热辐射基本定律
传热学8热辐射基本定律
✓在工业上的一般高温范围内(2000K),λmax在红
外线区段。太阳辐射(5800k)λm则位于可见光区段。
✓实际物体的单色辐射力按波长分布的规律与普朗克
定律不同,但定性上是一致的。
✓如加热金属,500℃以下,金属发出的基本是红外线,没有
可见光,金属呈原色,600℃以上,金属相继呈现暗红、红、
黄,超过1300℃开始发白。
黑体模型
黑体在热辐射分析中的特殊重要性
➢在相同温度的物体中,黑体的辐射能力最大。 ➢在研究了黑体辐射的基础上,我们处理其他物 体辐射的思路是:把其他物体辐射与黑体辐射相 比较,从中找出其与黑体辐射的偏离,然后确定 必要的修正系数。
§8-2 黑体辐射的基本定律
1 辐射力及单色辐射力的定义
(1)辐射力E: ➢单位时间内物体的单位表面积向半球空间
例题8-2、8-3 P214
(3)兰贝特定律
➢辐射力(定义)没有指明在半球空间不同方向上的能量分 布。 ➢为了说明辐射能量在空间不同方向上的分布规律,引入定 向辐射强度的概念 ➢(1)定向辐射强度
➢① 先引入立体角的概念
平面角:θ=s/r [rad](弧度) 式中: 弧长s、半径r。 立体角:ω=Ac/r2
特例
➢α=1的物体叫做绝对黑体。 ➢ρ=1的物体叫做绝对白体。 ➢τ=1的物体叫做绝对透明体。 显然黑体、白体和透明体都是假定的理 想物体。
黑体模型
➢黑体的吸收比α=1,意味着黑体能全部吸收各种波长的辐射能。 ➢自然界中并不存在黑体,但可以用人工的方法制造。 ➢在空腔壁(温度均匀)上开一个小孔,由于空腔较大,投射的辐 射能经小孔射入孔腔后,经多次反射吸收后才会出去。反射的能量 与投入的能量相比很小,小孔面积越小,吸收比就越→1。若小孔 面积/孔腔面积小于0.6%,内壁吸收率为0.6时,小孔的吸收比可 大于0.996。 ➢就辐射特性而言,小孔具有黑体表面一样的性质。
第三章-热辐射的基本定律
(,)
n
的主瓣
F n( , )d
M
主瓣
F
n( , )d
4
(3.16)
类似的,式(3.14)中的第二项等于乘积 mT ML ,其中 m 是天线
杂散因子
Fn(,)d
m
4主瓣
Fn(,)d
1M
(3.17)
4Tຫໍສະໝຸດ 定义为旁瓣贡献的有效视在温度,其表示式为:
SL
TAP(,)Fn(,)d
TSL 4主瓣
c df
f
3 kTdf
3.3.1瑞利-金斯公式
公式中,k 2 。在经典统计理论推导中应
用了能量均分定理,即能量E中每个平方项的平均值
等于(1/2)kT,谐振子的平均能量为 析瑞利-金斯公式可得到三点结论:
f
kT
。分
(i)瑞利-金斯公式虽然具有维恩位移律的形
式,但却不存在真正的维恩位移。瑞利-金斯公式给
3.3热辐射的经典统计理论
在建立热辐射统计理论之前,先给予一个
定理:从动力学观点来看,一个连续振动的体系
相当于一组谐振子,从连续振动体系发出的波等
价于一组谐振子作简谐振动发出的简谐波的叠加。
经典统计理论就是建立在这一定理上经过一系列
推导,应用波尔兹曼统计和能量均分定理推导出
了瑞利-金斯公式
8 f 2
Bolt常 zm数 K a1n.: 3 n1 8-2 0 0 J3K 6 1
3.2功率-温度对应关系
考虑一种情况:一个无损微波天线置于 保持在恒定温度T的黑体闭室内的情况。 如图所示:
图1 (a)图中放在温度为T的黑体外壳内的天线给出的功率等于(b)图中装在同样温 度的黑体外壳中的电阻给出的功率(假设每个都与带宽为的匹配接收机相连)
第三章 热辐射的基本定律
令 x = c2/λT 则 λ= c2/xT dλ=-(c2/x2T)dx (积分限λ:0~∞,则x:∞~0)
c1 Mb (e 5 (c 2 / xT )
0
0
c2 ( c2 / xT )T
c2 1) ( 2 )dx x T
1
c1 c2
4 4
x 3T 4 (e x 1) 1 dx
知道一个λT值,就对应一个f(λT)值,即知道一个 温度T,就得到某波长处的辐射出射度Mλ。 这样即可查表得到Mλ,而不用普朗克公式计算了。
知道一个λT值,就对应一个f(λT)值,即知道 一个温度T,则在某波长处的辐射出射度Mλ 为 M f (T )M f (T ) BT 5
m
这样即可查表得到Mλ,而不用普朗克公式 计算了。
例3 如太阳的温度T=6000K并认为是黑体, 求其辐射特性 1.其峰值波长为 2898 m 0.48m 6000 2、全辐射出射度为
M T 5.67 10 6000 7.3 10 W / m
4 8 4 7 2
3、紫外区的辐射出射度为
M 0~0.4 0.14M
M m
根据普朗克公式
M b
c1
1
2
5 e c
/ T
1
根据维恩最大发射本领定律
M bm
c1
1 ec2 / mT 1
m
5
BT 5
所以
c1 1 M 5 e c2 / T 1 c1 1 f (T ) 5 5 c 2 / T 5 M m BT B T e 1
1
f ( .T )
令x = c2/λT
M ( x)
热辐射的基本定理
第八章热辐射的基本定理本章从分析热辐射的本质和特点开始,结合表面的辐射性质引出有关热辐射的一系列术语和概念,然后针对辐射规律提出了热辐射的基本定律。
学习的基本要求是:理解热辐射本质和特点。
有关黑体、灰体、漫射体,发射率(黑率)、吸收率的概念。
理解和熟悉热辐射的基本定律,重点是斯蒂芬—玻尔兹曼定律和基尔霍夫定律。
了解影响实际物体表面辐射特性的因素。
主要内容有:一、作为表面的热辐射性质,主要有:对外来投射辐射所表现的吸收率、反射率、透射率和自由温度所表现出的发射率。
对实际表面,这些性质既有方向性又具有光谱性,即它们既和辐射的方向有关,又和辐射的波长有关。
所以实际表面的辐射性质是十分复杂的。
工程上为简化计算而提出了“漫”“灰”模型:前者指各向同性的表面,即辐射与反辐射性质与方向无关;后者指表面的辐射光谱与同温度黑体的辐射光谱相似,或表面的单色吸收率不随波长而变化是一个常数。
如某表面的辐射特性,除了与方向无关外,还与波长无关,则称为“漫—灰”表面,本教材主要针对这类表面作分析计算。
二、有关黑体的概念。
黑体既是一个理想的吸收体又是理想的发射体,在热辐射中可把它作为标准物体以衡量实际物体的吸收率和发射率。
基于黑体是理想吸收体,如把他置于温度为T的黑空腔中,利用热平衡的原理可推论出黑体尚具有如下特性:1、在同温度条件下,黑体具有最大的辐射力Eb,既(T)> (T)。
2、黑体的辐射力是温度的单调递增函数。
3、黑体辐射各向同性,即黑体具有漫射性质,辐射强度与方向无关,≠。
三、发射率发射率单色发射率与的关系对灰表面≠,可有= 。
四、辐射力E和辐射强度I均表示物体表面辐射本领。
只要表面温度T>0 K,就会有辐射能量。
前者是每单位表面积朝半球方向(0 K环境)在单位时间内所发射全波长的能量,而后者是某方向上每单位投影面积在单位时间、单位立体角内所发射的全波长能量。
它们之间的关系是,对黑体。
如果是单色辐射能量,相对有单色辐射力和单色辐射强度,并有,对黑体。
第八章热辐射的基本定律_传热学
d () I () dA cos d
单位:W/m2· sr
2) Lambert定律:
黑体表面具有漫辐射性质,在半球空间各个方向辐射强度相等
I 1 I 2 ...... I n
E I cos I n cos En cos
如果已知黑体温度,则可以求得最大单色辐射力 Eb, max 所对应的波长 max
25
讨论:黑体温度在3800K以下时,其峰值波长处在红外线区域。 因此,在一般工程中所遇到的辐射换热,基本上属于红外辐射。
思考:金属在加热过程中,随 着温度的升高,金属颜色呈暗 红、红、黄、白,请解释这一 现象。
Fb 0-T
T E c1 b d T d T f T 5 0 T C2 5 b b T exp 1 T
30
根据黑体辐射函数,可以计算出给定温度下λ1-λ2波段内的 黑体辐射力为:
Eb 1- 2 Eb Fb 0- 2T Fb 0-1T
f (T )
23
三、维恩位移定律
黑体的峰值波长 max 与热力学温度T之间的函数关系
Eb
c15 ec
2
( T )
1
根据普朗克定律,将Eb 对 波长求极值,可得: maxT 2897.6m.K
随着温度T的升高,最大单色辐射 力 Eb, 所对应的峰值波长 max max 逐渐向短波方向移动
• 实际物体的辐射力并不严格遵从四次方定律,怎么办? 认为E∝T4 由此引起的误差修正归入用实验方法确定的中 因此除了与物性有关,还与物体本身的温度有关
39
2 实际物体的光谱辐射力E
E Eb
第七章热辐射基本定律2
E Eb
=
I cos I b cos
I Ib
如果实际物体的方向辐射力遵守兰贝特定律,该物 体表面称为漫射表面。黑体表面就是漫射表面。
如果实际物体是漫射表面,则其方向辐射率应等于
常数,而与角度无关。事实上实际物体不是漫发射
体,即辐射强度在空间各个方向的分布不遵循兰贝
特定律,是方向角的函数。 对于非金属表面在很大 范围内方向黑度为一个
E ( ) Eb
发射率与单色发射率之间的关系为
E Eb
( ) E d
b 0
T
4
③方(定)向发射率
物体表面在某方向上的方向辐射力与同温度黑体辐 射在该方向上的方向辐射力之比。亦可表示为物体
在某方向上的辐射强度与同温度黑体辐射在该方向
上的辐射强度之比,即
=0.82~0.92,故可取对应1400℃的n为0.92,即 =n
=0.92,辐射力为:
T E c0 100
4
W 1400 273 4 0.92 5.67 2 4 K m K 100 409 103 W/m 2
4
例 7-5 :实验测得 2500K 钨 丝的法向单色发射率如图 所示,计算其辐射力及发 光效率。 解: 设钨丝为漫射表面
1T1 1.5m 500K 750m K
查表得
Fb ( 01 ) 0.000
2T1 10m 500K 5000m K
查表得
Fb ( 02 ) 0.634
故 (T1 ) 0.1 0.000 0.5 0.634 0.8 (1 0.634) 0.61 (2)按吸收比定义:
第二章热辐射定律以及辐射源
20
1600K
10
1400K
1200K
1000K
0
0
1
2
3
4
5
6
(m)
图1-4 黑体辐射单色辐射出射度的波长分布
图 1-4为不 同 温度 条 件下 黑 体的 单 色辐 射 出射 度 (辐射亮度)随波长的变化曲线。可见:
⑴对应任一温度,单色辐射出射度随波长连续变化, 且只有一个峰值,对应不同温度的曲线不相交。因而 温度能唯一确定单色辐射出射度的光谱分布和辐射出 射度(即曲线下的面积)。
下降到一定的气压时,气体密度很小,在 电压作用下,电子从放电灯由阴极向阳极 加速运动与气体原子碰撞,碰撞次数决定 了形成的数倍。受激电离从激发态到基态, 发出一定波长的辐射能。
气体放电灯
• 高压和超高压氙灯是用途广泛的气体放电 光源,有高压长弧氙灯和高压短弧氙灯两 大类。
• 从紫外到近红外较宽谱段范围内的连续光 谱。
热辐射定律以及辐射源
第二章
热辐射基本定律
任何0K以上温度的物体都会发射各种波长的 电磁波,这种由于物体中的分子、原子受 到热激发而发射电磁波的现象称为热辐射。 热辐射具有连续的辐射谱,波长自远红外 区到紫外区,并且辐射能按波长的分布主 要决定于物体的温度。本节介绍热辐射的 一些基本定律。
1. 单色吸收比和单色反射比
任何物体向周围发射电磁波的同时,也吸收周围物体发射的辐 射能。当辐射从外界入射到不透明的物体表面上时,一部分能 量被吸收,另一部分能量从表面反射(如果物体是透明的,则 还有一部分能量透射)。
吸收比:被物体吸收的能量与入射的能量之比称为该物体的吸
收比。在波长到+d范围内的吸收比称为单色吸收比。
第八章 热辐射的基本定律
5.单色辐射力E:在给定波长下的辐射力。单位:W/m2·m
E 0 Ed
或:
| E
dE
d
6.定向辐射力E:单位面积物体表面、在单位时间内、在某 给定方向上、单位空间立体角内所发射的辐射能。单位为: W/m2·sr
7.单色定向辐射力E,:在给定波长下的定向辐射力。单位 为:W/m2·sr·m
第一节 基 本 概 念
令: =G/G =G/G
则有:
++=1
=G/G
1.吸收率:=G/G 表示总能量被物体吸收的份额; 2.反射率:=G/G 表示总能量被物体反射的份额; 3.透射率:=G/G 表示总能量被物体透射的份额;
若能量为一特定波长的单色辐射,则有:++=1 其中、 、分别称为物体的单色吸收率、单色反射率、单色透射率。 4.镜反射:
当T=1400时,max=2.07,可见光所占能量部 分仍极少。
第二节 热辐射的基本定律
三、斯蒂芬-玻尔兹曼定律
Eb
0 Eb d
c 1
d
0
5
exp
c 2
T
1
积分后有:
Eb=bT4 W/m2 式中:b=5.67×10-8 W/m2·k4,为黑体辐射常数。 为方便计算,上式常写成:
Eb
Cb
5.漫反射:
6.黑体:=1
7.白体:=1
8.透明体:=1
第一节 基 本 概 念
三、辐射强度和辐射力
1.空间立体角:=A/r2,单位:球面度(sr),整个半球:2。
2.辐射强度I:在单位时间内,在给定的其辐射方向上,物体 表面在与发射方向垂直的方向上的单位投影面积,在单位立 体角内所发射的全波长辐射能。单位:W/m2·sr
传热学第九章辐射基本定律
绝对黑体(黑体) 吸收比 α=1 → 绝对黑体(黑体) 镜体(对于漫反射称为白体) 反射比 ρ=1 → 镜体(对于漫反射称为白体) 穿透比 τ=1 绝对透明体(透明体) → 绝对透明体(透明体)
10
2、黑体辐射 、
黑体的基本概念 辐射力和 辐射力和光谱辐射力 普朗克定律 维恩位移定律 斯蒂芬斯蒂芬-波尔兹曼定律 黑体辐射函数 兰贝特定律 小结
物体的黑度:ε=f(物质种类,表面温度,表面状况) 物体的黑度:ε=f(物质种类,表面温度,表面状况)
28
2)吸收热辐射的性质 2)吸收热辐射的性质
Eλ
E λ (T2 )
αλ
T1
λ
投入辐射与吸收辐射的关系
λ
29
光谱吸收比:物体对某一特定波长投入辐射能的吸收份额 份额。 光谱吸收比:物体对某一特定波长投入辐射能的吸收份额。 吸收比:物体对投入辐射在全波长范围内的吸收份额 吸收比: α=f(自身表面性质与温度T 辐射源性质与温度T α=f(自身表面性质与温度T1,辐射源性质与温度T2)
24
黑度: ① 黑度:
实际物体的辐射力与同温 度下黑体辐射力的比值 称为实际物体的黑度, 称为实际物体的黑度, 又称发射率 记为ε。 发射率, 又称发射率,记为 。
E ∫0 Eλ dλ ∫0 ελ Ebλ dλ ε= = = 4 Eb σT σT 4
∞ ∞
⇒ E = εEb = εσT 4
对于实际物体来说,黑度仍是温度的函数, 对于实际物体来说,黑度仍是温度的函数,即实 际物体的辐射力不满足四次方关系。 际物体的辐射力不满足四次方关系。
8
t>0K 内 的物体 能
热辐射传播速度c、波长 和频率 之间的关系c=f·λ 和频率f之间的关系 热辐射传播速度 、波长λ和频率 之间的关系 热辐射的主要波谱: 热辐射的主要波谱:
传热学 第7章-热辐射的基本定律
第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。
太阳对大地的照射是最常见的辐射现象。
高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。
特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。
本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。
第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。
比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。
人们根据电磁波不同效应把电磁波分成若干波段。
波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。
可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。
因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。
一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。
当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。
热辐射基本定律
热辐射基本定律
热辐射基本定律有:
1.基尔霍夫辐射定律:物体吸收和发射的辐射能与自身辐射本领有
关,同时吸收本领与发射本领成正比。
2.普朗克辐射分布定律:物体在一定温度下发射的辐射能按波长的
分布情况,在一定温度下,黑体单位面积上单位时间所辐射的能量,也称黑体辐射定律。
3.斯蒂藩-玻耳兹曼定律:单位面积的物体向整个空间以同一温度发
射热辐射时其总辐射能量等于发射功率与表面积之比。
4.维恩位移定律:黑体光谱谱线中的最大波长与最小波长的比值随
温度升高而增大。
第八章 热辐射的基本定律
第八章热辐射的基本定律8.1热辐射的基本概念8.2黑体辐射的基本定律8.3基尔霍夫定律热辐射是三种基本的热量传递方式之一,它的传热机理与热传导、热对流有着根本的不同。
热传导是依靠分子、原子以及自由电子等微观粒子的热运动而进行的热量传递的现象,热对流靠的是流体的宏观运动,而热辐射靠的是电磁波的运动。
因此,它的研究方法也有着自身的特点。
任何物体只要温度高于绝对零度,它就能源源不断地以热辐射的方式向外界辐射能量,同时它也不断地吸收投射到自己身上的热辐射。
因此,热辐射是一种非常普遍的热量传递现象,辐射传热问题也在工程领域和科学研究中普遍存在,尤其是高温物体传热、红外加热技术、航空航天工程、辐射采暖等领域中占有非常重要的地位。
8.1 热辐射的基本概念8.1.1 热辐射的定义和特点定义:由于自身温度或者热运动的原因而激发出电磁波的方式称为热辐射。
工程上的一般物体,它们热辐射的大部分波长位于0.76~20之间,只有对于太阳辐射才考虑波长在0.1~20之间的热射线。
因此,除特殊说明,我们一般涉及的热射线都是指红外线。
特点:任何物体,只要温度高于绝对零度,就会不停的向周围空间发射辐射能;具有电磁波的共性(比如波动性、粒子性);c νλ=⋅不需要冷热物体的直接接触,即便在真空中热辐射也能进行;在辐射换热过程中伴随着能量形式的转化物体的热力学能电磁波能物体的热力学能物体间以热辐射方式进行热量传递是双向的;8.1.2 辐射能的吸收、透射和反射G α吸收反射透射投射辐射G G ρG τ根据能量守恒定律,应有:G G G G αρτ=++等式两边同时除以G ,得:1G G G G G G ρατ++=吸收率反射率透射率αρτ1αρτ++=由此可见,、、分别表示表面对于投射辐射吸收、反射和透射能力的大小。
ρατ大多数固体、液体对于投射辐射是不透射的;0τ=()1αρ+=结论1:善于吸收的物体就不善于反射;结论2:物体表面状况对吸收和反射特性影响很大;分析:气体对热辐射几乎没有反射能力;0ρ=()1ατ+=结论:气体的辐射和吸收在整个气体容积中进行;三个理想物体注意:1. 黑体、白体、透明体应该是针对所有波长的投人造黑体模型8.1.3 两个重要的辐射参数1.辐射力定义:单位时间内,物体每单位表面积向半球空间发射的全部波长的电磁波能量的总和,用E 表示,单位。
热辐射的基本定理
第八章热辐射的基本定理本章从分析热辐射的本质和特点开始,结合表面的辐射性质引出有关热辐射的一系列术语和概念,然后针对辐射规律提出了热辐射的基本定律。
学习的基本要求是:理解热辐射本质和特点。
有关黑体、灰体、漫射体,发射率(黑率)、吸收率的概念。
理解和熟悉热辐射的基本定律,重点是斯蒂芬—玻尔兹曼定律和基尔霍夫定律。
了解影响实际物体表面辐射特性的因素。
主要内容有:一、作为表面的热辐射性质,主要有:对外来投射辐射所表现的吸收率、反射率、透射率和自由温度所表现出的发射率。
对实际表面,这些性质既有方向性又具有光谱性,即它们既和辐射的方向有关,又和辐射的波长有关。
所以实际表面的辐射性质是十分复杂的。
工程上为简化计算而提出了“漫”“灰”模型:前者指各向同性的表面,即辐射与反辐射性质与方向无关;后者指表面的辐射光谱与同温度黑体的辐射光谱相似,或表面的单色吸收率不随波长而变化是一个常数。
如某表面的辐射特性,除了与方向无关外,还与波长无关,则称为“漫—灰”表面,本教材主要针对这类表面作分析计算。
二、有关黑体的概念。
黑体既是一个理想的吸收体又是理想的发射体,在热辐射中可把它作为标准物体以衡量实际物体的吸收率和发射率。
基于黑体是理想吸收体,如把他置于温度为T的黑空腔中,利用热平衡的原理可推论出黑体尚具有如下特性:1、在同温度条件下,黑体具有最大的辐射力Eb,既(T)> (T)。
2、黑体的辐射力是温度的单调递增函数。
3、黑体辐射各向同性,即黑体具有漫射性质,辐射强度与方向无关,≠。
三、发射率发射率单色发射率与的关系对灰表面≠,可有= 。
四、辐射力E和辐射强度I均表示物体表面辐射本领。
只要表面温度T>0 K,就会有辐射能量。
前者是每单位表面积朝半球方向(0 K环境)在单位时间内所发射全波长的能量,而后者是某方向上每单位投影面积在单位时间、单位立体角内所发射的全波长能量。
它们之间的关系是,对黑体。
如果是单色辐射能量,相对有单色辐射力和单色辐射强度,并有,对黑体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热辐射的基本定律••smyt_1983•2位粉丝•1楼在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。
太阳对大地的照射是最常见的辐射现象。
高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。
特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。
本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。
第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。
比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。
人们根据电磁波不同效应把电磁波分成若干波段。
波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=2 5—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。
可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。
因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。
一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。
当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。
由于自身温度或热运动的原因面激发产生的电磁波传播,就称热辐射。
显然,热辐射是电磁波,电磁波的波长范围可从几万分之一微米到数千米,它们的名称和分类如图所示。
通常把λ=0.1—100μm范围的电磁波称热射线,其中包括可见光线、部分紫外线和红外线具有波动和量子特性。
2、特点热辐射的本质决定了热辐射过程有如下三个特点:⑴辐射换热与导热、对流换热不同、它不依赖物体的接触而进行热量传递,而导热和对流换热都必须由冷、热物体直接接触或通过中间介质相接触才能进行。
⑵辐射换热过程伴随着能量形式的两次转化,即物体的部分内能转化为电磁波能发射出去,当此波能射及另一物体表面而被吸收时,电磁波能又转化为内能。
⑶一切物体只要其温度T>0K,都会不断地发射热射线。
当物体间有温差时,高温物体辐射给低温物体的能量大于低温物体辐射给高温物体的能量,因此总的结果是高温物体把能量传给低温物体。
即使各个物体的温度相同,辐射换热仍在不断进行,只是每一物体辐射出去的能量,等于吸收的能量,从而处于动平衡的状态。
二、物体的热辐射特性-吸收、反射和透射当热射线投射到物件上时,遵循着可见光的规律,其中部分被物体吸收,部分被反射,其余则透过物体。
如图所示,其中反射存在漫反射和镜反射两种情况。
在物体表面对射线的吸收、反射和透射的过程中,能量平衡关系为:由此可定义吸收率、反射率和透射率:物体吸收率:;物体反射率:;物体透射率。
其中;对于单色吸收率、单色反射率、单色透射率:。
为研究辐射特性可提出以下理想辐射模型:黑体:α=1 ρ=0 τ=0;白体:α=0 ρ=1 τ=0;透明体:α=0 ρ=0 τ=1•2010-4-13 11:10•回复••smyt_1983•2位粉丝•2楼自然界和工程应用中,完全符合理想要求的黑体、白体和透明体虽然并不存在,但和它们根相象的物体却是有的。
例如,煤炭的吸收比达到0.96,磨光的金子反射比几乎等于0.98,而常温下空气对热射线呈现透明的性质。
但是,在分析实际物体表面的吸收、反射和透过特性的时候,必须非常谨慎地对待波长,尤其要注意不能以肉眼的直观感觉来判断某物体吸收比的高低。
对于τ=1的物体、说明它能允许投射来的辐射能全部透射过去、因此,称为透明体。
这种极限状况在自然界中并不存在,只能有近似的透明体,如双原子气体(氧气、氮气)可视为?=1的透明体;干燥的空气也可以近似视为透休,但当空气中掺有水蒸气和二氧化碳气时,它就不再能作为透明体来处理,因为这两种气体的吸收率不等于零。
有些物体的透射性能与波长有关。
也就是说,它对于某——波长范围的辐射线表现出良好的透射性能,而对另一些波长范围则表现为非透明体性能,这就是物体对波长的选择性。
例如普通玻璃对可见光来说是良好的透明体,但对紫外线和红外线来说就不是透明体。
因此人们在普通玻璃的室内进行日光浴的效果就与室外显著不同。
对大多数的固体和液体来说,热射线都是不能透射的,即τ=o。
这时,α十ρ=1由上式可以看到,对于τ=o的物体,吸收能力越强,它的反射能力就越弱;或者说反射能力越强的非透体,其吸收能力就越弱。
这一知识早巳被人们的日常生活所验证。
例如夏天人们总是喜欢穿白色衣服,这就是利用白色对可见光反射能力强这一特点,便衣服吸收的可见光减少,达到凉爽的目的。
又如在防原子辐射的设施上涂成白色也是这个道理。
但是应该注意,颜色对可见光的特性并不能概括为额色对全部热射线的特性,上面已经提及普通玻璃对可见光是透体而对紫外线和红外线却不是进体。
而白色涤对可见光具有很高的反射串,但对于红外线的反射率却很低;白族和黑漆对红外线的反射率和吸收牢几乎没有什么差别。
可见,对热射线的吸收与反射并不取决于颜色,实际上在很大程度上取决于物体表面的状况、粗糙度等因素。
对于物体P=1的极限情况,说明物体能将投射来的辐射能全部反射掉。
这种物体称为白体。
物体对投射来的射线的反射可分为镜反射和漫反射。
镜反射时射线入射角等于射线的反射角,而漫反射则比较地元规律。
表面粗糙度对射线的反射有决定性的影响。
注意,这里所指的表面扭糙度是相对于辐射线的波长而言的。
当表面不平整度(粗极度)小于投射射线的波长时,即为光滑表面,这时形成镜反射,如高度抛光的金属表面。
一般的:t程材料表面对热射线来说均可视力粗糙表面,所以形成漫反射。
在本课程所涉及的范围内都只限十漫射表面。
对于。
=1的物体,意味着它能全部吸收投射来的各种波长的辐射能,可见它是物体吸收能力最强的一种物体,因此称之为绝对黑体或黑体。
在自然界中并不存在绝对黑体。
人们可以制造出近似的黑体。
例如在高吸收率不透明材料构成的等壁温空腔上开一小扎,就可以把该小孔视为该温度下的黑体。
由于投射到小7L上的射线进入空腔后,经过反复吸收、反射,而最后从小孔反射出去的能量可以忽略。
可以认为能量全部被小孔吸收。
在理解上述基本概念时,应注意以下几个问题:⑴镜反射和漫反射。
一般工程材料均形成漫反射。
⑵物体的颜色。
关键在于是物体本身发射可见光还是物体反射可见光。
⑶理想辐射模型均是对全波长而言的。
三、辐射强度和辐射力所有的固体和液体表面都随时向其上方的整个空间(称为半球空间)发射不同波长的辐射能量。
为了进行辐射换热的工程计算,必须研究物体辐射能量随波长的分布特性,以及在半球空间各个方向亡的分布规律。
一辐射强度1、立体角:是一个空间角度。
定义为:•2010-4-13 11:10•回复••smyt_1983•2位粉丝•3楼,单位为立体弧度Sr其中θ的变化范围是0-900,β的变化范围则是0-3600。
2、辐射强度:是物体给定辐射方向上,物体在与发射方向垂直的方向上的单位投影面积,在单位时间和单位立体角内所发射全波长的能量,符号为I,单位为W/(m2Sr)。
,其中3、单色辐射强度如果辐射强度是指在波长λ附近的单位波长间隔内所发射的能量,称为单色辐射强度,符号为Iλ,单位为W/(m2μm Sr)。
二辐射力1、辐射力:发射物体每单位表面积在单位时间内向半球空间所发射的全波长能量,称为辐射力,符号为E,单位为W /m2。
E与I的关系为:;E与Iλ的关系为:2、单色辐射力:如果辐射力是指在波长λ附近的单位波长间隔内所发射的能量,称为单色辐射力,符号为Eλ,单位为W/(m2μm)。
3、定向辐射力:如果辐射力是指在某规定方向上的单位面积上所发射的能量,称为定向辐射力,符号为Eθ,单位为W/(m2μm)。
第二节热辐射的基本定律重点内容:热辐射的基本定律及实际物体的热辐射特性简化方法一、黑体黑体具有最大的吸收力(α=1),同时亦具有最大的辐射力(ε= 1)。
在实际物体中不存在绝对黑体,为此引出人工黑体,如图所示。
具有一个小孔的等温空腔表面,若有外部投射辐射从小孔进入空腔内,必将在其内表面经历无数次的吸收和反射,最后能够从小孔重新选出去的辐射能量必定微乎其微。
于是有理由认为,几乎全部入射能量都被空腔吸收殆尽。
从这个意义上讲,小孔非常接近黑体的性质。
另外,腔内空间的辐射场系由腔内表面的发射和反射叠加而成,是各向同性的,而且必定和从小孔选出的辐射具有相同的性质,也等于腔壁温度所对应的黑体辐射力。
二、普朗克(M.Planck)定律1、表达式其中C1、C2分别称为普朗克第一常数和第二常数。
该规律描述了黑体单色辐射力随波长及温度的变化规律,如图所示。
2分析⑴在一定温度下,黑体在不同波长范围内辐射能量各不相同。
⑵维恩位移定律:随着温度T增高,最大单色辐射力Ebλ, max所对应的峰值波长λmax逐渐向短波方向移动。
λmaxT =2897.6μK。
⑶黑体T<1400K,辐射大部分能量集中在λ=0.76-10 μ内,从而可以忽略可见光。
常温下,实际物体的辐射主要是红外辐射。
三、斯蒂芬-玻尔兹曼定律Eb=σbT4W/m2;σb=5.67*10-8W/(m2K4)描述了黑体辐射力随表面温度的变化规律。
也可以计算某一波长范围内的辐射力。
其中称为黑体辐射系数。
四、兰贝特(Lambert)余弦定律包括三个方面的内容:1、半球空间上,黑体的辐射强度与方向无关。
即:,而各朝向辐射同性的表面称为漫辐射表面。
2、漫辐射表面定向辐射力与辐射强度间满足:3、漫辐射表面的辐射力是辐射强度的π倍。
该定律描述了黑体及漫辐射表面定向辐射力按空间方向的分布变化规律。
7-3、实际固体何液体的辐射特性黑体是所有物体当中吸收能力最大,同时发射能力也最大的理想化表面,这个特点使它很自然地成了描述实际表面的吸收和发射能力大小的最佳基准。
通常实际表面(固体或液体)的光谱辐射力比同温度的黑体小,而且表现出不像黑体那么有规律。
一般对实际物体表面辐射特性进行一定程度的简化,再用辐射率和吸收率进行修正。