初中七年级数学《垂线》同步练习题

合集下载

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2023七下·海淀期末)如图,直线AB与CD交于点O,OE⊥AB,若∠AOD=140°,则∠COE的度数为( )A.40°B.50°C.60°D.70°2.(4分)下列四个条件中能判断两条直线互相垂直的有( )①两条直线相交所成的四个角中有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻的角相等;④两条直线相交所成的四个角中有一组对顶角的和为180°.A.4个B.3个C.2个D.1个∥,DB⊥BC,∠1=40°,则∠2的度数是( )3.(4分)(2022七下·巴彦期末)如图,AB CDA.30°B.40°C.50°D.45°4.(4分)(2020八上·松阳期末)如图,在Rt ABC△中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )A.245B.5C.6D.85.(4分)如图,AB l⊥,BC l⊥,B为垂足,那么A,B,C三点在同一条直线上,理由是( )A.经过直线外一点有且只有一条直线与这条直线平行B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行6.(4分)如图,直线l1∥直线l2,直线l3与直线l1,l2分别相交于点A,点B,AC与BC相交于点C,若AC⊥BC,∠1=∠2,则下列结论正确的个数是( )①∠1+∠3=90°;②∠2+∠4=90°;③∠3=∠4;③∠2=∠4A.1B.2C.3D.47.(4分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定( )A .等于2 cmB .小于2 cmC .大于2 cmD .大于或等于2 cm8.(4分)(2017·承德模拟)如图,AB CD ∥,EF AB ⊥于E ,EF 交CD 于F ,已知∠1=60°,则∠2=( )A .20°B .60°C .30°D .45°9.(4分)直线l 上有A 、B 、C 三点,直线l 外有一点P ,若P A =5cm ,PB =3cm ,PC =2cm ,那么点到直线l 的距离( )A .等于2cmB .小于2cmC .不大于2cmD .大于2cm 且小于3cm10.(4分)(2023九下·沭阳月考)在平面直角坐标系xOy 中,以P (0,−1)为圆心,PO 为半径作圆,M 为⊙P 上一点,若点N 的坐标为(a ,2a +4),则线段MN 的最小值为( )A .√5−1B .2√5+1C .2√5−1D .√5+1阅卷人二、填空题(共8题;共32分)得分11.(4分)(2019七下·老河口期中)如图,已知AB CD ⊥,垂足为点O ,直线EF 经过点O ,若∠1=35°,则∠AOE 的度数为 度.12.(4分)(2022七下·椒江期末)如图,在马路旁有一个村庄,现要在马路l 上设立一个核酸检测点为方便该村村民参加核酸检测,核酸检测点最好设在 处,理由是 .13.(4分)(2021八上·覃塘期末)如图,在 △ABC 中, AB=AC ,D是 BC 边的中点, EF 垂直平分 AB 边,动点P在直线 EF 上,若 BC=12 , S△ABC=84 ,则线段 PB+PD 的最小值为 .14.(4分)如图,在三角形ABC中,∠BCA=90∘,BC=3,AC=4,AB=5,点P是线段AB上的一动点,则线段CP的最小值是 .△中,∠ACB=90°,AC=5,BC=12,D是15.(4分)(2022九下·江岸月考)如图,在Rt ABCAB的中点.E,F分别是直线AC,BC上的动点,∠EDF=90°,则线段EF的最小值为 .⊥,∠1=20°,则∠BOE= 16.(4分)如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF OE°,∠DOF= °,∠AOF= °.17.(4分)(2015七下·深圳期中)已知a,b,c为平面内三条不同直线,若a b⊥,c b⊥,则a与c的位置关系是 .△中,∠ABC=90°,AB=BC,直线l1、l2、l3分别18.(4分)(2017八下·无棣期末)如图,Rt ABC△的面积为 通过A、B、C三点,且l1l∥2l∥3.若l1与l2的距离为4,l2与l3的距离为6,则Rt ABC.第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、作图题(共4题;共36分)得分19.(4.5分)按要求画图:∥交DC于E;①作BE AD∥交DC的延长线于F;②连接AC,作BF AC⊥于G.③作AG DC20.(4.5分)(2022七下·法库期中)在如图所示的正方形网格中,有两条线段AB和BC(点A,B,C均在格点上),请按要求画图.( 1 )过点A画出BC的平行线;( 2 )过点C画出AB的平行线,与(1)中的平行线交于点D;( 3 )过点D画AB的垂线,垂足为E.21.(13.5分)(2019·汕头模拟)如图,已知△ABC,按要求作图.(1)(4.5分)过点A作BC的垂线段AD;(2)(4.5分)过C作AB、AC的垂线分别交AB于点E、F;(3)(4.5分)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离. 22.(13.5分)(2023七下·宿迁期中)如图,每个小正方形的边长均为1个单位长度,每个小正方形的顶点叫做格点.请利用网格点和直尺,完成下列各题:(1)(4.5分)画出△ABC中AB边上的中线CD,AC边上的高线BE;(2)(4.5分)将△ABC先向左平移4个单位长度,再向上平移3个单位长度,请在图中画出平移后的△A1B1C1;(3)(4.5分)△ABC的面积是 .阅卷人四、综合题(共3题;共42分)得分23.(11分)(2017·兰州)在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:⑴在直线l上任取两点A、B;⑵分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;⑶作直线PQ.参考以上材料作图的方法,解决以下问题:(1)(5分)以上材料作图的依据是: (2)(6分)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)24.(12分)(2016九下·澧县开学考)如图,△ABC是直角三角形,∠ACB=90°.(1)(6分)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.DE 的长.(2)(6分)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求 ^25.(19分)(2021八上·攀枝花期中)小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C 放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.(1)(6分)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是 ;(2)(6分)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B 在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.(3)(7分)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论.答案解析部分1.【答案】B【解析】【解答】解:∵AOD=140°,∠,∴AOC=180°-AOD=40°⊥,∵OE AB∠,∴AOE=90°∠∠∠,∴COE=AOE-AOC=50°故答案为:B.∠,再根据垂线的定义求出∠AOE=90°,最【分析】根据邻补角的定义先求出AOC=180°-AOD=40°后计算求解即可。

人教版数学七年级下册第五章《垂线》真题同步测试1(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试1(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试1(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2018七下·桐梓月考)若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cm B.大于3 cm而小于4 cm ;C.不大于3 cm D.小于3 cm2.(4分)点P为直线m外一点,点A,B,C为直线m上三点,PA=5cm,PB=6cm,PC=3cm,则点P到直线m的距离为( )A.小于3cm B.5cm C.3cm D.不大于3cm 3.(4分)(2023七下·定兴期末)如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是( )A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释4.(4分)(2021·裕华模拟)如图,沿笔直小路DE的一侧栽植两棵小树B,C,小明在A处测得AB =5米,AC=7米,则点A到DE的距离可能为( )A.4米B.5米C.6米D.7米⊥,垂足为点O.若5.(4分)(2023七下·遵义月考)如图,直线AB、CD相交于点O,OE CD∠BOE=50°,则∠AOC= ( )A.140°B.50°C.60°D.40°6.(4分)(2021七下·舞阳期末)如图, AB/¿CD , EF⊥AB 于点 E , EF 交 CD 于点 F , EM 交 CD 于点 M ,已知 ∠1=55° ,则 ∠2=¿ ( )A.55°B.35°C.125°D.45°7.(4分)(2019七下·巴南期中)若点 P 为直线 l 外一定点,点 A 为直线 l 上一定点,且P A=2 ,点 P 到直线 l 的距离为 d ,则 d 的取值范围为( )A.0<d<2B.d=2 或 d>2C.0<d<2 或 d=0D.0<d<2 或 d=28.(4分)(2020八上·禹州期中)如图,四边形 ABCD 中, ∠A=90° , AD=3 ,连接 BD ,BD⊥CD ,垂足是D且 ∠ADB=∠C ,点P是边 BC 上的一动点,则 DP 的最小值是(  )A .3B .2C .1.5D .19.(4分)(2022七下·赵县月考)在如下所示的条件中,可以判断两条直线互相垂直的是( )①两直线相交所成的四个角都是直角;②两直线相交,对顶角互补;③两直线相交所成的四个角都相等.A .①②B .①③C .②③D .①②③10.(4分)如图,PO OR ⊥,OQ PR ⊥,则点O 到PR 所在直线的距离是线段 的长.( )A .POB .ROC .OQD .PQ阅卷人二、填空题(共8题;共32分)得分11.(4分)(2018七下·龙岩期中)如图,为了把河中的水引到 C 处,可过点 C 作 CD ⊥AB 于D ,然后沿 CD 开渠,这样做可使所开的渠道最短,这种设计的依据是 .12.(4分)如果两条直线相交成 ,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线.互相垂直的两条直线的交点叫做 .13.(4分)(2021七下·宣汉期末)如图,直线AB ,CD 相交于点O ,OE CD. ⊥若∠1= 40°,则∠BOE 的大小是 .14.(4分)如图,AO OC ⊥,DO OB ⊥,∠AOD=61°,则∠BOC= °.15.(4分)(2023七下·永吉期末)如图,在△ABC 中,D 为线段BC 上一动点,当∠ADB =90°时,在线段AB ,AC ,AD 中,线段AD 最短,理由是 .16.(4分)(2019八下·诸暨期中)如图,在Rt ABC △中,∠BAC=90°,AB=3,AC=4,点P 为BC 边上一动点,PE AB ⊥于点E ,PF AC ⊥于点F ,连结EF ,点M 为EF 的中点,则AM 的最小值为 . 17.(4分)(2021九上·秦都月考)如图,点P 是 Rt △ABC 中斜边 AC (不与A ,C 重合)上一动点,分别作 PM ⊥AB 点M ,作 PN ⊥BC 于点N ,点O 是 MN 的中点,若 AB =6 ,BC =8 ,当点P 在 AC 上运动时,则 BO 的最小值是 .18.(4分)(2023九下·大冶月考)如图,在矩形ABCD 中,AB =7,BC =7√3,点P 在线段BC 上运动(含B 、C 两点),连接AP ,将线段AP 绕着点A 逆时针旋转60°得到AQ ,连接DQ ,则线段DQ 的最小值为 .第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、解答题(共4题;共36分)得分19.(9分)如图所示,已知AO BC ⊥于O ,DO OE ⊥,∠1=65°,求∠2的度数.20.(9分)(2021七下·黄陂期中)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,在三角形ABC 中,已知∠ADE =∠B.1∠=∠2,FG AB ⊥于点G ,求证:CD AB.⊥证明:∵∠ADE =∠B (已知),∴DE ∥ ▲ ( ),∴∠1= ▲ ( ),又∵∠1=∠2(已知),∴ ▲ = ▲ (等量代换),∴CD ∥ ▲ ( ).∵FG AB ⊥(已知),∴∠FGB =90°(垂直的定义),即∠CDB =∠FGB =90°,∴CD AB ⊥(垂直的定义).21.(9分)如图所示,直线AB 与CD 交于点O ,MO AB ⊥,垂足为O ,ON 平分∠AOD .若∠COM=50°,求∠AON 的度数.22.(9分)(2022七下·静安期中)如图,已知∠ED B +B= 180°∠,∠1=2∠,GF AB ⊥,请填写CD AB ⊥的理由解:因为∠ED B +B= 180°∠( )所以 ▲ ∥ ▲ ()所以∠1=3∠( )因为 ▲ = ▲ ( 已 知 )所以∠2=3∠( 等量代换 )所以 ▲ ∥ ▲ ()所以∠FGB=CDB ∠( )因为GF AB ⊥(已 知 )所以∠FGB=90° ( )所以∠CDB =90°( )所以CD AB ⊥( 垂直的意义 )阅卷人四、综合题(共3题;共42分)得分23.(14分)(2016八上·高邮期末)如图,△ABC 中,AB=AC ,AD BC ⊥,CE AB ⊥,AE=CE .求证:(1)(7分)△AEF CEB ≌△;(2)(7分)AF=2CD .24.(14分)如图,直线AB 与CD 相交于点O ,射线OF ,OD 分别是∠AOE ,∠BOE 的角平分线.(1)(3分)请写出∠EOF 的所有余角: ;(2)(3分)请写出∠DOE 的所有补角: ;(3)(4分)若∠AOC= 16 FOB ∠,求∠COE 的度数;(4)(4分)试问射线OD 与OF 之间有什么特殊的位置关系?为什么?25.(14分)(2021九上·朝阳期末)对于平面直角坐标系xOy 中的图形M 和点P 给出如下定义:Q 为图形M 上任意一点,若P ,Q 两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P 为图形M 的“二分点”.已知点N (3,0),A (1,0),B (0,√3),C (√3,−1).(1)(8分)①在点A,B,C中,线段ON的“二分点”是 ;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)(6分)以点O为圆心,r为半径画圆,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.答案解析部分1.【答案】C【解析】【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故答案为:C.【分析】因为直线外一点到直线的距离,垂线段最短,所以PC的长不会大于3.2.【答案】D【解析】【分析】点P到直线m的距离即为点P到直线m的垂线段的长度,是点P到直线m上各点的连线段中,长度最小的线段.【解答】由图可知,PC长度为3cm,是最小的,则点P到直线m的距离小于或等于3cm,即不大于3cm.故选D.3.【答案】C【解析】【解答】解:现象1:可用“垂线段最短”进行解释;现象2:可用“两点之间,线段最短”进行解释;故答案为:C.【分析】根据垂线段最短解释现象1,根据两点之间,线段最短解释现象2.4.【答案】A【解析】【解答】解:过点A作AM⊥DE,∵AB=5米,AC=7米,∴根据垂线段最短得出AM<AB=5,故答案为:A【分析】根据点到直线的距离的定义和垂线段最短即可得到结论。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。

湘教版数学七年级下册_《第2课时垂线的性质》同步练习

湘教版数学七年级下册_《第2课时垂线的性质》同步练习

《垂线的性质》同步练习一、选择题(本大题5个小题,每小题6分,共30分)1.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.52.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是()A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线3.下列图形中,通过测量线段AB的长可以知道点A到直线l的距离的是()A.B.C.D.4.若P为直线l外一定点,A为直线l上一点,且PA=3,d为点P到直线l的距离,则d的取值范围为()A.0<d<3 B.0≤d<3 C.0<d≤3 D.0≤d≤35.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个二、填空题(本大题5个小题,每小题6分,共30分)6.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO ⊥BO),路线最短,工程造价最低,根据是.7.如图,想在河堤两岸搭建一座桥,图中四种搭建方式PA,PB,PC,PD中,最短的是.8.如图,△ABC中,CD⊥AC,CE⊥AB,垂足分别是C、E,那么点C到线段AB的距离是线段的长度.9.如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是cm,点A到BC的距离是cm,C到AB的距离是cm.10.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是.三、综合题(第11题12分,第12题12分,第13题16分,共40分)11.如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.12.已知:点P是直线MN外一点,点A、B、C是直线MN上三点,分别连接PA、PB、PC.(1)通过测量的方法,比较PA、PB、PC的大小,直接用“>”连接;(2)在直线MN上能否找到一点D,使PD的长度最短?如果有,请在图中作出线段PD,并说明它的理论依据;如果没有,请说明理由.13.如图,P是∠AOB的边OB上一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C;(3)点O到直线PC的距离是线段的长度;(4)比较PH与CO的大小,并说明理由.试题解析一.选择题1.A【分析】根据垂线段的性质,可得答案.【解答】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点评】本题考查了垂线短的性质,利用垂线段的性质是解题关键.2.C【分析】根据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的理由是根据垂线段最短.故选:C.【点评】此题主要考查了垂线段的性质,关键是掌握性质定理.3.C【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的概念判断.【解答】解:表示点A到直线l的距离的是C选项图形.故选:C.【点评】本题考查了点到直线的距离的概念,是基础题,熟记概念并准确识图是解题的关键.4.C【分析】根据垂线段最短即可求出答案.【解答】解:由垂线段最短可知:0<d≤3,当d=3时此时PA⊥l故选:C.【点评】本题考查点的直线的距离,解题的关键是熟练运用垂线段最短,本题属于基础题型.5.C【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.【解答】解:由∠BAC=90°,AD⊥BC,得AB⊥AC,故①正确;AD与AC不垂直,故②错误;点C到AB的垂线段是线段AC的长,故③错误;点A到BC的距离是线段AD的长度,故④正确;线段AB的长度是点B到AC的距离,故⑤正确;AD+BD>AB,故⑥正确;故选:C.【点评】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.二.填空题6.垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为:垂线段最短.【点评】此题主要考查垂线段最短在实际生活中的应用.7.PC.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短,据此作答.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PC⊥AD,∴PC最短.故答案为:PC.【点评】此题主要考查了垂线段最短,掌握从直线外一点到这条直线上各点所连的线段中,垂线段最短是解题关键.8.CE.【分析】根据点到直线的距离的定义,找出点C到AB的垂线段即可.【解答】解:如图,∵CE⊥AB,垂足是E,∴点C到线段AB的距离是线段CE的长度.故答案为:CE.【点评】本题考查了点到直线的距离的定义,点到直线的距离就是这个点到这条直线的垂线段的长度.9. 4.8cm.【分析】过点C作CD⊥AB于点D,则线段BC的长即为点B到AC的距离,再根据三角形的面积公式求出CD的长;再根据点到直线距离的定义即可得出结论.【解答】解:如图,过点C作CD⊥AB于点D,则线段CD的长即为点B到AC的距离,∵BC⊥AC,CB=8cm,AB=10cm,AC=6cm,∴CD=6×8÷10=4.8cm,点A到BC的距离是6cm,点B到AC的距离是8cm.故答案为:8,6、4.8.【点评】本题考查了点到直线的距离,是基础题,熟记点到直线的距离的定义是解题的关键.10.8cm.【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:∵CD⊥AB,点E、F在AB上,CD=8cm,∴点C到AB的距离是CD=8cm,故答案为:8cm.【点评】本题考查了点到直线的距离,利用点到直线的距离是垂线段的长度是解题关键.三.综合题11.【分析】根据点到直线的垂线段距离最短解答.【解答】解:如图,过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.13.【分析】(1)(2)根据题意画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PH、OC的大小关系.【解答】解:(1)作图,(2)作图,(3)OP,故答案为:OP;(4)PH<CO,∵垂线段最短,∴PH<PO,PO<OC,∴PH<CO.【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.。

初中数学同步训练必刷题(人教版七年级下册5

初中数学同步训练必刷题(人教版七年级下册5

初中数学同步训练必刷题(人教版七年级下册5.1.2 垂线)一、单选题(每题3分,共30分)1.(2022七下·宜春期末)点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cm C.小于3cm D.不大于3cm【答案】D【知识点】垂线段最短【解析】【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于3cm.故答案为:D.【分析】利用垂线段最短的性质可得答案。

2.(2022七下·江源期末)下列图形中,线段AD的长表示点A到直线BC的距离的是()A.B.C.D.【答案】B【知识点】点到直线的距离【解析】【解答】解:A.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;B.AD⊥BC于D,则线段AD的长表示点A到直线BC的距离,符合题意;C.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;D.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意.故答案为:B.【分析】根据点到直线的距离,对每个图形一一判断即可。

3.(2022七下·辛集期末)如图,河道l的同侧有M、N两地,现要铺设一条引水管道,从P地把河水引向M、N两地.下列四种方案中,最节省材料的是()A.B.C.D.【答案】D【知识点】线段的性质:两点之间线段最短;垂线段最短【解析】【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故答案为:D.【分析】利用垂线段最短,以及两点之间线段最短求解即可。

4.(2022七下·崇川期末)已知三条射线OA,OB,OC,OA⊥OC,⊥AOB=60°,则⊥BOC等于()A.150°B.30°C.40°或140°D.30°或150°【答案】D【知识点】角的运算;垂线【解析】【解答】解:分两种情况讨论,如图1所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC−∠AOB=90°−60°=30°;如图2所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC+∠AOB=90°+60°=150°.综上所述,⊥BOC等于30°或150°.故答案为:D.【分析】分OB在⊥AOC内部和外部两种情况讨论,结合已知的角度,根据角的和差关系求⊥BOC的度数即可.5.(2022七下·迁安期末)如图,在测量跳远成绩的示意图中,直线l是起跳线,则需要测量的线段是()A.AB B.AC C.DC D.BC【答案】C【知识点】垂线段最短【解析】【解答】解:根据垂线段最短可得,需要测量的线段是DC;故答案为:C.【分析】根据垂线段最短可得答案。

人教版数学七年级下册第五章《垂线》真题同步测试3含解析)

人教版数学七年级下册第五章《垂线》真题同步测试3含解析)

人教版数学七年级下册第五章《垂线》真题同步测试3(含解析)一、单选题(共10题;共40分)1.(4分)(2019七下·梁园期末)平面直角坐标系中,点A (﹣3,2),B (1,4),经过点A 的直线L x ∥轴,点C 直线L 上的一个动点,则线段BC 的长度最小时点C 的坐标为( ) A .(﹣1,4)B .(1,0)C .(1,2)D .(4,2)2.(4分)如图,AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )A .是同位角且相等B .不是同位角但相等C .是同位角但不等D .不是同位角也不等3.(4分)给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )A .能B .不能C .有的能有的不能D .无法确定4.(4分)(2021七上·普陀期末)如图, OA ⊥OC ,OB ⊥OD ,4位同学观察图形后各自观点如下.甲: ∠AOB =∠COD ;乙: ∠BOC +∠AOD =180° ;丙: ∠AOB +∠COD =90° ;丁:图中小于平角的角有6个;其中正确的结论是( )A .甲、乙、丙B .甲、乙、丁C .乙、丙、丁D .甲、丙、丁5.(4分)(2019八上·海淀月考)如图,△ABC 中,∠C =90°,∠A =30°,AB =4,点P 是AC 边上的动点,则BP 的最小值为( )A .1B .2C .3D .46.(4分)(2021七下·五常期中)下列命题中:①无限小数都是无理数;②内错角相等,两直线平行;③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离④平方根与立方根相等的数只有0;⑤在一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.其中正确的个数是( )A .2个B .3个C .4个D .5个7.(4分)如图,在四边形ABCD 中,∠BAD=ADC=90°∠,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为( )A .2B .3C .4D .58.(4分)下列说法错误的个数是( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a b ∥,b c ∥,则a c ∥.A .、1个B .2个C .3个D .4个9.(4分)(2018·宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .10.(4分)(2016七下·蒙阴期中)如图,AB CD ∥,CD EF ⊥,若∠1=125°,则∠2=( )A .25°B .35°C .55°D .65°二、填空题(共8题;共32分)11.(4分)(2020七下·天台月考)如图,在河的两岸搭建一座桥,搭建方式最短的是PM ,理由是12.(4分)(2023七下·龙江月考)如图所示,直线AB 、CD 相关于点O ,OE ⊥AB 于O ,∠EOD =40°,则∠AOC =¿ .13.(4分)(2023九上·古蔺期末)如图⊙A 的圆心A 的坐标是(−2,0),在直角坐标系中,⊙A 半径为2,P 为直线y =−x +4上的动点过P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .14.(4分)(2018八上·许昌期末)如图,在△ABC中,AB = AC = 8,S ABC△= 16,点P为角平分线⊥,连接PB,则PB+PE的最小值为 .AD上任意一点,PE AB15.(4分)(2022八上·青田期中)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 .16.(4分)(2019七下·上杭期末)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则正确的图形可以是如图中的图 (填甲或乙),你选择的依据是 (写出你学过的一条公理).17.(4分)(2020·上城模拟)如图,在锐角△ABC中,AB=5 √2,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是 .18.(4分)(2021八下·拱墅期中)在Rt ABC △中,∠C =90°,AC =3,BC =4,点N 是BC 边上一点,点M 为AB 边上的动点,点D 、E 分别为CN ,MN 的中点,则DE 的最小值是 .三、解答题(共4题;共36分)19.(9分)(2020七下·北海期末)如图,直线AB ,CD 相交于点O.射线OF CD ⊥于点O ,∠BOF=30°,求∠BOD ,∠AOD 的度数.20.(9分)(2023七下·宣汉月考)如图,AO CO ⊥,BO DO ⊥,∠BOC=43°,求∠AOD 和∠AOB 的度数.21.(9分)如图,AB 和CD 交于O 点,OD 平分∠BOF ,OE CD ⊥于点O ,∠AOC=40°,求∠EOF 的度数.22.(9分)(2019七下·河池期中)如图所示,直线 AB , EF 交于点 O , OD 平分 ∠BOF , CO ⊥EF 于点 O , ∠AOE =70° ,求 ∠COD 的度数四、综合题(共3题;共42分)23.(14分)(2019七下·江门期末)画图题,如图,已知三角形 ABC,AB=5(1)(7分)过点 C 作 CD⊥AB ,点 D 为垂足(2)(7分)在(1)的条件下,若 DB=2 ,求点A到CD的距离24.(14分)(2023七下·乌鲁木齐期中)如图,直线AB,CD相交于点O,EO⊥CD于点O.(1)(7分)若∠AOC=36°,求∠BOE的度数;(2)(7分)若∠BOD:∠BOC=1:5,求∠AOE的度数.⊥.25.(14分)(2020七上·苏州期末)如图所示,直线AB、CD相交于点O,OM AB(1)(7分)若∠1=∠2,判断ON与CD的位置关系,并说明理由;1(2)(7分)若∠1=5 ∠BOC,求∠MOD的度数.答案解析部分1.【答案】C【解析】【解答】解:如图,根据垂线段最短可知,BC AC ⊥时BC 最短.∵A (﹣3,2),B (1,4),AC x ∥轴,∴BC =2,∴C (1,2),故答案为:C.【分析】如图,根据垂线段最短可知,BC AC ⊥时BC 最短;2.【答案】B【解析】【分析】由AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,即可判断∠ABE 与∠DCF 的大小关系,根据同位角的特征即可判断∠ABE 与∠DCF 的位置关系,从而得到结论。

华东师大版七年级数学上《垂线》同步练习含答案

华东师大版七年级数学上《垂线》同步练习含答案

5.1 2. 垂线一、选择题1.在同一平面内,经过一点能作几条直线与已知直线垂直()A.0条B.1条C.2条D.无数条2.如图K-47-1,OA⊥OB,若∠1=35°,则∠2的度数是()图K-47-1A.35°B.45°C.55°D.70°3.下列说法中错误的是()A.两直线相交,若有一组邻补角相等,则这两条直线垂直B.两直线相交,若有两个角相等,则这两条直线垂直C.两直线相交,若有一组对顶角互补,则这两条直线垂直D.两直线相交,若有三个角相等,则这两条直线垂直4.如图K-47-2,直线l1与l2相交于点O,OM⊥l1.若∠α=44°,则∠β等于()图K-47-2A.56°B.46°C.45°D.44°5.如图K-47-3,已知直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF∶∠BOF=2∶3,则∠AOE的度数为()图K-47-3A.36°B.54° C. 48°D.42°6.如图K-47-4所示,P为直线l外一点,A,B,C三点均在直线l上,并且PB⊥l,有下列说法:①P A,PB,PC三条线段中,PB最短;②线段PB的长度叫做点P到直线l的距离;③线段AB的长度是点A到PB的距离;④线段AC的长度是点A到PC的距离.图K-47-4其中正确的有()A.1个B.2个C.3个D.4个7.P为直线m外一点,A,B,C为直线m上三点,P A=4 cm,PB=5 cm,PC=2 cm,则点P到直线m 的距离()A.等于4 cm B.等于2 cmC.小于2 cm D.不大于2 cm二、填空题8.如图K-47-5所示,OA⊥OC,∠1=∠2,则OB与OD的位置关系是____________.图K-47-59.如图K-47-6,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方向是__________________.图K-47-610.如图K-47-7,AC⊥BC,CD⊥AB,垂足分别是C,D.(1)点C到直线AB的距离是线段________的长度;(2)点B到直线AC的距离是线段________的长度.图K-47-711.如图K-47-8,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩实际应该为________.图K-47-8三、解答题12.如图K-47-9所示,在这些图形中,分别过点C画直线AB的垂线,垂足为O.图K-47-913.如图K-47-10,已知AO⊥CO,∠COD=40°,∠BOC=∠AOD.试说明OB⊥OD.请完善解答过程,并在括号内填上相应的依据:图K-47-10解:因为AO⊥CO,所以∠AOC=__________(________________________).又因为∠COD=40°(已知),所以∠AOD=________.又因为∠BOC=∠AOD(已知),所以∠BOC=________(__________),所以∠BOD=________,所以________⊥________(____________).14.(1)如图K-47-11甲,小刚准备从C处牵牛到河边AB处饮水,请用三角尺作出小刚的最短路线(不考虑其他因素),并说明理由;(2)如图K-47-11乙,若小刚从C处牵牛到河边AB处饮水,并且必须先到河边D处观察河的水质情况,请作出小刚行走的最短路线,并说明理由.甲乙图K-47-1115.如图K -47-12,直线AB ,CD 相交于点O ,OM ⊥AB ,NO ⊥CD . (1)若∠1=∠2,求∠AOD 的度数;(2)若∠1=14∠BOC ,求∠2和∠MOD 的度数.图K -47-1216.如图K -47-13,射线OC 的端点O 在直线AB 上,OE 平分∠COB ,OD 平分∠AOC ,DO 是否垂直于OE ?请说明理由.图K -47-131.B 2.C 3.B 4.B 5.B 6.C7. D 8.OB ⊥OD 9.北偏西60° 10.(1)CD (2)BC11.4.15米 12.解:如图所示.13. 90° 垂直的定义 50° 50° 等量代换 90° OB OD 垂直的定义14.解:(1)过点C 作AB 的垂线段.理由:直线外一点与直线上各点连结的所有线段中,垂线段最短(画图略).(2)连结CD ,过点D 作AB 的垂线段.理由:两点之间,线段最短;直线外一点与直线上各点连结的所有线段中,垂线段最短(画图略).15.解:∵OM ⊥AB ,NO ⊥CD ,∴∠BOM =∠AOM =∠NOD =∠CON =90°. (1)∵∠1=∠2,∴∠1=∠2=45°,∴∠AOD =180°-∠2=180°-45°=135°, 即∠AOD 的度数是135°.(2)∵∠1+∠BOM =∠BOC ,∠1=14∠BOC ,∴∠1=13∠BOM =30°,∴∠2=90°-∠1=60°.∵∠1+∠MOD =∠COD =180°, ∴∠MOD =180°-∠1=150°. 16.解:DO ⊥OE.理由: 因为OE 平分∠COB , 所以∠COE =12∠COB.因为OD 平分∠AOC , 所以∠DOC =12∠AOC ,所以∠DOE =∠COE +∠DOC =12∠COB +12∠AOC =12(∠COB +∠AOC)=12∠AOB.因为∠AOB 是平角,所以∠DOE =12×180°=90°,所以DO ⊥OE.。

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案一、选择题1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个3.如图所示,直线EO⊥CD,垂足为点O,AB平分⊥EOD,则⊥BOD的度数为()A.120°B.130°C.135°D.1404.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①⊥AOB=⊥COD;②⊥AOB+⊥COD=90°;③⊥BOC+⊥AOD=180°;④⊥AOC-⊥COD=⊥BOC.A.①②③B.①②④C.①③④D.②③④6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若⊥1=26°,则⊥2的度数是(⊥).A.26°B.64°C.54°D.以上答案都不对7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.如图所示,⊥BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个9.如图,直线AB,CD相交于点O,射线OM平分⊥AOC,ON⊥OM,若⊥AOM=35°,则⊥CON的度数为()A.35°B.45°C.55°D.65°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C⊥为顶点的三角形的面积为1个平方单位,则C 点的个数为().A.3个B.4个C.5个D.6个11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短16.当两条直线相交所成的四个角中,叫做这两条直线互相垂直,其中的一条直线叫,它们的交点叫.17.过直线上或直线外一点,与已知直线垂直.18.如图所示,若AB⊥CD于O,则⊥AOD=;若⊥BOD=90°,则AB CD.19.如图所示,已知AO⊥BC于O,那么⊥1与⊥2.20.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为.21.如图,已知A,O,E三点在一条直线上,OB平分⊥AOC,⊥AOB+⊥DOE=90°,试问:⊥COD 与⊥DOE之间有怎样的关系?说明理由.-com22.如图,⊥1=30°,AB⊥CD,垂足为O,EF经过点O.求⊥2、⊥3的度数.23.如图,直线AB与CD相交于点O,OP是⊥BOC的平分线,OE⊥AB,OF⊥CD(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果⊥AOD=40°,则①⊥BOC=;②OP是⊥BOC的平分线,所以⊥COP=度;③求⊥BOF的度数.24.如图,已知⊥AOB,OE平分⊥AOC,OF平分⊥BOC.(1)若⊥AOB是直角,⊥BOC=60°,求⊥EOF的度数;(2)猜想⊥EOF与⊥AOB的数量关系;(3)若⊥AOB+⊥EOF=156°,则⊥EOF是多少度?25.直线AB、CD相交于点O.OE、OF分别是⊥AOC、⊥BOD的平分线.(1)画出这个图形.(2)射线OE、OF在同一条直线上吗?(3)画⊥AOD的平分线OG.OE与OG有什么位置关系?并说明理由.参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】C12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】有一个直角;另一条直线的垂线;垂足17.【答案】有且只有一条直线18.【答案】90°;⊥19.【答案】互余20.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直21.【答案】相等,理由:⊥AOB+⊥DOE=90°,且A、O、E三点共线,所以⊥BOC+⊥COD=90°.因为OB平分⊥AOC,所以⊥AOB=⊥BOC,通过等量代换,可以得知⊥COD与⊥DOE相等.22.【答案】∵⊥1与⊥3是对顶角∴⊥1=⊥3,因为⊥1=30°∴⊥3=30°.∵AB⊥CD∴⊥BOD=90°∵⊥2+⊥3=⊥BOD∴⊥2=90°-⊥3=60°.23.【答案】(1)⊥AOD=⊥BOC;⊥BOP=⊥COP(2)40°;20°;50°24.【答案】(1)∵⊥AOC=⊥AOB+⊥BOC,∴⊥AOC=90°+60°=150°.∵OE平分⊥AOC,∴⊥EOC =150°÷2=75°.∵OF平分⊥BOC,∴⊥COF=60°÷2=30°.∵⊥EOC=⊥EOF+⊥COF,∴⊥EOF=75°-30°=45°.(2)∵OE平分⊥AOC,OF平分⊥BOC.∴⊥COE=⊥AOC,⊥COF=⊥BOC∵⊥AOB=⊥AOC-⊥BOC∴⊥EOF=⊥COE-⊥COF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB(3)∵OE平分⊥AOC,OF平分⊥BOC,∴⊥COE=⊥AOC,⊥COF=⊥BOC∴⊥EOF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB.又∵⊥AOB+⊥EOF=156°∴⊥EOF=52°.25.【答案】(1)如图:(2)射线OE、射线OF在同一条直线上.理由如下:∵直线AB、CD相交于点O,∴⊥AOC=⊥BOD,⊥AOC+⊥AOD=180°,∵OE、OF分别是⊥AOC、⊥BOD的平分线,∴⊥AOE=12⊥AOC,⊥DOF=12⊥BOD ∴⊥AOE=⊥DOF,∴⊥AOE+⊥DOF=⊥AOC,∴⊥AOE+⊥DOF+⊥AOD=180°,∴射线OE、射线OF在同一条直线上;(3)如图OE⊥OG.理由如下:∵OG平分⊥AOD,∴⊥AOG=⊥DOG,∵⊥AOE=⊥DOF,⊥AOE+⊥DOF+⊥AOD=180°,∴⊥AOE+⊥AOG=90°,∴OG⊥OE.。

垂线的专项练习30题有答案ok

垂线的专项练习30题有答案ok

垂线专项练习30题(有答案)1.如图,①过点Q作QD⊥AB,垂足为D,②过点P作PE⊥AB,垂足为E,③过点Q作QF⊥AC,垂足为F,④连P、Q两点,⑤P、Q两点间的距离是线段_________的长度,⑥点Q到直线AB的距离是线段_________的长度,⑦点Q到直线AC的距离是线段_________的长度,⑧点P到直线AB的距离是线段_________的长度.2.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到_________的距离,_________是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)3.(1)画出表示点B到直线CD的距离的线段,结论:_________(2)A、C两点之间的距离为线段_________的长;(3)画出表示两条平行线AD、BC之间的距离的线段,结论:_________.4.如图,DE∥BC,AF⊥DE于G,DH⊥BC于H,且AG=4cm,DH=4cm,试求点A到BC的距离.5.如图,过点A作BC的垂线,并指出那条线的长度是表示点A到BC的距离?6.如图,∠C=90°,AB=5,AC=4,BC=3,则点A到直线BC的距离为_________,点B到直线AC的距离为_________,A、B间的距离为_________,AC+BC>AB,其依据是_________,AB>AC,其依据是_________.7.如图所示,村庄A、村庄B分别要从河流L引水入庄,各需修筑一水渠,请你画出修筑水渠的路线图.8.如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.9.如图,王林和李明同学骑自行车同时从各自的家中出发去学校.如果他们的骑车速度相同,那么谁先到达学校?为什么?10.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)11.如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.12.如图,计划在河边建一水厂,可过C点引CD⊥AB于D,在D点建水厂,可使水厂到村庄C的路程最短,这种设计的依据是_________.13.如图,点P处有一个工厂,现拟修一条通往大路口a的公路,应如何修才能使所修之路最短,试说明理由.14.如图,直线AD和BE相交于点O,∠COD=90°,∠COE=60°,求∠AOB的度数.15.如图,OF平分∠AOC,OE⊥OF,AB与CD相交于O,∠BOD=130°,求∠EOB的度数.16.如图所示,已知∠AOB=∠COD=90°,(1)若∠BOC=45°,求∠AOC与∠BOD的度数;(2)若∠BOC=25°,求∠AOC与∠BOD的度数;(3)由(1)、(2)你能得出什么结论?说说其中的道理.17.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM的度数.18.如图,直线AB与CD相交于点O,OP是∠AOD的平分线,OF⊥CD,如果∠BOD=30°.求:(1)∠AOF的度数;(2)∠POF的度数.19.如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=15°,求∠BOD和∠AOC的度数.20.已知:如图,直线AB、CD、EF相交于点0,∠1=20°,∠BOC=90°.求∠2的度数.21.说出日常生活现象中的数学原理:日常生活现象相应数学原理有人和你打招呼,你笔直向他走过去两点之间直线段最短要用两个钉子把毛巾架安装在墙上桥建造的方向通常是垂直于河两岸人去河边打水总是垂直于河边方向走22.如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到_________的距离,线段_________是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)24.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.25.如图,已知OA⊥OB,∠1与∠2互补,求证:OC⊥OD.26.你能用折纸的方法过一点作已知直线的垂线吗?27.先拿一张长方形的白纸,按如图所示的方式将∠A、∠E折叠,使A′B与BE′重合,则BC与BD有什么关系?说明理由.28.分别过点P作线段MN的垂线.29.如图,∠AOE与∠BOF互余,那么AO与BO是否垂直?试说明理由.30.对于平面上垂直的两条直线a和b,称(a,b)为一个“垂直对”,而a和b都是属于这个“垂直对”的直线.那么当平面上有二十条直线时最多可组成多少个“垂直对”?参考答案:1.①②③④作图如图所示:⑤根据两点之间距离即可得出P、Q两点间的距离是线段PQ的长度,⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度,⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度,⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度,故答案为PQ,QD,QF,PE.2.(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC3.(1)过B点作DC的垂线,交CD的延长线于E点,如,则线段BE的长为点B到直线CD的距离;所以过直线外一点作直线的垂线,垂线段长就是这个点到直线的距离;(2)A、C两点之间的距离为线段AC的长;(3)过C点作AD的垂线,垂足为F点,如图,则线段CF的长即为两条平行线AD、BC之间的距离.故答案为过直线外一点作直线的垂线,垂线段的长就是这个点到直线的距离;AC;两条平行线之间的距离就是一条直线上任意一点到另一条直线的距离.4.∵AF⊥DE,DE∥BC,∴AF⊥BC,∵DE∥BC,∴四边形DHFG是平行四边形,∴DH=GF=4cm,∴AF=AG+GF=4cm+4cm=8cm,即点A到BC的距离是8cm.5.过点A作BC的垂线,交CB的延长线于E,根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离.可得AE的长度即为点A到BC的距离.答:AE的长度即为点A到BC的距离.6.∵∠C=90°,AB=5,AC=4,BC=3,∴点A到直线BC的距离为4,点B到直线AC的距离为3,A、B间的距离为5,AC+BC>AB,其依据是三角形任意两边之和大于第三边长度,AB>AC,其依据是直角三角形中斜边长度大于直角边长度.7.如图所示,AE、BF就是村庄A、村庄B修筑水渠的路线图.8.如图,过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.9.根据垂线段定理,可知王林先到达学校.因为从他家到学校是垂线段,路程最短.10.如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.11.如图所示(1)沿AB走,两点之间线段最短;(2)沿BD走,垂线段最短;(3)沿AC走,垂线段最短.12.∵CD⊥AB,∴线段CD的长度就是点C到直线AB的最短距离.故答案为:垂线段最短.13.如图,过点P作PD⊥a于D,则由点P沿着PD修路,能使所修之路最短.14.∵已知∠COD=90°,∠COE=60°,∴∠DOE=90°﹣60°=30°,又∵∠AOB与∠DOE是对顶角,∴∠AOB=∠DOE=30°.15.∵∠AOC=∠BOD,∠BOD=130°,∴∠AOC=130°.∵OF平分∠AOC,∴∠AOF=∠FOC=65°.∵OE⊥OF,∴∠EOF=90°.∴∠BOE=180°﹣∠AOF﹣∠EOF=180°﹣65°﹣90°=25°16.(1)∵∠AOB=∠COD=90°,且∠BOC=45°,∴∠AOC=∠AOB﹣∠BOC=45°,∠BOD=∠COD﹣∠BOC=45°;(2)∵∠AOB=∠COD=90°,且∠BOC=25°,∴∠AOC=∠AOB﹣∠BOC=65°,∠BOD=∠COD﹣∠BOC=65°;(3)∠AOC=∠BOD,等角的余角相等.17.∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.18.(1)∵∠AOC=∠BOD=30°,OF⊥CD,∴∠AOF=90°﹣30°=60°;(2)∵OP是∠AOD的平分线,∴∠AOP=∠AOP=(180°﹣∠BOD)=(180°﹣30°)=75°,∴∠POF=∠AOP﹣∠AOF=75°﹣60°=15°19.∵OE为∠BOD的平分线,∴∠BOE=∠BOC,即∠BOD=2∠BOE=2×15°=30°;∵OA丄OB,OC丄OD,∴∠AOB=∠COD=90°,∴∠AOC=360°﹣90°﹣90°﹣30°=150°.20.∵∠1=20°,∠BOC=90°,∴∠BOE=∠BOC﹣∠1=90°﹣20°=70°,∴∠2=∠BOE=70°.21.这几种实际问题用数学原理解释分别是:两点确定一条直线;夹在两平行线间的线段中,垂线段最短;连接直线外一点与直线上各点的所有线段中,垂线段最短.22.连接AB,作BC⊥MN,C是垂足,线段AB和BC 就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.23.(1)如图(2)如图,(3)直线0A、PC的长.(4)PH<PC<OC.24.相互垂直.理由:∵GF⊥AB,∴∠2+∠4=90°,而∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠1+∠2=180°,∵OA⊥OB,∴∠AOB=90°,∴∠COD=360°﹣(∠1+∠2)﹣∠AOB=360°﹣180°﹣90°=90°,∴OC⊥OD26.先沿已知直线折一下,再在已知点处对折即可.27.垂直;根据题意可得∠ABC=∠A′BC,∠FBE=∠FBE′,∵∠ABC+∠A′BC+∠E′BF+∠FBE=180°,∴∠A′BC+∠E′BF=90°,∴BC⊥FB28.①延长NM,过点P作NM所在直线的垂线.②延长NM,过点P作NM所在直线的垂线.③过点P作NM所在直线的垂线.④延长NM,过点P作NM所在直线的垂线.29.AO与BO垂直.理由如下:∵∠AOE与∠BOF互余,∴∠AOE+∠BOF=90°,又∵∠AOE+∠AOB+∠BOF=180°,∴∠AOB=90°,∴AO⊥BO,即AO与BO垂直30.当二十条直线有10条互相平行;另10条不仅互相平行而且与前10条垂直时垂直对最多.答案是100对.。

七年级数学下册垂线练习题

七年级数学下册垂线练习题

七年级数学下册垂线练习题七年级数学下册《垂线》练习1一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBAGOFEDCBA(1) (2) (3) (4)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个 D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,• ∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.四、提高训练:(共15分)如图5所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.OD CBANM B A(5) (6) (7) 五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.六、中考题与竞赛题:(共20分)1、如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.2、如图,完成下列画图,并填空:(1)过A 作直线a 的垂线交b 与B ; (2)过A 作直线b 的垂线,垂足为C ; (3)过A 作AD ⊥直线c 于D ; (4)作出线段AB 的垂直平分线MN ;(5)量出点A 到直线b 的距离是 cm ,点B 到直线MN 的距离是 cm(精确到0.1cm)。

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,AB ⊥CD ,垂足为O ,EF 是过点O 的一条直线,已知⊥1=40°,则⊥2=( )A .40°B .45°C .50°D .60°2.入射光线和平面镜的夹角为40︒,转动平面镜,使入射角减小10︒,反射光线与入射光线的夹角和原来相比较将( ) A .减小40︒B .减小10︒C .减小20︒D .不变3.如图所示,已知:,1:23:2CD AB ⊥∠∠=,则FDC ∠=( )A .120︒B .126︒C .135︒D .144︒4.过一条线段外一点,作这条线段的垂线,垂足在( ) A .这条线段上 B .这条线段的端点处 C .这条线段的延长线上D .以上都有可能5.数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段,正确的是( )A .AB .BC .CD .D6.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A.120°B.60°C.90°D.150°7.如图,AB⊥AC于A,AD⊥BC于D,DE⊥AC于E,下列说法错误的是()A.点A到BC的距离是AD的长度B.点B到AD的距离是BD的长度C.点C到AD的距离是DE的长度D.点B到AC的距离是AB的长度DE=,点F是射线OB上的任意一点,8.如图,OD平分AOB∠,DE AO⊥于点E,5则DF的长度不可能是()A.4B.5C.6D.79.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度10.如图,在直角三角形ABC中,⊥BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离 B .线段AD 的长度表示点A 到BC 的距离 C .线段CD 的长度表示点C 到AD 的距离 D .线段BD 的长度表示点A 到BD 的距离 11.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线垂直B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .互相垂直的两条线段一定相交D .直线外一点与直线上各点连接的所有线段中,垂线段最短12.平面直角坐标系中,点()1,2A -,()2,1B ,经过点A 的直线a x ∥轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( ). A .()1,1- B .()1,2-C .()2,1D .()2,2二、填空题13.如图,当直线AB 与CD 相交于O 点,⊥AOD =______时,那么AB 与CD 垂直,记作:AB ______CD . 符号语言:因为⊥AOD =90°(已知) , 所以AB ⊥CD ( ) .14.如图,直线AB 和CD 交于O 点,OD 平分⊥BOF ,OE ⊥CD 于点O ,⊥AOC =40︒,则⊥EOF =_______.15.如图, 直线AB , CD , EF 相交于点O , 若:1:2AOE COE ∠∠=, AB CD ⊥, 则COF ∠=______度.16.如图,已知CF AB ⊥于C ,DC CE ⊥,则ACD ∠的余角是__.17.如图,直线AB 、CD 相交于点O ,⊥BOC =α,点F 在直线AB 上且在点O 的右侧,点E 在射线OC 上,连接EF ,直线EM 、FN 交于点G .若⊥MEF =n ⊥CEF ,⊥NFE =(1﹣2n )⊥AFE ,且⊥EGF 的度数与⊥AFE 的度数无关,则⊥EGF=__.(用含有α的代数式表示)18.如图所示,⊥AOC 与⊥BOD 都是直角,且⊥AOB :⊥AOD =2:11,则⊥AOB =_______.三、解答题19.如图,已知⊥AOB =20°.(1)若射线OC ⊥OA ,射线OD ⊥OB ,请你在图中画出所有符合要求的图形; (2)请根据(1)所画出的图形,求⊥COD 的度数.20.如图1,1A BC ∠、1ACM ∠的角平分线2BA 、2CA 相交于点2A ,(1)如果164A ∠=︒,那么2A ∠的度数是多少,试说明理由并完成填空; 解:(1)结论:2∠=A ______度.说理如下:因为2BA 、2CA 平分1A BC ∠和1ACM ∠(已知), 所以121A BC ∠=∠,122A CM ∠=∠(角平分线的意义). 因为111ACM A BC A ∠=∠+∠,221A ∠=∠+∠( ) (完成以下说理过程)(2)如图2,164A ∠=︒,如果2A BC ∠、2A CM ∠的角平分线3BA 、3CA 相交于点3A ,请直接写出3A ∠度数;(3)如图2,重复上述过程,1n A BC -∠、1n A CM -∠的角平分线n BA 、n CA 相交于点n A 得到n A ∠,设1A θ∠=︒,请用θ表示n A ∠的度数(直接写出答案)21.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .(1)求证:2BAC B E ∠=∠+∠.(2)若CA BE ⊥,30ECD ACB ∠-∠=︒时,求E ∠的度数.22.直线AB ,CD 相交于点O ,OF CD ⊥于点O ,作射线OE ,且OC 在AOE ∠的内部.(1)当点E ,F 在直线AB 的同侧;⊥如图1,若15BOD ∠=︒,120BOE ∠=︒,求EOF ∠的度数;⊥如图2,若OF 平分∠BOE ,请判断OC 是否平分AOE ∠,并说明理由; (2)若2AOF COE ∠=∠,请直接写出∠BOE 与AOC ∠之间的数量关系.23.如图所示,一辆汽车在直线形公路AB 上由A 向B 行驶,M 、N 分别是位于公路两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中的公路AB 上分别画出点P 和点Q 的位置(保留作图痕迹). (2)当汽车从A 出发向B 行驶时,在公路AB 的哪一段路上距离M 、N 两村庄都越来越近?在哪一段路上距离村庄N 越来越近,而离村庄M 越来越远?(分别用文字表述你的结论,不必说明)24.如图,所有小正方形的边长都是1个单位,A 、B 、C 均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ; (2)过点B 画线段BC 的垂线,垂足为B ; (3)过点C 画线段AB 的垂线,垂足为E ;(4)线段CE 的长度是点C 到直线________的距离;(5)线段CA 、CE 的大小关系是_________(用“<”连接),理由是__________________.参考答案:1.C【分析】根据垂直得到⊥BOD =90°,然后平角的性质求解即可. 【详解】⊥AB ⊥CD , ⊥⊥BOD =90°,⊥⊥1+⊥BOD +⊥2=180°,⊥1=40°, ⊥40°+90°+⊥2=180°, ⊥⊥2=50°, 故选:C .【点睛】此题考查了直角和平角的性质,解题的关键是熟练掌握直角和平角的性质. 2.C【分析】要知道入射角和反射角的概念:入射光线与法线的夹角,反射角是反射光线与法线的夹角,在光反射时,反射角等于入射角.【详解】解:入射光线与平面镜的夹角是40︒,所以入射角为904050︒-︒=︒.根据光的反射定律,反射角等于入射角,反射角也为50︒,所以入射光线与反射光线的夹角是100︒.入射角减小10︒,变为501040︒-︒=︒,所以反射角也变为40︒,此时入射光线与法线的夹角为80︒.则反射光线与入射光线间的夹角和原来比较将减小20︒. 故选:C .【点睛】本题考查了有关角的计算,首先要熟记光的反射定律的内容,搞清反射角与入射角的关系,特别要掌握反射角与入射角的概念,它们都是反射光线和入射光线与法线的夹角. 3.B【分析】根据CD AB ⊥,可得⊥ADC =⊥BDC =90°可得⊥1+⊥2=90°,由1:23:2∠∠=,可求⊥1=54︒,⊥2=36︒,由对顶角性质可得⊥ADF =⊥2=36°,利用角的和可得⊥FDC =⊥ADC +⊥ADF =126°. 【详解】解:⊥CD AB ⊥ ⊥⊥ADC =⊥BDC =90° ⊥⊥1+⊥2=90°, ⊥1:23:2∠∠=,设⊥1=3x ︒,⊥2=2x ︒, ⊥3x +2x =90, 解得18x =,⊥⊥1=54︒,⊥2=36︒, ⊥⊥ADF =⊥2=36°,⊥⊥FDC =⊥ADC +⊥ADF =90°+36°=126°. 故选:B .【点睛】本题考查垂直定义,角的和与比例,掌握垂直定义,根据角的和与比例建构方程,会解方程是解题关键. 4.D【分析】画一条线段的垂线,就是画线段所在的直线的垂线,进而得出答案.【详解】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上,可能在端点处,也可能在线段的延长线上. 故选:D .【点睛】本题考查线段垂线的画法.正确把握垂线的定义是解题关键. 5.A【详解】A.根据垂线段的定义,故A 正确; B.BD 不垂直AC ,所以错误;C.是过点D 作的AC 的垂线,所以错误;D.过点C 作的BD 的垂线,也错误. 故选:A. 6.C【分析】根据平角的概念结合角平分线的定义列式求解. 【详解】解:⊥O 是直线AD 上一点 ⊥180AOD ∠=︒⊥射线,OC OE 分别平分,AOB BOD ∠∠ ⊥12COB AOB ∠=∠,12EOB BOD ∠=∠⊥1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键. 7.C【分析】根据点到直线的距离的定义判断各选项即可.【详解】A 、点A 到BC 的距离是AD 的长度,本选项正确,不符合题意; B 、点B 到AD 的距离是BD 的长度,本选项正确,不符合题意; C 、点C 到AD 的距离是DE 的长度,故本选项错误,符合题意; D 、点B 到AC 的距离是AB 的长度,本选项正确,不符合题意. 故选C .【点睛】本题考查了点到直线的距离,关键是对点到直线的距离的意义的掌握. 8.A【分析】根据角平分线的性质,可知点D 到OB 和OA 的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.【详解】⊥OD 平分AOB ∠,DE AO ⊥于点E ,5DE =, ⊥D 到OB 的距离等于5, ⊥5DF ≥故DF 的长度不可能为4,故选A .【点睛】本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键. 9.C【分析】根据点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度进行求解即可.【详解】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C 到直线AB 的垂线段, 故选C.【点睛】本题考查了点到直线的距离,熟知点到直线的距离的概念是解题的关键. 10.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可. 【详解】解:A. 线段AC 的长度表示点C 到AB 的距离,说法正确,不符合题意; B. 线段AD 的长度表示点A 到BC 的距离,说法正确,不符合题意; C. 线段CD 的长度表示点C 到AD 的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.11.D【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,A没有告知在同一平面内,是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,B 是假命题;互相垂直的两条线段不一定相交,C是假命题;直线外一点与直线上各点连接的所有线段中,垂线段最短,D是真命题.答案:D题型解法:命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,确定假命题可举反例证明.12.D【分析】根据题意画出图形,根据直线a//x轴,得到直线a为直线y= 2,根据垂线段最短即可得出答案.【详解】如图,⊥直线a// x轴,⊥直线a为直线y= 2,当BC⊥a时,线段BC最短,⊥点C的坐标为(2,2).故选:D.【点睛】本题考查了坐标与图形性质,掌握平行于x轴的坐标的特点,以及垂线段最短是解题的关键.13.90°⊥垂直的定义【解析】略14.130°【分析】根据对顶角性质可得⊥BOD =⊥AOC=40°.根据OD 平分⊥BOF ,可得⊥DOF =⊥BOD =40°,根据OE ⊥CD ,得出⊥EOD =90°,利用两角和得出⊥EOF =⊥EOD +⊥DOF =130°即可.【详解】解:⊥AB 、CD 相交于点O ,⊥⊥BOD =⊥AOC=40°.⊥OD 平分⊥BOF ,⊥⊥DOF =⊥BOD =40°,⊥OE ⊥CD ,⊥⊥EOD =90°,⊥⊥EOF =⊥EOD +⊥DOF =130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.15.120【分析】根据垂直的定义和对顶角相等的性质可得答案.【详解】解:AB CD ⊥,90AOC BOC ∴∠=∠=︒,又:1:2AOE COE ∠∠=,119030123AOE AOC ∴∠=∠=︒⨯=︒+, AOE BOF ∠=∠,3090120COF BOF BOC ∴∠=∠+∠=︒+︒=︒,故答案为:120.【点睛】本题考查垂直的定义,对顶角相等的性质,解题的关键是掌握垂直的定义. 16.DCF ∠,ECB ∠【分析】根据垂直的定义和余角的定义,找和ACD ∠相加得90°的角即可.【详解】解:CF AB ⊥于C ,DC CE ⊥,90ACF BCF DCE ∴∠=∠=∠=︒,90ACD DCF∴∠+∠=︒,18090ACD BCE DCE∠+∠=︒-∠=︒ACD∴∠的余角是:DCF∠,ECB∠.答案:DCF∠,ECB∠.【点睛】本题考查了垂直的定义和余角的定义,解题关键是准确识图,找出图中90°角,准确进行推理判断.17.13α##α3【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:⊥⊥CEF=⊥AFE+⊥BOC,⊥BOC=α,⊥⊥CEF=α+⊥AFE,⊥⊥MEF=n⊥CEF,⊥⊥MEF=n(α+⊥AFE),⊥⊥EGF=⊥MEF﹣⊥NFE,⊥⊥EGF=n(α+⊥AFE)﹣(1﹣2n)⊥AFE=nα+(3n﹣1)⊥AFE,⊥⊥EGF的度数与⊥AFE的度数无关,⊥3n﹣1=0,即n=13,⊥⊥EGF=13α;故答案为:13α.【点睛】此题考查了三角形外角的性质及角度计算,解题的关键是理解⊥EGF的度数与⊥AFE 的度数无关的含义.18.20°【分析】由⊥AOB+⊥BOC=⊥BOC+⊥COD知⊥AOB=⊥COD,设⊥AOB=2α,则⊥AOD=11α,故⊥AOB+⊥BOC=5α=90°,解得α即可.【详解】解:⊥⊥AOB+⊥BOC=⊥BOC+⊥COD,⊥⊥AOB=⊥COD,设⊥AOB=2α,⊥⊥AOB:⊥AOD=2:11,⊥⊥AOB+⊥BOC=9α=90°,解得α=10°,⊥⊥AOB =20°.故答案为20°.【点睛】此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键. 19.(1)见解析;(2)⊥COD=20°或160°.【分析】(1)根据垂直的定义画射线OC ⊥OA ,射线OD ⊥OB ;(2)如图1,由于OC ⊥OA ,OD (或OD’)⊥OB ,则⊥BOD =⊥BOD’=⊥AOC =90°,于是利用周角的定义可计算出⊥COD =160°,利用⊥COD ′=⊥BOC ﹣⊥BOD’可得到⊥COD ′=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°.【详解】解:(1)如图1、如图2,OC 、OD (或OD ′)为所作;(2)如图1,⊥OC ⊥OA ,OD ⊥OB ,⊥⊥BOD =⊥BOD’=⊥AOC =90°,⊥⊥COD =360°﹣90°﹣90°﹣20°=160°,⊥COD ′=⊥BOC ﹣⊥BOD’=90°+20°﹣90°=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°,⊥⊥COD =20°或160°.【点睛】本题考查了基本作图—过一点作已知直线的垂线,分情况作出图形是解决此题的关键.20.(1)32;三角形的一个外角等于与它不相邻的两个内角的和;过程见解析(2)16° (3)1()2n θ︒-【分析】(1)利用角平分线的定义和三角形的外角的性质即可求解;(2)根据(1)的解法即可直接求解;(3)利用(1)的结论求解.(1)解:结论:⊥A 2=32度.说理如下:因为BA 2、CA 2平分⊥A 1BC 和⊥A 1CM (已知),所以⊥A 1BC =2⊥1,⊥A 1CM =2⊥2(角平分线的意义).因为⊥A 1CM =⊥A 1BC +⊥A 1,⊥2=⊥1+⊥A 2(三角形的一个外角等于和它不相邻的两个内角的和).所以⊥A 1CM =⊥A 1BC +⊥A 1=2⊥1+⊥A 1=2(⊥1+⊥A 2),所以⊥A 1=2⊥A 2,因为⊥A 1=64°,所以⊥A 2=32°.故答案为:32,三角形的一个外角等于和它不相邻的两个内角的和.(2)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,⊥⊥A 1=4⊥A 3,⊥⊥A 3=14⊥A 1=16°. (3)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,…,⊥An ﹣1=2⊥An ,⊥⊥A 1=2⊥A 2,⊥A 1=4⊥A 3,⊥A 1=8⊥A 4,…,⊥A 1=2n ﹣1•⊥An ,⊥⊥A 1=2n ﹣1•⊥An ,⊥⊥An =112n A -∠=1()2n θ-︒. 【点睛】本题考查了角的平分线的定义以及三角形的外角的性质:三角形的一个外角等于与它不相邻的两个内角的和,正确解决(1),读懂题意是关键.21.(1)见解析(2)20︒【分析】(1)利用外角的性质,BAC E ACE ∠=∠+∠,ECD E B ∠=∠+∠,再利用角平分线的定义推出ACE ECD ∠=∠,通过等量代换即可求证;(2)先利用30ECD ACB ∠-∠=︒,180ACD ACB ∠+∠=︒,求出40ACB ∠=︒,进而求出B ,再代入(1)中结论即可求解.(1)证明:⊥BAC ∠是ACE ∆的外角,⊥BAC E ACE ∠=∠+∠,⊥ECD ∠是BCE ∆的外角,⊥ECD E B ∠=∠+∠,⊥CE 是ACD ∠的平分线,⊥ACE ECD E B ∠=∠=∠+∠,⊥2BAC E ACE E B E B E ∠=∠+∠=∠+∠+∠=∠+∠;(2)解:⊥30ECD ACB ∠-∠=︒,⊥30ECD ACB ∠=∠+︒,⊥2260ACD ECD ACB ∠=∠=∠+︒,⊥180ACD ACB ∠+∠=︒,⊥260180ACB ACB ∠+︒+∠=︒,解得40ACB ∠=︒.⊥CA BE ⊥,⊥90BAC ∠=︒,⊥18050B BAC ACB ∠=︒-∠-∠=︒,由(1)知2BAC B E ∠=∠+∠,⊥90502E ︒=︒+∠,解得20E ∠=︒.【点睛】本题考查三角形外角的性质,三角形内角和定理,垂直的定义,角平分线的定义等,牢固掌握上述知识并灵活运用是解题的关键.22.(1)⊥45︒;⊥平分,理由见解析(2)32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒【分析】(1)⊥先利用角度的和差关系求得COE ∠,再根据90EOF COE ∠=︒-∠,可得EOF∠的度数;⊥先根据角平分线定义EOF FOB ∠=∠,再结合余角定义和对顶角相等可得结论; (2)需要分类讨论,当点E ,F 在直线AB 的同侧,当点E ,F 在直线AB 的异侧;设COE α∠=,再分别表示AOC ∠、∠BOE ,再消去α即可.(1)解:⊥⊥OF CD ⊥于点O ,⊥90COF ∠=︒,⊥15BOD ∠=︒,120BOE ∠=︒,⊥1801801201545COE BOE BOD ∠=︒-∠-∠=︒-︒-︒=︒,⊥904545EOF COF COE ∠=∠-∠=︒-︒=︒,⊥EOF ∠的度数为45︒;⊥平分.理由如下:⊥OF 平分∠BOE , ⊥12EOF FOB EOB ∠=∠=∠, ⊥OF CD ⊥,⊥90COF ∠=︒,⊥90COE EOF FOB BOD ∠+∠=∠+∠=︒,⊥COE BOD ∠=∠,⊥AOC BOD ∠=∠,⊥COE AOC ∠=∠,⊥OC 平分AOE ∠.(2)如图,当点E ,F 在直线AB 的同侧,设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥290AOC AOF COF α∠=∠-∠=-︒⊥,⊥()1801802902703BOE AOC COE ααα∠=︒-∠-∠=︒--︒-=︒-⊥,⊥×3+⊥×2得,32270AOC BOE ∠+∠=︒;如图,当点E ,F 在直线AB 的异侧;设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥902AOC COF AOF α∠=∠-∠=︒-⊥,⊥()180********BOE AOC COE ααα∠=︒-∠-∠=︒-︒--=︒+⊥,⊥+⊥×2得,2270AOC BOE ∠+∠=︒.综上所述,∠BOE 与AOC ∠之间的数量关系:32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒.【点睛】本题考查了角平分线定义,对顶角相等,垂直的定义,平角的定义,等式的恒等变形等知识,主要考查学生的计算能力,并注意数形结合.分类讨论是解题的关键. 23.(1)作图见解析;(2)当汽车从A 向B 行驶时,在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M 越来越远,离村庄N 越来越近.【分析】(1)点与直线的连线中,垂线段最短,所以MP AB ⊥,NQ AB ⊥.(2)观察图形可以得到在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M越来越远,离村庄N越来越近.⊥,垂足为Q,点P、Q 【详解】解:(1)过点M作MP AB⊥,垂足为P,过点N作NQ AB就是要画的两点,如图所示.(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.【点睛】本题主要考查了点与直线距离以及尺规作图相关知识,熟练掌握点与直线的距离和尺规作图是解决本题的关键.<;垂线段最短.24.(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可;(4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CA【点睛】本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.。

(新课标)湘教版七年级数学下册《垂线》同步练习题及答案解析

(新课标)湘教版七年级数学下册《垂线》同步练习题及答案解析

新课标 2017-2018学年湘教版七年级数学下册4.5.2 垂线的基本事实及垂线段核心笔记:1.垂线的基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直.2.垂线段的性质:直线外一点与直线上各点连接的所有线段中,垂线段最短,简单地说成垂线段最短.3.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.基础训练1.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长2.下列说法中,正确的有( )①同一平面内,互相垂直的两条直线形成的四个角一定是直角;②过平面内任意一点有且仅有一条直线与已知直线垂直;③两条直线相交,所成的角中有两个角相等,则这两条直线互相垂直;④垂线段就是点到直线的距离.A.1个B.2个C.3个D.4个3.同一平面内,过点P作直线AB的垂线可以作( )A.1条B.2条C.无数条D.不能确定4.A为直线l外一点,B为直线l上一点,点A到l的距离为5cm,则AB___________5cm,其根据是___________.5.如图,一小孩想牵牛到河边饮水,那么小孩应该如何走才能保证走的路程最短?请你在图中画出他走的路线.6.如图,在三角形ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,若AC=4,BC=6,BE=5.求:(1)点B到直线AC的距离;(2)点A到直线BC的距离.7.如图,AOB为一条在O处拐弯的河道,要修一条从村庄P通向这条河的道路,现在有两种设计方案:一是沿PM修路,二是沿PO修路,哪种方案更经济?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.培优提升1.下列说法正确的有( )①两条直线相交构成的四个角中,如果有两个角相等,那么这两条直线互相垂直;②两条直线相交构成的四个角中,如果有一个角是直角,那么这两条直线互相垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A.1个B.2个C.3个D.4个2.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是( )A.两点确定一条直线B.垂线段最短C.已知直线的垂线只有一条D.同一平面内,过一点有且只有一条直线与已知直线垂直3.直线l外一点P与直线l上三点所连线段的长度分别为4cm,5cm,6cm,则点P到直线l的距离( )A.是4cmB.是5cmC.不超过4cmD.大于6cm4.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条B.3条C.4条D.5条5.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连接的所有线段中,垂线段最短”.在此基础上,人们定义了两点间的距离、点到直线的距离等,类似地,若点P是圆O外一点(如图所示),则点P与圆O的距离应定义为( )A.线段PO的长度B.线段PA的长度C.线段PB的长度D.线段PC的长度6.如图,在三角形ABC中,AC⊥BC,CD⊥AB,则AB CD.(填“>”“<”或“=”)7.说出日常生活现象中的数学原理:8.按题目要求画图,并回答相关问题.如图,点P是∠AOB内一点,过点P作PM⊥OA,垂足为点M,作PN ⊥OB,垂足为点N,通过测量∠MPN和∠O的度数,你能得出什么结论?9.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N为位于公路两侧的村庄.(1)设汽车行驶到公路AB上点P的位置时,距离村庄M最近,行驶到点Q的位置时,距离村庄N最近,请在图中分别画出点P和点Q 的位置;(2)当汽车由A向B行驶时,在公路的哪一段上距离M,N两村庄都越来越近?在哪一段上距离村庄N越来越近,而距离村庄M越来越远?(分别用文字表述你的结论)参考答案【基础训练】1.【答案】B2.【答案】B解:正确的是①②,共2个.3.【答案】A4.【答案】≥;垂线段最短5.解:如图所示,从小孩所在的点向河边作垂线段即可.6.解:(1)因为BE⊥AC,垂足为点E,所以线段BE即为点B到直线AC 的垂线段,因为BE=5,所以点B到直线AC的距离为5.(2)因为AD⊥BC,垂足为点D,所以线段AD的长度即为点A到直线BC的距离,因为BC·AD=AC·BE,所以AD=·==,所以点A到直线BC的距离为.7.解:沿PO修路比沿PM修路更经济些,因为P到AO上各点连接的所有线段中,PO是垂线段,垂线段最短.它不是最佳方案,过P作PN⊥OB于N,PN是P到OB的最短路线. 因为OP>PN,所以PN是P到河道AOB的最短路线,所以沿PN修路是最佳方案.【培优提升】1.【答案】C2.【答案】D3.【答案】C4.【答案】D解:能表示点到直线的距离的线段有:线段AD,BA,CA,BD,CD,共5条.5.【答案】B6.【答案】>7.8.解:画图如图所示.结论:∠MPN+∠O=180°.9.解:(1)过点M作MP⊥AB,垂足为点P,过点N作NQ⊥AB,垂足为点Q,则点P,Q就是所要求作的两个点,如图所示.(2)当汽车由A向B行驶时,在AP这段公路上距离两村庄都越来越近,在PQ这段公路上距离村庄N越来越近,距离村庄M越来越远. 解:要求距离最近,可视村庄为一定点,笔直的公路为一条直线,当汽车行驶到“垂足”的位置时,根据垂线段最短知,此时,距离最近.。

人教版数学七年级下册第五章《垂线》真题同步测试5(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试5(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试5(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2020七上·扬州期末)点P为直线外一点,点A、B在直线l上,若PA=4cm,PB=5cm,则点P到直线l的距离是( )A.4cm B.小于4cm C.不大于4cm D.5cm2.(4分)(2022·常州)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行3.(4分)同一平面内的四条直线,若满足a b⊥, b c⊥, c d⊥,则下列的式子成立的是 ( )A.a//d B.b d⊥D.b//c⊥C.a d4.(4分)如图,立定跳远比赛时,小明从点A起跳落在沙坑内B处,这次小明的跳远成绩是4.6米,则小明从起跳点到落脚点之间的距离是( )A.大于4.6米B.等于4.6米C.小于4.6米D.不能确定△中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,5.(4分)(2017·天河模拟)如图,在Rt ABC⊥于点E,DF BC⊥于点F,连接EF,则线段EF的最小值是( )过点D作DE ACA.5B.4.8C.4.6D.4.4⊥,若∠1=50°,则∠2的度数为(6.(4分)(2020七上·南召期末)如图,直线a b∥,直线AB AC)A.50°B.45°C.30°D.40°⊥于点D,若7.(4分)(2022·拱墅模拟)如图,在三角形ABC中,∠ACB=90°,过点A作AD CDAB=√5,CD=√3,则AC的长可能是( )A.3B.2.5C.2D.1.58.(4分)(2022·张家口模拟)如图,平行线m,n间的距离为5,直线l与m,n分别交于点A,B, α=45° ,在m上取点P(不与点A重合),作点P关于l的对称点Q.若 P A=3 ,则点Q到n的距离为( )A.2B.3C.2或8D.3或89.(4分)(2021七上·朝阳期末)如图,某同学在体育课上跳远后留下的脚印,在图中画出了他的跳远距离,能符合题意解释这一现象的数学知识是( )A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直⊥,垂足为O,EF为过点O的一条直线,若∠1=10.(4分)(2021七下·抚远期末)如图,AB CD50°,则∠2的度数为( )A.30°B.40°C.45°D.50°阅卷人二、填空题(共8题;共32分)得分11.(4分)(2021七上·哈尔滨月考)如图,口渴的马儿在 A 点处想尽快地到达小河边喝水,它应该沿着线路 AB 奔跑,依据是 .12.(4分)(2019七下·马山月考)如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A ⊥于点H,沿AH修建公路,则这样做的理由是 作AH PQ13.(4分)(2019八上·郑州开学考)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角度平分线;③做一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中做法错误的是 .14.(4分)如图,AB CD ∥,OE 平分∠BOC ,OF OE, OP CD ⊥⊥,∠ABO =40°,则下列结论:①∠BO E =70°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2DOF ∠.其中正确结论有 (填序号)15.(4分)(2017七下·台山期末)如图, OC ⊥OD , ∠1=50° ,则 ∠2 的度数是 16.(4分)(2017八下·建昌期末)如图,点A 的坐标为(﹣2 √2 ,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为 .17.(4分)如图,直线AB 与CD 相交于E 点,EF AB ⊥,垂足为E ,∠1=130°,则∠2= 度.18.(4分)(2019八上·重庆开学考)如图,在 Rt△ABC 中, ∠ACB=90°, AC=6 , BC=8 , AB=10 , AD是 ∠BAC 的平分线.若 P, Q分别是 AD 和 AC 上的动点,则 PC+PQ 的最小值是 .第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、作图题(共4题;共36分)得分19.(6分)(2022·灞桥模拟)尺规作图:过圆心O作弦AC的垂线DE,交弦AC于点D,交优弧ABC于点E.(保留作图痕迹,不要求写作法).20.(12分)(2019八下·泉港期末)在正方形ABCD中,BE平分∠CBD交边CD于E点.⊥于F;(保留作图痕迹,不写作法);(1)(6分)尺规作图:过点E作EF BD(2)(6分)在(1)的条件下,连接FC,求∠BCF的度数.21.(12分)(2022九下·温州开学考)如图,在8×6的方格纸ABCD中,每个小方格纸的顶点为格点,请按要求画出格点多边形,且所画格点多边形的顶点均不与点A,B,C,D重合.(1)(6分)在图1中画一个格点三角形EFG,使得点E,F,G分别在AB,BC,CD上,且∠EFG=90∘;(2)(6分)在图2中画一个四边形EFGH,使点F为边BC的中点,E,G,H分别落在边AB,CD,DA上,且EG⊥FH,∠AEG≠90∘.22.(6分)(2020八下·潜江期末)如图,在 7×6 的方格中, △ABC 的顶点均在格点上.试按要求画出线段 EF ( E , F均为格点),各画出一条即可.阅卷人四、综合题(共3题;共42分)得分23.(13分)(2021八下·江都期末)已知:如图, △ABC为锐角三角形,AB>AC.求作:BC边上的高AD.作法:①以点A为圆心,AB长为半径画弧,交BC的延长线于点E;②分别以点B,E为圆心,以AB长为半径画弧,两弧相交于点F(不与点A重合);③连接AF交BC于点D.线段AD就是所求作的线段.(1)(7分)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)(6分)完成下面的证明.证明:连接AE,EF,BF.∵AB=AE= EF = BF,∴四边形ABFE是 ( )(填推理依据).⊥( )(填推理依据).∴AF BE即AD是 △ABC中BC边上的高.24.(14分)(2017七上·扬州期末)如图,已知 OD 是∠AOB 的角平分线,C 为 OD 上一点.∥,交 OB 于 F;过(1)(7分)过点 C 画直线 CE OB∥,交 OA 于 E;过点 C 画直线 CF OA⊥,垂足为 G.点 C 画线段 CG OA(2)(7分)根据画图回答问题:①线段 的长度就是点C到OA的距离;②比较大小:CE CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD ∠ECO(填“>”或“=”或“<”);25.(15分)(2021七下·厦门期末)如图1,点M在直线AB上,点P,N在直线CD上,过点N作NE PM∥,连接ME.∥,点E在直线AB,CD之间,求证:∠MEN=∠BME+MPN∠;(1)(7分)若AB CD(2)(8分)如图2,ME的延长线交直线CD于点Q,作NG平分∠ENQ交EQ于点G,作EF∠=90°时,线平分∠MEN,过点E作HE NG.∥若点F,H分别在MP,PQ上,探究当∠MPQ+2FEH段NE与NG的大小关系.答案解析部分1.【答案】C【解析】【解答】依据垂线段最短,∵P 为直线外一点,点A 、B 在直线l 上,若PA=4cm ,PB=5cm ,∴点P 到直线l 的距离不大于4cm ,故答案为C.【分析】依据点到直线的距离垂线段最短,即可求解..2.【答案】A【解析】【解答】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短.故答案为:A.【分析】根据垂线段最短的性质进行解答即可.3.【答案】C【解析】【分析】根据同一平面内,垂直于同一条直线的两条直线平行,可证a//c ,再结合c d ⊥,可证a d ⊥.【解答】∵a b ⊥,b c ⊥,∴a//c ,∵c d ⊥,∴a d ⊥.故选C .【点评】此题主要考查了平行线及垂线的性质.4.【答案】A【解析】【解答】解:∵根据跳远成绩为距离起跳线最近的点到起跳线的距离,即垂线段的长,又∵垂线段最短,∴小明从起跳点到落脚点之间的距离大于4.6米,故选:A .【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.根据跳远成绩为距离起跳线最近的点到起跳线的距离,即垂线段的长,据此作答.5.【答案】B【解析】【解答】解:如图,连接CD .∵∠ACB=90°,AC=6,BC=8,∴AB= √A C 2+BC 2 =10,∵DE AC ⊥,DF BC ⊥,∠C=90°,∴四边形CFDE 是矩形,∴EF=CD ,由垂线段最短可得CD AB ⊥时,线段EF 的值最小,此时,S ABC △= 12 BC•AC= 12 AB•CD ,即 12 ×8×6= 12×10•CD ,解得CD=4.8,∴EF=4.8.故答案为:B .【分析】在Rt ABC △中,根据勾股定理求出AB 的值,根据矩形的性质得到对角线EF=CD ,由垂线段最短可得CD AB ⊥时,线段EF 的值最小,根据S ABC △求出EF 的值.6.【答案】D【解析】【解答】解:如图,∵直线a b ∥,∠1=50°,∴1=3=50°∠∠,∵AB AC ⊥,∴2+3=90°∠∠.∴2=40°∠.故答案为:D .【分析】根据两直线平行,内错角相等可得∠3=1∠,根据垂直的定义和余角的定义计算得到∠2.7.【答案】C【解析】【解答】解:在三角形ABC 中,∠ACB =90°,∴AC <AB ,∵AB =√5,∴A C 2<5,∵AD⊥CD,在RtΔADC中,AC>CD,∵CD=√3,∴A C2>3,∵32=9>5,2.52=6.25>5,1.52=2.25<3,22=4,3<4<5,∴AC的长可能是2.故答案为:C.【分析】由题意可得AC<AB,AC>CD,则3<AC2<5,据此判断.8.【答案】C【解析】【解答】解:当点P在点A左侧时,如图,作点P关于l的对称点Q,连接 AQ .由轴对称的性质,得: QA=P A=3 , ∠P AQ=2α=90° ,∴点Q到n的距离为 5−3=2 ;当点P在点A右侧时,如图,作点P关于l的对称点Q,连接 AQ .由轴对称的性质,得: QA=P A=3 , ∠P AQ=2α=90° ,点Q到n的距离为 5+3=8 .故答案为:C.【分析】分两种情况讨论: 当点P在点A左侧时,当点P在点A右侧时,分别依据轴对称的性质进行计算,即可得到点Q到n的距离。

2021年湘教版数学七年级下册4.5《垂线》同步练习 学生版

2021年湘教版数学七年级下册4.5《垂线》同步练习 学生版

湘教版数学七年级下册4.5《垂线》同步练习一、选择题1.如图,OA⊥OB,若∠1=40°,则∠2的度数是( )A.20°B.40°C.50°D.60°2.下列语句说法正确的个数是( )①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A.1个B.2个C.3个D.4个3.已知,OA⊥OB,∠AOB∶∠AOC=3∶4,则∠BOC的度数为( )A.30°B.150°C.30°或150°D.不同于以上答案4.下面可以得到在如图所示的直角三角形中斜边最长的原理是( )A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短5.点到直线的距离是指这点到这条直线的( )A.垂线段B.垂线C.垂线的长度D.垂线段的长度6.画一条线段的垂线,垂足在( )A.线段上B.线段的端点C.线段的延长线上D.以上都有可能7.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8.如图,点A在直线BC外,AC⊥BC,垂足为C,AC=3,点P是直线BC上的一个动点,则AP的长不可能是( )A.2.5B.3C.4D.5二、填空题9.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.10.如图,点O是直线AB上的一点,OC⊥OD,∠AOC-∠BOD=20°,则∠AOC= .11.如图,当∠1与∠2满足条件时,OA⊥OB.12.如图,OA⊥OB,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON度数为.三、作图题13.如图所示,在这些图形中,分别过点C画直线AB的垂线,垂足为O.四、解答题14.如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.15.如图,直线AB与CD相交于点O,OE,OF分别是∠BOD,∠AOD的平分线.(1)∠DOE的补角是__________________;(2)若∠BOD=62°,求∠AOE和∠DOF的度数;(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.。

七年级数学-垂线练习含解析

七年级数学-垂线练习含解析

七年级数学-垂线练习含解析基础闯关全练1.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=( )A.65° B.45° C.35° D.55°2.如图,点O在直线AB上且OC⊥OD,若∠COA= 36°,则∠DOB的大小为( )A.36°B.54°C.55°D.44°3.下列选项中,过点P画AB的垂线CD,三角板放法正确的是( )A B C D4.在下图所示的各图中用三角板分别过点C画线段AB的垂线.(1)(2)(3)(4)5.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是( )A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线6.如图.想在河堤两岸搭建一座桥,图中四种搭建方式PA,PB,PC,PD中,最短的是_______. 7.下列图形中,线段PQ的长为点P到直线MN的距离的是( )A B C D8.如图.立定跳远比赛时,小明从点A起跳落在沙坑内B处,这次小明的跳远成绩是4.6米,则小明从起跳点到落脚点之间的距离( )A.大于4.6米 B.等于4.6米 C.小于4.6米 D.不能确定能力提升全练1.如图,∠ACB= 90°.CD⊥AB,垂足为点D,则下面的结论中,正确的有( )①BC与AC互相垂直②AC与CD互相垂直③点A到BC的垂线段是线段BC④点C到AB的垂线段是线段CD⑤线段BC是点B到AC的距离⑥线段AC的长度是点A到BC的距离A.2个 B.3个 C.4个 D.5个2.如图,已知直线CD、EF相交于点O.OA⊥OB,且OE平分∠AOC,若∠EOC= 60°,则∠BOF=______.3.如图,直线AB ,CD 相交于点O ,∠DOE=∠BOD .OF 平分∠AOE. (1)判断OF 与OD 的位置关系;(2)若∠AOC :∠AOD=1:5.求∠EOF 的度数.三年模拟全练 一、选择题1.如图所示,直线AB ⊥CD 于点D ,直线EF 经过点O .若∠1=26°,则∠2的度数是( )A .26°B .64° C.54° D .以上答案都不对2.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOE= 52°,则∠BOD 等于( )A.24°B.26° C .36° D .38° 二、填空题3.如图,已知AC ⊥BC,CD ⊥ AB .AC=3,BC=4,CD= 2.4,则点C 到直线AB 的距离等于______.4.如图,当∠1与∠2满足_________条件时,OA ⊥OB .三、解答题5.如图,直线AB 与CD 相交于点D ,OP 是∠BOC 的平分线,OE ⊥AB ,OF ⊥ CD. (1)图中除直角外,写出三对相等的角: (2)已知∠EOC= 50°,求∠POF 的度数,五年中考全练 选择题.1.如图,直线AB ,CD 相交于点O ,EO ⊥CD.下列说法错误的是( )A. ∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD= 180°2.如图,经过直线l 外一点A 画l 的垂线,能画出( )A.1条B.2条C.3条D.4条 3.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度核心素养全练如图,随意画一个锐角∠MON和一个钝角∠M'O’N’,画出∠MON的平分线OP和∠M'O’N'的平分线O’P’.(1)在OP上任取一点A,画AB⊥OM,AC⊥ON,垂足分别为B,C;(2)在O'P’上任取一点A’,画A'B'⊥O'M’,A'C'⊥O'N',垂足分别是B’,C’;(3)通过度量线段AB,AC,A'B’,A'C'的长度,发现AB____AC,A'B'____ A'C’;(填“=”或“≠”)(4)通过上面的画图和度量,和同学们交流一下,有什么猜想?请用一句话表述出来.5.1.2垂线1.D∵AB⊥CD,∠BOE=35°,∴∠AOF=35°,∠AOD=∠BOC=90°,∴∠DOF= 90°-35°=55°.故选D.2.B∵OC⊥OD,∴∠COD= 90°,又∵∠AOC+∠COD+∠DOB= 180°.∴∠DOB= 180°-36°-90°= 54°.故选B.3.C根据垂线的作法,将直角三角板的一条直角边与直线AB重合,另一条直角边过点P后沿该直角边画直线即可.4.解析5.C根据垂线段的性质:垂线段最短,故选C.6.答案PC解析根据“连接直线外一点与直线上各点的所有线段中,垂线段最短”与PC⊥AD.知PC最短.7.A对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN的距离.8.A跳远的成绩是点B到起跳线的距离,即垂线段的长度为4.6米,结合题图知AB的长大于4.6米.1.B.∵∠ACB=90°,∴AC⊥BC,故①正确;AC与DC相交不垂直,故②错误;点A到BC的垂线段是线段AC.故③错误;点C到AB的垂线段是线段CD,故④正确;线段BC的长度是点B到AC的距离,故⑤错误;线段AC的长度是点A到BC的距离,故⑥正确.故选B.2.答案30°解析∵OE平分∠AOC,∠EOC=60°,∴∠AOE=∠COE= 60°,∠DOE= 180°-∠COE= 120°,∴∠DOA= 60°,∵OA⊥OB,∴∠DOA+∠BOD= 90°.∴∠DOB=30°,∵∠DOF=∠EOC=60°,∴∠BOF=30°.3.解析(1)因为OF平分∠AOE,所以∠AOF=∠EOF=21∠AOE.又因为∠DOE=∠BOD=21∠BOE,所以∠DOE+∠EOF=21(∠BOE+∠AOE)=21×180°=90°,即∠FOD=90°,所以OF⊥OD.(2)设∠AOC=x.因为∠AOC:∠AOD=1:5,所以∠AOD=5x,因为∠AOC+∠AOD= 180°,所以x+5x= 180°,x=30°.所以∠DOE=∠BOD=∠AOC=30°.又因为∠FOD= 90°.所以∠EOF= 90°-30°= 60°.一、选择题1.B∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵AB⊥CD.∴∠DOF+∠2=90°,∴∠2=90°-∠ DOF=90°-26°=64°.故选B.2.D 因为OE⊥CD, ∠AOE =52°,所以∠AOC= 38°,则∠BOD=∠AOC= 38°,故选D.二、填空题3.答案2.4解析由题意得点C 到直线AB 的距离等于CD 的长,即点C 到直线AB 的距离等于2.4. 4.答案∠1+∠2= 90°解析当∠1+∠2= 90°时,∠AOB= 90°,根据垂直的定义得OA ⊥OB. 三、解答题5.解析(1)①∠AOD= ∠BOC,②∠COP= ∠BOP,③∠COE=∠ BOF 等. (2)∵OE ⊥AB,∴ ∠EOB=90°.∵∠ EOC= 50°,∴∠COB= ∠EOB- ∠EOC= 40°.∵OP 是∠BOC 的平分线,∴∠COP=21∠BOC=20°. ∵OF ⊥CD, ∴∠COF=90°,∴∠POF= ∠COF-∠COP=70°. 选择题1.C 由对顶角相等知∠AOD=∠BOC ,选项A 中说法正确;由对顶角相等知∠BOD=∠AOC .由EO ⊥CD 知∠AOE+∠AOC=90°,所以∠AOE+∠BOD=90°,选项B 中说法正确;由邻补角概念知∠AOD+∠BOD= 180°,选项D 中说法是正确的.只有选项C 中说法是错误的. 2.A 同一平面内,过一点有且只有一条直线垂直于已知直线. 3.B 点P 到直线l 的距离就是点P 到直线l 的垂线段PB 的长度。

人教版七年级数学下册《5.1.2垂线》同步练习题-含有答案

人教版七年级数学下册《5.1.2垂线》同步练习题-含有答案

人教版七年级数学下册《5.1.2垂线》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,过点P画出直线AB的垂线.下列画法中,正确的是()A.B.C.D.2.两条直线互相垂直,所得的四个角中,直角的个数有()A.1个B.2个C.3个D.4个3.点P是直线外一点,点A、B是直线上两点,PA=2,PB=3,则点P到直线的距离有可能为()A. 1 B.2.5 C.3D.44.如图,直线AB与直线CD相交于点O,且∠BOD=2∠BOC,若以点为端点的射线OE∠CD,则∠BOE 的度数为()A.B.或C.D.以上都不正确5.下列结论正确的是()A.两点之间直线最短B.若,则点C是线段AB的中点C.相等的角是对顶角D.过一点有且只有一条直线垂直于已知直线6.下列选项中,过点画直线的垂线,三角尺的摆放方式正确的是()A.B.C.D.7.到直线L的距离等于2cm的点有()A.0个B.2个C.3个D.无数个二、填空题8.过两点有且只有________直线两点之间________最短点B在线段AC上,如果________,则点B是线段AC的中点9.如图,当∠1与∠2满足条件__________时,OA⊥OB。

10.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为__________。

11.如图,直线,相交于点O,OE⊥AB,垂足为O,平分,∠1=15°,则∠FOD的度数为__________。

三、解答题12.如图所示,OM平分∠AOB,ON平分∠COD,OM∠ON,∠BOC=26°,求∠AOD的度数。

13.16、如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE。

(1)判断OF与OD的位置关系;(2)若∠AOC∠∠AOD=1∠5,求∠EOF的度数。

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(1)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.2.下列作图能表示点A到BC的距离的是( )A.A B.B C.C D.D3.如图,直线a//b,则直线a,b之间距离是()A.线段AB的长度B.线段CD的长度C.线段EF的长度D.线段GH的长度4.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,正确的有 ( )①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A到BC的距离.A.2个B.3个C.4个D.5个5.如图所示,AC⊥BC与C,CD⊥AB于D,图中能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条6.如图,下列说法不正确的是()A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段7.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的数学知识是( )A.两点之间的所有连线中,线段最短B.点到直线的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短8.如图,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠EOF=32°,则∠BOC的大小为( )A.120°B.122°C.132°D.148°9.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=()A.65°B.45°C.35°D.55°二、填空题1.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:_____.2.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是_______________________.3.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.4.如图,在一块直角三角板ABC中,AB>AC的根据是_____.5.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____.三、解答题1.读下列语句,并完成作图.()1如图1,过点P分别作OA、OB的垂线段PM、PN.()2如图2,①过点C,作出AB的垂线段CM;②过点A作出表示点A到BC的距离的线段AN.2.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).3.如图,点P,Q分别是∠AOB的边OA,OB上的点.(1)过点P画OB的垂线,垂足为H;(2)过点Q画OA的垂线,交OA于点C,连接PQ;(3)线段QC的长度是点Q到的距离,的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是(用“<”号连接).4.如图,在直线MN的异侧有A、B两点,按要求画图取点,并注明画图取点的依据.(1)在直线MN上取一点C,使线段AC最短.依据是______________.(2)在直线MN上取一点D,使线段AD+BD最短.依据是______________________.5.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.参考答案一、单选题1.C解析:试题分析:根据题意画出图形即可.解:根据题意可得图形,故选C.点评:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.B分析:由点到直线的距离知点A到BC的距离就是过A向BC作垂线所得垂线段的长度. 逐一进行判断即可.详解:解:A.BD表示点B到AC的距离,故A选项错误;B. AD表示点A到BC的距离,故B选项正确;C. AD表示点D到AB的距离,故C选项错误;D. CD表示点C到AB的距离,故D选项错误;故选B.点睛:本题主要考查了点到直线的距离,直线外一点到直线的垂线段的长度,叫做点到直线的距离.3.B解析:根据两直线的距离的定义即可判断.详解:∵a//b,CD⊥a,AD⊥b,∴直线a,b之间距离是CD的长度.此题主要考查两直线的距离,解题的关键是找到两直线间的垂线段.4.B分析:根据垂直定义和点到直线距离的定义对各选项进行逐一分析即可.详解:解:∵∠ACB=90°,∴AC⊥BC,故①正确;AC与DC相交不垂直,故②错误;点A到BC的垂线段是线段AC,故③错误;点C到AB的垂线段是线段CD,故④正确;线段BC的长度是点B到AC的距离,故⑤错误;线段AC的长度是点A到BC的距离,故⑥正确.故选B.5.D解析:试题表示点C到直线AB的距离的线段为CD,表示点B到直线AC的距离的线段为BC,表示点A到直线BC的距离的线段为AC,表示点A到直线DC的距离的线段为AD,表示点B到直线DC的距离的线段为BD,共五条.故选D.6.C解析:根据点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离,结合图示对各个选项逐一分析即可作出判断.详解:A、点B到AC的垂线段是线段AB,正确;B、点C到AB的垂线段是线段AC,正确;C. 点A到BC的垂线段是线段AD,故错误;D. 点B到AD的垂线段是线段BD,正确;故选C.本题考查了点到直线距离的概念,解题的关键是明确点到直线的距离的定义:直线外一点到这条直线的垂线段的长度叫做点到直线的距离7.D解析:根据垂线段的性质进行作答.详解:由题知,AB⊥CD,所以选D.点睛:本题考查了垂线段的性质,熟练掌握垂线段的性质是本题解题关键.8.D解析:分析:由OE⊥CD,OF⊥AB,可得∠COE=90°, ∠BOF=90°;又由∠EOF=32°,可求出∠COF的度数,然后根据∠BOC=∠BOF+∠COF求出结论即可.详解:∵OE⊥CD,OF⊥AB,∠COE=90°, ∠BOF=90°,∵∠EOF=32°,∴∠COF=90°-32°=58°,∴∠BOC=∠BOF+∠COF=90°+58°=148°.故选D.点睛:题考查了垂线的定义和角的和差,若两条直线相交所成的角为90°,那么这两条直线垂直,交点叫垂足.求出∠EOF=32°是解答本题的关键.9.D解析:∵AB⊥CD,∴∠BOC=90°,∵∠BOE=35°,∴∠COE=∠BOC-∠BOE=90°-35°=55°,∵直线EF和直线CD相交于点O,∴∠DOF=∠COE=55°.故选D.二、填空题1.垂线段最短解析:根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.2.垂线段最短解析:试题分析:点到直线的所有线段中垂线段最短.考点:垂线段的性质3.垂线段最短.分析:根据垂线段最短作答.详解:解:根据“连接直线外一点与直线上所有点的连线中,垂线段最短”,所以沿AB开渠,能使所开的渠道最短,故答案为“垂线段最短”.点睛:本题考查垂线段最短的实际应用,属于基础题目,难度不大.4.垂线段最短.解析:根据从直线外一点到这条直线所作的垂线段最短可得.详解:∵AC⊥BC,∴AB>AC,其依据是:垂线段最短,故答案为:垂线段最短.点睛:本题主要考查垂线段最短的性质,解题的关键是掌握从直线外一点到这条直线所作的垂线段最短.5.两点确定一条直线解析:应用的数学知识是:过两点有且仅有一条直线.故答案为过两点有且只有一条直线.三、解答题1.(1)见解析;(2)见解析.解析:(1)根据点到直线距离的作法利用直角三角尺分别作出即可;(2)分别过点C作CM⊥AB,AN⊥BC,注意要延长BC得出.详解:解:()1如图1所示:()2如图2所示.点睛:此题主要考查了点到直线的垂线作法以及钝角三角形中高线的作法,正确作出钝角三角的高线是解题关键.2.(1)见解析;(2)见解析;(3)OA , PC的长度, PH<PC<OC.解析:(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.详解:(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.点睛:本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.3.(1)画图见解析;(2)见解析;(3)直线OA,线段PH;PH<PQ.解析:(1)根据垂线的概念、结合网格特点作图即可;(2)根据垂线的概念、结合网格特点和线段的作法作图;(3)根据垂线段最短进行比较即可.详解:(1)如图,直线PH即为所求;(2)如图,直线QC即为所求;(3)线段QC的长度是点Q到直线OA的距离,线段PH的长度是点P到直线OB的距离,根据直线外一点和直线上各点连接的所有线段中,垂线段最短可知PH<PQ,故答案为直线OA,线段PH;PH<PQ.点睛:本题考查了复杂作图和垂线段的性质,掌握基本尺规作图、得到复杂图形,连接垂线段最短是解题的关键.4.垂线段最短两点之间,线段最短解析:(1)过A作AC⊥MN,AC最短;(2)连接AB交MN于D,这时线段AD+BD最短.详解:(1)过A作AC⊥MN,根据垂线段最短,故答案为垂线段最短;(2)连接AB交MN于D,根据是两点之间线段最短,故答案为两点之间线段最短.点睛:本题主要考查了垂线段的性质和线段的性质,关键是掌握垂线段最短;两点之间线段最短.5.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.解析:(1)依据垂线的定义以及对顶角相等,即可得∠BOE的度数;(2)依据平角的定义以及垂线的定义,即可得到∠AOE的度数;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°.详解:解:(1)∵EO⊥CD,∴∠DOE=90°,又∵∠BOD=∠AOC=36°,∴∠BOE=90°-36°=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=16∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°;综上所述,∠EOF的度数为30°或150°.故答案为(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.点睛:本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用.。

【部编北师大版七年级数学下册】《垂线》同步测试

【部编北师大版七年级数学下册】《垂线》同步测试

《垂线》同步测试如图,已知AB是线1.如图所示,直线AB与直线CD的位置关系是_______,记作_______,此时,∠AOD=∠_____=∠______=∠______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段(1) (2)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;O DCBADCBADCBA◆一、填一填◆二、选一选③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD ⊥BD ,BC ⊥CD ,AB =a cm,BC =b cm,则BD 的范围是( ) A.大于a cm B.小于b cmC.大于a cm 或小于b cmD.大于b cm 且小于a cm 5.到直线L 的距离等于2cm 的点有( )A.0个B.1个C.无数个D.无法确定6.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm,PB =5cm,PC =2cm,则点P 到 直线m 的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm1如图所示,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE =70°,求∠DOG 的度数.2如图所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.GOFEDCBA ◆三、解答题 ◆3.如图6所示,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.答案和解析一、填一填1、垂直AB⊥CD DOB BOC COA2、一条3、所在直线4、35°5、垂线段的长度二、选择1、C2、D3、C4、D5、C6、D三、解答题1、∠DOG=55°2、解:如图3所示.DCB A3、解:(1)∵∠AOC +∠BOC =∠AOB =180°,∴13∠BOC +∠BOC =180°, ∴ 43∠BOC =•1 80°,∴∠BOC =135°,∠AOC =45°, 又∵OC 是∠AOD 的平分线, ∴∠COD =∠AOC =45°.• (2)∵∠AOD =∠AOC +∠COD =90°,∴OD ⊥AB .l。

人教版七年级下数学垂线同步试题

人教版七年级下数学垂线同步试题

垂线 同步练习一、填空题:(每题4分,共40分)1、直线外____与直线上各点连结的所有线段中,______最短。

2、定点P 在直线外,动点O 在直线AB 上运动,当线段PO 最短时,∠POA =___度,此时,点P 到直线AB 的距离是线段____的长度。

3、如图1,计划把池中的水引到C 处,可过点C 作CD ⊥AB 于D ,然后沿CD 开渠,可使所开的渠道最短,这种设计的依据是____________。

4、如图2,OD ⊥BC 于D ,BD =6cm ,OD =8cm ,OB =10cm ,则点B 到OD 的距离是__,点O 到BC 的距离为_____,O 、B 两点间的距离为_____。

5、如图3,在△ABC 中,AC ⊥BC ,CD ⊥AB ,则AB 、AC 、CD 之间的大小关系为____(用“<”连接起来)6、过一个钝角的顶点向一边作垂线把这个钝角分成的两个角的比为1∶6,则这个钝角为__7、如图4,点P 是直线L 外一点,过点P 画直线PA 、PB 、PC ,…交L 于点A 、B 、C …,请你用量角器量∠1、∠2、∠3的度数,并量线段PA 、PB 、PC 的长,你发现的规律是_______________。

8、如图5,已知直线AD 、BE 、CF 相交于O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =_____。

9、如图6,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD ,则∠AOC =___,OD 与AB 的位置关系是______。

10、①如图7,∵∠AOC =90°,根据垂直定义,∴___⊥___于___。

②如图8,∵CD ⊥AB ,根据垂直定义,∴∠____=∠____=___°。

③如图9,∵∠ADC =90°,根据______,∴AD ⊥BD 于___。

二、选择题:(每题4分,共12分)11、学校的国旗的旗杆与地面的位置关系属于( ) A 直线与直线平行 B 直线与直线垂直C 直线与平面平行D 直线与平面垂直 12、在如图所示的长方体中,和平面ABCD 垂直的棱有( )AB CLD CBD CB A图 4图 3图 2图 1321O PDC BA图 9ABDC AD O ADGOACDC BDCBA图 8图 7图 6图 5EO C BA 2条B 4条C 6条D 8条13、如图2,OD ⊥BC 于D ,下列说法中:①线段OB 是O 、B 两点的距离;②线段OB 的长度是O 、B 两点的距离;③线段OD 是点O 到直线BC 的距离;④线段OD 的长度是点O 到直线BC 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.2《垂线》同步练习题(3)
知识点:
1、垂直:因为∠AOC,所以AB⊥CD
2、过一点有且只有一条直线与已知直线垂直
3、垂线段最短
4、点到直线的距离:直线外一点到已知直线的垂线段的长度
同步练习:
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB;
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;
D.线段BD是点B到AD的垂线段
D C
B A
D
C
B
A
O D
C
A
(1) (2) (3)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=a cm, BC=b cm,则BD的范围是( )
A.大于a cm
B.小于b cm
C.大于a cm或小于b cm
D.大于b cm且小于a cm
5.到直线L的距离等于2cm的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直
线m的距离为( )
A.4cm
B.2cm;
C.小于2cm
D.不大于2cm
二、填空题:(每小题3分,共12分)
1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠
_______=∠_______=∠_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离.
三、训练平台:(共15分)
如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.
G
O
F
E
D
C
B
A
四、提高训练:(共15分)
如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.
五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC=
1
3
∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
O
D
C B
A
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.
N
B
A
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°
四、解:如图3所示.
l
A
l
五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,
∴1
3
∠BOC+∠BOC=180°,
∴4
3
∠BOC=•180°,
∴∠BOC=135°,∠AOC=45°,
又∵OC是∠AOD的平分线,
∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB.
六、解:如图4所示.
N
A。

相关文档
最新文档