第一章 自然电位测井

合集下载

第一章__自然电位测井

第一章__自然电位测井

第四节 自然电位测井曲线的应用
第四节 自然电位测井曲线的应用
二、确定地层泥质含量
泥质:地层中细粉砂和湿粘土的混合物叫泥
质。 泥质含量:泥质体积占地层体积的百分比。 泥质在地层中的存在的状态:分散泥质、层 状泥质、结构泥质。 用自然电位测井曲线确定泥质含量的方法: 图版法和公式法两种。
第四节 自然电位测井曲线的应用
Rmf Ed Kd lg Rw
二、扩散吸附电动势产生的机理
泥浆和地层水的
矿化度不同; 井壁地层具有一 定的渗透性; 地层颗粒对不同 极性的离子具有 不同的吸附性。 泥质选择吸附负 离子。
泥岩挡板
二、扩散吸附电动势产生的机理
组成泥岩的粘土,其结晶构造和化学性质只允许阳离子
通过泥岩扩散,而吸附带负电的阴离子,这样,当Cw大 于Cmf时,对着泥岩的井眼中建立了正电位。
第二节 自然电位测井 及曲线特征
异常:指相对泥岩基线而
言,渗透性地层的SP曲线 的位置。
负异常:在砂泥岩剖面井中,
当井内为淡水泥浆 (Cw>Cmf)时,渗透性地 层的SP曲线位于泥岩基线的 左侧; 正异常:在砂泥岩剖面井中, 当井内为盐水泥浆 (Cw<Cmf)时,渗透性地 层的SP曲线位于泥岩基线的 右侧。
几个重要概念:
泥浆:钻井时在井内流动的一种介质。 泥浆滤液:在一定压差下,进入到井壁地层孔
隙内的液体。 地层水:地层孔隙内的水。 溶液的矿化度:溶液含盐的浓度。溶质重量与 溶液重量之比。 离子扩散:两种不同浓度的盐溶液接触时,在 渗透压的作用下高浓度溶液中的离子,穿过渗 透性隔膜迁移到低浓度溶液中的现象。
地层水和泥浆滤液中含盐浓度的比值
地层水和泥浆滤液含盐浓度的差异,是产生扩

2-第一章_电法测井(自然电位测井)

2-第一章_电法测井(自然电位测井)
一系列的校正求出SSP,据泥浆资料确定Rmf,然后求出Rw。 用SP求Rw有三种方法,都假设SP只是由电化学电动势引起 的。
常规法 新方法 换泥浆法
求Rw
(1)常规法
引入等效电阻率的概念,即不论溶液的浓度
高低,都与其电阻率成反比。
SSP K lg
Rmfe Rwe
①确定 SSP
如果渗透层的h/d>40,无侵入,且RtRmRs,则SSP
Es Vsp I rm ri rsh rt 1 rm rm rm
Es=f(Cw、Cmf、T、Vsh、盐类有关)
(1)地层水和泥浆中含盐量的比值(Cw/Cmf)的影响
Cw / Cmf > 1 Cw / Cmf < 1 Cw / Cmf = 1
渗透层的△Vsp有负异常 渗透层的△Vsp有正异常 渗透层的△Vsp无异常
2.SP曲线的特点
(1)自然电位(△VSP):是指自然电流在井中泥浆柱上产 生的电压降。
Es Vsp Irm rt ri rsh 1 rm rm rm
(△VSP)
< PSP 或者SSP
测量时N电极固定在地面,但VN≠0。因SP 曲线没有“0” 刻度,而是用带正负号的比例尺来表示的,为了读数的方 便,选泥岩的SP作为基线,在一个地区它是稳定的,并且 是一条直线。
所以,E总 =(Kda -
lg(Rmf / Rw ) = Es
则令:K=Kda – Kd;K只与盐类成分、温度有关。
静自然电位:纯砂岩与纯泥岩交界面处的总电化学电 动势用SSP来表示。
SSP K lg Rmf Rw
当泥质含量 时 QV kd 从负变至正 Es 当 Qv ∞时, kd ≈ Kda Es = 0 泥质砂岩和纯砂岩的总电动势称为假静自然电位。符号用PSP 来 表示,它的大小反映了泥质的多少,总有 SSP>PSP(因K值以负 往正值方向发生变化)

地球物理测井第一章 第四节 自然电位测井

地球物理测井第一章 第四节 自然电位测井
自然电位现象: (1)自然电位与岩性有关; (2)自然电位与泥浆及地层水矿化度有关;
SP曲线
前言
■ 三、 自然电位测井的特点
自然电位测井具有测量方法简单、实用价值高等
特点,是划分岩性、研究储集层性质、求取泥质
含量参数以及其它地质应用的基本方法之一。
■ 四、矿化度的概念
定义(矿化度):溶液的盐浓度,早期用 ppm表示,意为part per million,即百万分之一,
Ea

Ka
lg
Cw Cmf
=Ka
lg
Rmf Rw
其中,Ek产生的前提条件是ΔP≠0 。通常情况下,ΔP很小,所以Ek
很小(可忽略),所以油井中的自然电位主要是由扩散作用和吸附作
用所产生的。
注意:扩散电位和吸附电位产生的重要条件是:Cw≠Cmf。
17
第一节 自然电场产生的原因
三、油井中的自然电场 -总电动势
动电学电动势Ek(Electrokinetic component of the SP)主要是 过滤电动势。
7
第一节 自然电场产生的原因
一、电化学电动势
■ 1. 吸附电动势又称泥岩薄膜电位 (Membrane Potential)
产生的条件: 1.泥浆和地层水矿化度不同;
2.井壁地层有渗透性;
1928年,斯伦贝谢发现,井中电极与 放在远处的参考电极之间有电位差, 且该电位差随地层而变化。 当地层中没有外加电流时,通过仪器 测量井眼内自然电场中电位随井深变 化的测井方法。
只能用于导电泥浆的井中。
3
前言
■ 二、自然电场的特点
自然电场的分布和岩性有密切的关系,特 别是在砂/泥岩剖面中能够以明显的曲线 异常变化来显示渗透性地层。因此,研究 井眼内自然电场中的电位变化即可反映井 眼穿过地层的特征。

1 第一章 自然电位测井

1 第一章 自然电位测井

是产生自然电场的总电动势E总:
E总=Ed+Eda =Klg(Rmf/Rw)
=SSP
式中:K为自然电位系数。
19
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
把 E总叫作静自然电位,记作SSP。
此时Ed的幅度称砂岩线,Eda的幅度叫泥 岩线。实际测井中以泥岩线作自然电位测
井曲线的基线(即零线),在18℃时的纯砂
通常,泥浆柱的压力大于地层压力,并在渗透 性岩层(如砂岩层)处,都不同程度的有泥饼存在。由 于组成泥饼的泥质颗粒表面有一层松散的阳离子扩 散层,在压力差的作用下,这些阳离子就会随着泥 浆滤液的渗入向压力低的地层内部移动。于是在地
层内部一方出现了过多的阳离子,使其带正电,而
在井内泥饼一方正离子相对减少,使其带负电,从 而产生了电动势。由此形成的电动势,叫做过滤电
Es-井筒及邻近地层中自然电动势。
17
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
18
3、扩散作用在井内形成的总电动势及电位分析
(2)电位分布
由自然电场分布特征可知,在 砂岩和泥岩交界处自然电位有明显
变化,变化幅度与Ed、Eda有关。
在相当厚的纯砂岩和纯泥岩交 界面附近的自然电位变化最大。它
第四节 自然电位测井曲线的地质应用
21
1、自然电位测井曲线的特征
(1)异常幅度及其定量计算 (巨厚砂岩) rm比rsd、rsh大得多,所以有
ΔUSP≈SSP
(砂岩有限厚) 自然电位幅度ΔUSP定义为: 自然电流I在流经泥浆等效电阻 rm 上的电位降落, 即ΔUSP=Irm。由于Es=I(rs+rt+rm),则有 ΔUsp=I×rm

第1章 自然电位测井

第1章 自然电位测井

2011-2-18
地球物理测井方法与原理
7 /51
1.1 井内自然电位产生的原因
1.1.2 扩散吸附电位
粘土晶体的 置换和破健 作用
扩散时,如果地层的固体
颗粒(泥质)的表面带有了 强的负电荷之后,固体颗粒
将阻止负离子的通过(好象 负离子被吸附住了一样), 这种现象我们称之为扩散吸 附作用。
2011-2-18
1.2 自然电位曲线的形状
1.2.2 自然电位曲线
回路总电动势等 于扩散电动势和吸附 电动势之和,它相当 于回路中没有电流时 井中地层上下界面的 自然电位差,习惯称 为静自然电位,SSP 表示。
静自然电位曲线是无法 测定的,因为地层和泥浆都 具有导电性。 19 /51
2011-2-18
1.2 自然电位曲线的形状
2011-2-18
地球物理测井方法与原理
2 /51
1.1 井内自然电位产生的原因
斯仑贝谢1928年发现了这样的 现象:在未通电的情况下,井中电 极(M)与位于地面的电极(N)之 间存在着电位差,而且该电位差随 着地层的不同而变化。另外,电位 差的变化规律性很强。后来、道尔 、威利、费多尼、斯卡拉和安德森 等人对这一现象进行了研究,同时 ,自然电位测井(SP)也就诞生了
1 自然电位测井(SP)
1.1 井内自然电位产生的原因 1.2 自然电位测井曲线的形状 1.3 影响渗透层自然电位曲线的主要因素 1.4 自然电位曲线的应用
2011-2-18
地球物理测井方法与原理
1 /51
1.1 井内自然电位产生的原因
电化学测井包括天然电化学测井和人工 电化学测井两类。天然电化学测井分为自然 电位测井和电极电位测井,而激发极化测井 属于人工电化学测井。本章只讲述自然电位 测井方法的原理、基本理论及资料解释的方 法。

第一章 自然电位测井

第一章  自然电位测井
47
1 2 3
Cw
Cw C注
Cmf
E1
E2 Cmf
E总
Cw
E3 △Esp
W E总
图1-19 水淹层的SP曲线基线偏移示意图
CW C注 Cmf
48
偏移量的计算
在未被水淹的上部砂岩和泥岩交界处的电动
势为
Cw E1 K lg( ) Cmf
在砂岩内水淹部分和未被水淹部分交界 面处的总电动势为
4
由于泥浆和地层水的矿化度不同,在钻开 岩层后,井壁附近两种不同矿化度的溶液接触 产生电化学过程,产生电动势形成自然电场。 在石油井中自然电场主要由扩散电动势和扩散
吸附电动势产生。
5
二、扩散电动势产生机理
氯化钠溶液
1、泥浆、地层水 矿化度不同; 2 、井壁地层具有 渗透性;
3 、正、负离子迁
移速率不同。
地层的实际值,半幅点对应地层界面;
C、随地层变薄,曲线读数受围岩影响增
加,幅度降低,半幅点向围岩方向移动。
57
深度变化而变化的一条自然电位曲线。单位毫
伏。
Usp(h);8采样点/米
13
图1-4、自然电位测井示意图
图1-5、自然电位测井曲线实例
14
二、 SP曲线的特征
1、泥岩基线:均质、巨厚泥岩的SP曲线。 2、最大静自然电位SSP:均质、巨厚完全含水纯砂岩的SP 值与泥岩基线值的差。
SSP U sp |含水纯砂岩 -U sp |泥岩基线
图1-8、地层模型及其自然电位测井理论曲线
20
问题 (1)、自然电位异常性与泥浆性质的关系? (2)、 自然电位幅度差与地层厚度的关系? (3)、地层厚度对半幅点的位置和地层界面 的关系的影响?

地球物理测井-第一章第四节自然电位测井

地球物理测井-第一章第四节自然电位测井
SSPKlg Rmf Rw
Rmf-泥浆滤液电阻率; Rw-地层水电阻率。
过程:根据SP求出SSP,根据温度求出K,已知钻井液滤液电阻率Rmf,便可求出Rw。
第四节 SP曲线的应用
四、估算泥质含量 泥质含量及其存在状态与砂岩井段产生的扩散吸附电动势有直接关系,因而用自然电位曲线可以 计算泥质含量。目前用的方法是建立在大量的实验工作基础上的,常用方法是图版法和计算法:
当溶液矿化度低或中等时,可表示为:
Ea KalgC Cm wf KalgRRm wf
低浓度
高浓度
泥岩
低浓度
高浓度
Ka
Ka
Ka
9
第一节 自然电场产生的原因
一、电化学电动势 ■ 1. 吸附电动势又称泥岩薄膜电位 (Membrane Potential)
实际钻井中,泥浆的矿化度一般比地层水低,即aw大于amf。 地层中的Na+和Cl-离子要向井筒内迁移,在不同岩性的地层,有不 同的情况:
一、温度的影响 温度变化导致电动势系数变化。 Kda
二、岩性的影响 在砂泥岩剖面井中,通常以大段泥岩处的SP曲线作基线,在自然电位曲线上出现异常变化的多为砂 质岩层。当目的层为纯砂岩时,其与围岩交界处的SSP达到最大值SSPmax。当目的层含有泥质(其他 条件不变)时,SP降低,因而曲线异常的幅度也减小。此外,当剖面上有部分泥岩的阳离子交换能力 减弱时,渗透层的自然电位异常幅度也会相对降低。
在石油钻井的砂泥岩剖面中,自然电位的幅度和特点主要决定于造成自然电场的静自然电位SSP, 并且受自然电流 I 分布的影响。SSP的大小取决于岩性、地层温度、地层水和钻井液中所含离子成 分和钻井液滤液电阻率与地层水电阻率之比;而自然电场中自然电流 I 的分布则决定于流经路径 中介质的电阻率及地层的厚度和井径的大小。这些因素对自然电位幅度SP及曲线形状均有影响, 但影响的主次存在差异。

第1章-1 自然电位测井-print

第1章-1 自然电位测井-print

GaoJ-1-1
3
一、岩石孔隙水中离子的分布
1.离子双电层的形成
(1)岩石中的水分子是一种电荷不完全平衡的极性分子,对 外可显示为正、负两个极性;
H
H
O
(2)地层水中盐分子(主要是NaCl)充分离解,Na+和Cl-可 分别与极性水分子形成水合离子;
GaoJ-1-1
4
(3)岩石颗粒与水溶液接触的表面带有固定不动的负电荷, 粘土矿物中最显著;
(北京)
CHINA UNIVERSITY OF PETROLEUM
研究生课程
油气地球物理测井工程
— 电法测井(1)
地球物理与信息工程学院测井系 2012
Gao J & Fu JW
第1章 电法测井
(Electrical Logging)
第1节 自然电位测井(Spontaneous Potential Log) 第2节 普通电阻率测井(Conventional Electric Logs) 第3节 侧向测井(Laterolog) 第4节 感应测井(Induction Log) 第5节 微电阻率及井壁电成像测井
GaoJ-1-1
15
2. 扩散吸附电动势Eda的产生
产生原因:钻井液和地层水矿化度不同 产生阳离子交换 产生电动势 自然电场
产生过程:溶液浓度不同 带电离子扩散 (泥岩)阳离子交换 孔隙内溶液中阳离子增多 浓度小方富集正电荷,浓度大方富集负电荷 产生电动势(扩散吸附)
GaoJ-1-1
16
纯泥岩的电动势Eda
一部分阳离子紧贴岩石表面,不能移动 → 吸附层
吸附层之外阳离子,可正常移动 → 扩散层
----------
+ + + + + + + + + +

第1章-1 自然电位测井

第1章-1 自然电位测井

GaoJ-1-1
17
扩散吸附电动势产生示意图
导线
— — — —
+ + + + Cm + Nacl溶液 电极
泥岩隔板
Cw

Cw>Cm
GaoJ-1-1 18
Gao J & Fu JW
9
《油气地球物理测井工程》
纯泥岩的电动势Eda
砂岩中Na+、Cl- 通过泥岩向井内扩散; 泥岩孔隙中阳离子浓度高,它将排斥Na+; 使其扩散到泥浆中,而Cl- 被吸附, 在泥浆中形成Na+富集,泥岩中Cl-富集,达到平 衡时,电动势为Eda
6
《油气地球物理测井工程》
Ed形成过程:
① 离子从浓度高的一侧向浓度低的一侧扩散; ② Cl-的迁移率>Na+的迁移率, 使得泥浆滤液(低浓度)一 侧的Cl-富集,地层水(高浓度)一侧Na+富集,形成正负 电荷的富集,在两种溶液交界处产生电动势; ③ 电动势使Cl-迁移速度减慢,而Na+迁移速度加快,使电 荷富集速度减慢; ④到正、负离子迁移速度相同时, 电荷富集停止,溶液 达到动态平衡,电动势保持为一定值,此时的电动势称 为扩散电动势。
自然电位测井理论曲线
30
Gao J & Fu JW
15
《油气地球物理测井工程》
测量环境 1)当Cw>Cmf:负异常(淡水泥浆) 2)当Cw<Cmf:正异常(咸水泥浆) 3)当Cw=Cmf:无异常
基线及刻度 1)砂泥岩剖面: 泥岩为基线,基线幅度与泥岩纯度、 地层水矿化度等有关。 2)自然电位刻度是相对刻度,没有绝 对零点
— — —
+ —

石油工程测井2_第1章电法测井-1.1自然电位测井

石油工程测井2_第1章电法测井-1.1自然电位测井

SP SSP SP V 1 sh SSP SSP
应用4:计算地层水的电阻率Rw; 在评价储油层时,常要计算岩层孔隙度、含 油饱和度等重要参数,在确定这些参数时都 需要Rw,用SP曲线幅度值求Rw是最常用的方 法之一。
R C mfe w SSP K lg K lg C R mf we
R C mf w E k d . l g k d . l g d C R mf w
参见P5
当 CW>CM 时,在砂岩段,井内泥浆中积 聚负电荷。
当 CW<CM 时,在砂岩段,井内泥浆中积 聚正电荷。
指针与前 面实验方 向相反
现象
将渗透性隔板换成泥岩
浓度大的一方富集负电荷, 浓度小的一方富集正电荷 泥岩的特殊性质造成
自然电位理论曲线
1
2
砂泥岩剖面中
Rw<Rmf 时,以泥岩为 基线,渗透层会出现 负异常;
渗透层 ( 砂岩 )越纯, 负异常越大;
泥质含量增加,负异 常幅度变低。
应用3:估算泥质含量;
碎屑岩泥质含量增加,将使其自然电动 势减小,从而使SP幅度减小。因此,以完全 含水、厚度足够大的水层的静自然电位 SSP为标准,某地层SP与SSP的差别将与地 层泥质含量有关。通常把泥质含量表示为:
应用4:计算地层水的电阻率Rw;(步骤)
确定含水纯岩石静自然电位(SSP)
在地层水含盐量或Rw基本相同的解释井段内, 选择岩性纯(不含泥质或Vsh很小),厚度较大, 深探测电阻率低,SP异常幅度最大,各种资料证明 不含油气的地层为完全含水的纯水层,通常称为标 准水层。其SP异常幅度就是该层的静自然电位SSP 。
实 验
Cw
Cm
2.纯泥岩的扩散吸附电动势(Eda)——起因于井 中钻井液和地层水的浓度差引起的离子扩散作用 以及泥(页)岩选择性半透膜对正负离子的选择 性透过作用。

第一章__自然电位测井解析

第一章__自然电位测井解析

第二节 自然电位测井及曲线特征
理论上:在砂岩层为有限厚时, ΔUsp定 义为自然电流I在井内泥浆等效电阻rm上 的电位降,即
ΔUsp=I.rm
其中,I为自然电流,可由闭合回路的欧 姆定律求得
I
SSP
rm rsd rsh
第二节 自然电位测井及曲线特征
曲线形态:
曲线关于地层中点对称; 厚地层(h>4d)的SP
Eda Kda lg Cw Cm
Kda 2.3 RT F
地层水和泥浆滤液中含盐浓度的比值
地层水和泥浆滤液含盐浓度的差异,是产生扩 散电动势及扩散吸附电动势的基本原因。差异 越大,Ed和Eda越大,产生的电场越强,测井 值高。比值大于1,在渗透层段出现负异常; 比值小于1,在渗透层出现正异常。
三、自然电位测井的影响因素
岩性
随地层泥质含量的增加,SP曲线异常幅度降 低。
三、自然电位测井的影响因素
地层温度
由于Kd及Kda与绝对温度成正比,因此地层温 度的高低将会影响Kd及Kda大小,进而影响Ed 及Eda的大小。
RT Ed 2.3
nunv
lg Cw
F Z n u Z n v Cm
三、自然电位测井的影响因素
Ed Kd lg Rmf Rw
二、扩散吸附电动势产生的机理
泥浆和地层水的 矿化度不同;
井壁地层具有一 定的渗透性;
地层颗粒对不同 极性的离子具有 不同的吸附性。 泥质选择吸附负 离子。
泥岩挡板
二、扩散吸附电动势产生的机理
组成泥岩的粘土,其结晶构造和化学性质只允许阳离子 通过泥岩扩散,而吸附带负电的阴离子,这样,当Cw大 于Cmf时,对着泥岩的井眼中建立了正电位。
测井时,将测量电极N放在地面,用电缆 将M电极放置井下,提升M电极,沿井轴 测量自然电位随井深的变化曲线,即为自 然电位曲线。常称SP曲线。实际测井时 与电阻率同时测量,用电极系中的M 电极 即可。

1 自然电位测井(SP)

1  自然电位测井(SP)
这三种电动势尤如 三个电池,它们通 过导体(岩石)连 学 学院 大 理 江 接,形成回路,回 物 长 球 程系 路的总电动势: 地 工
井 测
Es = K d
C1 C2 C1 lg + K da lg K da lg C mf C mf C2
1.1.3 油井中的自然电场
这三种电动势尤如三 个电池,它们通过导 体(岩石)连接,形 学院 学 大 理 江 物 系 成回路,回路的总电 长 球 程 动势: 地 工
1.1.1 动电学作用与动电学电位
当泥浆柱压力与地 层压力不平衡时(一 般是泥浆柱的压力 学 学院 大 略大于地层压力), 江 物理 系 长 球 如果地层具有一定 程 地 井工 的渗透性,则泥浆 测 滤液将通过井壁渗 入地层.
1.1.1 动电学作用与动电学电位
固体表面带有负 电荷(砂岩,石灰 岩等固体颗粒的 学 学院 大 理 江 物表面仅带有少量 长 球 程系 的负电荷.而泥 地 井工 测 质或泥饼中固体 颗粒的表面带有 大量的负电荷).
1.1.1 动电学作用与动电学电位
动电学电位(过滤电位)的大小:
学 学院 大 理 A 物Δ P R mf 江 长 球 程系 E k =地 工 井 μ 测
1.1.1 动电学作用与动电学电位
μ 学 学院 大 理 江 物 系 其中:ΔP—泥浆柱与地层间的压力差; 长 球 程 地 井工 Rmf—泥浆滤液的电阻率; 测
1.2.1 自然电位测井曲线的特点
对于厚地层(h>4d), 自然电位曲线的半幅 学 学院 点对应于层界面. 大 理 江 物 系 长 球 程 地 井工 测
1.2.1 自然电位测井曲线的特点
对应于地层中部, 自然电位曲线出现 学 学院 大 极值,测井计算时 江 物理 系 长 球 常利用这一极值. 程 地 井工 测

第1章自然电位测井(SP log)

第1章自然电位测井(SP log)
决定于地层的岩性和钻井液滤液电阻率与地层水电阻率的比值Rmf/Rmc)。
⑵ 钻井液电阻率愈低,则△uSP也愈小,因此,钻井液矿化度特别高的盐水
井,△uSP很小,很难划分地层。井径扩大,也使钻井液电阻R钻井液减小, △uSP随之减小。
⑶ 目的层和围岩的电阻率越高,使自然电流减小,△uSP随之减小;
⑷ 目的层厚度增大,即R砂岩减小,则△usp增大,反之△usp减小。
Ef=Kf(ΔP•Rmf)/μ
Kf –过滤电位系数,与溶液的成分有关; ΔP –压力差,单位为大气压;
μ –过滤溶液的粘度,厘泊;
但只有地层压力与钻井液柱压力很悬殊时,而且在钻井液未形成以前, 过滤电位才有较大的显示。由于油井的钻井液柱压力略高于地层压力,且相 差不大。而且在测井时常已形成泥饼,故过滤电位在油井中的显示一般很小, 常忽略不计。
4个方面:
1.自然电位产生的原因-基本原理 2.电位曲线形状的分析-曲线形态 3.影响自然电位异常幅度的因素-影响因素 4.自然电位曲线的应用-地质应用
测量自然电位随井深变化曲线,用于划分岩性和研究储集层性质。
一、产生原因
1、扩散电位
当两种不同浓度的深液被半透膜隔开,离子在渗 透压作用下,高浓度溶液的离子将穿过半透膜 向较低浓度的溶液中移动。这种现象叫扩散, 形成的电位叫扩散电位,在油井中,此种扩散 有两种途径:一是高浓度一方通过砂岩向低浓 度泥浆中扩散,二是通过泥岩向泥浆中扩散。 其扩散电位大小取决于①正负离子的运移率(单 价离子在强度为1伏特/厘米的电场作用下的移 动速度);②温度、压力;③两种溶液的浓度差; ④浓度、离子类型及浓度差。
判断岩性,区分渗透层
泥岩:基线附近;
砂岩:异常幅值和正负 反映岩石渗透性好坏和 泥浆的性能;

第一章自然电位

第一章自然电位
• • • 确定地层水电阻率 Rw; 估算泥质含量 Vsh; 判断水淹;
五个方面) 四、地质应用(五个方面 地质应用 五个方面 • 判断岩性,区分渗透层;
• • • • 确定地层水电阻率 Rw; 估算泥质含量 Vsh; 判断水淹; 研究沉积环境
五个方面) 四、地质应用(五个方面 地质应用 五个方面
• 1.曲线特征及影响因素 • 1.1 异常幅度及其定量计算。
• 异常幅度、自然电位泥岩基线概念 异常幅度、
• Es=I(rs+rt+rm) • Usp=I•rm • •
=Es=Es-I(rs+rt) =Es/(I+(rs+rt)/rm)
Usp=SSP
• 含水纯砂岩处
1.2影响因素 • 4项:①总电动势,泥浆与地层水相对矿化度;
根据图版查 Rmfe/Rwe • 5.换算Rwe • 6.查图版确定Rw 查图版确定Rw
五个方面) 四、地质应用(五个方面 地质应用 五个方面 • 判断岩性,区分渗透
层 •
泥岩:基线附近;
• 砂岩:异常幅值和正负反映 岩石渗透性好坏和泥浆的性 能; • 纯水砂岩:Usp=SSP 含油 后Usp幅值下降,因为电阻 率增大 • 碳酸岩:储集层与非储集层 岩性相同,自然电位曲线区 分不开。其幅值大小只反映 泥质含量的高低。 • 岩盐、膏岩:无渗透性,因 而自然电位无异常显示;
• (2)经验公式法 • SHP1=(SP-SBL+SSP)/SSP
• • • • SP-自然电位读值 SBL-自然电位基线值 SHP=(2c SHP1-1)/(2c-1) C-系数,对于老地层,其值为2,新地层为3
五个方面) 四、地质应用(五个方面 地质应用 五个方面 • 判断岩性,区分渗透层;

矿场地球物理 第一章 自然电位测井

矿场地球物理 第一章 自然电位测井

15:59
第一章 自然电位测井
27
第三节 自然电位测井的影响因素
六、地层厚度的影响
– 自然电位幅度ΔUSP随目的层地层厚度h减小而下降,且曲线变 得平缓。这是由于h下降,自然电流经过地层的截面积减小, 地层电阻增大,ΔUSP与SSP差别加大的缘故。
七、 井径扩大和泥浆侵入的影响 – 井径扩大使井的横截面积增大,泥浆电阻rm 降低,自然电流在 井内的电位降下降,ΔUSP下降。
第一章 自然电位测井
自然电位测井:是在裸眼井中测量井壁上自然产生 的电位变化,以研究井剖面地层性质的一种测井方 法。由于这个电位是自然产生的,所以称为自然电 位,用SP( Spontaneous potential)表示。
第一章 自然电位测井
第一节 自然电场的产生 地二节 自然电位测井及曲线特征 第三节 自然电位测井的影响因素 第四节 自然电位曲线的应用
15:59
第一章 自然电位测井
26
第三节 自然电位测井的影响因素
五、 地层电阻率的影响
– 地层电阻率 Rsd 增加和围岩电阻率 Rsh 增加时,自然电流在地层 内的电位降加大,则ΔUSP降低。泥浆电阻率Rm下降,则rm下降, Δ U SP 下降。地层的电阻率越高则 Δ U SP越低。可以根据自然电 位曲线的这一特点区分油水层。
– 实际测井时以泥岩基线作自然电位曲线的基线 (即零线 ) ,当 Cw> Cmf 时,砂岩的自然电位异常为负值。把井中巨厚的纯砂岩井段的自然电 位幅度近似认为是SSP。
15:59 第一章 自然电位测井 18
第二节 自然电位测井及曲线特征
如果中间的渗透层是含水砂岩层,上下围岩均为泥岩,令井内泥浆、砂 岩、泥岩各段电阻分别为rm,rsd,rsh,由kirchoff定律得:

《地球物理测井》ch1.自然电位

《地球物理测井》ch1.自然电位

基线
作为自然电位的基线。
SSP
静自然电位SSP:也叫总自然电位, 指回路中没有电流时地层界面上下
的自然电位差,用SSP表示。一般取
均质、巨厚的完全含水的纯砂岩层 的自然电位读数与泥岩基线读数的
第1章 自然电位测井
差。
© 2014 Yangtze University Production Logging Lab.
SP曲线
动电学电动势(压力差作用,Pmf >P地层 )
电化学电动势
第1章 自然电位测井
扩散电动势Ed ( 扩散作用,浓度差 ) 扩散吸附电动势Eda ( 扩散吸附作用,离子迁移 )
© 2014 Yangtze University Production Logging Lab.
一 动电学电动势
地球物理测井
主讲人:刘军锋 长江大学 地球物理与石油资源学院
测井现场提供资料
第1章 自然电位测井
© 2014 Yangtze University Production Logging Lab.

电法测井概况

电法测井是地球物理测井中三大测井方法之一,它根据岩层 电学性质的差别,测量地层的电阻率、电导率或介电常数等
© 2014 Yangtze University Production Logging Lab.
§1.1 自然电位形成原因
几个概念: 泥浆滤液:在一定压差下,进入到井壁地层孔隙 内的液体。 地层水:地层孔隙内的水。 矿化度(salinity):溶液的盐浓度,常用百万分之 一(ppm)表示,相当于1kg水中有1mg盐。 离子扩散:当不同浓度的溶液在一起时存在使浓 度达到平衡的自然趋势,即高浓度溶液中的离子 要向低浓度溶液一方迁移的过程。

第1章-自然电位测井

第1章-自然电位测井
N
v
井中电极M与地面电极N之间的电位差
图1-1 自然电位 测井原理
M
3
1.1 井内自然电位产生原因
由于泥浆和地层水的矿化度不同,在钻开岩层后,井壁附近两 种不同矿化度的溶液接触产生电化学过程,结果产生电动势形 成自然电场。在石油井中自然电场主要是由扩散电动势和扩散 吸附电动势组成。 几个基本概念 泥浆:钻井时,在井内流动的一种介质。 泥浆滤液:在一定压差下,进入到井壁地层孔隙内的泥浆 地层水:地层孔隙内的水 溶液的矿化度:溶液含盐的浓度。溶质重量与溶液重量之比。 离子扩散:两种不同浓度的盐溶液接触时,在渗透压的作用 下高浓度溶液中的离子,穿过渗透性隔膜迁移到低浓度溶液 中的现象。 自然电场:在钻开岩层时井壁附近产生的电化学活动而造成 4 的电场,它取决于井孔剖面的岩层性质
Ef K
p R mf
f

△p—压力差(atm);Rmf—过滤溶液电阻率; μ—过滤溶液粘度(10-3Pa·s); Kf-过滤电位系数,与溶液的成分、浓度有关
油井中的过滤电位常常被忽略不计:
1、钻井液柱压力略高于地层压力; 2、测井时泥饼已经形成;
10
1.2 自然电位测井及曲线特征
1.2.1 井内自然电场的分布
曲线号码 : h / d
6种厚度不同的地层模型 自然电位测井理论曲线图
18
2、实测自然电位曲线的特征
1).比例尺:SP曲线的图头标有的线性比例尺。可 用于计算非泥岩与泥岩基线间的自然电位 差,单位:mV,左为低电位,右为高电位 2).泥岩基线:均匀、较厚的泥岩地层对应的变化 不大、稳定的自然电位曲线连线,是平行于 深度轴的直线(但也有倾斜或偏移)。 3).自然电位幅度:自然电流在井中的电位降落 4).自然电位异常幅度:在SP曲线上有异常出现的 地方,它是相对于泥岩基线的最大偏转。。 5).异常:指相对于泥岩基线而言,渗透性地层的 SP曲线的位置。 负异常:井内淡水泥浆(Cw>Cmf)或地层水矿 化度大于钻井液滤液矿化度时,渗透性地层 的SP曲线位于泥岩基线的左侧; 正异常:Cw<Cmf时,渗透性地层的SP曲线位 于泥岩基线的右侧;

第1章 自然电位测井

第1章 自然电位测井
W
Cmf
,产生扩散电动势:
Cw Ed Kd lg Cmf
①适用条件:低矿化度和中等矿化度溶液自 由接触面附近 ②矿化度较低的情况下,溶液的电阻率与溶
液的矿化度有线性关系,则扩散电动势可表
示为:
E d K d lg
R mf RW
• 2、扩散-吸附电动势 • (1)产生机理:利用泥岩隔膜把两种不同 浓度的氯化钠溶液分开,在泥岩隔膜处所 形成的电动势。 • ①泥岩隔膜的离子双电层 •原因?
(3)扩散电动势的表示
CW nu nv RT E d 2 .3 lg F Z nu Z nv C m
对于氯化钠溶液,
RT u v CW E d 2 .3 lg F u v Cm
(4)砂泥岩剖面纯砂岩的扩散电动势
地层水和泥浆滤液接触,其矿化度(浓度)
分别为 C 和
• (2)确定渗透层界面的方法—— “半幅点法”
• 确定基线;找出基线与自然电位幅
度极大值之间的二等分点P; •过P点作平行于井轴的 直线与自然电位曲线相
交于a、b点,即为渗
透性顶、底界面的深度 位置。
2、估算泥质含量
•(1)相对幅度
SH 1 SP SSP SP SP max 1 SP min SP max SP SP min SP max SP min
• 多 种 盐 成 分 存 在 时 的 处 理
•利用水资料分析地层水电阻率
• 4、判断水淹层
• 水淹层:在油层开发中,见到了注入水的油层,
称为水淹层。
• 储集层哪部分被水淹决定与岩层各部分的渗透性, 一般规律是渗透性好的部分容易被水淹,因此大 多数水淹层具有局部水淹的特点。
• 在SP曲线上,水淹层上下泥岩基线发生偏移,一般 为淡水注入,上部水淹,则上基线偏移;下部水淹, 则下基线偏移。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和视电阻
率同时测
量示意图
2016/6/29
测井方法
12
图1-5、自然电 位测井曲线实例
2016/6/29
测井方法
13
二、 SP曲线的特征
SP曲线如图1-5所示。
1、泥岩基线:均质、巨厚的泥岩地层对应的自 然电位曲线。 2、最大静自然电位SSP:均质、巨厚的完全含水 的纯砂岩层的自然电位读数与泥岩基线读数的差。 3、比例尺:SP曲线的图头上标有的线性比例尺。用 于计算非泥岩层与泥岩基线间的自然电位差。
其中: K K d K da
Rmfe Rwe
(1-7)
Rmfe
2016/6/29

Rwe 分别为泥浆滤液及地层水
等效电阻率.
测井方法 27
其过程如下:
1、确定完全含水纯地层的静自然电位SSP
(图1-12) ;
2、确定泥浆滤液等效电阻率; 1)、确定地层温度 (图1-13)
t t0 dt h
2016/6/29 测井方法 3

地层水:地层孔隙内的水。 溶液的矿化度:溶液含盐的浓度。溶质重量与溶 液重量之比。 离子扩散:两种不同浓度的盐溶液接触时,在渗 透压的作用下高浓度溶液中的离子,穿过渗透性
隔膜迁移到低浓度溶液中的现象。
2016/6/29
测井方法
4
一、扩散电动势产生的机理
1、泥浆和地层 水的矿化度不同; 2 、井壁地层具 有渗透性;
2016/6/29
图1-2
扩散吸附电动势产生示意图
测井方法 9
扩散吸附电动势与两种溶液的浓度比值有关,
由下式计算:
E
其中:
da
K da
K
da
RT 2. 3 F
Cw lg Cm
(1-3)
—扩散吸附电动势系数;
当泥浆滤液和地层水的矿化度都较低时, 上式可近似写为:
E da K da lg
测井方法
2016/6/29 测井方法 14
4、异常:指相对泥岩基线,渗透性地层的SP曲线 的位置。 1)、负异常:在砂泥岩剖面井中,当井内为淡水泥 浆( Cw Cmf )时,渗透性地层的SP曲线位于泥岩
基线的左侧;图1-6所示。
2)正异常:在砂泥岩剖面井中,当井内为盐水泥 浆( C C )时,渗透性地层的SP曲线位于泥岩基 w mf 线的右侧。图1-7所示。
其中: t0 -地表温度; dt-地温梯度; h-地层深度。
2016/6/29 测井方法 28
3)、确定Rmfe。图1-16 当泥浆只含氯化钠、温度为 24 Rmf 0.1 m,则 R℃时: mfe R mf
(1)、Rmf 0.1 m,则Rmfe Rmf (2)、Rmf 0.1 m,
2016/6/29
测井方法
6
F —Farady常数,96520 C/equiv;
Cw、Cm —两种溶液的浓度;
U、v —— 正、负离子的迁移率,S/(m· N)
Z 、 Z —正、负离子的离子价;
离子数;
n 、 n —每个分子离解后形成的正离子数和负
2016/6/29
测井方法
7
在砂泥岩剖面井中的纯砂岩段,在井壁附近产
rm
—井内泥浆的等效电阻;
rsd —渗透性地层的等效电阻;
rsh
2016/6/29
—泥岩层的等效电阻;
测井方法
20
六、地层厚度
地层厚度减小,围岩影响增加,测量值与实 际值的差距加大。 七、井径扩大和侵入的影响 井径扩大,造成泥浆柱的电阻减小,压差降低;
泥浆侵入,使得测量电极M与地层间的距离加大,M
2016/6/29 测井方法 15
5、曲线形态(图1-8)
地层模型:上下围岩的岩性相同(泥岩),地
层岩性均匀。
1)、曲线关于地层中点对称; 2)、厚地层(h>4d)的SP曲线幅度近似等于地 层的实际值 ,半幅点对应地层界面; 3)、随地层变薄,曲线读数受围岩影响增加, 幅度降低,半幅点向围岩方向移动。
1、地层水矿化度(Cw)不同于钻井液矿化度
(Cm); 2、盐溶液中,不同离子的迁移速度不同; 3、地层泥质颗粒对不同性质的离子具有不同 的吸附性;
4、井壁地层具有一定的渗透性。
2016/6/29
测井方法
36
二、自然电位曲线的特点:
1 、 泥岩基线:均质、巨厚的泥岩地层对应的自 然电位曲线。 2、最大静自然电位SSP:均质、巨厚的完全含水 的纯砂岩层的自然电位读数与泥岩基线读数的差。
1)、影响因素: A、Cw/Cmf; B、溶液中的盐成分; C、地层岩性、温度、厚度及导电性;
D、泥浆侵入深度及侵入特征;
E、井眼是否扩径。
2016/6/29
测井方法
40
的关系,应用下式计算地层的泥质含量:
Vsh
psp 1 ssp
(1-6)
其中:psp为泥质砂岩的自然电位幅度; ssp为本区含水纯砂岩的静自然电位。
2016/6/29
测井方法
26
三、确定地层水电阻率Rw
地层水电阻率在评价储层流体性质方面占有相当
重要的位置。 用自然电位曲线确定Rw的依据为:
SSP K lg
基线的右侧。
2016/6/29
测井方法
38

5、曲线形态特征: A、曲线关于地层中点对称; B、厚地层(h>4d)的SP曲线幅度近似等于
地层的实际值,半幅点对应地层界面;
C、随地层变薄,曲线读数受围岩影响增
加,幅度降低,半幅点向围岩方向移动。
2016/6/29
测井方法
39
3、 自然电位曲线的影响因素及应用
测井方法
24
用自然电位测井曲线确定泥质含量的方法:
图版法 和公式法 两种方法。 1 、图版法 1)、测定泥质砂岩的泥质含量; 2)、确定泥质地层的自然电位幅度;
3)、对其自然电位幅度进行岩层厚度及孔
隙流体性质校正;
4)、绘制泥质含量与自然电位幅度的关系曲
线。
2016/6/29 测井方法 25
2、 公式法 根据泥质地层的自然电位幅度与 泥质含量
2016/6/29
测井方法
31
偏移量的计算
在未被水淹的上部砂岩和泥岩交界处的电动
势为
Cw E1 K lg( ) Cmf
在砂岩内水淹部分和未被水淹部分交界 面处的总电动势为
C注 Cw Cw E2 Ed Ed 注界 Ed 注 Kd lg( ) Kd lg( ) K d lg( ) Cmf C注 Cmf
Rmf Rw
(1-4)
2016/6/29
10
第二节自然电位测井及曲线特征
一、自然电位测井 在砂泥岩剖面井 中,当 Cw Cmf 时, 井下自然电场的分 布如图1-3所示。自 然电位测井示意图 如图1-4所示。
2016/6/29
图1-3、井内自然电场分布示意图 CW﹥Cmf
测井方法 11
图1-4、 自然电位
第一章 自然电位测井
自然电场的产生
自然电位测井及曲线特征 影响因素 自然电位曲线的应用 内容小结 思考题
2016/6/29 测井方法 1
井下自然电场是由钻开岩层时井内钻 井液的矿化度与地层水矿化度不同,井壁
附近出现电化学活动产生的。自然电场的
分布特点取决于井孔剖面岩层的性质。沿
井轴测量自然电位变化的测井方法叫自然
-注入水的电阻率。
统计资料表明:
Esp >8mV 为高含水;
5mV < E sp <8mV为中含水;
Esp <5mV可能为低水淹或岩性变化所至。
2016/6/29 测井方法 34
图1-18 水淹层测井曲线
2016/6/29 测井方法
图1-19 水淹层的SP 曲线基线 偏移示意图
35
本章小结 一 、自然电位产生的机理
用图版1-16得到地层温度下地层水电阻率 R w 0.043 m。
2016/6/29 测井方法 30
四、判断水淹层
水淹层:含有注入水的油层,称之为水淹层。 SP测井曲线能够反映水淹层的条件及现象: 当注入水与原地层水及钻井液的矿化度互不相 同时,与水淹层相邻的泥岩层的基线出现偏移。
如图1-18、1-19所示。 偏移量越大,表明水淹程度越严重。
2016/6/29测井源自法32在被水淹的下部砂岩和泥岩交界处的电动势

C注 Cw E3 Ed 注 Eda Kd lg( ) Kda lg( ) Cmf Cmf
2016/6/29
测井方法
33
R注 Cw Esp E1 E3 Kd lg Kd lg C注 Rw
其中:
R注
3、比例尺:SP曲线的图头上标有的线性比例尺。
用于计算非泥岩层与泥岩基线间的自然电位差。
2016/6/29
测井方法
37
4、异常:指相对泥岩基线而言,渗透性地层的
SP曲线的位置。
A、负异常:在砂泥岩剖面井中,当Cw>Cm
(淡水泥浆)时,渗透性地层的SP曲线位于泥岩 基线的左侧; B、正异常:在砂泥岩剖面井中,当Cw<Cm (盐水泥浆)时,渗透性地层的SP曲线位于泥岩
3 、正、负离子
的迁移速率不同。
图1-1 扩散电动势产生示意图
2016/6/29
测井方法
5
扩散电动势可由Nernst方程计算:
E
d
Cw RT n u n v 2.3 lg F Z n u Z n v C m
T—绝对温度,oK;T=273+t℃
(1-1)
其中:R—克分子气体常数,8.313 J/(K);
相关文档
最新文档