.1,19.幂级数nx02n在收敛域内的和函数是().1221A.B.C.D.1x2x1x2x 10.微分方程xyylny0的通解为().A. xyceB.xyeC.xycxeD. ycxe二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zsinxy的全微分是______________________________.3yxyxy23 3.设zx31,则2zxy_____________________________.1的麦克劳林级数是___________________________.4.2x5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)zzu sin,而uxy,vxy,求,.1.设zevxyzz2yz2xz22.已知隐函数zzx,y由方程x24250确定,求,.xy22 3.计算sinxyd,其中D24222 D:xy.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).2x5.求微分方程y3y e在y x00条件下的特解.四.应用题(10分2)1.要用铁板做一个体积为2 3 m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yfx 上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点11,, 3求此曲线方程 .试卷1参考答案一.选择题CBCADACCBD 二.填空题 1.2xy2z 60. 2.cosxyydxxdy. 3.6x91.2yy 24.n0n 1 n12n x . 5. y2x CCxe 1.2三.计算题zxyzxy1.eysinxycosxy ,exsinxycosxy.xy 2. z x 2 z x 1 ,z y 2 z y 1. 3.2 0 2 dsind 2 6.4. 16 3 3 R.5. y 3. xe 2xe 四.应用题1.长、宽、高均为m32时,用料最省. 12 2.yx. 3《高数》试卷2(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为x2y2z10和xy50,则两平面的夹角为().A.B.C.D.64323.函数22zarcsinxy的定义域为().2y22y2A.x,y0x1B.x,y0x1C. 2y2x,y0xD.2 x, y 0 x 2y224.点P1,2,1到平面x2y2z50的距离为().A.3B.4C.5D.65.函数222z2xy3xy的极大值为().A.0B.1C.1D. 1 26.设z23xyy2zx,则1,2x().A.6B.7C.8D.97.若几何级数nar是收敛的,则(). n0A.r1B.r1C.r1D.r18.幂级数nn0n1x的收敛域为().A.1,1B.1,1C.1,1D.1,19.级数sinnn1n a4 是().A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程xyylny0的通解为().A. cxyeB.xyceC.xyeD. yxcxe二.填空题(4分5)x3t1.直线l过点A2,2,1且与直线yt 平行,则直线l的方程为__________________________.z12t2.函数xyze的全微分为___________________________.3.曲面242z2xy在点2,1,4处的切平面方程为_____________________________________.4.1 12x的麦克劳林级数是______________________.5.微分方程xdy3ydx0在y x11条件下的特解为______________________________.三.计算题(5分6)1.设ai2jk,b2j3k,求ab.2.设zz 2zu,而uxcosy,vxsiny,求,.2vuvxyzz3xyz3.已知隐函数zzx,y由x32确定,求,.xy4.如图,求球面2yz24a2222x与圆柱面xy2ax(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由yx,y2x和x4所围图形的面积.2.当t0dx2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律xxt.(提示:g2dt时,有dxx ,v 0x 0dt) 试卷2参考答案一.选择题CBABACCDBA. 二.填空题 1.x 2y2z112 1. xy 2.eydxxdy .3.8x8y z4.4.1 n 2n x.n05. 3 yx. 三.计算题 1.8i3j2k.z 2z 33332.3xsinycosycosysiny,2xsinycosysinycosyxsinycosy . xy3.z xxyy z z2,z yxyx z 2 z. 4. 3232 a.323 5.2xCe xyCe21.四.应用题 1.16 3.12xgtvtx.2.002《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式2-3的值为()45A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,)处的两个偏导数分别为() 42A 、,22 2,2 B 、, 22 2 C 、2 2 2 2 D 、 2 2 2 2, 5、设x 2+y 2+z 2=2Rx ,则2+y 2+z 2=2Rx ,则 z x z,分别为() y A 、x R zy x ,B 、 zzR yxRy ,, CD 、、 zzzx z R ,yz 6、设圆心在原点,半径为R ,面密度为2y 2 x 的薄板的质量为()(面积A=2 R ) 1A 、R2AB 、2R 2AC 、3R 2AD 、R 2A2n x n (1)7、级数的收敛半径为()nn1A、2B、12C、1D、38、cosx的麦克劳林级数为()A、(n0n1) (2nx2n)!B、(1)n1n2nx(2n)!C、n 0( 1)n2nx(2n)!D、n 0( 1)n(2nx2n11)!9、微分方程(y``) 4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)x1y31、直线L1:x=y=z与直线L2:z的夹角为21___________。

高数下册复习题及答案

高数下册复习题及答案

高数下册复习题及答案一、选择题1. 函数f(x)=\( e^x - 1 \)在x=0处的导数是:A. 0B. 1C. -1D. \( e \)2. 曲线y=\( x^2 \)在点(1,1)处的切线斜率是:A. 2B. 1C. -1D. 03. 函数f(x)=\( \sin x \)的二阶导数是:A. \( \cos x \)B. \( -\sin x \)C. \( -\cos x \)D. \( \sin x \)二、填空题1. 函数f(x)=\( x^3 - 2x^2 + 3x \)的一阶导数是_________。

2. 若f(x)=\( \ln x \),求f'(1)的值为_________。

3. 曲线y=\( x^3 \)在点(2,8)处的法向量是_________。

三、计算题1. 求函数f(x)=\( x^3 - 6x^2 + 11x - 6 \)的极值点。

2. 求曲线y=\( x^2 + 2x - 3 \)在x=1处的切线方程。

3. 证明函数f(x)=\( x^3 \)在R上是严格递增的。

四、解答题1. 已知函数f(x)=\( 3x^2 - 5x + 2 \),求其在区间[1,3]上的最大值和最小值。

2. 解微分方程:\( (x^2 + 1)y'' - 2xy' + 2y = 0 \)。

3. 讨论函数f(x)=\( \ln(1 + x) \)的连续性和可导性。

五、证明题1. 证明罗尔定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则至少存在一点c∈(a,b),使得f'(c)=0。

2. 证明拉格朗日中值定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则至少存在一点c∈(a,b),使得\( f'(c) =\frac{f(b) - f(a)}{b - a} \)。

六、应用题1. 某工厂生产一种产品,其成本函数为C(x)=\( 0.5x^2 - 100x + 500 \),求该工厂生产x件产品时的最低成本。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

大学高等数学下考试试题库(附答案)

大学高等数学下考试试题库(附答案)

大学高等数学下考试试题库(附答案)一.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ().A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y x B.(){}21,22<+<="" y="">C.(){}21,22≤+<="">y x D (){2<+≤y x y x4.两个向量a 与b垂直的充要条件是().A.0=?b aB.0 =?b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是(). A.2 B.2- C.1 D.1- 6.设y x z sin =,则4,1πyz =().A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n pn收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为().A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分?5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6)1.设v e z usin =,而y x v xy u +==,,求z x z 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xey y 23=-'在00==x y条件下的特解.四.应用题(10分?2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点??31,1,求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.?=?πππρρρ?202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为(). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为().A.(){}10,22≤+≤y x y x B.(){}10,22<+<="" p="" x="" y="">≤+≤20,22πy x y x D.()?<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为().A.3B.4C.5D.6 5.函数22232y x xy z --=的极大值为(). A.0 B.1 C.1- D.21 6.设223y xy x z ++=,则()=??2,1xz ().A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则().A.1≤rB. 1≥rC.1<r< p="">D.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分?2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? . 3.22,z xy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式 2 -3 的值为()4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为()A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为2 2y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是() A 、一阶 B 、二阶 C 、三阶 D 、四阶10、微分方程y``+3y`+2y=0的特征根为() A 、-2,-1 B 、2,1C 、-2,1D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1 321___________。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a +=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b a D.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为()(A )6π; (B )4π; (C )3π; (D )2π.4.两个向量a 与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ).A.2B.2-C.1D.1-6.设y x z sin =,则⎪⎭⎫⎝⎛∂∂4,1πy z=( ). A.22B.22- C.2 D.2-7. 级数1(1)(1cos ) (0)n n nαα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫ ⎝⎛02在收敛域内的和函数是( ). A.x -11B.x -22C.x -12D.x -21二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂y x z 2_____________________________. 4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d L xy y x x x y -+-=⎰____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________. 三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D ⎰⎰+22sin,其中22224:ππ≤+≤y x D .4..计算10d d y x y x x⎰. 试卷6参考答案一.选择题 CBCAD ACCBD二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x . 4. ()n n n n x ∑∞=+-0121. 5.()x ex C C y 221-+= .三.计算题1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y zxy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy zz x x z .3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R .5.x x e e y 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为(). A.6πB.4πC.3πD.2π3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ).A.3B.4C.5D.64.若几何级数∑∞=0n n ar 是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na 是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续(3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在.若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒(C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________. 2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,y z x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA.二.填空题 1.211212+=-=-z y x . 2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =.三.计算题1.k j i 238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( )A 、i-j+2kB 、8i-j+2kC 、8i-3j+2kD 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( )A 、2B 、3C 、4D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yz x z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zy z R x ,-- D 、z y z R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nn n x 的收敛半径为( ) A 、2 B 、21 C 、1 D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n )!12(12--n x n 9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶10、微分方程y``+3y`+2y=0的特征根为( )A 、-2,-1B 、2,1C 、-2,1D 、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2.则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =.则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n pn收敛.则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB .其中点()1,1,2-B .则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z .则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =.而y x v xy u +==,.求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定.求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin .其中22224:ππ≤+≤y x D . 4.如图.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xey y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱.问长、宽、高各取怎样的尺寸时.才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍.且曲线过点⎪⎭⎫ ⎝⎛31,1.求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin .()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时.用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M .()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x .则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=.则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的.则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行.则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=.求.b a ⨯2.设22uv v u z -=.而y x v y x u sin ,cos ==.求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定.求.,yz x z ∂∂∂∂ 4.如图.求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题.每题3分.共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k.则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1.4π)处的两个偏导数分别为( )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx.则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点.半径为R.面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2.-1 B 、2.1 C 、-2.1 D 、1.-2 二、填空题(本题共5小题.每题4分.共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学下考试题库及答案

高等数学下考试题库及答案

高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。

A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。

A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。

A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。

A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。

A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。

答案:1和37. 函数f(x)=e^x-x-1的零点是_________。

答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。

答案:19. 函数f(x)=x^2-4x+3的极大值是_________。

答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。

答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。

解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。

12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。

解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。

13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。

解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)

大学高等数学下考试习题库(附答案)《高等数学》试卷6(下)一.选择题(3分?10)1.点M1?2,3,1?到点M2?2,7,4?的距离M1M2?().A.3B.4C.5D.62.向量a??i?2?j?k?,b?2?i?j,则有().A.a?∥b?B.a?⊥b?C.a?,b??3D.a?,b??43.设有直线L:某?1y?5z?8?某?y?611?2?1和L2:?2y?z?3,则L1与L2的夹角为((A)6;(B)?4;(C)?3;(D)?2. 4.两个向量a?与b?垂直的充要条件是(). A.a?b?0 B.a?b??0 C.a?b??0 D.a?b??0 5.函数z?某3?y3?3某y的极小值是(). A.2 B.?2 C.1 D.?1 6.设z?某siny,则?z?y?=(). ??1,4?A.22 B.?22 C.2 D.?2 ?7. 级数?(?1)n(1?cos?) (?0)是(n?1n )(A)发散;(B)条件收敛;(C)绝对收敛;(D)敛散性与?有关. ?某n8.幂级数?的收敛域为(). n?1nA.?1,1? B?1,1? C.?1,1? D.?1,1?n9.幂级数?某?2?在收敛域内的和函数是().n?0A.11?某B.22?某C.211?某D.2?某二.填空题(4分?5)页脚内容1.一平面过点A?0,0,3?且垂直于直线AB,其中点B?2,?1,1?,则此平面方程为______________________.2.函数z?sin?某y?的全微分是______________________________.2z_____________________________.3.设z?某y?3某y?某y?1,则某?y32324. 设L为取正向的圆周:某2?y2?1,则曲线积分?(2某y?2y)d某?(某?4某)dy?____________. ?L(某?2)n5. .级数?的收敛区间为____________. nn?1?三.计算题(5分?6) 1.设z?eusinv,而u?某y,v?某?y,求?z?z,. ?某?y?z?z,. ?某?y2.已知隐函数z?z?某,y?由方程某2?2y2?z2?4某?2z?5?0确定,求3.计算?sin某2?y2d?,其中D:?2?某2?y2?4?2. D4. .计算.10dyyysin某d某某试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题 1.2某?y?2z?6?0. 2.cos?某y?yd某?某dy? . 3.6某2y?9y2?1 .4. ?n?0??1?n某n.2n?15.y?C1?C2某?e?2某.三.计算题1.zze某y?某sin?某?y?cos?某?y?. ?e某y?ysin?某?y?cos?某?y?,?y?某页脚内容z某?2?某z?1,?z?y?2yz?1. 3.?2?d?2?0sin??d??6?2?.4.163R3.5.y?e3某?e2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y?13某2.《高数》试卷7(下)一.选择题(3分?10)1.点M1?4,3,1?,M2?7,1,2?的距离M1M2?().A.12B.13C.14D.152.设两平面方程分别为某?2y?2z?1?0和?某?y?5?0,则两平面的夹角为(A.6 B.4 C.3 D.2 3.点P?1,?2,1?到平面某?2y?2z?5?0的距离为(). A.3 B.4 C.5 D.6 ?4.若几何级数?arn是收敛的,则().n?0A.r?1 B. r?1 C.r?1 D.r?1 ?8.幂级数?n?1?某n的收敛域为(). n?0A.?1,1? B.?1,1? C.?1,1? D. ?1,1? ?9.级数?sinna是()n?1n4. A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10. .考虑二元函数f(某,y)的下列四条性质:(1)f(某,y)在点(某0,y0)连续;(2)f某(某,y),fy(某,y)在点(某0,y0)连续页脚内容(3)f(某,y)在点(某0,y0)可微分;(4)f某(某0,y0),fy(某0,y0)存在. 若用“P?Q”表示有性质P推出性质Q,则有()(A)(2)?(3)?(1);(B)(3)?(2)?(1) (C)(3)?(4)?(1);(D)(3)?(1)?(4) 二.填空题(4分?5)(某?3)n1.级数?的收敛区间为____________.nn?1?2.函数z?e某y的全微分为___________________________. 3.曲面z?2某2?4y2在点?2,1,4?处的切平面方程为_____________________________________. 1的麦克劳林级数是______________________. 21?某三.计算题(5分?6)?1.设a?i?2j?k,b?2j?3k,求a?b. 4.2.设z?u2v?uv2,而u?某cosy,v?某siny,求?z?z,. ?某?y?z?z,. ?某?y3.已知隐函数z?z?某,y?由某3?3某yz?2确定,求4. 设?是锥面z?某2?y2 (0?z?1)下侧,计算?某dydz?2ydzd某?3(z?1)d某dy ?四.应用题(10分?2)试用二重积分计算由y?某,y?2某和某?4所围图形的面积. 试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题某?2y?2z?1?1.. 1122.e某y?yd某?某dy?. 3.8某?8y?z?4.4.??1?某2n.nn?0?页脚内容?1.8i?3j?2k.2.zz3某2sinycosy?cosy?siny?,?2某3sinycosy?siny?cosy?某3sin3y?cos3y . ?某?y?3.zyzz某z?,?. ?某某y?z2?y某y?z2323?2?a??. 3?23?4.5.y?C1e?2某?C2e?某. 四.应用题 161.. 312. 某?gt2?v0t?某0. 2《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为() 4 5 A、10 B、20 C、24 D、22 2、设a=i+2j-k,b=2j+3k,则a与b 的向量积为() A、i-j+2k B、8i-j+2k C、8i-3j+2k D、8i-3i+k 3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为() A、2 B、3 C、4 D、5 4、函数z=某siny在点(1,A)处的两个偏导数分别为()422222222,,B、,?,C、??D、?222222225、设某2+y2+z2=2R某,则Azz,分别为() ?某?y某?Ry某?Ry某?Ry,? B、?,? C、?,zzzzzz D某?Ry, zz页脚内容。

大学高等数学下考试题库 附答案

大学高等数学下考试题库 附答案

一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a ρρρρρϖϖ+=++-=2,2,则有( ).A.a ρ∥b ρB.a ρ⊥b ρC.3,π=b a ρρD.4,π=b a ρρ3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a ρ与b ρ垂直的充要条件是( ).A.0=⋅b a ρρB.0ρρρ=⨯b aC.0ρρρ=-b aD.0ρρρ=+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.x e y = C.x cxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.65.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a ρρρρρρρ32,2+=-+=,求.b a ρρ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积. 四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i ρρρ238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316. 《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( )A 、2B 、3C 、4D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22-,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x+的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 四.应用题 1.316.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22-,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________。

3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________。

4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________。

三、计算题(本题共6小题,每小题5分,共30分) 1、用行列式解方程组 -3x+2y-8z=172x-5y+3z=3 x+7y-5z=22、求曲线x=t,y=t 2,z=t 3在点(1,1,1)处的切线及法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n?,?n 收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e 3x 展成麦克劳林级数6、用特征根法求y``+3y`+2y=0的一般解四、应用题(本题共2小题,每题10分,共20分)1、求表面积为a2而体积最大的长方体体积。

2、放射性元素铀由于不断地有原子放射出微粒子而变成其它元素,铀的含量就不断减小,这种现象叫做衰变。

相关文档
最新文档