八年级数学一元二次方程知识点总结及典型习题,推荐文档
(完整版)一元二次方程知识点和经典例题
一元二次方程一.基本概念定义:形如:02=++c bx ax (0≠a )的方程,叫做一元二次方程的一般式. 例题:若方程32)1(1=--+x x m m 是关于x 的一元二次方程,求m 的值.二.一元二次方程的解法(1)直接开方法: 02=+c ax , 开平方求出未知数的值:ac x -±= (2)因式分解法:0)(2=++-mn x n m x ,因式分解得:0))((=--n x m x ∴m x =1,n 2=x(3)配方法:061232=-+x x ,得:242=+x x ,∴222)2(2)2(4+=++x x 即:6)2(2=+x ∴621+-=x ,622--=x(4)公式法:解法步骤:○1先把一元二次方程化为一般式; ○2找出方程中a 、b 、c 等各项系数和常数的值;○3计算出ac b 42-的值;○4把a,b, ac b 42-的值代入公式;○5求出方程的两个根.例题:解方程: x(x+12)=8x+12解:原方程化简得:01242=-+x x ,方程中:a=1,b=4,c=-12∆=ac b 42-=(4)2-4×1×(-12)=16+48=64.∴28412644±-=⨯±-=x =42±- ∴原方程根为:21=x ,=2x -6.一元二次方程解法练习题:(1)用直接开方法解一元二次方程: ○1 (2x-1)2=7 ○222)43()43(x x -=- ○30144)3(2=--x(2)用因式分解法解一元二次方程:○11)1(3-=-x x x ○25x(x-3)=6-2x ○32(x +2)(x -1)=(x +2)(x +4)○4025)2(10)2(2=++-+x x ○542)2)(1(+=++x x x ○60)4()52(22=+--x x(3)用配方法解一元二次方程:○1x(x+4)=8x+12 ○226120x x --= ○30223)12(22=-+-+x x(4)用公式法解一元二次方程:○123520x x -+= ○5(3)(1)2x x +-=- ○112x 2-33x+130=0(5)选择适当的方法解下列方程:○122(2)9x x -= ○22299990x x +-= ○32(101)10(101)90x x +-++=○42690x x -+= ○5x(37)2x x -= ○6}113111[1()]222323x x x x ⎧--+-+=⎨⎩三.一元二次方程根的判别式1.一元二次方程根的判别式:把ac b 42-=∆叫做一元二次方程:02=++c bx ax (0≠a )的根的判别式.利用根的判别式可以不解方程判别一元二次方程跟的情况:20(1)00(2)400.b ac ∆>⇔⎧∆≥⇔⎨∆=⇔⎩∆=-∆<⇔当时方程有两个不相等的实根;当时方程有两个实数根;当时方程有两个相等的实数根;当的值小于时,即:时方程无实数根例1.不解方程判断下列方程跟的情况:(1)08822=+-x x (2)24120x x +-= (3)20232=+-x x解:(1)方程中:a=2,b=-8,c=8,∆=ac b 42-=(-8)2-4×2×8=64-64=0∵∆=0 ∴原方程有两个相等的实数根.(2)方程中:a=1,b=4,c=-12,∆=ac b 42-=(4)2-4×1×(-12)=16+48=64 ∵∆>0 ∴原方程有两个不相等的实数根.(3)方程中:a=2,b=-3,c=2,∆=ac b 42-=(-3)2-4×2×2=9-16=-7∵∆<0 ∴原方程无实数根.例2.关于x 的一元二次方程(m -1)x 2-2(m -3)x +m +2=0有实数根,求m 的取值范围.解:当m -1≠0时, 即:m 1≠时,该方程是关于x 一元二次方程.∵原方程有实数根∴0≥∆,即:Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥ 解得:711≤m ∴m 的取值范围是711≤m 且m 1≠. 例3. 求证:关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根. 证明:∵224=[2(1)]4(2)(1)4(3)b ac k k k k ∆=-----+=-且k 3≤,∴总有0≥∆ ∴关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根.四.一元二次方程根与系数的关系1.定理:设一元二次方程02=++c bx ax (0≠a 且042≥-ac b )的两个根分别为1x 和2x ,则:ab 2x 1x -=+; a 2x 1xc =• 特别地:对于一元二次方程20x px q ++=,根与系数的关系为:12x x p +=-; 12x x q =注:○1此定理成立的前提是0∆≥.也就是说必须在方程有实..数根..时才可使用. ○2此定理在其他一些数学书籍中也叫做韦达定理。
一元二次方程知识点总结及相关练习题
一元二次方程知识点总结及相关练习题一、一元二次方程一元二次方程是指含有一个未知数,并且未知数的最高次数是2的整式方程。
它的一般形式为ax^2+bx+c=0(其中a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
二、一元二次方程的解法1.直接开平方法直接开平方法是利用平方根的定义直接开平方求解一元二次方程的方法。
它适用于解形如(x+a)=b的一元二次方程。
根据平方根的定义可知,x+a是b的平方根,当b≥0时,x=-a±b;当b<0时,方程没有实数根。
2.配方法配方法的理论根据是完全平方公式a±2ab+b=(a±b)^2,把公式中的a看做未知数x,并用x代替,则有x±2bx+b=(x±b)^2.配方法的步骤是:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式。
3.公式法公式法是用求根公式解一元二次方程的方法,它是解一元二次方程的一般方法。
一元二次方程ax^2+bx+c=0的求根公式是x=(-b±√(b^2-4ac))/2a。
公式法的步骤是把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。
4.因式分解法因式分解法是利用因式分解的手段,求出方程的解的方法。
这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤是:把方程右边化为0,然后看看是否能用提取公因式、公式法或十字相乘,如果可以,就可以化为乘积的形式。
5.XXX定理利用韦达定理可以求出一元二次方程中的各系数。
韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
在题目中,XXX定理是很常用的。
三、一元二次方程根的判别式根的判别式指的是一元二次方程ax^2+bx+c=0的根的判别式,通常用“Δ”来表示,即Δ=b^2-4ac。
《一元二次方程》各节知识点及典型例题
第二章一元二次方程第一节一元二次方程第二节一元二次方程的解法第三节一元二次方程的应用第四节一元二次方程根与系数的关系五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有未知数,并且未和数的是2,这样的整式方程叫做一元二次方程。
2、能使一元二次方程的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为的形式,这个形式叫做一元二次方程的一般形式。
其中ax2是,a是,bx是,b是,c 是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a为何值时,关于x的方程(a-1)x|a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1 B.0 C.-1 D.-1或1例2、已知多项式ax2-bx+c,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b的值(2)直接写出关于x的一元二次方程ax2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x的方程(k2-1)x2-(k+1)x-2=0(1)当k取何值时,此方程为一元一次方程?并求出此方程的根(2)当k取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩固练习1、下列方程中,是一元二次方程的为()A. x2= -1B. 2x(x-1)+1=2x2C. x2+3x=2xD. ax2+bx+c-02、已知关于x的方程mx2+(m-1)x-1=2x2-x,当m取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2+ 是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( ) A. 1,0 B. -1,0 C. 1,-1 D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b--的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解 一元一次方程的方法,叫做因式分解法。
初中数学一元二次方程知识点总结(含习题)
初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
完整版)一元二次方程(知识点考点题型总结)
完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
一元二次方程知识点总结和例题
知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
一元二次方程的解法(1)直接开平方法(2)配方法(3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x (4)因式分解法一元二次方程根的判别式根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆一元二次方程根与系数的关系abx x -=+21,a c x x =21。
例题:6、已知关于x 的一元二次方程220x kx +-= 的一个解与方程131x x +=-的解相同。
(1) 求k 的值;(2) 求方程220x kx +-=的另一个解。
7、设12,x x 是关于x 的一元二次方程20x px q ++=的两个根,121,1x x ++是关于x 的一元二次方程20x qx p ++=的两个根,则,p q 的值分别等于多少?知识点.一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解; (3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是x =()240b ac -≥;(4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
(完整word版)一元二次方程知识点以及考点分析
一元二次方程一、本章知识构造框图实质问题设未知数,列方程数学识题ax 2bx c 0(a 0)解方降程次开平方法配方法公式法分解因式法数学识题的解实质问题的答案bb 2 4ac检验x2a二、详细内容(一)、一元二次方程的观点1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2.正确辨别一元二次方程中的各项及各项的系数( 1)让学生明确只有当二次项系数 a 0 时,整式方程ax2bx c0 才是一元二次方程。
(2)各项确实定 (包含各项的系数及各项的未知数).(3)娴熟整理方程的过程3.一元二次方程的解的定义与查验一元二次方程的解4.列出实质问题的一元二次方程(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,进而把一元二次方程转变为一元一次方程求解;2.依据方程系数的特色,娴熟地采用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.领会不一样解法的互相的联系;4.值得注意的几个问题:(1) 开平方法:对于形如x 2n或 (ax b) 2 ( 0)的一元二次方程,即一元二次方程的一边是含有未n a知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如 x2 n 的方程的解法:当 n 0 时, x n ;当 n 0 时,x1x20 ;当 n0 时,方程无实数根。
( 2)配方法:经过配方的方法把一元二次方程转变为( x m) 2n 的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左侧,常数项移到方程的右侧;②“系数化1”:依据等式的性质把二次项的系数化为1;③配方:将方程两边分别加前一次项系数一半的平方,把方程变形为( x m)2 n 的形式;④求解:若 n 0 时,方程的解为x m n ,若n 0时,方程无实数解。
( 3)公式法:一元二次方程ax2 bx c 0( a 0) 的根 x b b 2 4ac2a当 b2 4ac 0 时,方程有两个实数根,且这两个实数根不相等;当b2 4ac 0 时,方程有两个实数根,且这两个实数根相等,写为x1 x2 b ;2a当b2 4ac 0 时,方程无实数根 .公式法的一般步骤:①把一元二次方程化为一般式;②确立a, b, c 的值;③代入 b2 4ac上当算其值,判断方程能否有实数根;④若b24ac0 代入求根公式求值,不然,原方程无实数根。
一元二次方程知识点总结(全章齐全)
一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。
②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。
(2)确定a,b,c的值。
(3)代入中计算其值,判断方程是否有实数根。
(4)若代入求根公式求值,否则,原方程无实数根。
【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。
·步骤:(1)将方程化为一元二次方程的一般形式。
(2)把方程的左边分解为两个一次因式的积,右边等于0。
(3)令每一个因式都为零,得到两个一元一次方程。
(4)解出这两个一元一次方程的解,即可得到原方程的两个根。
根的判别情况判别式:世上没有一件工作不辛苦,没有一处人事不复杂。
不要随意发脾气,谁都不欠你的。
一元二次方程知识点总结与易错题
一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
考点二、一元二次方程的解法b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,那么有222)(2b x b bx x ±=+±。
1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。
4、因式分解法分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法〔这里指的是分解因式中的公式法〕或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-ab ,二根之积等于a c ,也可以表示为x 1+x 2=-ab ,x 1 x 2=ac。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
考点三、一元二次方程根的判别式 根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆〞来表示,即ac b 42-=∆ I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根。
《一元二次方程》各节知识点及典型例题
第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。
2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。
其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。
巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。
一元二次方程知识点总结及例题解析
- 1 - 一元二次方程一)一元二次方程的定义)0a (0c bx ax 2¹=++是一元二次方程的一般式,只含有一个末知数、且末知数的最高次数是2的方程,叫做一元二次方程。
0ax 0c ax 0bx ax 222==+=+;;这三个方程都是一元二次方程。
求根公式为()0ac 4b a2ac 4b b x 22³--±-=二))0a (0c bx ax 2¹=++。
a 是二次项系数;b 是一次项系数;c 是常数项,注意的是系数连同符号的概念。
这些系数与一元次方程的根之间有什么样的关系呢?1、ac 4b 2-D =当Δ>0时方程有2个不相等的实数根;2、当Δ=0时方程有两个相等的实数根;3、当Δ< 0时方程无实数根时方程无实数根. .4、当Δ≥0时方程有两个实数根(方程有实数根)时方程有两个实数根(方程有实数根); ;5、ac<0时方程必有解时方程必有解,,且有两个不相等的实数根且有两个不相等的实数根; ;6、c=0c=0,即缺常数项时,方程有,即缺常数项时,方程有2个不相等的实数根,且有一个根是0.0.另一个根为另一个根为ab-7、当a 、b 、c 是有理数,且方程中的Δ是一个完全平方式时,这时的一元二次方程有有理数实数根。
8、若1x ,2x 是一元二次方程)0a (0c bx ax 2¹=++的两个实数根,即①abx x 21-=+ac x x 21=·(注意在使用根系关系式求待定的系数时必须满足Δ≥0这个条件,否则解题就会出错。
)例:已知关于X 的方程()0m x 2m 2x 22=+--,问:是否存在实数m ,使方程的两个实数根的平方和等于5656,若存在,求出,若存在,求出m 的值,若不存在,请说明理由。
②一元二次方程)0a (0c bx ax 2¹=++可变形为()()0x x xx a 21=++的形式。
(完整版)一元二次方程知识点总结和例题——复习,推荐文档
配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项 系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p±√q;如果 q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一 般方法。
一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,
程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两 根之积等于常数项除以二次项系数所得的商。
a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
7.分式方程
分母里含有未知数的方程叫做分式方程。
c a
。
温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:
1、关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 ,
且满足 x1 x2 x1x2 ,则 k 的值为:
()
(A) 1或 3 4
(B) 1
3
(C)
4
(D)不存在
2、已知 , 是关于 x 的一元二次方程 x2 2m 3x m2 0 的两个不相
12、当 x =
时,代数式 x2 3x 比代数式 2x2 x 1的值大 2 .
13、某商品原价每件 25 元,在圣诞节期间连续两次降价,现在商品每件 16
A.2 B.3 C.-2 或 3 D.2 或-3
建议收藏下载本文,以便随时学习! 一元二次方程综合复习
10、若(m+1) xm(m2)1 +2mx-1=0 是关于 x 的一元二次方程,则 m 的值是
一元二次方程知识点总结与经典题型
一元二次方程知识点总结与经典题型研究必备:欢迎下载一元二次方程知识点总结考点一:一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式为ax²+bx+c=0,其中a≠0.考点二:一元二次方程的解法1.直接开平方法:对于形如(x+a)²=b的一元二次方程,当b≥0时,x+a=±√b,x=-a±√b;当b<0时,方程无实数根。
2.配方法:配方法的步骤为:先将常数项移到方程的右边,再将二次项的系数化为1,接着同时加上1次项的系数的一半的平方,最后配成完全平方公式。
3.公式法:公式法的步骤为:将一元二次方程的各系数分别代入公式x=(-b±√(b²-4ac))/(2a)中。
4.因式分解法:因式分解法利用因式分解的方法求出方程的解,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤为:将方程右边化为0,然后看看是否能用提取公因式、公式法或十字相乘的方法,如果可以,就可以化为乘积的形式。
考点三:一元二次方程根的判别式根的判别式通常用“Δ”来表示,即Δ=b²-4ac。
考点四:一元二次方程根与系数的关系如果方程ax²+bx+c=0的两个实数根是x1和x2,那么x1+x2=-b/a,x1x2=c/a。
易错题:1.若关于x的一元二次方程(m-1)x²+5x+m²-3m+2=0有一个根为1,则m的值等于2.2.已知a,b是关于x的一元二次方程x²+nx-1的两实数根,则n+2ab/(a+b)的值是-2.3.已知a、b、c分别是三角形的三边,则(a+b)x²+2cx+(a+b)的根的情况是有两个不相等的实数根。
1、已知方程x-2x-1=0的两根为m和n,且(7m-14m+a)(3n-6n-7)=8,则a的值为()。
A.-5.B.5.C.-9.D.9改写:已知方程x-2x-1=0的两根为m和n,且(7m-14m+a)(3n-6n-7)=8,求a的值。
完整版一元二次方程知识点总结和例题复习
知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。
(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。
根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。
配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。
(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。
2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。
八年级数学一元二次方程知识点总结及典型习题(K12教育文档)
八年级数学一元二次方程知识点总结及典型习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学一元二次方程知识点总结及典型习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学一元二次方程知识点总结及典型习题(word版可编辑修改)的全部内容。
一元二次方程(一)、一元二次方程的概念1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2.正确识别一元二次方程中的各项及各项的系数(1)明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数).3.一元二次方程的解的定义与检验一元二次方程的解(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.值得注意的几个问题:(1)开平方法:对于形如n x =2或)0()(2≠=+a n b ax 的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解.形如n x =2的方程的解法:当0>n 时,n x ±=;当0=n 时,021==x x ;当0<n 时,方程无实数根。
(2)配方法:通过配方的方法把一元二次方程转化为n m x =+2)(的方程,再运用开平方法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
(一)、一元二次方程的概念
1理解并掌握一元二次方程的意义
未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;
2•正确识别一元二次方程中的各项及各项的系数
(1)明确只有当二次项系数a 0时,整式方程ax2 bx c 0才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数).
3•—元二次方程的解的定义与检验一元二次方程的解
(二)、一元二次方程的解法
1•明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;
2•根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;
3•值得注意的几个问题:
(1)开平方法:对于形如x2 n或(ax b)2 n(a 0)的一元二次方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用开平方法求解
形如x2 n的方程的解法:当n 0时,x 、. n ;当n 0时,x1 x2 0 ;当n 0时,方程无实数根。
(2)配方法:通过配方的方法把一元二次方程转化为(x m)2 n的方程,再运用开平方法求解。
配方法的一般步骤:
①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边;
②“系数化1 ”:根据等式的性质把二次项的系数化为 1 ;
③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为(x m)2 n的形式;
④求
解:
若n0时,方程的解为x m . n,若n 0 时, 方程无实数解。
(3)公式法:
一兀二次方程ax bx c 0(a 0)的根x -b b24ac
2a
当b24ac0时,方程有两个实数根,且这两个实数根不相等;
当b24ac0时,方程有两个实数根,且这两个实数根相等,写为X1 X2
b 2a
当b24ac0时,方程无实数根•
公式法的一般步骤:①把一元二次方程化为一般式;②确定a,b,c的值;③代入b2 4ac中计算其值,判断方程是
否有实数根;④若b2 4ac 0代入求根公式求值,否则,原方程无实数根。
(4)因式分解法:
因式分解法的一般步骤:
若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。
(三)、根的判别式
1.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参 数取值范围。
( 1) =b 2 4ac
从左到右为根的判别式定理;从右到左为根的判别式逆定理。
例:求证:方程 (a 2 1)x 2 2ax (a 2 4) 0 无实数根。
(4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分 类讨论,如果二次系数为 0,方程有可能是一元一次方程;如果二次项系数不为
0,一元二次方程可能会有两个实
数根或无实数根。
(四) 、一元二次方程的应用
1. 数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。
2. 几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何 知识检验。
3. 增长率问题(下降率) :在此类问题中,一般有变化前的基数( a ),增长率( x ),变化的次数( n ),变化后的 基数( b ) ,这四者之间的关系可以用公式 a (1 x )n b 表示。
4. 其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去) 。
(五) 新题型与代几综合题
(1)有 100 米长的篱笆材料, 想围成一矩形仓库, 要求面积不小于 600平方米, 在场地的北面有一堵 50米的旧墙, 有人用这个篱笆围成一个长 40米、宽 10米的仓库,但面积只有 400 平方米,不合要求,问应如何设计矩形的长与 宽才能符合要求呢?
( 2)读诗词解题(列出方程,并估算出周瑜去世时的年龄) :
大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位 学子算得
准,多少年华属周瑜?
2)根的判别式定理及其逆定理:对于一元二次方程
ax 2 bx c 0 ( a 0 )
a ①当
0 0时 方程有实数根;②当
a0
0时
方程无实数根;
2 2 r ---
⑶已知:a,b,c 分别是 ABC 的三边长,当m 0时,关于x 的一元二次方程c(x m) b(x m) Z max 0 有两个相等的实数根,
求证:
ABC 是直角三角形。
(4)已知:a,b,c 分别是 ABC 的三边长,求证:方程 b 2x 2 (b 2 c 2
数? ( m 1)
当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。
(六) 相关练习
(一) 一元二次方程的概念 1.一元二次方程的项与各项系数 把下列方程化为一元二次方程的一般形式,再写出二次项,一次项,常数项:
(1) 5x 2 2 3x
2 2
(2) (5a 1)
4(a 3)
2 •应用一元二次方程的定义求待定系数或其它字母的值
(1) m 为何值时,关于 x 的方程(m <2)x m (m 3)x 4m 是一元二次方程。
(2)若分式
x 2
7x 8 —x —厂
0,则 x _____
a 2)x c 2 0没有实数根。
(5)当m 是什么整数时,关于
x 的一元二次方程 mx 2 4x 4
0 与 x 2 4mx 4m 2 4m 5 0的根都是整
(6)已知关于x 的方程x 2
2x
m 2 1 x 2
2x 2m
0,其中m 为实数,(1)当m 为何值时,方程没有实数根?
(2)
答案:(1)m 2( 2)x
3•由方程的根的定义求字母或代数式值
2 ⑴关于X的一元二次方程(a 1)x
2
X a 1 0有一个根为0,则a _________
⑵已知关于x的一元二次方程ax2 bx c0(a 0)有一个根为1,一个根为1,则a b c
(二)一元二次方程的解法
1.开平方法解下列方程:
(1) 169(x 3)2289 ⑵(1 、3)m20
2.配方法解方程:
(1) x2 2x 5 0
3.公式法解下列方程:(1) 3x2 6x 2
2
⑵2y 4y 3
(2) p2 3 2.3p
4.因式分解法解下列方程:
(1) y2 4y 45 0
2
(2) (x 5) 2(x 5) 1(3) . 7x2,21x 0
5.解法的灵活运用(用适当方法解下列方程)
(1)6x(x 2) (x 2)( x 3)
2 2
⑵ 81(2x 5) 144(x 3)
(三)一元二次方程的根的判别式
1不解方程判别方程根的情况:
(1) 4x2 x 3 7x (2) 3(x22) 4x ⑶4x2 5 4 : 5x
2
2. k为何值时,关于x的二次方程kx 6x 9 0
(1)有两个不等的实数根(2)有两个相等的实数根(3)无实数根
3.k为何值时,方程(k 1)x2(2k 3)x (k 3) 0有实数根.
(四)一元二次方程的应用 1 •已知直角三角形三边长为三个连续整数,求它的三边长和面积
2•某印刷厂在四年中共印刷1997万册书,已知第一年印刷了342万册,第二年印刷了500万册,如果以后两年的增长率相同,那么这两年各印刷了多少万册?3
3 •某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元,为了扩大销售增加盈利,尽快减少库存,
商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价 要盈利1200元,每件衬衫应降价多少元?
k
y - , (1) k 满足什么条件时,这两个函数在同一坐标系中的图象有两个
x
A 、
B , AOB 是锐角还是钝角? ( k 9且k 0 ;钝角)
1元,商场每天可多售 出2件,若商场平均每天
4.一次函数y x 6和反比例函数
交点? ( 2)设(1)中的两个公共点为。