导数与函数切线问题

合集下载

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题山东 黄丽生导数与曲线的切线有缘,因为()0/x f的几何意义是曲线y=f (x)在点(x 0 ,f (x 0))处的切线斜率,其物理意义通常指物体运动时的瞬时速度。

曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。

因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。

在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。

举例说明。

例1已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(1)设)(t g MN =,试求函数)(t g 的表达式;(2)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.分析:由题意点P 在曲线外,故求切线PM 、PN 的方程,须设出M 、N 两点的横坐标,目的是借助导数求直线的斜率;第二问属探索性问题,往往是先假设存在,看是否能求得符合条件的t 或导出矛盾。

解:(1)设M 、N 两点的横坐标分别为1x 、2x , 21)(x tx f -=', ∴切线PM 的方程为:))(1()(12111x x x tx t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , 同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ( * )22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-= ])1(1][4)[(22121221x x t x x x x -+-+=, 把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g .(2)当点M 、N 与A 共线时,NA MA k k =,∴01111--+x x t x =01222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. 把(*)式代入,解得21=t . ∴存在t ,使得点M 、N 与A 三点共线,且 21=t . 点评:本题以函数为载体,综合考查了函数与导数的有关问题。

导数的应用曲线的切线和法线问题

导数的应用曲线的切线和法线问题

导数的应用曲线的切线和法线问题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

除了用来求函数的极值和变化趋势外,导数还可以应用于曲线的切线和法线问题。

本文将探讨导数在曲线切线和法线问题上的应用。

一、曲线的切线问题对于给定的曲线,我们可以通过求取该曲线上某一点的导数来确定该点处的切线。

具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。

2. 求取该点的导数dy/dx。

3. 使用点斜式或一般式求取与该点所在切线平行的直线方程。

4. 得到切线的方程。

举例来说,如果我们有一个曲线的方程为y = 2x² + 3x - 4,那么可以依次进行如下步骤来求取曲线在某一点上的切线:1. 确定点P(x₀, y₀)的坐标,假设为P(2, 7)。

2. 求取该点的导数dy/dx,对于曲线y = 2x² + 3x - 4,求导得到dy/dx = 4x + 3。

3. 使用点斜式求取切线的方程,将点P的坐标和导数dy/dx的值代入点斜式方程y - y₀ = m(x - x₀),得到y - 7 = (4(2) + 3)(x - 2)。

4. 化简方程,得到切线的方程y = 8x - 9。

通过这个例子可以看出,求取曲线切线的关键是求取点的导数,然后利用切线方程将导数与点的坐标结合,得到切线的方程。

二、曲线的法线问题曲线的法线是与该曲线在某一点处相切,垂直于切线的直线。

求取曲线的法线同样可以通过求取该点的导数来完成。

具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。

2. 求取该点的导数dy/dx,并计算其倒数k。

3. 求取法线的斜率nk = -1/k。

4. 使用点斜式求取法线方程。

5. 得到法线的方程。

和曲线的切线问题类似,求取曲线的法线也需要先求取点的导数,然后计算导数的倒数作为法线的斜率。

三、综合案例考虑一个具体的综合案例,假设我们有一个函数f(x) = x³ + 2x²- 3x + 1,我们希望求取该函数在 x = 2 处的切线和法线。

导数的应用于曲线的切线与法线

导数的应用于曲线的切线与法线

导数的应用于曲线的切线与法线导数是微积分中的一个重要概念,它在曲线的切线与法线的问题中有着广泛的应用。

本文将介绍导数的概念,并以具体的例子来说明导数在曲线的切线与法线问题中的应用。

一、导数的概念导数是用来描述函数在某一点的变化率的数值。

对于函数f(x),在点x处的导数可以表示为f'(x),或者dy/dx。

导数表示了函数在该点的瞬时变化率,也就是函数曲线在该点的切线的斜率。

二、曲线的切线在曲线上任意一点,其切线的斜率等于该点处函数的导数。

通过求导数,我们可以得到曲线在任意一点的切线的斜率,从而确定切线的方程。

以函数f(x)为例,求导数f'(x),得到导函数,即切线的斜率。

例1:求解曲线y=x^2-3x+2在点(2, 1)处的切线方程。

解:首先求解函数的导数f'(x) = 2x - 3,然后代入点(2, 1),得到斜率m = f'(2) = 2*2 - 3 = 1。

代入切线点和斜率,可以得到切线方程为y - 1 = 1(x - 2),化简得到切线方程为y = x - 1。

三、曲线的法线在曲线上任意一点,其法线的斜率等于切线的负倒数。

通过求导数,我们可以得到曲线在任意一点的切线的斜率,从而确定法线的斜率。

注意,法线的斜率是切线斜率的负倒数。

例2:求解曲线y=x^2-3x+2在点(2, 1)处的法线方程。

解:首先求解函数的导数f'(x) = 2x - 3,然后代入点(2, 1)得到斜率m = f'(2) = 2*2 - 3 = 1。

法线的斜率为-1/1的倒数,即-1。

代入法线点和斜率,可以得到法线方程为y - 1 = -1(x - 2),化简得到法线方程为y = -x + 3。

综上所述,导数在曲线的切线与法线问题中起着重要作用。

通过求导数,我们可以确定曲线在任意一点的切线的斜率,从而得到切线方程;同时,由切线的斜率求得法线的斜率,进而得到法线方程。

利用导数求三角函数切线方程的三种问题类型

利用导数求三角函数切线方程的三种问题类型

利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。

在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。

问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。

解决这类问题的关键是求解该点处的导数。

对于三角函数而言,我们可以利用基本导数公式来求解。

例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。

一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。

其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。

问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。

解决这类问题的关键是找到切点的x坐标。

我们可以使用导数和斜率的关系来求解。

具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。

然后,通过求解方程,我们可以得到切点的x坐标。

一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。

问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。

解决这类问题的关键是求解切点的导数。

我们可以使用导数的定义来求解。

具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。

一旦我们求得了切点的导数,即可得到切线的斜率。

通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。

这有助于我们更好地理解三角函数的性质和导数的应用。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

【导数专题(二)】利用导数的几何意义研究函数的切线问题(有答案)

【导数专题(二)】利用导数的几何意义研究函数的切线问题(有答案)

利用导数的几何意义研究函数的切线问题一、亮点1.导数的几何意义作为高中数学的重点章节,经常出现的高考中,在考试中占据重要地位;2.函数切线以及与函数切线相关的问题,往往是考察的重点,也是学生的易错点;3.本篇导数几何意义问题涉及面广,知识点多,会覆盖到极值点、最值等知识点,故本篇适合章节复习、综合复习.二、教学目标1.掌握导数的几何意义这类问题的基本列式方法及其解题对应思路;2.熟练掌握已知切点P(x0,y0)时,切线的求法;3.熟练掌握未知切点时,先设切点P(x0,y0),再通过题目条件列方程组,解决问题的方法.三、考情总结导数的几何意义:函数y=f(x)在x0处的导数f′(x0)的几何意义为函数y=f(x)图像在点(x0,f(x0))处的切线斜率.用导数的几何意义研究曲线y=f(x)的切线方程的两种类型及方法:类型1:已知切点P(x0,y0)问题已知切点P(x0,y0),求y=f(x)过点P的切线方程,解题过程为:先求出切线的斜率k切,即=f′(x0) ,再通过题目已知条件(可用点斜式),写出方程.k切类型2:未知切点P(x0,y0)问题若未知切点P,解题过程为:先设切出点P(x0,y0),利用导数写出切线斜率k切=f′(x0)一个等量关系,再利用条件列出x0的另一个等量关系,求解方程(组)解得x0,求出斜率,再求出直线方程.1四、精品题单考点一:已知切点P(x0,y0)问题.学情分析:由于已知切点坐标,此类题目比较简单,直接求在切点处的导数,即为切线的斜率,带入点斜式就能解题.注意切点务必明确位置.这类题型的易错点有以下几个:(1)复杂函数求导易错,要注意方法和技巧,仔细求导;(2)明确切点位置易错,特别是一些相交问题中,必须要明确具体切点位置;(3)导数问题与其他问题结合易错,注意要用到数列、函数等其他知识综合解决.练1.(2019·南通模拟)已知x=1是函数f(x)=(x2+ax)e x的一个极值点,则曲线y=f(x)在点(0,f(0))处的切线斜率为__________.【推荐理由】易错题,经典题【思路点拨】注意求导方法,求导要仔细【答案】−32【解析】解:由题意,函数f(x)=(x2+ax)e x,则f′(x0)=(x2+ax+2x+a)e x又由x=1是函数f(x)=(x2+ax)e x的一个极值点,所以f′(1)=(3+2a)e=0,解得a=−32,即f′(x)=(x2+12x−32)e x所以f′(0)=−32所以函数f(x)在点(0,f(0))处切线的斜率为−32.故答案为−32.2练2:(2019·无锡校级月考)已知f(x)=lnx,g(x)=12x2+mx+72(m<0),直线l与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m的值为__________【推荐理由】易错题,考察思路【思路点拨】同时相切,导数相同,列方程组【答案】−2【解析】解:由题意得,f(x)=ln x的导数为f′(x)=1x ,g(x)=12x2+mx+72(m<0)的导数为g′(x)=x+m,∴与f(x)图象的切点为(1,f(1))的切线l的斜率k=f′(1)=1,且f(1)=ln1=0,所以切点为(1,0),∴直线l的方程为:y=x−1,∵直线l与g(x)的图象也相切,∴{y=x−1y=12x2+mx+72此方程组只有一解,即12x2+(m−1)x+92=0只有一解,∴Δ=(m−1)2−4×12×92=0,解得m=−2或m=4(舍去).故答案为−2.练3:(2019·南通模拟)设曲线y=x n+1(n∈N∗)在点(1,1)处的切线与x轴的交点的横坐标为x n,令a n=lgx n,则a1+a2+⋯+a99的值为______.【推荐理由】综合题,导数与数列结合3【思路点拨】注意求导后,形成的数列表达式的推导【答案】−2【解析】解:∵曲线y=x n+1(n∈N∗),∴y′=(n+1)x n,∴f′(1)=n+1,∴曲线y=x n+1(n∈N∗)在(1,1)处的切线方程为y−1=(n+1)(x−1),该切线与x轴的交点的横坐标为x n=nn+1,∵a n=lgx n,∴a n=lgn−lg(n+1),∴a1+a2+⋯+a99=(lg1−lg2)+(lg2−lg3)+(lg3−lg4)+(lg4−lg5)+(lg5−lg6)+⋯+(lg99−lg100)=lg1−lg100=−2故答案为−2.练4:(2019·泰州调研)己知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=1−2ln(−x)x则曲线y=f(x)在点(1,f(1))处的切线方程为__________.【推荐理由】导数与函数奇偶性结合问题,综合性问题【思路点拨】注意奇函数求另一半的基本技巧.【答案】3x+y−4=0【解析】解:设x>0,则−x<0,所以f(−x)=1−2lnx−x因为f(x)为奇函数,则f(−x)=−f(x),所以f(x)=1−2lnxx (x>0),则f′(x)=2lnx−3x2,所以切线的斜率为k=f′(1)=−3又f(1)=1,即切点坐标为(1,1),所以切线的方程为y−1=−3(x−1),即3x+y−4= 0.故答案为3x+y−4=0.45练5.(2019·苏州模拟)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______. 【推荐理由】已知切线斜率,求参数问题 【思路点拨】已知斜率,求导解方程 【答案】−3【解析】解:∵直线7x +2y +3=0的斜率k =−72,曲线y =ax 2+bx (a ,b 为常数)过点P(2,−5),且该曲线在点P 处的切线与直线7x +2y +3=0平行, ∴y ′=2ax −b x 2,∴{4a +b 2=−54a −b4=−72,解得:{a =−1b =−2,故a +b =−3. 故答案为−3.练6:(2019·南京模拟)设函数f(x)=x 2+c 与函数g(x)=ae x 的图象的一个公共点为P(2,t),且曲线y =f(x),y =g(x)在点P 处有相同的切线,若函数f(x)−g(x)的唯一零点在区间(k ,k +1)(k ∈Z)内,则k = 【推荐理由】易错题【思路点拨】相同切线问题,找方程组【答案】−1【解析】解:f′(x)=2x,g′(x)=ae x,∵曲线y=f(x),y=g(x)在P(2,t)点处有相同的切线,∴f′(2)=g′(2),即4=ae2,①又P为两曲线的公共点,∴f(2)=g(2),即4+c=ae2,②,由①②解得c=0,a=4e2⋅e x=x2−4e x−2,令ℎ(x)=f(x)−g(x)=x2−4e2则ℎ′(x)=2x−4e x−2,当x⩽0时,ℎ′(x)<0,∴ℎ(x)在(−∞,0)上递减,又ℎ(−1)=1−4e−3>0,ℎ(0)=−4e−2<0,∴ℎ(x)在(−1,0)内有唯一零点,由题意知(k,k+1)=(−1,0),∴k=−1.故答案为−1.考点二:未知切点P(x0,y0)问题学情分析:此类题型是切线问题中的难题,关键在于要主动设切点坐标,利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.这类题型的易错点有以下几个:(1)设切点后找方程组过程易错,需仔细审题后找到对应的方程组;(2)方程组解题易错,要注意解方程组技巧;(3)审题不仔细易错,此类题目条件比较复杂,必须仔细审题,找到切入点解题.练1:(2019·江苏卷)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(−e,−1)(e为自然对数的底数),则点A的坐标是______.6【推荐理由】高考题,典型题【思路点拨】设切点坐标【答案】(e,1)【解析】解:设A(x0,lnx0),由y=lnx,得y′=1x,∴y′|x=x0=1x 0,则该曲线在点A处的切线方程为y−lnx0=1x(x−x0),∵切线经过点(−e,−1),∴−1−lnx0=−ex0−1,即lnx0=e x,则x0=e.由右图可知e是唯一解∴A点坐标为(e,1).故答案为:(e,1).练2:(2019·苏北四市二模改编)过曲线y=x−1x(x>0)上一点P(x0,y0)处的切线分别与x轴,y轴交于点A、B,O是坐标原点,若ΔOAB的面积为13,则x0=_________【推荐理由】综合性强,易错题【思路点拨】注意方程组和面积的表达【答案】√5【解析】解:由题意可得y0=x0− 1x0,x0>0,,∴切线的斜率为1+1x02,则切线的方程为y−x0+1x0=(1+1x02)(x−x0),令x=0可得y=−2x0,令y=0可得x=2x01+x02,7∴ΔOAB的面积S=12·2x0·2x01+x02=13,解得x0=√5负的舍去).故答案为√5.练3:(2019·江苏卷改编)若曲线y=xlnx上点P处的切线平行于直线2x−y+1=0,则点P的坐标是______.【推荐理由】高考题改编【思路点拨】已知斜率,求导解方程【答案】(e,e)【解析】解:函数的定义域为(0,+∞),函数的导数为f′(x)=lnx+x⋅1x=1+lnx,直线2x−y+1=0的斜率k=2,∵曲线y=xlnx上点P处的切线平行于直线2x−y+1=0,∴f′(x)=1+lnx=2,即lnx=1,解得x=e,此时y=elne=e,故点P的坐标是(e,e),故答案为:(e,e).练4:(2019·连云港校级模拟)若曲线f(x)=ln x+12ax2−(a+2)x+1上存在某点处的切线斜率不大于−5,则正实数a的最小值为________.8【推荐理由】易错题【思路点拨】设点坐标求导,解不等式【答案】9【解析】解:因为f(x)=ln x+12ax2−(a+2)x+1,所以f′(x)=1x+ax−(a+2).因为f(x)上存在某点处的切线斜率不大于−5,设切点为(x,y) 所以存在x∈(0,+∞),1x+ ax−(a+2)≤−5,得到2√(1x )·ax−(a+2)≤−5,当且仅当1x=ax时取“=”,化简得a−2√a−3≥0,解得a≥9.则正实数a的最小值为9.故答案为9.练5:(2019·宿迁模拟)点P在曲线y=x3−x+23上移动,设在点P处的切线的倾斜角为为α,则α的取值范围是_____________【推荐理由】切线斜率是导数【思路点拨】求的是切线斜率范围,就是求所有导函数的值域【答案】[0,π2)∪[3π4,π)【解析】解:∵tanα=3x2−1,∴tanα∈[−1,+∞).当tanα∈[0,+∞)时,α∈[0,π2);当tanα∈[−1,0)时,α∈[3π4,π).∴α∈[0,π2)∪[3π4,π)故答案为[0,π2)∪[3π4,π).9练6:(2019·淮安模拟)若曲线y=x−lnx与曲线y=ax2+x在公共点处有相同的切线,则实数a=_________.【推荐理由】易错题【思路点拨】注意相同切线问题,斜率相同,列方程组【答案】−12e【解析】解:设曲线y=x−lnx与曲线y=ax2+x在它们的公共点P(s,t),,{1−1s=2as+1 (1)s−lns=as2+s (2)由(1)得a=12s2,代入(2)式,解得a=−12e,故答案为a=−12e.练7:(2019·盐城模拟)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,f(x1))处的切线与该曲线交于另一点Q(x2,f(x2)),记f′(x)为函数f(x)的导数,则f′(x1)f′(x2)的值为_______.【推荐理由】综合性强,易错题【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】14【解析】解:∵函数f(x)=x3,∴f′(x)=3x2,则曲线y=f(x)在点P(x1,f(x1))处的切线斜率为f′(x1)=3x12则曲线y=f(x)在点P(x1,f(x1))处的切线方程为y−x13=3x12(x−1011x 1),与y =x 3联立,得x 3−3xx 12+2x 13=(x −x 1)2(x +2x 1)=0,即x 2=−2x 1,,∴f ′(x 2)=3x 22=12x 12 , f ′(x 1)f ′(x 2)=14练8:(2019·徐州二模改编)已知点P 在曲线C :y =12x 2上,曲线C 在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线C 的另一交点为Q ,O 为坐标原点,若OP ⊥OQ ,则点P 的纵坐标为________.【推荐理由】易错题,关键题【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】1【解析】解:设P (t ,12t 2),因为y′=x ,所以切线l 的斜率k =t ,且t ≠0,则直线PQ :y −12t 2=−1t (x −t),即y =−1t x +12t 2+1,由{y =−1t x +12t 2+1,y =12x 2,消y 得:tx 2+2x −t 3−2t =0,设Q(x 1,y 1),则x 1+t =−2t ,即x 1=−t −2t ,又因为点Q 在曲线C 上,所以y 1=12x 12=12(−t −2t )2=12t 2+2+2t 2, 故Q (−t −2t ,12t 2+2+2t 2).因为OP ⊥OQ ,所以OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =0, 即t ⋅(−t −2t )+12t 2⋅(12t 2+2+2t 2)=0, 化简得t 4=4,则t 2=2,所以点P 的纵坐标为1.12练9:(2019·苏州校级模拟)设曲线y =(ax −1)e x 在点A(x 0,y 1)处的切线为l 1,曲线y =1−x e x 在点B(x 0,y 2)处的切线为l 2.若存在x 0∈[0,32],使得l 1⊥l 2,则实数a 的取值范围是________.【推荐理由】综合性强 【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】1≤a ≤32 【解析】解:函数y =(ax −1)e x 的导数为y′=(ax +a −1)e x ,∴l 1的斜率为k 1=(ax 0+a −1)e x 0,函数y =(1−x)e −x 的导数为y′=(x −2)e −x∴l 2的斜率为k 2=(x 0−2)e −x 0,由题设有k 1⋅k 2=−1从而有(ax 0+a −1)e x 0(x 0−2)e −x 0=−1∴a(x 02−x 0−2)=x 0−3,∵x 0∈[0,32]得到x 02−x 0−2≠0, 所以a =x 0−3x 02−x 0−2, 又a′=−(x 0−1)(x 0−5)(x 02−x 0−2)2,令导数大于0,解得1<x 0<5,故x 0−3x 02−x 0−2在(0,1)是减函数,在(1,32)上是增函数, x 0=0时取得最大值为32;x 0=1时取得最小值为1.∴1≤a ≤32故答案为1≤a ≤32.13练10:(2019·常州模拟)在平面直角坐标系xOy 中,已知点P 为函数y =2lnx 的图像与圆M :(x −3)2+y 2=r 2的公共点,且它们在点P 处有公切线,若二次函数y =f(x)的图像经过点O ,P ,M ,则y =f(x)的最大值为________.【推荐理由】综合性强【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】98【解析】解:设点P(x 0,2lnx 0),则因为y =2lnx ,所以,故函数y =2lnx .在点P 处的切线的斜率为k 1=2x 0, 又k PM =2ln x 0x 0−3,从而圆在点P 处的切线的斜率为k 2=−x 0−32ln x0, 从而k 1=k 2,即2x 0=−x 0−32ln x 0,故4ln x0x 02−3x 0=−1. 因为函数f(x)过点O(0,0),M(3,0),所以设f(x)=ax(x −3),又过点P ,所以2lnx 0=ax 0(x 0−3),解得a =2ln x 0x0(x 0−3)=−12, 从而得f(x)=−12x(x −3)=−12(x −32)2+98≤98,当x =32时,f(x)max =98.练11:(2019·镇江模拟)在平面直角坐标系xOy 中,点P 是第一象限内曲线y =−x 3+1上的一14个动点,点P 处的切线与两个坐标轴交于A ,B 两点,则△AOB 的面积的最小值为 .【推荐理由】综合性强 ,计算要求高【思路点拨】利用导数的几何意义、切点坐标、切线斜率之间的关系来构造方程组求解.【答案】3√234【解析】解:根据题意设P 的坐标为(t ,−t 3+1),且0<t <1,求导得:y′=−3x 2,故切线的斜率k =y′|x=t =−3t 2,所以切线方程为:y −(−t 3+1)=−3t 2(x −t),令x =0,解得:y =2t 3+1;令y =0,解得:x =2t 3+13t 2, 所以△AOB 的面积S =12(2t 3+1)·2t 3+13t 2=16(2t 2+1t )2,设f(t)=2t 2+1t ,则f ′(t )=4t −1t 2=4t 3−1t 2 令f ′(t )=0则t =√143, 当0<t <√143时, f ′(t )<0,f(t)单调递减, 当t >√143时, f ′(t )>0,f(t)单调递增,所以当t =√143时,f(t)取得最小值,此时S 也取最小值为3√234. 故答案为3√234.。

高中数学教案应用导数解决曲线的切线与法线问题

高中数学教案应用导数解决曲线的切线与法线问题

高中数学教案应用导数解决曲线的切线与法线问题高中数学教案:应用导数解决曲线的切线与法线问题尊敬的同学们,今天我们将探讨数学中的一个重要概念——导数,并学习如何应用导数来解决曲线的切线与法线问题。

这是一种在数学上非常有用的方法,它不仅能够帮助我们找到曲线上某一点的切线和法线,还能提供深入了解曲线变化的信息。

接下来,我们将逐步学习导数的概念、计算方法以及如何将其应用于具体问题中。

一、导数的概念和计算方法1. 导数的定义:导数描述了函数在某一点处的变化率。

对于函数f(x),其在点x=a处的导数表示为f'(a)或df(x)/dx|_(x=a)。

导数可以用数学式子表示为lim_(h→0)[f(a+h)-f(a)]/h。

2. 导数的计算方法:为了计算导数,我们可以采用以下几种方法:- 利用导数的定义进行计算:根据导数定义的极限表达式,我们可以直接计算导数。

- 使用基本导数公式:对于常见的基本函数,我们可以利用其导数公式来计算导数。

- 利用导数的性质:导数具有一系列的运算性质,如链式法则、乘积法则和商法则等,通过运用这些性质,我们可以简化导数的计算过程。

二、曲线的切线问题1. 切线的定义:切线是曲线在某一点处与曲线相切的直线,它与曲线有且只有一个公共点,并且在该点处具有与曲线相同的斜率。

2. 求解切线的步骤:- 确定曲线上某一点的坐标:假设我们需要求解曲线y=f(x)在点P(a, f(a))处的切线。

- 求解导数:计算函数f(x)在点x=a处的导数f'(a)。

- 构造切线方程:使用点斜式或一般式等方法,根据导数的定义和点P的坐标,构造出切线方程。

三、曲线的法线问题1. 法线的定义:与切线垂直且经过切点的直线称为曲线的法线。

切线和法线在切点处的交点即为切点的坐标。

2. 求解法线的步骤:- 确定曲线上某一点的坐标:与求解切线类似,我们需要确定曲线上某一点的坐标。

- 求解导数:计算函数f(x)在点x=a处的导数f'(a)。

导数与函数的切线及函数零点问题

导数与函数的切线及函数零点问题

广东实验学校2020届高三理科数学寒假作业----导数专题函数的切线及函数零点问题1.已知函数f (x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=12.①求方程f (x)=2的根;②若对任意x∈R,不等式f (2x)≥mf (x)-6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f (x)-2有且只有1个零点,求ab的值.考点整合1.求曲线y=f (x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率f ′(x0),由点斜式写出方程.(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k =f ′(x0)解得x0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.2.三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下:3.(1)研究函数零点问题或方程根问题的思路和方法研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图象,如单调性、值域、与x轴的交点等,其常用解法如下:①转化为形如f (x1)·f (x2)<0的不等式:若y=f (x)满足f (a)f (b)<0,则f (x)在(a,b)内至少有一个零点;②转化为求函数的值域:零点及两函数的交点问题即是方程g(x)=0有解问题,将方程分离参数后(a=f (x))转化为求y=f (x)的值域问题;③数形结合:将问题转化为y=f (x)与y=g(x)的交点问题,利用函数图象位置关系解决问题.(2)研究两条曲线的交点个数的基本方法①数形结合法,通过画出两个函数图象,研究图象交点个数得出答案.②函数与方程法,通过构造函数,研究函数零点的个数得出两曲线交点的个数.2.已知函数f (x)=2x3-3x.①求f (x)在区间[-2,1]上的最大值;②若过点P(1,t)存在3条直线与曲线y=f (x)相切,求t的取值范围.探究提高解决曲线的切线问题的关键是求切点的横坐标,解题时先不要管其他条件,先使用曲线上点的横坐标表达切线方程,再考虑该切线与其他条件的关系,如本题第(2)问中的切线过点(1,t).3. 已知函数f (x)=x3-x.(1)设M(λ0,f (λ0))是函数f (x)图象上的一点,求图象在点M处的切线方程;(2)证明:过点N(2,1)可以作曲线f (x)=x3-x的三条切线.热点二利用导数解决与函数零点(或方程的根)有关的问题[命题角度1]讨论函数零点的个数4.(2015·全国Ⅰ卷)已知函数f (x)=x3+ax+14,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f (x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f (x),g(x)}(x>0),讨论h(x)零点的个数.探究提高对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.[命题角度2]根据函数零点求参数范围5.(2017·徐州考前信息卷)已知函数f (x)=x ln x,g(x)=-x2+ax-2(e为自然对数的底数,a∈R).(1)判断曲线y=f (x)在点(1,f (1))处的切线与曲线y=g(x)的公共点个数;(2)当x∈\f(1e),e)时,若函数y=f (x)-g(x)有两个零点,求a的取值范围.探究提高研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.6. (2017·南通调研节选)已知函数f (x)=ax2-x-ln x,a∈R.(1)当a=38时,求函数f (x)的最小值;(2)若-1≤a≤0,证明:函数f (x)有且只有一个零点..1.求曲线的切线方程的方法是利用切线方程的公式y-y0=f ′(x0)(x-x0),它的难点在于分清“过点P的切线”与“在点P处的切线”的差异.突破这个难点的关键是理解这两种切线的不同之处在哪里,在过点P(x0,y0)的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P(x0,y0)处的切线,必以点P为切点,则此时切线的方程是y-y0=f′(x0)(x-x0).2.我们借助于导数探究函数的零点,不同的问题,比如方程的解、直线与函数图象的交点、两函数图象交点问题都可以转化为函数零点问题.3.对于存在一个极大值和一个极小值的函数,其图象与x轴交点的个数,除了受两个极值大小的制约外,还受函数在两个极值点外部函数值的变化的制约,在解题时要注意通过数形结合找到正确的条件.4.求函数零点或两函数的交点问题,综合了函数、方程、不等式等多方面知识,可以全面地考察学生对函数性质、函数图象等知识的综合应用能力,同时考察学生的变形、转化能力.因此在高考压轴题中占有比较重要的地位.7..(2017·泰州质检)已知函数f (x)=2ln x-x2+ax(a∈R).(1)当a=2时,求f (x)的图象在x=1处的切线方程;(2)若函数g(x)=f (x)-ax+m在\f(1e),e)上有两个零点,求实数m的取值范围.8.已知函数f (x)=x2-a ln x-1,函数F(x)=x)-1\r(x)+1.(1)如果函数f (x)的图象上的每一点处的切线斜率都是正数,求实数a的取值范围;(2)当a=2时,你认为函数y=f(x)x-1的图象与y=F(x)的图象有多少个公共点?请证明你的结论.9..(2017·山东卷)已知函数f (x)=13x3-12ax2,a∈R.(1)当a=2时,求曲线y=f (x)在点(3,f (3))处的切线方程;(2)设函数g(x)=f (x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.导数专题答案1.解(1)①由已知可得2x+\a\vs4\al\co1(\f(12))x=2,即2x+12x=2.∴(2x)2-2·2x+1=0,解得2x=1,∴x=0.②f (x)=2x+\a\vs4\al\co1(\f(12))x=2x+2-x,令t=2x+2-x,则t≥2.又f (2x)=22x+2-2x=t2-2,故f (2x)≥mf (x)-6可化为t2-2≥mt-6,即m≤t+4t,又t≥2,t+4t≥24t)=4(当且仅当t=2时等号成立),∴m≤\a\vs4\al\co1(t+\f(4t))min=4,即m的最大值为4.(2)∵0<a<1,b>1,∴ln a<0,ln b>0.g(x)=f (x)-2=a x+b x-2,g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点,∴g(x)为先减后增且有唯一极值点.由题意g(x)有且仅有一个零点,则g(x)的极值一定为0,而g(0)=a0+b0-2=0,故极值点为0.∴g′(0)=0,即ln a+ln b=0,∴ab=1.2.解①由f (x)=2x3-3x得f ′(x)=6x2-3.令f ′(x)=0,得x=-2)2或x=2)2.因为f (-2)=-10,f \a\vs4\al\co1(-\f(\r(2)2))=2,f \a\vs4\al\co1(\f(\r(2)2))=-2,f (1)=-1,所以f (x)在区间[-2,1]上的最大值为f \a\vs4\al\co1(-\f(\r(2)2))=2.②设过点P(1,t)的直线与曲线y=f (x)相切于点(x0,y0),则y0=2x30-3x0,且切线斜率为k=6x20-3,所以切线方程为y-y0=(6x20-3)(x-x0),因为t-y0=(6x20-3)(1-x0).整理得4x30-6x20+t+3=0,设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f (x)相切”等价于“g(x)有3个不同零点”. g′(x)=12x2-12x=12x(x-1),当x变化时,g(x)与g′(x)的变化情况如下:所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1)和[1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,-1).3.解因为f ′(x)=3x2-1.所以曲线f (x)=x3-x在点M(λ0,f (λ0))处的切线的斜率为k=f ′(λ0)=3λ20-1. 所以切线方程为y-(λ30-λ0)=(3λ20-1)(x-λ0),即y=(3λ20-1)x-2λ30.(2)证明由(1)知曲线f (x)=x3-x在点(λ,f (λ))处的切线的方程为y=(3λ2-1)x -2λ3.若切线过点N(2,1),则1=2(3λ2-1)-2λ3,即2λ3-6λ2+3=0.过点N可作曲线f (x)的三条切线等价于方程2λ3-6λ2+3=0有三个不同的解. 设g(λ)=2λ3-6λ2+3,则g′(λ)=6λ2-12λ=6λ(λ-2).当λ变化时,g′(λ),g(λ)的变化情况如下表:因为g(λ)在R上只有一个极大值3和一个极小值-5,所以过点N可以作曲线f (x)=x3-x的三条切线.4.解(1)设曲线y=f (x)与x轴相切于点(x0,0),则f (x0)=0,f ′(x0)=0.即3020x+ax0+\f(143x+a=0,解得x0=12,a=-34.因此,当a=-34时,x轴为曲线y=f (x)的切线.(2)当x∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f (x),g(x)}≤g(x)<0,故h(x)在(1,+∞)上无零点.当x=1时,若a≥-54,则f (1)=a+54≥0,h(1)=min{f (1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-54,则f (1)<0,h(1)=min{f (1),g(1)}=f (1)<0,故x=1不是h(x)的零点. 当x∈(0,1)时,g(x)=-ln x>0.所以只需考虑f (x)在(0,1)的零点个数.(ⅰ)若a≤-3或a≥0,则f ′(x)=3x2+a在(0,1)上无零点,故f (x)在(0,1)上单调.而f (0)=14,f (1)=a+54,所以当a≤-3时,f (x)在(0,1)内有一个零点;当a≥0时,f (x)在(0,1)上没有零点.(ⅱ)若-3<a<0,则f (x)在\a\vs4\al\co1(0,\r(-\f(a3)))上单调递减,在\a\vs4\al\co1(\r(-\f(a3)),1)上单调递增,故在(0,1)中,当x=a3)时,f (x)取得最小值,最小值为f \a\vs4\al\co1(\r(-\f(a3)))=2a3a3)+14.①若f \a\vs4\al\co1(\r(-\f(a3)))>0,即-34<a<0,f (x)在(0,1)无零点;②若f \a\vs4\al\co1(\r(-\f(a3)))=0,即a=-34,则f (x)在(0,1)有唯一零点;③若f \a\vs4\al\co1(\r(-\f(a3)))<0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x)在(0,1)有两个零点;当-3<a≤-54时,f (x)在(0,1)有一个零点.综上,当a>-34或a<-54时,h(x)有一个零点;当a=-34或a=-54时,h(x)有两个零点;当-54<a<-34时,h(x)有三个零点.5.解(1)f ′(x)=ln x+1,所以切线斜率k=f ′(1)=1.又f (1)=0,∴曲线在点(1,0)处的切线方程为y=x-1.由y=-x2+ax-2,y=x-1)⇒x2+(1-a)x+1=0.由Δ=(1-a)2-4=a2-2a-3=(a+1)(a-3)可知:当Δ>0时,即a<-1或a>3时,有两个公共点;当Δ=0时,即a=-1或a=3时,有一个公共点;当Δ<0时,即-1<a<3时,没有公共点.(2)y=f (x)-g(x)=x2-ax+2+x ln x,由y=0,得a=x+2x+ln x.令h(x)=x+2x+ln x,则h′(x)=(x-1)(x+2)x2.当x∈\f(1e),e)时,由h′(x)=0,得x=1.所以h(x)在\f(1e),1)上单调递减,在[1,e]上单调递增,因此h(x)min=h(1)=3.由h\a\vs4\al\co1(\f(1e))=1e+2e-1,h(e)=e+2e+1,比较可知h\a\vs4\al\co1(\f(1e))>h(e),所以,结合函数图象可得,当3<a≤e+2e+1时,函数y=f (x)-g(x)有两个零点.6.(1)解当a=38时,f (x)=38x2-x-ln x.所以f ′(x)=34x-1-1x=(3x+2)(x-2)4x(x>0).令f ′(x)=0,得x=2,当x∈(0,2)时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0,所以函数f (x)在(0,2)上单调递减,在(2,+∞)上单调递增.所以当x=2时,f (x)有最小值f (2)=-12-ln 2.(2)证明由f (x)=ax2-x-ln x得f′(x)=2ax-1-1x=2ax2-x-1x,x>0.所以当a≤0时,f′(x)=2ax2-x-1x<0,函数f (x)在(0,+∞)上单调递减,所以当a≤0时,函数f (x)在(0,+∞)上最多有一个零点.因为当-1≤a≤0时,f (1)=a-1<0,f \a\vs4\al\co1(\f(1e))=e2-e+ae2>0,所以当-1≤a≤0时,函数f (x)在(0,+∞)上有零点.综上,当-1≤a≤0时,函数f (x)有且只有一个零点7.解(1)当a=2时,f (x)=2ln x-x2+2x,f′(x)=2x-2x+2,切点坐标为(1,1),切线的斜率k=f ′(1)=2,则切线方程为y-1=2(x-1),即y=2x-1.(2)g(x)=2ln x-x2+m,则g′(x)=2x-2x=-2(x+1)(x-1)x.因为x∈\f(1e),e),所以当g′(x)=0时,x=1.当1e<x<1时,g′(x)>0,此时函数单调递增;当1<x<e时,g′(x)<0,此时函数单调递减.故g(x)在x=1处取得极大值g(1)=m-1.又g\a\vs4\al\co1(\f(1e))=m-2-1e2,g(e)=m+2-e2,g(e)-g\a\vs4\al\co1(\f(1e))=4-e2+1e2<0,则g(e)<g\a\vs4\al\co1(\f(1e)),所以g(x)在\f(1e),e)上的最小值是g(e).g(x)在\f(1e),e)上有两个零点的条件是g(1)=m-1>0,\rc\1e2)≤0,解得1<m≤2+1e2,所以实数m的取值范围是\a\vs4\al\co1(1,2+\f(1e2)).8.解(1)∵f (x)=x2-a ln x-1的定义域为(0,+∞),函数f (x)的图象上的每一点处的切线斜率都是正数,∴f ′(x)=2x-ax>0在(0,+∞)上恒成立.∴a<2x2在(0,+∞)上恒成立,∵y=2x2>0在(0,+∞)上恒成立,∴a≤0.∴所求的a的取值范围为(-∞,0].(2)当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.证明如下:当a=2时,y=f(x)x-1=x2-2ln x-1x-1,它的定义域为{x|x>0且x≠1},F(x)的定义域为[0,+∞).当x>0且x≠1时,由f(x)x-1=F(x)得x2-2ln x-x+2x-2=0.设h(x)=x2-2ln x-x+2x-2,则h′(x)=2x-2x-1+1\r(x)=x)-1)(2x\r(x)+2x+\r(x)+2)x.∴当0<x<1时,h′(x)<0,此时,h(x)单调递减;当x>1时,h′(x)>0,此时,h(x)单调递增.∴当x>0且x≠1时,h(x)>h(1)=0,即h(x)=0无实数根.∴当a=2,x>0且x≠1时,f(x)x-1=F(x)无实数根.∴当a=2时,函数y=f(x)x-1的图象与y=F(x)的图象没有公共点.9.解(1)由题意f ′(x)=x2-ax,所以当a=2时,f (3)=0,f ′(x)=x2-2x,所以f ′(3)=3,因此曲线y=f (x)在点(3,f (3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f (x)+(x-a)cos x-sin x,所以g′(x)=f ′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以,当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以,当x=a时,g(x)取到极大值,极大值是g(a)=-16a3-sin a,当x=0时,g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以,当x=0时,g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-16a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-16a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-16a3-sin a.。

切线和导数的关系

切线和导数的关系

切线和导数的关系
切线和导数的关系是微积分中一个重要的概念。

切线是曲线上某一点处与曲线切于一点的直线,而导数则是描述曲线在某一点的变化率。

在数学中,如果曲线在某一点的导数存在,那么这条曲线在该点处必然存在切线。

具体地说,如果函数f(x)在点x=a处可导,那么
曲线y=f(x)在点(x=a, y=f(a))处必然存在切线。

切线的斜率等于函数在该点的导数值。

也就是说,如果函数f(x)在点x=a处可导,那么切线的斜率就等于f'(a)。

利用这个关系,我们可以求得曲线在任意一点的切线斜率,并进一步得到这条切线的方程。

切线和导数的关系可以帮助我们更好地理解曲线在某一点的性质。

通过研究导数的正负和零点,我们可以确定曲线在某一点的上升或下降趋势,以及曲线是否有极大值或极小值。

通过深入研究导数的性质,我们还可以了解曲线的凹凸性、拐点等更加详细的信息。

另外,通过切线和导数的关系,我们还可以解决一些实际问题。

例如,当我们需要求解曲线上某一点的切线方程时,我们可以利用导数来求得切线的斜率,并通过该点的坐标和斜率来确定切线的方程。

这在物理学、工程学等应用中非常常见。

总之,切线和导数的关系是微积分中一个非常重要的概念。

它不仅可以帮助我们更好地理解曲线的性质,还可以应用于解决实际问题。

对于学习微积分的人来说,掌握切线和导数的关系是非常必要的。

导数与函数的切线法

导数与函数的切线法

导数与函数的切线法在微积分中,导数是一个重要的概念,它研究了函数在某一点的瞬时变化率。

导数的应用非常广泛,其中之一就是函数的切线法。

一、导数的定义导数是函数的一种基本性质,表示函数在某一点上的变化率。

对于函数f(x),在点x处的导数表示为f'(x),或者写作dy/dx。

导数的定义如下:对于函数f(x),如果极限f'(x) = lim(delta x->0) (f(x+delta x) - f(x))/(delta x)存在,那么f(x)在点x处可导,且导数为f'(x)。

二、导数的意义导数可以被理解为函数f(x)在某一点x处的瞬时斜率。

换句话说,导数表示了函数在该点附近的变化趋势。

比如,当导数为正时,表示函数在该点上升;当导数为负时,表示函数在该点下降;当导数为零时,表示函数在该点取得极值。

三、切线法的概念切线法是一种利用导数的概念来研究函数性质的方法之一。

切线是曲线在某一点处与曲线相切的直线。

通过求解导数来获得函数曲线上某一点的切线斜率,从而进一步研究曲线的性质。

四、函数的切线方程已知函数f(x)在点x=a处可导,那么在该点处的切线方程可以通过以下步骤求解:1. 求解导数f'(a);2. 根据导数获得点(x-a, f'(a));3. 利用点斜式公式y-y1=f'(a)(x-x1),其中(x1, y1)为切点坐标,得到切线方程。

五、示例考虑函数f(x)=x^2,我们来求解在点x=2处的切线方程。

1. 求解导数f'(x):f'(x) = d/dx (x^2) = 2x2. 求解导数f'(2):f'(2) = 2*2 = 43. 获得切点坐标(x1, y1):x1 = 2y1 = f(2) = 2^2 = 44. 利用点斜式公式求解切线方程:y-4 = 4(x-2)化简后可得:y = 4x-4六、结论通过导数与函数的切线法,我们可以求解函数在特定点处的切线方程。

导数专题:导数与曲线切线问题(6大题型)(解析版)

导数专题:导数与曲线切线问题(6大题型)(解析版)

第1页共14页
导数与曲线切线问题
一、求曲线“在”与“过”某点的切线
1、求曲线“在”某点处的切线方程步骤
第一步(求斜率):求出曲线在点()()00,x f x 处切线的斜率0()
f x '第二步(写方程):用点斜式000()()()
y f x f x x x '-=-第三步(变形式):将点斜式变成一般式。

2、求曲线“过”某点处的切线方程步骤(此类问题的点不一定是切点)
第一步:设切点为()()00,Q x f x ;
第二步:求出函数()y f x =在点0x 处的导数0()f x ';
第三步:利用Q 在曲线上和0()PQ f x k '=,解出0x 及0()f x ';
第四步:根据直线的点斜式方程,得切线方程为000()()()y f x f x x x '-=-.
二、切线条数问题
求曲线的切线条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线问条数问题转化为关于t 的方程的实根个数问题。

三、公切线问题
研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使用这两个方程表示同一条直线,但要注意以下两个方面:
(1)两个曲线有公切线,且切点是同一点;
(2)两个曲线有公切线,但是切点不是同一点。

四、已知切线求参数问题
此类问题常见的考查形式有两种,一是判断符合条件的切线是否存在,二是根据切线满足条件求参数的值或范围。

常用的求解思路是把切线满足条件转化为关于斜率或切点的方程或函数,再根据方程的
根的情况或函数性质去求解。

导数的几何意义,曲线的切线方程

导数的几何意义,曲线的切线方程

导数的几何意义一、导数的几何意义:函数)(x f y =在0x 处的导数)(0'x f ,表示曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00'0x x x f x f y -=-二、题型讲解题型一、求曲线在某点处的切线方程例题1.曲线x x y 12+=在点(1,2)处的切线方程为 。

【答案:1+=x y 】 练习1.1.曲线12++=x xe y x在点(0,1)处的切线方程为 。

【答案:13+=x y 】 练习1.2.曲线)1ln 3(+=x x y 在点(1,1)处的切线方程为 。

【答案:34-=x y 】练习1.3.曲线3x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形面积为 。

【答案:38】练习1.4.曲线xe y =在点(2,2e )处的切线与坐标轴所围成三角形的面积为 。

【答案:22e 】题型二、过某点作曲线的切线方程例题2.过原点作曲线xe y =的切线,则切点的坐标为 ,切线的斜率为 。

【答案:(1,e ),e 】练习2.1.已知曲线2)(3+-=x x x f C :。

求经过点)2.1(M 的曲线C 的切线方程。

【答案:x y 2=或4941+-=x y 】练习2.2.过原点O 作曲线6324+-=x x y 的切线,求切线方程。

【答案:x y 22-=或x y 22=】练习2.3.过点)2,0(M 作抛物线12++-=x x y 的切线,求切线方程。

【答案:023=+-y x 或02=--y x 】练习2.4.已知曲线3431:3+=x y C ,求过点)4,2(P 的曲线的切线方程。

【答案:044=--y x 或02=+-y x 】题型三、已知曲线的切线方程,求曲线方程 例题3.在平面直角坐标系中,若曲线xbax y +=2(b a ,为常数)过点P (2,-5),且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 。

导数与切线方程练习题(简答)

导数与切线方程练习题(简答)

切线方程练习题一.已知切点或斜率求切线方程已知切点时,求导算出斜率(已知斜率时,求导算出切点),然后用点斜式写出直线方程.(1)函数xx y 12+=在点)2,1(处的切线方程为 (2)曲线)1ln(2+=x y 在点)0,0(处的切线方程为(3)曲线x e x x y )(32+=在点)0,0(处的切线方程为(4)函数x x x f ln )(2−=在点))1(,1(f 处的切线方程为(5)若曲线x x y −=4的一条切线l 与直线023=+−y x 平行,则直线l 方程为(6)已知曲线x e y =在点)1,0(处的切线与曲线)0(1>=x xy 上在点P 处的切线l 垂直, 则P 的坐标为 ,直线l 方程为(7)已知)(x f 为偶函数,当0<x 时,x x x f 3)ln()(+−=,则曲线)(x f y =在点)3,1(−处的切线方程是_______________(8)曲线x x y cos sin 2+=在点)1,(−π处的切线方程方程为( )A.01=−−−πy xB.0122=−−−πy xC.0122=+−+πy xD.01=+−+πy x二.过点求切线方程已知直线过定点),(b a ,设出切点),(00y x ,利用ax b y x f k −−='=000)(,由)(00x f y =, ⇒ax b x f x f −−='000)()(,得到关于0x 的方程,求出0x 即可,注意区分“过点”与“在点” (1)曲线2x y =过点)5,3(P 的切线方程为(2)若直线2+=kx y 是函数13)(23−−−=x x x x f 的一条切线,则=k(3)已知直线kx y =是曲线x y ln =的一条切线,则=k(4)曲线123++=x x y 在点)1,1(−P 处的切线方程为曲线123++=x x y 过点)1,1(−P 的切线方程为三.公切线问题求)(x f y =与)(x g y =的公切线的步骤①设),(),,(1111y x N y x M 分别为)(x f 与)(x g 上的切点②由公切线可知,)()(21x f x f k '='=,可得到1x 与2x 的关系式 ③再由21212121)()(x x x g x f x x y y k −−=−−=,将②中1x 与2x 的关系式代入消元,若消去2x ,则让它与)(1x f ' 相等,从而得到1x 的方程,求出1x 即可;若消去1x ,则让它与)(2x f '相等,求出2x(1)已知直线l 与曲线2x y =和曲线2)2(−−=x y 都相切,则直线l 的方程为(2)已知函数2)(,1)(x x g xx f ==,若直线l 与曲线)(),(x g x f 都相切,则直线l 的斜率为 (3)若直线b kx y +=是曲线2ln +=x y 的切线,也是曲线)1ln(+=x y 的切线,则=b(4)已知直线l 与函数x x f ln )(=与函数x e x g =)(都相切,这样的直线l 有 条.四.利用切线方程求值、求参数(1)曲线x x x x f −+−=ln 33)(3在1=x 处的切线的倾斜角是( ) A .6πB .3πC .32π D .65π (2)函数)(x f y =的图象在4=x 处的切线方程为092=−+y x ,则='−)4()4(f f(3)曲线x e ax y )1(+=在点)1,0(处的切线的斜率为2−,则=a ________(4)设曲线)1ln(+−=x ax y 在点)0,0(处的切线方程为x y 2=,则=a(5)函数x x x f ln )(=在点))1(,1(f 处的切线与两坐标轴围成的三角形的面积是(6)已知曲线x x ae y x ln +=在点),1(ae 处的切线方程为b x y +=2,则=ab(7)函数x ax x f ln )(−=的图象在点))1(,1(f 处的切线为l ,则l 在y 轴上的截距为(8)已知函数1)(3++=x ax x f 的图像在点))1(,1(f 的处的切线过点)7,2(,则=a(9)已知直线1+=x y 与曲线)ln(a x y +=相切,则a 的值为(10)已知曲线xx y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________五.最值与取值范围求曲线上一点到直线距离的最小值,可转换求曲线上的切线与已知直线平行问题(1)以曲线2331x x y −=上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.]43,0[π B.),43[]2,0[πππ C.),43[ππ D.]43,2(ππ (2)以正弦曲线x y sin =上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.),0[πB.),43[]4,0[πππC.]43,4[ππD.]43,2(]4,0[πππ (3)已知曲线12)(2−+−=ax e e x f x x 存在两条斜率为3的切线,则a 的取值范围是( )A.),3(+∞B.)27,3(C.)27,(−∞ D.)3,0( (4)在曲线x x x f 4)(3−=的所有切线中,斜率最小的切线方程为(5)曲线)12ln(−=x y 上的点到直线032=+−y x 的最短距离为(6)Q P ,分别为曲线x e y =与曲线x y ln =上的两点,则PQ 的最小值为答案一.(1)01=+−y x (2)02=−y x (3) 03=−y x (4)0=−y x(5)033=−−y x (6)02),1,1(=−+y x (7)012=++y x (8)C二.(1)012=−−y x 或02510=−−y x (2)2 (3)e1(4)02=+−y x ,1=y 三.(1)44−=x y 或0=y (2)4− (3)2ln 1− (4)2四.(1)C (2)3 (3)-3 (4)3 (5)21 (6)e1− (7)1 (8)1 (9)2 (10)8 五.(1)B (2)B (3)B (4)04=+y x (5)5 (6)2。

导数与函数切线问题 ppt课件

导数与函数切线问题 ppt课件
• “太阳当空照,花儿对我笑,小鸟说早早早……”
例题与练习:
练习:利用函数公式求函数导数
(1). f (x) 3x ln(x 1) (2). f ( x) 1 x2 ln(2x 1)
2
3. f (x) x3 ax2 b
导数与函数切线问题
知识点: 1.函数在一(x点 0, y0)处的导f数 '(x0), 就是函数在该点线 处斜 的率 切
为 y 2 x, 则 P的 坐 标 为 __0__, 0_____
6.函 数 f ( x ) 1 x 2 ln(2x 1)在 点 (1, f (1))处 的 切 2
线 方 程 为 __2_x___ 2y30
7.过 点 (1, 0)作 曲 线 y x 2的 切 线 , 则 切 线 方 程
3 .关 于 过 点 P (x 0,y 0)的 切 线 问 题 :要 分 清 是 "在 点 型 "还 是 "过 点 型 "
在 点 型
题 意 明 确 某 点 P(x0,y0)是 切 点 ,具 体 文 字 表 示 为 : "在 P处 的 切 线 "或 "P为 切 点 "
过点型
即P(x0, y0)点不明示为切点,则P可以为切点 也可以不为切点,若点P不在曲线上,则P
2 .已 知 函 数 f(x )的 图 象 在 点 M 2 ,f(2 )处 的 切 线
7 方 程 是 x 2 y 4 0 ,则 f(2 )f2 _ _ _ _ _ _ _ _ _ _ _
3如 图.y f (x)是 可 导 函 数 , 直 线 l是 曲 线 y f (x)在 x 4
y
5
4,5
处的切线,令g(x) f (x) , 3

用导数研究曲线的切线应注意的几个问题

用导数研究曲线的切线应注意的几个问题

用导数研究曲线的切线应注意的几个问题■江苏省泰兴市第二高级中学高峰用导数研究曲线的切线是高考一个主要考点,常与解析几何知识交汇命题,旨在考查同学们对导数的几何意义的正确理解。

主要涉及求曲线切线的斜率与方程、曲线切线的条数、曲线的公切线、满足条件的切线是否存在及满足条件的切线的参数范围等问题。

一、曲线在某点处的切线例1(2021 届四川省遂宁市高三三模)已知函数f(x)=ex-x2+lnx,g(x)=2-ex-lnx。

(1)设曲线y=f(x)在点(1,f(1))处的切线的斜率为k1,曲线y=g(x)在点(1,g(1))处的切线的斜率为k2,求k1+k2的值;(2)若h(x)=f(x)+g(x),设曲线y=h(x)在点(t,h(t))处的切线与坐标轴围成的三角形的面积为s(t),求s(t)的最小值。

解析:(1)因为f(x)=ex-x2+lnx,所以f'(x)=ex-2x+,所以k1=f'(1)=e-1。

又因为g(x)=2-ex-lnx,所以g'(x)=-ex-,所以k2=g'(1)=-e-1。

所以k1+k2=-2。

(2)h(x)=f(x)+g(x)=2-x2(x>0),h'(x)=-2x,则h'(t)=-2t。

又因为点(t,h(t))为(t,2-t2),所以y=h(x)在点(t,2-t2)处的切线方程为y-(2-t2)=-2t(x-t),故当x=0 时,y=t2+2;当y=0时,x=。

感悟:曲线在某点(x0,f(x0))处的切线,则已知点一定是切点,求切线方程的步骤为:①求出函数f(x)的导数f'(x);②求出切线的斜率k=f'(x0);③写出切线方程yf(x0)=f'(x0)(x-x0),并化简为直线方程的一般式。

二、过某点的曲线的切线例2(2022 届山东省潍坊市高三上学期期中)已知a∈r,函数f(x)=lnx+a(1-x),g(x)=ex。

(1)讨论f(x)的单调性;(2)过原点分别作曲线y=f(x)和y=g(x)的切线l1和l2,求证:存在a>0,使得切线l1和l2的斜率互为倒数。

导数法求切线方程的三种题型

导数法求切线方程的三种题型

题目:导数法求切线方程的三种题型求曲线的切线方程是导数的重要应用之一。

用导数求切线方程的关键在于清楚导数的几何意义:切线的斜率确实是函数y=f(x)在切点处的导数。

下面举出长建的题型及解法:题型一:已知切点,求曲线的切线方程。

例1:求函数y=f(x)=2x3在x=1处的切线方程。

解:先求y’=f’(x)=6x2f’(1)=6×1=6=k当x=1时y=2∴切点为(1,2)y-2=6(x-1)y=6x-4题型二:已知曲线外一点,求曲线的切线方程。

例2:已知函数f(x)=x3-3x,过点A(0,16)做曲线y=f(x)的切线,求切线方程。

解:带入可知点A不在曲线上。

设切点M(x0,y0),且点M位于曲线上,知足y0=x03-3x0①f’(x)=3x2-3f’(x0)=3x02-3=k ②又有k=(Y0-16)/(x0-0) ③①带入③,且②=③,取得3x02-3=(x03-3x0)/x0解得x0=-2 ∴y0=-2∴M坐标为(-2,-2)K=3×(-2)2-3=9∴y+2=9(x+2)Y=9x+16题型三:弄清“过某点的切线”与“在某点的切线”例3:(1)求曲线y=x3-2x在点A(1,-1)处的切线方程。

(2)求过曲线y=x3-2x上的点A(1,-1)处的切线方程。

解:(1)做法仿照例1可得切线方程为x-y-2=0(2)设切点为(x0,y0),那么有y0=x03-3x0f’(x0)=3x02-23x02-2=k=(y0+1)/(X0-1)3x02-2= (x03-3x0+1)/ (X0-1)解得x0=1或x0=-1/2当x0=1时y0=-1 切点为(1,-1)现在切线方程为x-y-2=0当x0=-1/2时y0=7/8 切点为(-1/2,7/8) 对结果进行分析可知:“在点A处”实际是指A点确实是切点,而“过点A”包括了A点是切点和A点不是切点两种情形。

以上确实是要紧的三种题型,咱们发觉求切线方程最关键的确实是求出切点,利用切线的斜率等于切点处函数的导数,但假设函数在(x0,y0)处的导数不存在时,该切线方程为y= y0。

切线和导数的关系

切线和导数的关系

切线和导数的关系一、引言切线和导数是微积分中的两个重要概念,它们之间有着密不可分的关系。

本文将从定义、性质、计算等方面探讨切线和导数的关系。

二、切线的定义与性质1. 切线的定义在平面直角坐标系中,对于函数y=f(x),若曲线上存在一点(x0,y0),则过该点且斜率存在的直线称为函数y=f(x)在点(x0,y0)处的切线。

2. 切线的性质(1)切线与曲线相切于一点;(2)切线斜率等于曲线在该点处的导数;(3)曲线在该点处左侧和右侧各有一条切线。

三、导数的定义与性质1. 导数的定义函数y=f(x)在点x0处的导数定义为:f'(x0)=lim┬(Δx→0)⁡〖(f(x_0+Δx)-f(x_0))/Δx〗2. 导数的性质(1)函数y=f(x)在某一点处可导,则该点处必连续;(2)函数y=f(x)可导,则其必定连续,但反之不成立;(3)若函数y=f(x)在某一区间内可导,则该函数在该区间内必定单调。

四、切线和导数的关系1. 切线斜率等于导数根据切线的定义,切线斜率等于曲线在该点处的导数。

因此,计算函数y=f(x)在点x0处的切线斜率时,只需求出f'(x0)即可。

2. 利用导数求切线方程(1)已知函数y=f(x)在点(x0,y0)处的导数f'(x0),则该点处的切线方程为:y-y0=f'(x0)(x-x0)(2)已知函数y=f(x)在某一点处的切线方程,可通过求解方程组得到该点处的横纵坐标和导数。

3. 利用切线求导数(1)已知函数y=f(x)在某一点处的切线方程,可通过求出斜率得到该点处的导数;(2)若函数y=f(x)在某一区间内单调递增或递减,则可以通过求解相邻两个点间直线斜率来估算其导数。

五、应用举例1. 求函数y=x^3-3x^2+2在点(1,-2)处的切线方程。

解:首先求出该函数在点(1,-2)处的导数:f'(1)=lim┬(Δx→0)⁡〖(f(1+Δx)-f(1))/Δx〗=3因此,该点处的切线方程为:y+2=3(x-1)2. 求函数y=x^2在点(2,4)处的导数。

导数不存在切线存在的例子

导数不存在切线存在的例子

导数不存在切线存在的例子
1. 你看那绝对值函数 y=x,在 x=0 处,切线明明存在啊,但导数却不
存在!这多神奇呀!
2. 想想那尖点函数,比如 y=x^(2/3),它在原点处切线妥妥的在,可导数就没啦,这不就像是一个小惊喜藏在数学里嘛!
3. 还有那个分段函数,当 x 小于等于 0 时 y=-x,当 x 大于 0 时 y=x,在
x=0 处切线明晃晃的呀,但导数不存在呢,真让人又爱又恨!
4. 比如圆的方程 x^2+y^2=1,在一些特殊点上切线有吧,可导数在那就是不存在呀,你能说不有趣嘛?
5. 再来看看那个函数 y=sin(1/x),在某些点上切线存在得不要不要的,但导数就调皮地不现身,这像不像和我们躲猫猫呀!
6. 记得那个函数 y=sqrt(x)吗?在原点呀,切线就在那,导数却跑得无影无
踪了,真让人摸不着头脑!
7. 还有一个更特别的例子,y=1/x 在 x=0 处,切线存在才怪呢,但这也让
我们更深入地去思考数学的奇妙之处呀!
8. 就像那函数 y=3(x-1)^(2/3),它在 x=1 处切线存在的呀,但导数就是跟我们玩消失,这是不是很有意思呢!
结论:原来数学里有这么多看似矛盾却又实实在在存在的例子呀,导数不存在切线却能存在,真的是让我们对数学的神奇有了更深的认识和感受呢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线y=f (x)与曲线y=g(x)在它们的交点(1,c)
处具有公共切线,求a、b的值;
2020/4/4
10
1.曲线y=xex+2x+1在点(0,1)处的切线方程为
________.
解析:y′=ex+x·ex+2,y′|x=0=3, ∴切线方程为y-1=3(x-0), ∴y=3x+1,即3x-y+1=0. 答案:3x-y+1=0
点(1,3),则实数b的值为 ___3_______
9.设曲线f (x) ax ln(x 1)在点(0, 0)处的切线
方程为y 2x,则实数a的值为 _____3____
10.已知.函数f (x) x3 ax 4(a R), 若函数
y f (x)的图象在点P(1, f (1))处的切线的倾斜角
y
y x 8
g(x)
5x
5
题型一:根据图形求值
2.已知函数f (x)的图象在点M 2, f (2)处的切线
7 方程是x 2y 4 0,则f (2) f 2 ___________
3如图.y f (x)是可导函数, 直线l是曲线y f (x) , 3
在点型
题意明确某点P(x0, y0 )是切点,具体文字表示为 : "在P处的切线"或" P为切点"
过点型
即P(x0, y0 )点不明示为切点, 则P可以为切点 也可以不为切点,若点P不在曲线上,则P
不是切点
4
题型一:根据图形求值
1.如图函数y g(x)的图象在点 P 处的切线方程是
3 y x 8,则g5 ___1___ g(5) ___________
11
2.若曲线f(x)=ax2+lnx存在垂直于y轴的切线, 则实数a的取值范围为________.
解析:f′(x)=2ax+1x,∵f(x)存在垂直 于 y 轴的切线, ∴f′(x)=0 有解,即 2ax+1x=0 有解, ∴a=-21x2, ∴a∈(-∞,0). 答案:(-∞,0)
12
3.若曲线f(x)=x4-x在点P处的切线平行于直线 3x-y=0,则点P的坐标为________. 解析:∵f′(x)=4x3-1,由题意4x3-1=3, ∴x=1,故切点P(1,0).
2.若曲线y f (x)在点(x0, y0 )切线,为y kx b
(1)切 点( x0 , y0 )在 曲 线 上 (2)切 点( x0 , y0 )在切 线上
(3)切线的 斜率k f '( x0 )
y0 f (x0 ) y0 kx0 b
k f x0
3
知识点:
3.关于过点P(x0, y0 )的切线问题 : 要分清是 " 在点型 "还是 "过点型 "
6.函数f (x) 1 x2 ln(2x 1)在点(1, f (1))处的切 2
线方程为 __2_x___2y 3 0
7.过点(1, 0)作曲线y x2的切线,则切线方程
为 ___y____0_或__y 4x 4
7
题型三:求参数的取值或取值范围
8.已知直线y kx 1与曲线y x3 ax b相切于
导数的 几何意义
1
例题与练习:
练习:利用函数公式求函数导数
(1). f (x) 3x ln(x 1) (2). f (x) 1 x2 ln(2x 1)
2
3. f (x) x3 ax2 b
2
知识点:
1.函 数 在 一 点( x0 , y0 )处 的 导 数f '( x0 ), 就 是 函 数 在 该 点 处 的 切线 斜 率
9
例题与练习:
1.若曲线f(x)=x4-x在点P处的切线平行于直
线3x-y=0,则点P的坐标为________.
2.曲线y=xex+2x+1在点(0,1)处的切线方程
为________.
3.若曲线f(x)=ax2+lnx存在垂直于y轴的切线, 则实数a的取值范围为________.
4: 已知函数f (x)=ax2+1(a>0),g(x)=x3+bx, 若
答案:(1,0)
13

4
,则a
___4_____
8
题型三:求参数的取值或取值范围
11.已知.函数f (x) x3 ax2 b(a,b R)图象上 任意一点处的切线的斜率都小于1, 则实数a的
取值范围是 ______3__, __3
12.函数f (x) ln x ax存在与直线2x y 0平
行的切线则实数a的取值范围是 __(____,_2_)_
则g(4) ____3___
x
o
4
16
2
l
y f (x)
x
6
题型二:求切点或切线方程
4.曲线y x3 x2 1在点P(1, 1)处的切线方程
是 ____x___y__ 0
5.设曲线f (x) 3x ln(x 1)在点P处的切线方程
为y 2x,则P的坐标为 __0__, 0_____
相关文档
最新文档