气浮工艺
气浮工艺常见问题及解决措施
气浮工艺常见问题及解决措施气浮工艺常见问题及解决措施1. 引言在水处理领域,气浮工艺是一种常见且广泛应用的技术。
它通过利用气泡在水中形成气团来分离和去除悬浮物,从而提高水质。
然而,尽管气浮工艺有很多优点,但在实际应用过程中也会遇到一些问题。
在本文中,我将探讨气浮工艺的常见问题,并提供解决措施,以帮助读者更全面、深入地了解这个主题。
2. 气浮设备故障2.1 问题描述:气浮设备的故障可能导致工艺的减效或中断,例如气泡生成不足、气水混合不均匀等。
2.2 解决措施:- 检查气源管路,确保气体供应畅通,及时排除堵塞。
- 清洗气泡发生器,防止沉积物积累影响气泡生成。
- 调整气体流量和压力参数,使气泡大小和密度达到最佳状态。
- 定期维护气浮设备,检查关键部件是否正常运行。
3. 高浊度进水情况3.1 问题描述:高浊度进水是指水中悬浮物浓度较高,超过了气浮工艺的处理能力,导致净化效果不理想。
3.2 解决措施:- 在气浮系统前加装预处理设备,如格栅、沉砂池等,以去除大颗粒悬浮物。
- 调整气浮系统的浮污排放速率,使其与水处理流量相匹配。
- 提高气浮系统的处理效率,增大处理单元的面积或增加气泡发生器的数量。
- 定期清洗和更换沉淀槽中的沉积物,以避免堵塞影响处理效果。
4. 水质变化对气浮效果的影响4.1 问题描述:水质的变化可能会影响气浮效果,例如水中溶解性物质增加、pH值变化等,都可能导致气泡生成受阻或气泡与悬浮物结合不紧密。
4.2 解决措施:- 根据水质变化调整气泡发生器的操作参数,如气体流量、压力等。
- 在气浮系统中加入药剂,如絮凝剂、pH调节剂等,以改善气泡与悬浮物的结合效果。
- 定期监测水质变化,并及时采取相应的调整措施,以保持气浮工艺的有效性。
5. 能耗问题5.1 问题描述:气浮工艺需要消耗大量的能源,特别是用于气泡生成的气体和提供气泡升力的搅拌系统。
5.2 解决措施:- 提高气浮系统的能效,选择能耗较低的设备和技术,如选择高效的气泡发生器和搅拌系统。
气浮工艺技术汇总
气浮工艺技术汇总(一)基本概念气浮处理法就是向废水人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水的目的。
浮选法主要用来处理废水中靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。
(二)气浮的基本原理1、带气絮粒的上浮和气浮表面负荷的关系粘附气泡的絮粒在水中上浮时,在宏观上将受到重力G浮力F等外力的影响。
带气絮粒上浮时的速度由牛顿第二定律可导出,上浮速度取决于水和带气絮粒的密度差,带气絮粒的直径(或特征直径)以及水的温度、流态。
如果带带气絮粒中气泡所占比例越大则带气絮粒的密度就越小;而其特征直径则相应增大,两者的这种变化可使上浮速度大大提高。
然而实际水流中;带气絮粒大小不一,而引起的阻力也不断变化,同时在气浮中外力还发生变化,从而气泡形成体和上浮速度也在不断变化。
具体上浮速度可按照实验测定。
根据测定的上浮速度值可以确定气浮的表面负荷。
而上浮速度的确定须根据出水的要求确定。
2、水中絮粒向气泡粘附如前所述,气浮处理法对水中污染物的主要分离对象,大体有两种类型即混凝反应的絮凝体和颗粒单体。
气浮过程中气泡对混凝絮体和颗粒单体的结合可以有三种方式,即气泡顶托,气泡裹携和气粒吸附。
显然,它们之间的裹携和粘附力的强弱,即气、粒(包括絮废体)结合的牢固程度与否,不仅与颗粒、絮凝体的形状有关,更重要的受水、气、粒三相界面性质的影响。
水中活性剂的含量,水中的硬度,悬浮物的浓度,都和气泡的粘浮强度有着密切的联系。
气浮运行的好坏和此有根本的关联。
在实际应用中质须调整水质。
3.水中气泡的形成及其特性形成气泡的大小和强度取决于空气释放时各种用途条件和水的表面力大小。
(表面力是大小相等方向相反,分别作用在表面层相互接触部分的一对力,它的作用方向总是与液面相切。
气浮法简介
全溶气流程
7 3 4
8
10
浮 渣
5 2 1
6
9 出 水
全溶气流程图 图 8-9 全溶气方式加压溶气浮上法流程
1-原水进入;2-加压泵;3-空气加入;4-压力溶气罐 (含填料层);5-减压阀;6-气浮池;7-放气阀; 8-刮渣机;9-集水系统;10-化学药剂
部分溶气流程
7 3 压 力 表
4
8
10
浮 渣
微孔曝气气浮法
2.2、剪切气泡气浮法 将空气引至一个高速旋转混合器或叶轮机的附近,通过高速旋转混合器或叶轮机的高速剪切,将引入的空气切割粉碎成细小气泡。
剪切气泡气浮法
3、溶解空气气浮法 溶解空气气浮法是在一定的压力下让空气溶解在水中,然后在减压条件下析出溶解空气,形成微气泡。根据气 泡析出时所处压力的不同可分为真空气浮法和加压气浮法两种。 3.1真空气浮法 废气在常压下被曝气,使其充分溶气,然后在真空条件下,使废水中溶气析出,形成细微气泡,粘附颗粒杂质 上浮于水面形成泡沫浮渣而除去。此法优点是:气泡形成、气泡粘附于微粒以及絮凝体的上浮都处于稳定环境, 絮体很少被破坏。气浮过程能耗小。其缺点是:容气量小,布、不适于处理含悬浮物浓度高的废水;气浮在负 压下运行,刮渣机等设备都要在密封气浮池内,所以气浮池的结构复杂,维护运行困难,故此法应用较少。 3.2加压气浮法 (1)工作原理:在加压条件下,使空气溶于水,形成空气过饱和状态。然后减至常压, 使空气析出,以微小气泡释放于水中,实现气浮,此法形成气泡小,约20~100μm,处 理效果好,应用广泛。 (2)加压溶气气浮工艺流程: 加压溶气气浮可分为:全溶气流程、部分溶气流程、回流加压溶气流程。
3.4压力溶气气浮法系统的组成及设计(P71)
污水处理工艺流程介绍气浮
污水处理工艺流程介绍气浮污水处理是为了减少或消除污水对环境的污染,并使其满足排放要求或可再利用。
气浮是一种常用的污水处理工艺,其通过气泡的作用将悬浮物质从污水中分离出来。
一、气浮工艺原理气浮工艺利用气泡与污水中的悬浮物质产生共同作用,使悬浮物质上升浮于液面,从而实现固液分离。
其主要原理包括两个方面:气泡产生和气泡与悬浮物质的作用。
1.气泡产生气泡可以通过机械方式产生,通常使用机械式气浮装置或空气鼓泡系统。
机械式气浮装置通过旋转轴带动叶轮,将空气从液体中抽出并通过喷嘴喷入液体中形成气泡。
空气鼓泡系统则是通过自然方式将气泡带入液体中。
无论是哪种方式,气泡产生后会漂浮到液面上。
2.气泡与悬浮物质的作用气泡与悬浮物质接触时,会通过三种方式作用于悬浮物质上。
首先是附着作用,气泡上附着一层气泡层,增加悬浮物质的比重,使其上升。
其次是胶凝作用,气泡表面吸附胶体粒子,形成较大的团聚物。
最后是减极作用,气泡带动悬浮物质向液面上升。
二、气浮工艺流程气浮工艺是典型的机械污水处理工艺,具体流程如下:1.进水预处理进水预处理主要是将进水中的大颗粒杂质和悬浮物去除,以保护后续设备的正常运行。
常用的预处理设备包括格栅和沉砂池。
2.混合及溶气池进水经过预处理后,会通过混合罐,其中加入絮凝剂和药剂,以促进悬浮物的凝结和气泡的形成。
之后,进入溶气池,同时向池内通入压缩空气,使其与污水充分接触,形成气泡。
3.气浮池溶气池中的气泡和悬浮物一起进入气浮池,根据凝聚和浮力作用,悬浮物被气泡带到液面上,形成浮渣。
浮渣通过刮泥机或刮渣器刮出,并通过污泥池进一步处理。
4.滤池气浮后的污水仍然含有微小的悬浮物,为了进一步净化污水,可以使用滤池进行后处理。
滤池通过滤料层对污水进行过滤,去除微小悬浮物。
5.清水池和出水经过滤池后,污水中的悬浮物已减少到较低水平。
为了保证出水质量,可建设清水池对水进行储存和调节,最后通过出水口排放到外部环境或进一步利用。
气浮工艺及加压溶气气浮的原理与设计要点
气浮工艺及加压溶气气浮的原理与设计要点气浮工艺是一种将气体注入废水中,通过气体和水的密度差异以及气泡与悬浮物质粒子的附着作用,使悬浮物质在水中迅速升浮,从而达到净化水体的目的的一种工艺方法。
气浮工艺可以分为气浮浮选、高效气浮、电气一体化气浮、加压气浮等,其中加压溶气气浮是气浮工艺的一种改进版本。
加压溶气气浮的原理是在溶解气浮池中,通过加压的方式将气体(通常是空气)通过溶气装置溶解到水中,形成大量的微小气泡。
然后将含有微小气泡的饱和溶气水通过水泵加压注入废水池中,使溶解气体突然减压,气泡在废水中迅速脱溶,产生大量微小气泡。
这些气泡在水中形成浮力,并对悬浮物质粒子产生吸附作用,使其迅速升浮到水表并形成浮渣。
通过浮渣的刮除和排除,从而达到废水净化的目的。
加压溶气气浮的设计要点如下:1.溶气装置设计:溶解气体的装置需要具备较高的气体溶解效率。
常用的溶气装置包括溶气鼓风机、溶气泵等。
选择适当的溶气装置,能够有效地将气体溶解到水中。
2.加压注水系统设计:加压注水系统需要能够将含有溶气水的水泵将水注入到废水池中,并能够准确控制注水流量和压力。
注水系统要具备较高的稳定性和调节性,以满足不同水质和处理效果的要求。
3.气浮装置设计:气浮池内部的结构和布置需要能够提供充足、均匀的气泡和悬浮物质的接触区域,并能够有效地收集和排除浮渣。
常用的气浮装置包括气浮池、浮渣刮板机、清污装置等。
4.控制系统设计:加压溶气气浮的控制系统需要能够准确控制气体溶解、加压注水和浮渣刮槽的操作。
控制系统需要能够实时监测水质和处理效果,并能够根据不同的工况和要求进行自动调整和控制。
5.安全保护装置设计:加压溶气气浮工艺需要具备一些安全装置,以防止压力异常、水质状况不良等情况的发生。
常用的安全装置包括过压保护装置、水位控制装置、流量控制装置等。
6.运行和维护管理设计:加压溶气气浮装置的运行和维护管理需要进行规范和有效的管理。
包括定期检查设备运行情况、清洗和维护设备、及时更换易损件等。
各种气浮工艺技术原理
各种气浮工艺技术原理气浮工艺是水处理领域常见的一种物理处理方法,广泛用于悬浊物的去除、固体颗粒的分离和浓缩等工艺过程中。
本文将介绍几种常见的气浮工艺技术原理。
一、压缩气浮法压缩气浮法是一种利用气体将悬浊物从水中分离的方法。
它的主要原理是通过向水中注入压缩气体,产生微小气泡,利用气泡与悬浊物颗粒的附着作用,使其上浮,从而实现固液分离。
该方法对悬浊物颗粒尺寸和密度的要求较高,适用于处理浓度较低的水体。
在压缩气浮法中,通常会使用一定的混合装置,将压缩空气与水均匀混合。
同时,为了增强微小气泡的附着能力,可以添加一些助剂,如絮凝剂或表面活性剂,它们能够促使悬浊物颗粒聚集并与气泡结合,提高气泡的升浮速度。
二、溶气气浮法溶气气浮法是利用溶解在水中的气体分离悬浊物的一种方法。
它的基本原理是通过提高水中气体的溶解度,使气体从溶液中脱出形成微小气泡,再利用气泡与悬浊物的接触,使其上浮。
在溶气气浮法中,通常会使用气体供应系统将气体注入水中。
为了增加气体的溶解度,可以采用加压溶解方式,即通过加压装置将气体压缩溶解于水中。
同时,对于某些难以溶解的气体,也可以采用通入气体和水的混合方式,利用溶解自然饱和度来产生微小气泡。
三、静态气浮法静态气浮法是一种没有机械搅拌装置的气浮方法。
它的主要原理是通过静态条件下气泡的粘附和聚集来实现悬浊物的沉降。
在静态气浮池中,水通过自然流动或引入流体力学装置来形成水体流动,使气泡和悬浊物颗粒接触发生反应。
静态气浮法中的气体可以通过压力管道系统、喷嘴或气泡生成装置进入水中。
悬浊物颗粒与气泡接触后,由于气泡的升浮速度较快,它们将沿着水流的方向一起浮起。
最后,上浮的气泡和悬浊物颗粒在上部的浮渣槽中被收集和清除。
四、电解气浮法电解气浮法是利用电解作用对水中的悬浊物进行处理的一种气浮方法。
它的基本原理是通过在水中加入电解质,形成气体泡团,通过气泡与颗粒的附着和聚集,实现悬浊物的沉降。
电解气浮法是在传统气浮法的基础上发展而来的,它可以提高气泡的生成效率和聚集能力。
水处理气浮工艺
水处理气浮工艺
水处理气浮工艺是一种常用的水处理技术,通过利用气泡的升力作用,将悬浮在水中的固体颗粒和油脂等污染物质从水中分离出来。
其主要
应用于污水处理厂、工业废水处理、自来水厂等领域。
气浮工艺主要包括以下几个步骤:
1. 混合池:将污染物质和化学药剂混合均匀,以便更好地进行后续的
处理。
2. 气浮池:将混合好的水流入气浮池中,通过注入空气或氧气等气体
产生大量细小气泡,使悬浮在水中的固体颗粒和油脂等污染物质附着
在气泡上,并随着气泡一起上升到液面。
3. 沉淀池:经过气浮处理后,仍有部分固体颗粒和油脂未能被完全分
离出来。
这时需要将含有这些物质的水流入沉淀池中,在静止状态下
使其自然沉淀。
通过调节沉淀时间和添加适当的化学药剂,可使残留
物质沉淀到池底,达到更好的处理效果。
4. 滤池:经过沉淀池处理后,水中仍有一些悬浮颗粒和微生物等物质
未能被完全去除。
这时需要将水流入滤池中,通过滤层的过滤作用进
一步去除残留的杂质。
常用的滤材有石英砂、活性炭、陶粒等。
5. 消毒:经过气浮、沉淀和滤池等工艺处理后的水已经基本上清除了
大部分有害物质,但仍可能存在微生物等致病因素。
为了确保水质安全,需要对其进行消毒处理。
常用的消毒方法有氯气消毒、紫外线消毒、臭氧消毒等。
总之,水处理气浮工艺是一种高效、经济、环保的水处理技术。
它能
够有效地去除水中悬浮颗粒和油脂等杂质,使水质变得更加清澈透明,并且可以根据实际情况进行调整和改进以达到更好的处理效果。
气浮工艺原理
气浮工艺原理气浮工艺是一种常用的水处理技术,通过气体的注入和微小气泡的形成,将悬浮物质和浊度较高的水体分离,从而达到净化水质的目的。
气浮工艺在污水处理、饮用水净化等领域有着广泛的应用,具有高效、节能、易操作等优点。
下面我们将详细介绍气浮工艺的原理及其应用。
气浮工艺的原理主要包括气体注入、气泡形成和悬浮物质分离三个过程。
首先,气体(通常是空气)通过气体分配系统注入水中,形成微小气泡。
这些微小气泡在水中形成气泡浮力,使得悬浮物质和气泡一起向上浮升。
随着上升过程中气泡与悬浮物质的接触增多,悬浮物质附着在气泡表面,形成浮泡团。
最后,浮泡团上升到水面,形成浮渣,经过刮渣器的刮除,实现悬浮物质的分离和去除。
气浮工艺的应用非常广泛,主要包括以下几个方面:首先,在污水处理中,气浮工艺被广泛应用于污水深度处理和污泥脱水。
通过气浮设备,可以有效去除污水中的悬浮物质、油脂和颗粒物,提高水质的净化效果。
同时,气浮工艺还可以将污泥中的水分去除,减少污泥的体积,便于后续处理和处置。
其次,在饮用水净化中,气浮工艺也扮演着重要的角色。
通过气浮设备,可以有效去除水中的浊度物质、微生物和有机物质,提高饮用水的透明度和卫生安全性。
特别是在地表水处理和水源水处理中,气浮工艺可以有效应对水质波动和水源水的复杂性,提供稳定的水质输出。
此外,在工业生产中,气浮工艺也被广泛应用于废水处理、固液分离和资源回收等方面。
通过气浮设备,可以有效去除工业废水中的悬浮物质、重金属离子和有机物质,减少对环境的污染。
同时,气浮工艺还可以实现固液分离,将废水中的固体颗粒物和沉淀物分离出来,便于后续处理和资源回收利用。
总的来说,气浮工艺作为一种高效的水处理技术,具有着广泛的应用前景和重要的社会意义。
随着环境保护意识的提高和水资源的日益紧缺,气浮工艺将在未来得到更广泛的推广和应用,为改善水质、保护环境和促进可持续发展发挥着重要的作用。
水处理气浮工艺
水处理气浮工艺引言水处理气浮工艺是一种常见的水处理技术,通过气泡在水中的浮力作用,将悬浮物从水中分离出来。
该工艺被广泛应用于污水处理、饮用水净化等领域。
本文将介绍水处理气浮工艺的原理、应用以及其优缺点。
一、水处理气浮工艺的原理水处理气浮工艺的核心原理是利用气泡的浮力将悬浮物从水中分离。
在气浮池中,将水中悬浮物与气泡充分接触,悬浮物粒子附着在气泡表面,形成气泡浮团。
由于气泡的浮力大于悬浮物粒子的重力,悬浮物被带到水面上形成浮渣,然后通过刮板或旋转鼓将浮渣从水中刮除,从而实现悬浮物的分离。
二、水处理气浮工艺的应用1. 污水处理:水处理气浮工艺常用于污水处理厂,用于去除污水中的悬浮物、油脂、颗粒物等。
通过气浮工艺处理后的污水可以达到一定的回用标准,减轻对环境的污染。
2. 饮用水净化:水处理气浮工艺也可以应用于饮用水净化过程中,去除水中的浊度、色度、悬浮物等,提高水的质量和安全性。
3. 工业废水处理:许多工业过程会产生大量含有悬浮物的废水,水处理气浮工艺可以有效去除这些悬浮物,减少对自然环境的负面影响。
三、水处理气浮工艺的优缺点1. 优点:a. 分离效果好:水处理气浮工艺能够有效去除水中的悬浮物,使水质得到明显改善。
b. 适用范围广:水处理气浮工艺适用于不同类型的水体,包括污水、饮用水、工业废水等。
c. 操作简便:水处理气浮工艺的操作相对简单,容易实施和维护。
2. 缺点:a. 能耗较高:水处理气浮工艺需要使用气体产生气泡,因此会消耗一定的能源。
b. 占地面积大:水处理气浮设备需要占用相对较大的场地,增加了工程投资成本。
c. 对水质要求高:水处理气浮工艺对水质的要求较高,特别是对水中的油脂、胶体等物质的处理效果较差。
结论水处理气浮工艺作为一种常见的水处理技术,具有分离效果好、适用范围广等优点,但也存在能耗较高、占地面积大等缺点。
在实际应用中,需要根据具体情况综合考虑,选择合适的水处理方法。
未来,水处理气浮工艺可能会进一步发展,提高处理效率,减少能源消耗,以满足人们对清洁水资源的需求。
气浮工艺的类型
气浮工艺的类型包括以下几种:1. 布气气浮:利用机械剪切力,将混合于水中的空气碎成细小的气泡,以进行气浮的方法。
按粉碎气泡方法的不同,布气气浮又分为:水泵吸水管吸气浮、射流气浮、扩散板曝气气浮以及叶轮气浮等四种。
2. 溶气气浮:根据废水中所含悬浮物的种类、性质、处理水净化程度和加压方式的不同,基本流程有以下三种。
a. 全流程溶气气浮法:将全部废水用水泵加压,在泵前或泵后注入空气。
在溶气罐内,空气溶解于废水中,然后通过减压阀将废水送人气浮池。
废水中形成许多小气泡粘附废水中的乳化油或悬浮物而逸出水面,在水面上形成浮渣。
用刮板将浮渣连排入浮渣槽,经浮渣管排出池外,处理后的废水通过溢流堰和出水管排出。
b. 部分溶气气浮法:取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废水混合。
c. 部分回流溶气气浮法:取一部分除油后出水回流进行加压和溶气,减压后直接进入气浮池,与来自絮凝池的含油废水混合和气浮。
回流量一般为含油废水的25%~100%。
3. 电解气浮:对废水进行电解,这时在阴极产生大量的氢气泡,氢气泡的直径很小,仅有20~100微米,它们起着气浮剂的作用。
废水中的悬浮颗粒粘附在氢气泡上,随其上浮,从而达到了净化废水的目的。
与此同时,在阳极上电离形成的氢氧化物起着混凝剂的作用,有助于废水中的污泥物上浮或下沉。
电解气浮法的优点是:能产生大量小气泡;在利用可溶性阳极时,气浮过程和混凝过程结合进行;装置构造简单,是一种新的废水净化方法。
4. 生物、化学气浮工艺:包括生物气浮法和化学气浮法两种。
生物气浮法利用微生物的作用产生气体,与水中的悬浮絮体充分接触,使水中悬浮絮体粘附在微气泡上,随气泡一起浮到水面,形成浮渣并刮去浮渣,从而净化水质。
化学气浮法则是利用某些化学含物在废水中产生气体的反应原理进行的,反应生成的气体在释放过程中形成微小气泡,吸附在固体颗粒表面,使固体顺粒向浪面浮大,从而使固液分离。
以上就是气浮工艺的主要类型,如需了解更多信息,请查阅专业书籍或咨询专业人士。
气浮工艺操作规程
气浮工艺操作规程气浮工艺主要是预处理污水中悬浮物、胶体及大部分有机物,反应区矾花形成效果好(块大、密实),上浮区浮渣整体结团效果好,浮渣及时刮掉,气浮出水必须相对清澈,减轻后续生化池处理负荷。
一、气浮池操作步骤(1)水量控制:气浮池在开机前必须保持一定的水位(一般要求高于溶气泵进水流量计);通过调节(调节池内)提升泵出水阀门开度或回流管阀门开度使进气浮池反应区的水量小于气浮池的处理能力(上限波动范围不超过10%);(2)反应区药剂混凝反应效果要求:首先启动加药系统后再开始进水,关机时应先关进水泵再停止加药;反应区第1格投加PAC(若pH低于6.0时此格还需投加碱剂以提高pH值到7-8,经常测试此pH值),完成混凝反应(中和);进入第2格投加PAM(粘稠性有机药剂),完成絮凝反应,即使小颗粒矾花凝聚成大颗粒矾花,以提高气浮区浮渣层捕集矾花的效果,反应以看到明显絮体(矾花)、水与絮体有明显分层为标准;PAC投加量和PAM投加量视现场水质及反应情况及时调整加药量;二、溶气泵操作步骤及要求(1)开机前:确认电机转向与水泵指示方向相符,严禁反转损坏水泵,开机前,打开进水管上的水量调节阀及溶气罐出水进气浮池管道上的阀门;(2)开机:打开溶气泵启动按扭,待电机达到额定转速后,慢慢打开溶气罐出口阀门(进气浮池管道),将溶气泵出口压力调整至0.5MPa;再慢慢关闭进水调节阀,使溶气泵进口侧出现真空,当溶气泵进口处的真空压力表为0.01-0.02MPa (负压)时,开启空气进气调节阀,使空气进气量达到溶气泵进水流量的10%-15%,此时溶气泵进水水量(回流水量)为气浮池处理能力的20-30%,溶气泵出口压力降至正常范围,即0.4-0.5MPa(气泡直径≤30μm,空气溶解度较好)。
(3)停机:由于溶气泵出口装有止回阀,无需关闭溶气罐出口阀门;按溶气泵停止按扭,再关闭进水阀门。
若溶气泵长期停机应将泵体内的水排空,防止停机后水泵冻裂及结垢。
气浮工艺流程
气浮工艺流程气浮工艺是一种常用于分离物质的物理分离工艺,主要原理是利用气泡的浮力使密度较小的物质浮在液体表面上,以达到分离的目的。
下面是气浮工艺的一个基本流程。
首先,将待分离的物料加入到水中形成悬浮液。
悬浮液中的物料可以是悬浮于水中的固体颗粒或悬浮于水中的液体。
这个过程通常需要一个搅拌设备来保持悬浮液的均匀。
接下来,在气浮槽中注入压缩空气。
通过气泵,将压缩空气送入气浮槽的底部,经过空气分配器均匀布放到气浮槽的底部。
气浮槽的底部通常有许多小孔,空气通过这些小孔进入悬浮液中。
当空气进入悬浮液中时,产生大量的微小气泡。
由于气泡的浮力比悬浮液中物料的密度要大,这些气泡会带动密度较小的物料向上浮动,并最终浮到悬浮液的表面。
在气泡带动下产生的浮力,使得悬浮液表面形成了一个固体或液体的浮渣层。
这个浮渣层会随着气泡的上升逐渐增厚。
同时,浮渣层上方是一层清澈的液体,也称为澄清层。
在气浮槽的设计中,通常会使用一些维持气泡和物料上浮的装置。
例如,安装于气浮槽底部的旋流器可帮助将气泡与物料混合均匀。
此外,还可以设置一些波纹板或障板来增加气泡与物料之间的接触面积,加快分离过程。
当浮渣层的厚度达到一定程度时,可以使用排渣器将浮渣从悬浮液中分离出来。
排渣器通常位于气浮槽的一侧,具有适当的高度以确保只排出浮渣而不会排出澄清层。
排渣器可以定期或连续排渣,以保持气浮工艺的稳定运行。
最后,分离出的浮渣可以通过离心机或其他相应设备进一步处理或回收。
而澄清层则可以通过溢流管释放到下一个处理单元或进一步处理。
以上就是气浮工艺的一个基本流程。
根据不同的分离要求和物料属性,还可以对气浮工艺进行一些改进和优化。
例如,可以调节悬浮液的pH值和温度,以提高分离效果。
此外,还可以根据物料的密度差异,选择合适的气泡尺寸和气泡生成速率。
总之,在实际应用中,需要根据具体情况进行调整和优化,以达到更好的分离效果。
给排水工艺中的气浮技术及应用
给排水工艺中的气浮技术及应用气浮技术作为一种重要的水处理技术,在给排水工艺中得到了广泛的应用。
本文将介绍气浮技术的原理、分类以及在给排水领域的应用。
一、气浮技术的原理气浮技术是利用气泡与悬浮物质之间的相互作用力,使悬浮物质从水中分离的一种物理处理方法。
其主要原理是通过将气体注入水中,产生大量微小气泡,然后使这些气泡与悬浮物质相互作用,使其聚集成较大的浮团,并浮至水面,从而达到去除悬浮物质的目的。
二、气浮技术的分类根据气泡生成方式的不同,气浮技术可以分为压力式气浮和真空式气浮两种类型。
1. 压力式气浮压力式气浮是通过在水中注入饱和的气体,并在压力容器中施加一定压力,使气体溶解在水中,然后通过减压释放气体,使气体迅速溢出并形成大量气泡。
这些气泡会与悬浮物质发生相互作用,并使其浮起。
2. 真空式气浮真空式气浮则是通过在气浮池内建立真空,使水中的气体溶解度下降,从而从水中抽出溶解的气体。
当气体溶解度下降到一定程度时,气体会从水中析出,并形成大量气泡。
这些气泡与悬浮物质发生作用后,使其上升并浮起。
三、气浮技术的应用气浮技术在给排水领域有着广泛的应用,主要包括以下几个方面。
1. 污水处理气浮技术在污水处理中主要用于悬浮物质的去除。
通过气浮技术,可以有效去除污水中的悬浮物、悬浮油和悬浮固体等。
同时,气浮技术还可以提高污水的处理效果,降低后续处理工艺的负荷。
2. 饮用水净化气浮技术在饮用水净化中也有着重要的应用。
通过气浮技术可以去除饮用水中的浊度物质、溶解性有机物和其他杂质,提高水质的清澈度和透明度。
3. 中水回用气浮技术在中水回用中可以有效去除中水中的悬浮物和颜色物质,使中水达到再生水的标准,从而实现中水的有效回用。
4. 废水处理气浮技术在工业废水处理过程中有着广泛的应用。
通过气浮技术可以有效去除工业废水中的悬浮物质、重金属离子和有机物质,从而达到废水处理的要求。
综上所述,气浮技术作为一种重要的水处理技术,在给排水工艺中起着至关重要的作用。
不同加压溶气气浮工艺流程
不同加压溶气气浮工艺流程不同加压溶气气浮工艺流程引言加压溶气气浮工艺是一种常用于废水处理和饮用水净化的技术。
通过将溶解在水中的气体以高压注入到溶气槽中,然后降压释放气体,将气泡与悬浮物质接触,从而实现悬浮物质的去除。
本文将详细介绍几种常见的加压溶气气浮工艺流程。
1. 传统溶气气浮工艺混凝剂投加:首先,在储罐中加入适量的混凝剂,如聚合氯化铝。
混凝剂通过凝聚悬浮物质,使其形成较大的凝块,便于后续的气浮处理。
溶解气体:将气体,如空气或氮气,以高压通过气体供应管道注入溶气槽中。
溶解气体的压力和流量应该根据实际情况进行调节,以保证最佳的气浮效果。
气浮废水处理:释放压力后,溶解在水中的气体会形成大量小气泡。
这些气泡将与悬浮物质接触并附着在其表面。
随后,悬浮物质和气泡一起浮起到上部的浮渣池,形成浮渣。
清澈的水则从上部流出。
2. 顺流式溶气气浮工艺净水剂加入:在水处理系统中,首先应添加适量的净水剂,如高效净水剂。
净水剂能够提高水的净化效果,降低溶气气浮的难度。
溶解气体:与传统工艺相似,将气体通过气体供应管道注入溶气槽中,溶解为水中的微小气泡。
顺流气浮:废水从底部进入气浮槽,水流被反向推动,使气泡在水中均匀分布,并与悬浮物质接触。
气泡带着悬浮物逐渐上浮到表层,形成浮渣。
除渣:浮渣通过喷淋装置或机械刮板系统被及时移走,以保证工艺的连续性和稳定性。
3. 逆流式溶气气浮工艺混凝剂投加:与传统工艺类似,先加入适量的混凝剂进行预处理。
溶解气体:将气体以适量的高压注入溶气槽中,形成微小气泡。
逆流气浮:废水由底部注入气浮槽,与气泡相向而行。
悬浮物质会与气泡接触和吸附,逐渐浮到上部浮渣池。
除渣:通过喷淋装置或机械刮板系统将浮渣及时清除。
结论加压溶气气浮工艺流程在废水处理和饮用水净化中得到了广泛应用。
传统溶气气浮工艺是一种常见的处理方式,而顺流式和逆流式溶气气浮工艺则在特定情况下具有更好的净化效果。
根据实际需求,选择适合的加压溶气气浮工艺流程,能够提高水质净化效果,保护环境。
水处理气浮工艺
水处理气浮工艺水处理气浮工艺是一种常用的水处理技术,广泛应用于各种工业和生活用水的处理过程中。
它通过利用气泡的浮力将悬浮物从水中分离出来,从而达到净化水质的目的。
气浮工艺主要包括溶解气浮和压缩气浮两种方式。
溶解气浮是将气体溶解在水中,通过减压释放气体形成微小的气泡,气泡在水中形成气泡浮力,将悬浮物浮起,然后通过上升速度快的气泡将悬浮物带到水面上,最后通过刮泥机等设备将悬浮物刮除。
而压缩气浮则是通过压缩空气或氮气将气泡注入水中,形成大量的微小气泡,气泡与悬浮物发生作用力,将悬浮物浮起,然后通过气泡浮力和水的疏水性将悬浮物从水中分离出来。
气浮工艺具有以下几个优点。
首先,气浮工艺可以高效地去除水中的悬浮物,包括悬浮固体、浮油和浮污等。
其次,气浮工艺对水质的要求较低,可以处理高浊度的废水和污水。
再次,气浮工艺的处理效果稳定可靠,不受水质波动的影响,能够保证出水的水质稳定。
此外,气浮工艺还可以减少化学药剂的使用量,降低运行成本。
在实际应用中,气浮工艺需要根据水质的不同进行调节和优化。
首先,气浮工艺需要根据悬浮物的性质确定气泡的大小和浓度。
一般来说,悬浮物颗粒较大时,需要使用较大的气泡;而对于颗粒较小的悬浮物,则需要使用较小的气泡。
其次,气浮工艺需要控制气泡的上升速度,以保证气泡与悬浮物发生足够的作用力,将悬浮物浮起。
最后,气浮工艺还需要控制水中的溶解氧含量,以保证气泡的形成和悬浮物的浮起。
除了以上的优点和应用调节,气浮工艺还存在一些局限性和挑战。
首先,气浮工艺在处理一些高浓度和高难度的废水时,效果可能不理想,需要采用其他处理工艺进行辅助处理。
其次,气浮工艺对设备的要求较高,需要较大的投资和运维成本。
再次,气浮工艺对水质的要求较高,需要进行预处理和后处理,以保证气浮工艺的正常运行。
水处理气浮工艺是一种常用且有效的水处理技术,可以高效地去除水中的悬浮物,保证出水的水质稳定。
在实际应用中,需要根据水质的不同进行调节和优化,以达到最佳的处理效果。
气浮工艺技术汇总
(一)基本概念气浮处理法就是向废水中通人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水的目的。
浮选法主要用来处理废水中靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。
(二)气浮的基本原理1、带气絮粒的上浮和气浮表面负荷的关系粘附气泡的絮粒在水中上浮时,在宏观上将受到重力G浮力F等外力的影响。
带气絮粒上浮时的速度由牛顿第二定律可导出,上浮速度取决于水和带气絮粒的密度差,带气絮粒的直径(或特征直径)以及水的温度、流态。
如果带带气絮粒中气泡所占比例越大则带气絮粒的密度就越小;而其特征直径则相应增大,两者的这种变化可使上浮速度大大提高。
然而实际水流中;带气絮粒大小不一,而引起的阻力也不断变化,同时在气浮中外力还发生变化,从而气泡形成体和上浮速度也在不断变化。
具体上浮速度可按照实验测定。
根据测定的上浮速度值可以确定气浮的表面负荷。
而上浮速度的确定须根据出水的要求确定。
2、水中絮粒向气泡粘附如前所述,气浮处理法对水中污染物的主要分离对象,大体有两种类型即混凝反应的絮凝体和颗粒单体。
气浮过程中气泡对混凝絮体和颗粒单体的结合可以有三种方式,即气泡顶托,气泡裹携和气粒吸附。
显然,它们之间的裹携和粘附力的强弱,即气、粒(包括絮废体)结合的牢固程度与否,不仅与颗粒、絮凝体的形状有关,更重要的受水、气、粒三相界面性质的影响。
水中活性剂的含量,水中的硬度,悬浮物的浓度,都和气泡的粘浮强度有着密切的联系。
气浮运行的好坏和此有根本的关联。
在实际应用中质须调整水质。
3.水中气泡的形成及其特性形成气泡的大小和强度取决于空气释放时各种用途条件和水的表面张力大小。
(表面张力是大小相等方向相反,分别作用在表面层相互接触部分的一对力,它的作用方向总是与液面相切。
)(1)气泡半径越小,泡内所受附加压强越大,泡内空气分子对气泡膜的碰撞机率也越多、越剧烈。
气浮工艺流程
气浮工艺流程
《气浮工艺流程》
气浮工艺是一种常用的废水处理方法,它通过将空气注入到水中,使悬浮物质浮起,并被捕集起来。
气浮工艺通常用于处理含有高浓度悬浮物的废水,比如造纸厂、印染厂和矿石加工厂的废水处理。
气浮工艺的流程一般包括以下几个步骤:
1. 混合池预处理:在这一步中,废水被泵送到混合池中,加入一定的混合剂和助凝剂,使悬浮物质和污染物在水中变得更加稳定。
2. 气浮池处理:混合后的废水被送入气浮池中,通过给水中注入空气使悬浮物质浮起。
在气浮池中,上浮的悬浮物质被集中起来,形成浮渣层,从而实现固液分离。
3. 浮渣收集:浮渣层被集中在池面上,通过机械方法或人工清理收集起来,并送往沉淀池或浓缩池进一步处理。
4. 净化水收集:经过气浮处理后的净化水被泵送到下一道工艺中,进行进一步的处理或直接排放。
气浮工艺流程通过物理方法将悬浮物质和污染物从废水中分离出来,其优点是操作简单、处理效果好、处理能力强,因此在废水处理领域被广泛使用。
同时,气浮工艺也需要耗费一定的
能源和化学药剂,在实际应用中需要根据具体的废水特性和处理要求选择合适的工艺参数和操作条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● 反应——气浮——沉淀池(图8—20)
溶 气 水 原水 集 水
排 渣
排泥
图 8-20
组合一体化气浮池
(反应--气浮--沉淀)
● 反应——气浮——过滤池(图8—21)
溶 气 水 原 水 泵 排 渣 砂 出水
图 8-21
组合式一体化气浮池
(反应-气浮-过滤)
(5)平流式矩形气浮池的设计 设计参数: ● H有效=2.0~2.5m; q=5~10m3/m2· h; t停留=10~20min; L/B=1:(1~1.5) ● U上升(接触区下端)=20mm/s; U上升(接触区上端)=5~10mm/s; t停留≥2min;隔板角度600,隔板直段高度300~500mm ● 分离区U下=1~3mm/s(含溶气水回流量)
图 8-4 竖流式电解气浮池
1-入流室;2-整流栅;3-电极组;4-出流孔;5-分离室;6-集水孔; 7-出水管;8-排沉泥管;9-刮渣机;10-水位调节器
2、平流式电解气浮池(图8—5) 平流式电解气浮装置的工艺设计
① 电流板块数 式中:B——电解池的宽度,mm l——极板面与池壁的净距,取100mm e——极板净距,mm;e=15~20mm φ——极板厚度,mm;δ=6~10mm
1-原水进入;2-加压泵;3-空气进入;4-压力溶气罐 (含填料层);5-减压阀;6-气浮池;7-放气阀; 8-刮渣机;9-集水管及回流清水管
3、加压溶气气浮系统的设计 (1)溶气方式 水泵吸入管溶气方式:水泵吸水管吸气、水泵压力管上的支管射流器 吸气 吸气量 < 水泵流量的(7~8)%(体积比)
6 7 1 3 1 2 5 8 2 4 5 8 3 7 6
(a)
(b)
图 8-12 水泵吸水管吸气、溶气方式
1-回流水;2-加压泵;3-气量计;4-射流器;5-溶气罐;6-放气管;7-压力表;8-减压释放设备
• 水泵压水管射流溶气方式:(图8—13)
7 5 空 气 吸 水 1
4 6
2
图 8-13
水泵压水管射流溶气方式
进水
出水
图 8-15
填充式溶气罐
(3)溶气水的减压释放设备:要求微气泡的直径20~100um ● 减压阀(截止阀) 每个阀门流量不同,气泡合并现象,阀芯、阀杆、螺栓易松动。 ● 专用释放器(图8—16)
上接口 接口 接口
共8根 辐射 管 ( a)
下接口 (b) (c)
图 8-16
溶气释放器
(a)TS型(b)TJ型(c)TV型
TS型溶气释放器 · >0.15Mpa,释放溶气量的99% TJ 型溶气释放器 · 在0.2Mpa以上低压下工作,净水效果良好 TV型溶气释放器 · 气泡微细20~40um
(4)气浮池 ● 平流式气浮池(图8—17)
7 3 4 1 2 8
60 °Βιβλιοθήκη 9 5 6 10图 8-17 有回流的平流式气浮池
1-溶气水管;2-减压释放及混合设备;3-原 水管;4-接触区;5-分离区;6-集水管;7刮渣设备;8-回流管;9-集渣槽;10-出水管
S
EQ (m 2 ) i
A h m3 EQ : 3 A m h
③ 极板面积 (8—8) ④ 极板高度 b = h1(气浮分离室澄清层高度) 极板长度 L= A/ b(m) ⑤ 电极室长度 L2 =L+2l(m) (8—9)
A
S (m 2 ) n 1
⑥ 电极室总高度 H= h1+h2+h3 (8—10) 式中:h1——澄清层高度m,取1.0~1.5m h2——浮渣层高度m,取0.4~0.5m h3——保护高度m,取0.3~0.5m ⑦ 电极室容积V1=BHL2(m3) ⑧ 分离室容积V2=Qt,t——气浮分离时间, 试验定,一般为0.3~0.75h ⑨ 电解气浮池容积V=V1+V2(m3)
σ1.2
σ2..3 σ1.2 σ1.3
θ 颗粒 亲水性 气泡 θ 颗粒
σ2..3
σ1.3
疏水性
亲水性和疏水性物质的接触
2.投加化学药剂对气浮效果的促进作用 (1)投加表面活性剂维持泡沫的稳定性 (2)利用混凝剂脱稳以油的颗粒为例,表面 活性物质的非极性端吸附于油粒上,极性端 则伸向水中,极性端在水中电离,使油粒被 包围了一层负电荷,产生了双电层现象,增 大了ζ-电位,不仅阻碍油粒兼并,也影响抽 粒与气泡粘附。 (3)投加浮选剂改变颗粒表面性质
Q 1000 (L / S ) 60m' (1 )
8.2.3 溶气气浮法 根据气泡析出时所处压力不同,溶气气浮法分为:溶气 真空气浮:空气在常压或加压下溶入水中,在负压下析出。 加压溶气气浮:空气在加压下溶入水中,在常压下析出。 1、溶气真空气浮 废气在常压下被曝气,使其充分溶气,然后在真空条件 下,使废水中溶气析出,形成细微气泡,粘附颗粒杂质上浮 于水面形成泡沫浮渣而除去。此法优点是:气泡形成、气泡 粘附于微粒以及絮凝体的上浮都处于稳定环境,絮体很少被 破坏。气浮过程能耗小。其缺点是:容气量小,布、不适于 处理含悬浮物浓度高的废水;气浮在负压下运行,刮渣机等 设备都要在密封气浮池内,所以气浮池的结构复杂,维护运 行困难,故此法应用较少
泡沫 11 1 2 9 10
图 8-7
叶轮气浮设备构造示意
1-叶轮;2-盖板;3-转轴;4-轴套;5-轴承;6-进气管;7-进水槽;8-出水槽; 9-泡沫槽;10-刮沫板;11-整流板
叶轮旋转方向 7 2 6
60o
5
1
3
4
图 8-8
叶轮盖板构造
1-叶轮;2-盖板;3-转轴;4-轴套;5-叶轮叶片;6-导 向叶片;7-循环进水孔
• 一般形式 内循环式射流加压溶气(图8—14)
4 Ⅰ 1 P1
1-回流水;2-加压泵;3-射流器;4-溶气罐; 5-压力表;6-减压释放设备;7-放气阀;
5 10 空 气 吸 入
水流循 环 P2
P 空气 循环 7
6
2 3
8 9
图 8-14 内循环式射流加压溶气方式
1-回流水;2-清水池;3-加压泵;4-射流器Ι ;5-射流器Ⅱ;6-溶气罐; 7-水位自控设备;8-循环泵;9-减压释放设备;10-真空进气阀
8.2.2 散气气浮法 8.2.2.1微孔曝气气浮法(图8—6)
3
5
2
6 4
图8--6 扩散板曝气气浮法
1--入流液;2--空气进入;3--分离柱;4--微孔陶瓷 扩散板;5--浮渣;6--出流液
8.2.2.2剪切气泡气浮法 (1)叶轮气浮设备构造(图8—7、8)
空气
5 进水 4 3 5
6 7 出水 进水 出水 11 2 3 6 8
2H 2e H 2
OH 4e 2H 2 O O2
在直流电作用下,正负两极产生的氢和氧 的微气泡,将废水中呈颗粒状的污染物带至 水面以进行固液分离。
8.2.1.2.电解气浮法的气浮装置 1、竖流式电解气浮池(图8—4)
10 9
出水
4 5 7 进水 3 5 2 1 6 8 排泥
(3)空气饱和设备: 作用:在一定压力下将空气溶解于水中而提供溶气水的设备 加压泵:溶入空气量V=KTP(L/m3水) 式中:P ——空气所受的绝对压力(Pa) KT——溶解常数,见表13—4 设计空气量V’=1.25V(L/m3水) 空气在水中的溶解量与加压时间关系 溶气罐 填充式溶气罐(图8—15)
2、加压溶气气浮 (1)工作原理 在加压条件下,使空气溶于水,形成空气过饱和状态。然后减至常压, 使空气析出,以微小气泡释放于水中,实现气浮,此法形成气泡小,约20~100μm,处 理效果好,应用广泛。 (2)加压溶气气浮工艺流程 加压溶气气浮可分为:全溶气流程、部分溶气流程、回流加压溶气流程。 全溶气流程(图8—9)
2)叶轮气浮池的设计 总容积W=αQt(m3) 式中:Q——处理废水量,m3/min t ——气浮时间,为16~20min α——系数一般1.1~1.4 W F (m ) 总面积 h 式中:h——气浮池工作水深1.5~2m,而<3m
2
h
H
(m 2 )
式中:H——气浮池中的静水压力 ρ——气水混合体的容重,0.67kg/L
8.2 气浮的分类与特点
根据气泡产生的方式气浮法分为: 电解气浮法; 散气气浮法:扩散板曝气气浮、叶轮气浮。 溶气气浮法:溶气真空气浮 加压溶气气浮:全溶气流程、部分溶气流程、 回流加压溶气流程。
8.2.1电解气浮法 8.2.1.1工作原理 电解气浮法是用不溶性阳极和阴极,通以 直流电,直接将废水电解。阳极和阴极产生 氢气和氧的微细气泡,将废水中的污染物颗 粒或先经混凝处理所形成的絮凝体粘附而上 浮至水面,生成泡沫层,然后将泡沫刮除, 实现分离去除污染物质。
7 3 4
8
10
浮 渣
5 2 1
6
9 出 水
图 8-9 全溶气方式加压溶气浮上法流程
1-原水进入;2-加压泵;3-空气加入;4-压力溶气罐 (含填料层);5-减压阀;6-气浮池;7-放气阀; 8-刮渣机;9-集水系统;10-化学药剂
• 部分溶气流程(图8—10)
7 3 压 力 表 4
8
10
浮 渣
5 2 1
第八章 气浮
•气浮的基本原理 •气浮的分类与特点 •气浮法在废水处理中的应用
8.1 气浮的基本原理
1、基本概念 利用高度分散的微小气袍作为载体粘附于废水中的悬浮污 染物,使其浮力大于重力和阻力,从而使污染物上浮至水 面,形成泡沫,然后用刮渣设备自水面刮除泡沫,实现固液 或液液分离的过程称为气浮。 悬浮颗粒与气泡粘附的原理 :水中悬浮固体颗粒能否与 气泡粘附主要取决于颗粒表面的性质。颗粒表面易被水湿 润,该颗粒属亲水性;如不易被水湿润,属疏水性。亲水性 与疏水性可用气、液、固三相接触时形成的接触角大小来解 释。在气、液、固三相接触时,固、液界面张力线和气液张 力线之间的夹角称为湿润接触角以θ表示。为了便于讨论, 气、液、固体颗粒三相分别用1,2,3表示。