离散数学习题答案
离散数学课后练习题答案(第三版)_乔维声_汤维版
、命题逻辑1.用形式语言写出下列命题:(1)如果这个数是大于1 的整数,则它的大于1 最小因数一定是素数。
(2)如果王琳是学生党员又能严格要求自己,则她一定会得到大家的尊敬。
(3)小王不富有但很快乐。
(4)说逻辑学枯燥无味或毫无价值都是不对的。
(5)我现在乘公共汽车或者坐飞机。
(6)如果有雾,他就不能搭船而是乘车过江。
解:(1)设P:这个数是大于1 的整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P→Q。
或:设P1:这个数大于1。
P2:这个数是整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P1∧ P2→Q。
(2)设P:王琳是学生。
Q:王琳是党员。
R:王琳能严格要求自己。
S:王琳会得到大家的尊敬。
则原命题可表示为:P ∧Q∧R→ S。
(3)设P:小王富有。
Q:小王很快乐。
则原命题可表示为:⌝P ∧Q。
(4)设P:逻辑学枯燥无味。
Q:逻辑学毫无价值。
则原命题可表示为:⌝( P∨Q)。
(5)设P:我现在乘公共汽车。
Q:我现在坐飞机。
则原命题可表示为:P⎺∨Q。
(6)设P:天有雾。
Q:他搭船过江。
R:他乘车过江。
则原命题可表示为:P →⌝ Q∧R。
2.设P:天下雪。
Q:我将进城。
R:我有时间。
将下列命题形式化:(1)天不下雪,我也没有进城。
(2)如果我有时间,我将进城。
(3)如果天不下雪而我又有时间的话,我将进城。
解:原命题可分别表示为:(1)⌝P ∧⌝ Q。
(2)R→Q。
(3)⌝P ∧ R→Q。
3.将P、Q、R所表示的命题与上题相同,试把下列公式翻译成自然语言:(1)R∧Q(2)⌝(R∨Q)(3)Q↔(R∧⌝P)(4)(Q→R)∧(R→Q)解:(1)原公式可翻译为:我有时间而且我将进城。
(2)⌝(R∨Q) ⇔⌝R∧⌝Q。
原公式可翻译为:我没有时间也没有进城。
(3)我将进城当且仅当我有时间而且天不下雪。
(4)(Q→R)∧(R→Q) ) ⇔(Q∧R) ∨ (⌝Q ∧⌝ R) ⇔ Q↔R。
离散数学课后习题答案
1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
《离散数学》练习题和参考答案
《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学课后习题答案_屈婉玲(高等教育出版社)
第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p↔r)∧(﹁q∨s)⇔(0↔1)∧(1∨1)⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)⇔(1∧1∧1)↔(0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q)⇔(0∧1)→(1∧0)⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p:π是无理数1q:3是无理数0r:2是无理数1s:6能被2整除1t:6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q)→(⌝q→⌝p)(5)(p∧r)↔(⌝p∧⌝q)(6)((p→q)∧(q→r))→(p→r)答:(4)p q p→q⌝q⌝p⌝q→⌝p(p→q)→(⌝q→⌝p)0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r(p∨q)→(p∧r)000001001001010100011100100100101111110100111111所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q)∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔(⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q))∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p)∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q)⇔M 1⇔∏(1)(2)主合取范式为:⌝(p→q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r前提引入⑤⌝q③④拒取式⑥p→q前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r前提引入②t①化简律③q↔s前提引入④s↔t前提引入⑤q↔t③④等价三段论⑥(q→t)∧(t→q)⑤置换⑦(q→t)⑥化简⑧q②⑥假言推理⑨q→p前提引入⑩p⑧⑨假言推理(11)p∧q⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p结论的否定引入②p→﹁q前提引入③﹁q①②假言推理④¬r∨q前提引入⑤¬r④化简律⑥r∧¬s前提引入⑦r⑥化简律⑧r∧﹁r⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1)对于任意x,均有2=(x+)(x).(2)存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x):2=(x+)(x ).G(x):x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a)中为假命题,在(b)中为真命题。
《离散数学》复习题及答案
页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学练习题(含答案)
离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学答案(刘玉珍 编著)
习题1.11、(1)否(2)否(3)是,真值为0(4)否(5)是,真值为12、(1)P:天下雨 Q:我去教室┐P → Q(2)P:你去教室 Q:我去图书馆 P → Q(3)P,Q同(2) Q → P(4)P:2是质数 Q:2是偶数 P∧Q3、(1)0(2)0(3)14、(1)如果明天是晴天,那么我去教室或图书馆。
(2)如果我去教室,那么明天不是晴天,我也不去图书馆。
(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。
习题1.21、(1)是(2)是(3)否(4)是(5)是(6)否2、(1)(P → Q) →R,P → Q,R,P,Q(2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P(3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P → Q,(Q → P),P → Q,P,Q,Q,P,P,Q3、(1)((P → Q) → (Q → P)) → (P → Q)(2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R)) (3)(Q → P∧┐P) → (P∧┐P → Q)4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)习题1.31、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0(3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 = 1(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 13、(1)原式 <=> F→Q <=> T 原式为永真式(2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式(3)原式 <=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式(4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式(5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满足式(6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式(7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P<=> T∧┐P <=> ┐P 原式为可满足式(8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R)<=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R))<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式4、(1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右(2)左 <=> ┐(┐P∨Q) <=> 右(3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)<=> (P∨Q)∧┐(P∧Q) <=> 右∧(⌝R∨Q)⇔⌝(P∨Q)∨Q⇔右(5)左⇔(⌝P∨Q)5.(1)左⇒Q⇒⌝P∨Q⇒右(2)(P→(Q→R))→((P→Q)→(P→R))⇔⌝(⌝P∨⌝Q∨R)∨⌝(⌝P∨Q) ∨(⌝P∨R)⇔(P∧Q∧⌝R)∨(P∧⌝Q)∨⌝P∨R⇔(P∧Q∧⌝R)∨((P∨⌝P)∧(⌝Q∨⌝P))∨R⇔(P∧Q∧⌝R)∨(⌝Q∨⌝P∨R)⇔(P∧Q∧⌝R) ∨⌝(P∧Q∧⌝R)⇔T故P→(Q→R)⇒(P→Q)→(P→R)(3).(P→Q)→(P→P∧Q)⇔⌝(⌝P∨Q)∨⌝P∨(P∧Q)⇔⌝(⌝P∨Q)∨(⌝P∨P)∧(⌝P∨Q)⇔⌝(⌝P∨Q)∨(⌝P∨Q)⇔T故P→Q⇒P→P∧Q(4).((P→Q) →Q) →P∨Q⇔⌝(⌝(⌝P∨Q) ∨Q) ∨P∨Q⇔((⌝P∨Q)∧⌝Q)∨P∨Q⇔(⌝P∧⌝Q)∨(Q∧⌝Q) ∨P∨Q⇔⌝(P∨Q)∨(P∨Q)⇔T故(P→Q) →Q⇒P∨Q(5).((P∨⌝P)→Q)∧((P∨⌝P)→R)→(Q→R)⇔⌝((⌝T∨Q)∧(⌝T∨R)) ∨⌝Q∨R⇔⌝(Q∧R)∨⌝Q∨R⇔⌝Q∨⌝R∨⌝Q∨R⇔⌝Q∨T⇔T故((P∨⌝P) →Q)∧((P∨⌝P)→R)⇒Q→R(6)左⇔(Q→F)∧(R→F)⇔(⌝Q∨F)∧(⌝R∨F)⇔⌝Q∧⌝R⇒⌝R⇒⌝R∨Q⇔右6.(1)原式⇔(⌝P∧⌝Q∧R)(2)原式⇔⌝P∨⌝Q∨P⇔⌝(P∧Q∧⌝P)(3)原式⇔P∨(Q∨⌝R∨P)⇔P∨Q∨⌝R⇔⌝(⌝P∧⌝Q∧R)7.(1)原式⇔⌝(⌝P∨⌝Q∨P)(2)原式⇔(⌝P∨Q∨⌝R) ∧⌝P∧Q⇔⌝(⌝(⌝P∨Q∨⌝R)∨P∨⌝Q)(3)原式⇔⌝P∧⌝Q∧ (R∨P) ⇔⌝(P∨Q∨⌝(R∨P))8. (1) (P∨Q)∧((⌝P∧ (⌝P∧Q))∨R)∧⌝P(2)(P∨Q∨R)∧(⌝P∧R)(3)(P∨F)∧(Q∨T)习题1.41.(1)原式⇔⌝(⌝P∨⌝Q)∨((⌝P∨⌝Q)∧(Q∨P))⇔⌝(⌝P∨⌝Q)∨(Q∨P)⇔(P∧Q) ∨Q∨P⇔Q∨P,既是析取范式又是合取范式(2)原式⇔((⌝P∨Q)∨(⌝P∨⌝Q))∧(⌝(⌝P∨Q) ∨⌝(⌝P∨⌝Q)) ⇔(P∧Q)∨(P∧⌝Q) 析取范式⇔P∧(Q∨⌝Q)合取范式(3)原式⇔⌝P∨Q∨⌝S∨ (⌝P∧Q)析取范式⇔(⌝P∨(⌝P∧Q))∨Q∨⌝S⇔⌝P∨Q∨⌝S合取范式(4)原式⇔P∨P∨Q∨Q∨R既是析取范式又是合取范式2.(1)原式⇔P∨⌝Q∨R为真的解释是:000,001,011,100,101,110,111故原式的主析取范式为:(⌝P∧⌝Q∧⌝R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧⌝∧QR)∨(P∧Q∧⌝R)∨(P∧Q∧R)(2)原式⇔(P∧⌝Q) ∨R⇔(P∧⌝Q∧(R∨⌝R))∨((P∨⌝P)∧R)⇔(P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧Q)∨( ⌝P∧R)⇔(P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧(Q∨⌝Q)∧R)∨(⌝P∧(Q∨⌝Q)∧R) ⇔(P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧Q∧R)∨(P∧⌝Q∧R)∨(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)⇔(P∧⌝Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧Q∧R) ∨(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)为真的解释是101,100,111,011,001(3)原式⇔(⌝P∨(Q∧R))∧(P∨(⌝Q∧⌝R))⇔((⌝P∨ (Q∧R)) ∧P)∨(( ⌝P∨ (Q∧R))∧( ⌝Q∧⌝R))⇔(⌝P∧P)∨(Q∧P∧R)∨( ⌝P∧⌝Q∧⌝R)∨(Q∧R∧⌝Q∧⌝R)⇔(P∧Q∧R)∨(⌝P∧⌝Q∧⌝R)为真的解释是:000,111(4)原式⇔P∨P∨Q∨Q∨R⇔P∨Q∨R为真的解释是:001,010,011,100,101,110,111故原式的主析取范式为:(⌝P∧⌝Q∧R)∨(⌝P∧Q∧⌝R)∨(⌝P∧Q∧R)∨(P∧⌝Q∧⌝R)∨(P∧⌝Q∧R)∨(P∧Q∧⌝R)∨(P∧Q∧R)3.(1)原式⇔⌝P∨Q∨⌝P∨⌝Q⇔T主合取范式,无为假的解释。
离散数学习题集(十五套) - 答案
离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为。
6.设A={1,2,3,4},A 上关系图为则 R 2 = 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。
8.图的补图为 。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c dA BCa b cda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。
10.下图所示的偏序集中,是格的为。
二、选择20% (每小题2分)1、下列是真命题的有()A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有()个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的,则SR 是传递的。
5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下|}||(|)(,|,{tsApt st sR=∧∈><=则P(A)/ R=()A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为()A.f : I→E , f (x) = 2x ;B.f : N→N⨯N, f (n) = <n , n+1> ;C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。
离散数学练习题(含答案)
离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
离散数学练习题及答案
一、填空题1、集合的表示方法有两种: 法和 法。
请把“奇整数集合”表示出来{ }。
1、列举;描述;}12|{Z k k x x ∈+=,2、无向连通图G 含有欧拉回路的充分必要条件是不含有奇数度结点.2*、连通有向图D 含有欧拉回路的充分必要条件是D 中每个结点的入度=出度. 3、设R 是集合A 上的等价关系,则R 所具有的关系的三个特性是 、自反性、对称性、传递性.4、有限图G 是树的一个等价定义是:连通无回路(或任一等价定义).5、设N (x ):x 是自然数,Z (y );y 是整数,则命题“自然数都是整数,而有的整数不是自然数”符号化为∀x (N (x )→Z (x ))∧∃x (Z (x )∧⌝N (x ))6、在有向图的邻接矩阵中,第i 行元素之和,第j 列元素之和分别为 、结点v i 的出度和结点v j 的入度. 7、设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么命题B A ↔是重言式的真值是 1 .8、命题公式)(Q P →⌝的主析取范式为P ∧⌝Q .9、 设图G =<V ,E >和G '=<V ',E '>,若 ,则G '是G 的真子图,若V '=V ,E '⊆E ,则G '是G 的生成子图. E E V V E E V V ⊆'='⊂'⊂',;或 10、在平面图>=<E V G ,中,则∑=ri ir 1)deg(=2∣E ∣,其中r i(i =1,2,…,r )是G 的面.11、设}2,1{},,{==B b a A ,则从A 到B 的所有映射是11、σ1={(a ,1),(b ,1)};σ2={(a ,2),(b ,2)};σ3={(a ,1),(b ,2)};σ4={(a ,2),(b ,1)}12、表达式∀x ∃yL (x ,y )中谓词的定义域是{a ,b ,c },将其中的量词消除,写成与之等价的命题公式为 12、(L (a ,a )∨L (a ,b )∨L (a ,c ))∧(L (b ,a )∨L (b ,b )∨L (b ,c ))∧(L (c ,a )∨L (c ,b )∨L (c ,c )) 12*、设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为 (G (a )→(H (a ,a )∨H (a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))13、含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 14、设R ,S 都是集合A 上的等价关系,则对称闭包s (R ⋂S )= R ⋂S15、设G 是连通平面图,v ,e ,r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式是2=-+e r v16、设G 是n 个结点的简单图,若G 中每对结点的度数之和≥n ,则G 一定是哈密顿图. 17、一个有向树T 称为根树,若 ,其中 ,称为树根,称为树叶. 若有向图T 恰有一个结点的入度为0,其余结点入度为1;入度为0的结点;出度为0的结点.18、图的通路中边的数目称为 . 结点不重复的通路是 通路. 边不重复的通路是 通路. 通路长度;初级;简单. 19、设A 和B 为有限集,|A|=m ,|B|=n ,则有 个从A 到B 的关系,有 个从A 到B 的函数,其中当m ≤n 时有 个入射,当m=n 时,有 个双射。
离散数学习题+答案
1. (单选题) 一棵无向树的顶点数n与边数m关系是。
( B)(本题2.0分)A、n =mB、m=n-1C、n =m -1D、不能确定2. (单选题) 设G是有n个结点m条边的连通平面图,且有k个面,则k等于。
( A)(本题2.0分)A、m-n+2B、n-m-2C、n+m-2D、m+n+2。
3. (单选题) 有n个结点的树,其结点度数之和是(A )。
(本题2.0分)A、2n-2B、n-2C、n-1D、2n。
4. (单选题) A={a,b},B={c},则A B=(D )。
(本题2.0分)A、{a}B、{b}C、{a,c}D、{a,b,c}。
5. (单选题) 设A={a, b},则P (A)= (D )。
(本题2.0分)A、{a}B、{{a},{b}}C、{{a},{b},{a,b}}D、{,{a},{b},{a,b}6. (单选题) 公式yP(y)∧x(R(x)→Q(x))中,y约束出现了次(B )。
(本题2.0分)B、 1.0C、 2.0D、3。
7. (单选题) 设A={a},B={0,1},求A×B=(A )。
(本题2.0分)A、{<a,0 style="box-sizing: border-box;">,<a,1 style="box-sizing:border-box;">}B、{<a,0 style="box-sizing: border-box;">}C、{,<a,1 style="box-sizing: border-box;">}D、{<0,a >,<1,a >}8. (单选题) 下图中结点V3的出度是(B )。
(本题2.0分)B、 1.0C、 2.0D、 3.09. (单选题) 下面给出的集合中,哪一个不是前缀码( C)。
《离散数学》课后习题答案
1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学习题答案
离散数学习题答案离散数学习题答案习题⼀及答案:(P14-15) 14、将下列命题符号化:(5)⾟与末是兄弟解:设p :⾟与末是兄弟,则命题符号化的结果是p (6)王强与威都学过法语解:设p :王强学过法语;q :威学过法语;则命题符号化的结果是p q ∧(9)只有天下⼤⾬,他才乘班车上班解:设p :天下⼤⾬;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :⼤熊猫产在中国. r :太阳从西⽅升起. 求下列复合命题的真值:(4)()(())p q r p q r ∧∧∨?→解:p=1,q=1,r=0,()(110)1p q r ∧∧??∧∧??,(())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧∨?→19、⽤真值表判断下列公式的类型:(2)()p p q →?→?解:列出公式的真值表,如下所⽰:由真值表可以看出公式有3个成真赋值,故公式是⾮重⾔式的可满⾜式。
20、求下列公式的成真赋值:(4)()p q q ?∨→解:因为该公式是⼀个蕴含式,所以⾸先分析它的成假赋值,成假赋值的条件是:()10p q q ?∨p q 所以公式的成真赋值有:01,10,11。
习题⼆及答案:(P38)5、求下列公式的主析取式,并求成真赋值:(2)()()p q q r ?→∧∧解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取式,所以成真赋值为011,111。
6、求下列公式的主合取式,并求成假赋值:(2)()()p q p r ∧∨?∨解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取式,所以成假赋值为100。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学习题与解答
离散数学习题与解答第一章集合、关系与函数习题答案1、用列举法表示下列集合。
(1){x|x是小于20的正偶数}={2,4,6,8,10,12,14,16,18}2(2){x|x是整数,x<80}={0,±1,±2,±3,±4,±5,±6,±7,±8} (3){x|x=3k,k是小于10的素数}={6,9,15,21}(4){x|x是能整除30的正整数}={1,2,3,5,6,10,15,30}(5){x|x是小于30的素数}={2,3,5,7,11,13,17,19,23,29}2、用特征法表示下列集合。
(1){1,3,5,…,99}={x|x是正奇数,x≤99}2(2){1,4,9,16,25}={x|x=k,k是正整数,k≤5}(3){5,10,15,…,100}={x|x=5k,k是正整数,k≤20}?1(4){1,3,2,5,3,7,4}={x|x=k2,k是正整数,k≤7} 2223、设A,B,C是集合,确定下列命题是否正确,并说明理由。
(1)如果A∈B,B?C,则A?C。
? 。
解:不正确。
例如,A={a},B={{a},b},C={{a},b }。
易见A∈B,B?C但A C (2)如果A∈B,B?C,则A∈C。
解:正确。
因为B?C,所以B中元素都属于C,而A∈B,所以A∈C。
(3)如果A?B,B∈C,则A∈C。
解:不正确。
例如,A={a},B={a,b},C={{a,b}}。
易见A?B,B∈C但A?C。
(4)如果A?B,B∈C,则A?C。
? 。
解:不正确。
例如,A={a},B={a,b},C={{a,b}}。
易见A?B,B∈C但A C4、确定下列命题是否正确。
(1)??? 正确。
(2)?∈? 错误。
(3)??{?} 正确。
(4)?∈{?} 正确。
5、设A,B,C是集合。
(1)如果A?B,B?C,是否必有A?C?解:不一定。
(完整版)《离散数学》同步练习答案
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会。
则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。
(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
”可符号化为:⌝ p→⌝q 。
(6)设A , B 代表任意的命题公式,则德•摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。
(7)设,p:选小王当班长;q:选小李当班长。
则命题:“选小王或小李中的一人当班长。
”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。
(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:P∧Q 。
(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。
(10)设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:⌝ (P∧Q) 。
(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。
(12)设P:你努力。
Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:⌝P→Q。
(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军。
”可符号化为:p∨q。
(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。
(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。
(√)3.陈述句“x + y > 5”是命题。
离散数学课后习题答案
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧ 解:原式()p q q r⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。
6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧13567m m m m m ⇔∨∨∨∨,此即主析取范式。
主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ⇔∧∧。
9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。
前提:,,,p q q r r s p ⌝∨⌝∨→结论:s 证明:① p 前提引入 ② p q ⌝∨ 前提引入 ③ q ①②析取三段论 ④ q r ⌝∨ 前提引入 ⑤ r ③④析取三段论 ⑥ rs → 前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u →证明:用附加前提证明法。
① p 附加前提引入 ②p q ∨ ①附加③ ()()p q r s ∨→∧ 前提引入 ④ r s ∧ ②③假言推理 ⑤ s ④化简 ⑥ s t ∨ ⑤附加 ⑦ ()s t u ∨→ 前提引入 ⑧ u ⑥⑦假言推理 故推理正确。
16、在自然推理系统P 中用归谬法证明下面推理: (1)前提:p q →⌝,r q ⌝∨,r s ∧⌝结论:p ⌝ 证明:用归谬法① p 结论的否定引入 ②p q →⌝ 前提引入③ q ⌝ ①②假言推理 ④ r q ⌝∨ 前提引入 ⑤ r ⌝ ③④析取三段论 ⑥ r s ∧⌝ 前提引入 ⑦ r ⑥化简 ⑧r r ∧⌝ ⑤⑦合取由于0r r ∧⌝⇒,所以推理正确。
17、在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11点以前没离开,A 就是谋杀嫌犯。
A 曾到过受害者房间。
如果A 在11点以前离开,看门人会看见他。
看门人没有看见他。
所以,A 是谋杀嫌犯。
解:设p :A 到过受害者房间,q :A 在11点以前离开,r :A 是谋杀嫌犯,s :看门人看见过A 。
则前提:()p q r ∧⌝→,p ,q s →,s ⌝结论:r 证明:① q s → 前提引入 ② s ⌝ 前提引入 ③ q ⌝ ①②拒取式 ④ p 前提引入 ⑤p q ∧⌝ ③④合取引入⑥ ()p q r ∧⌝→ 前提引入 ⑦ r ⑤⑥假言推理习题五及答案:(P80-81)15、在自然推理系统N ξ中,构造下面推理的证明: (3)前提:(()())x F x G x ∀∨,()xG x ⌝∃ 结论:()xF x ∃ 证明:① ()xG x ⌝∃ 前提引入 ② ()x G x ∀⌝ ①置换 ③ ()G c ⌝ ②UI 规则 ④ (()())x F x G x ∀∨ 前提引入⑤ ()()F c G c ∨ ④UI 规则 ⑥ ()F c ③⑤析取三段论 ⑦ ()xF x ∃ ⑥EG 规则22、在自然推理系统N ξ中,构造下面推理的证明:(2)凡大学生都是勤奋的。
王晓山不勤奋。
所以王晓山不是大学生。
解:设F(x):x 为大学生,G(x):想是勤奋的,c :王晓山 则前提:(()())x F x G x ∀→,()G c ⌝ 结论:()F c ⌝ 证明:① (()())x F x G x ∀→ 前提引入 ② ()()F c G c → ①UI 规则 ③ ()G c ⌝ 前提引入 ④ ()F c ⌝ ②③拒取式25、在自然推理系统N ξ中,构造下面推理的证明:每个科学工作者都是刻苦钻研的,每个刻苦钻研而又聪明的人在他的事业中都将获得成功。
王大海是科学工作者,并且是聪明的。
所以,王大海在他的事业中将获得成功。
(个体域为人类集合)解:设F(x):x 是科学工作者,G(x):x 是刻苦钻研的,H(x):x 是聪明的,I(x):x 在他的事业中获得成功,c :王大海 则前提:(()())x F x G x ∀→,(()()())x G x H x I x ∀∧→,()()F c H c ∧ 结论:()I c 证明:① ()()F c H c ∧ 前提引入 ② ()F c ①化简 ③ ()H c ①化简④ (()())x F x G x ∀→ 前提引入 ⑤ ()()F c G c → ④UI 规则 ⑥ ()G c ②⑤假言推理 ⑦ ()()G c H c ∧ ③⑥合取引入 ⑧ (()()())x G x H x I x ∀∧→ 前提引入 ⑨ ()()()G c H c I c ∧→ ⑧UI 规则 ⑩ ()I c ⑦⑨假言推理习题七及答案:(P132-135) 22、给定{}1,2,3,4A =,A 上的关系{}1,3,1,4,2,3,2,4,3,4R =,试(1)画出R 的关系图; (2)说明R 的性质。
解:(1)● ●● ●(2)R 的关系图中每个顶点都没有自环,所以R 是反自反的,不是自反的;R 的关系图中任意两个顶点如果有边的都是单向边,故R 是反对称的,不是对称的;R 的关系图中没有发生顶点x 到顶点y 有边、顶点y 到顶点z 有边,但顶点x 到顶点z 没有边的情况,故R 是传递的。
26 设{}1,2,3,4,5,6A =,R 为A 上的关系,R 的关系图如图所示:(1)求23,RR 的集合表达式;(2)求r(R), s(R), t(R)的集合表达式。
解:(1)由R 的关系图可得{1,5,2,5,3,1,3,3,4,5R =所以{}23,1,3,3,R R R =︒=,{}323,1,3,3,3,5R R R =︒=, 可得{}3,1,3,3,3,5,n>=2nR=当;(2){Ar(R)=R I 1,5,2,5,3,1,3,3,4,5,1,1,2,2,4,4,5,5,6,6=U ,{1()R 1,5,5,1,2,5,5,2,3,1,1,3,,4,5,s R R -==U {}232()R R ...R 1,5,2,5,3,1,3,3,4,5,3,5t R R R ===U U U U46、分别画出下列各偏序集,A R ≤的哈斯图,并找出A 的极大元、极小元、最大元和最小元。
(1){}A ,,,,,,,,,,,,,I R a d a c a b a e b e c e d e ≤=U解:哈斯图如下:A 的极大元为e 、极小元为a ; A 的最大元为e 、最小元为a 。
48、设,B,S A R 和为偏序集,在集合A B ⨯上定义关系T 如下:112211221212,,,A B,,,a b a b a b T a b a Ra b Sb ∀∈⨯⇔∧证明T 为A B ⨯上的偏序关系。
证明:(1)自反性:1111111111112212121111,A B R R S b Sb R b Sb ,,,,T a b a a a a a b T a b a Ra b Sb a b T a b ∈⨯∴∴∴∧⇔∧∴Q Q 任取,则:为偏序关系,具有自反性,为偏序关系,具有自反性,又,,故满足自反性(2)反对称性:112211222211121221211221121221121122,,,A B ,,,,R S b b ,,T a b a b a b T a b a b T a b a Ra b Sb a Ra b Sb a Ra a Ra a a b Sb b Sb a b a b ∈⨯∧∧∴∧=∴∧=∴=任取,若且,则有:(1)(2),又为偏序关系,具有反对称性,所以,又为偏序关系,具有反对称性,所以,故满足反对称性(3)传递性:11223311222233112212122233232312231312231313131133,,,,A B ,,,,,,,,,R ,S b Sb b Sb ,,T a b a b a b a b T a b a b T a b a b T a b a Ra b Sb a b T a b a Ra b Sb a Ra a Ra a Ra b Sb b Sb a Ra a b T a b ∈⨯⇔∧⇔∧∴∧∴∧∴∧⇒任取,,若且,则有:又为偏序关系,具有传递性,所以又为偏序关系,具有传递性,所以,故满足传递性。
综合(1)(2)(3)知T 满足自反性、反对称性和传递性,故T 为A B ⨯上的偏序关系。
习题九及答案:(P179-180) 8、S=Q Q,Q S a,b ,x,y a,b x,y ax,ay+bS ⨯*∀∈*=为有理数集,为上的二元运算,有(1)S *运算在上是否可交换、可结合?是否为幂等的?(2)S *运算是否有单位元、零元?如果有,请指出,并求出中所有可逆元素的逆元。
解:(1),a,b xa,xb+y ax,bx+y a,b ,x y x y *==≠*∴*运算不具有交换律()()(),a,b c,dax,bx+y c,d acx,adx+bx+y ,a,b c,d ,*ac,ad+bxac,xad+xb+y acx,adx+bx+y ,a,b c,d x y x y x y x y **=*=**====**∴*而运算有结合律2a,b s a,b a,b a ,a,b ad b ∈*=+≠∴*任取,则有:运算无幂等律(2)()()a,b *,a,b a,b s ax,ay+b a,b a,b s ax a a x 10a,b ay b b ay 0x 10x 1y 0y 0101010x y =∀∈=∀∈⎧=⎧-=⎪∴⇒∀⎨⎨+==⎪⎩⎩-==⎧⎧∴⇒⎨⎨==⎩⎩∴**∴*令对均成立则有:对均成立对成立必定有运算的右单位元为,,可验证,也为运算的左单位元,运算的单位元为,()()()a,b *,,,a,b s a,b *,,ax,ay+b ,a 1x 0ax x a 1y+b 0ay b y a 1y+b 0a,b s a,b *,,a,b s x y x y x y x y x y x yx y x y =∀∈=⇒=⎧-=⎧=⎪⎪⇒⎨⎨-=+=⎪⎪⎩⎩-=∀∈=∀∈令,若存在使得对上述等式均成立,则存在零元,否则不存在零元。