初一数学整式的除法知识点例题
七年级数学整式的除法
关键知识点总结
除法运算步骤 将被除式与除式按降幂排列。
用被除式的第一项除以除式的第一项,得到商式的第一项。
关键知识点总结
将商式的第一项与除式相乘, 得到积式。
用被除式减去积式,得到差式 。
将差式作为新的被除式,重复 以上步骤,直到差式为0或次 数低于除式。
关键知识点总结
注意事项 在除法运算中,要保证每一步的运算都是准确的。
整式的除法与因式分解有着密切的联系。在 整式的除法中,如果被除式可以分解为两个 因式的乘积,那么可以通过因式分解的方法 简化运算过程。同时,因式分解也可以看作 是整式的除法的一种特殊情况,即被除式为 0的情况。因此,掌握因式分解的方法对于
理解和应用整式的除法具有重要意义。
THANK YOU
感谢聆听
练习题与答案
$a$ 的指数部分
$a^4 div a^2 = a^{(4-2)} = a^2$
$b$ 的指数部分
$b^3 div b = b^{(3-1)} = b^2$
练习题与答案
02
01
03
$c$ 保持不变 因此,$(15a^4b^3c) div (5a^2b) = 3a^2b^2c$ 练习题2:计算 $(18x^5y^6z^3) div (9x^3y^3z)$
整式除法可用于解决经济问题中的利 润率、折扣率、税率等问题。
工程问题
在工程问题中,利用整式除法可以计 算工作效率、工作时间、工作总量等 问题。
05
整式除法运算技巧与注意事项
简化计算过程技巧
01
02
03
利用乘法分配律
将除法转化为乘法,简化 计算过程。
提取公因式
在整式除法中,可以提取 被除数和除数的公因式, 使计算更简便。
第六节:整式的除法及余数定理
整式的除法及余数定理【教学目标】1.综合除法:多项式除法时,我们有带余除法:)()()()(x r x q x g x f +⋅= 其中)(x f 表示被除式,)(x g 表示除式,)(x q 表示商式,)(x r 表示余式,且余式)(x r 的次数小于除式)(x g 的次数.2.余数定理和因式定理:余数定理:多项式)(x f 除以)(a x -所得的余数等于)(a f 因数定理:若多项式)(x f 能被a x -整除,亦即)(x f 有一个因式a x -,则0)(=a f ;反之,如果,0)(=a f 那么a x -必为多项式)(x f 的一个因式.【经典例题】例1.求6532234++--x x x x 除以)1(+x 所得的商式和余数.例2.求多项式)(x f 除以,1-x 2-x 所得的余数分别为3和5,求)(x f 除以)2)(1(--x x 所得的余式.例3.证明:当b a ,是不相等的常数进,若关于x 的整式)(x f 被a x -和b x -整除,则)(x f 也被))((b x a x --整除.例4.试确定a 和b 的值,使b x ax x x x f +++-=532)(234被)2)(1(-+x x 整除.例5. 已知关于x 的整式)(x f 除以3+x 时余数为-5;所得的商再除以12-x 时余数为4,求)(x f 除以12-x 时的余数、除以3522-+x x 时的余式.整式的除法及余数定理练习一、选择题1.化简3422222++⋅⋅-n nn ,得( ) A 、8121-+n B 、87 C 、12+-n D 、47 2.如果822+++bx ax x 有两个因式1+x 和2+x ,则b a +=( )A 、7B 、8C 、15D 、213.如果b a ,是整式,且12--x x 是123++bx ax 的因式,那么b 的值是( )A 、-2B 、-1C 、0D 、2 二、填空题:1.已知k 是整数,并且k x x x +-+3323有一个因式是1+x ,则=k ;另一个二次因式,它是 .2.已知62-+x x 是12234-+++-+b a bx ax x x 的因式,则=a ,=b .3.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值是 .三、解答题1.计算6533+-x x 除以)2(-x 所得的商式及余数.2.用综合除法计算)23()2527(23-=-+-x x px x3.设1183)(234+-++=kx x x x x f 被3+x 整除,求k 的值.4.设2)(24+--=bx ax x x f 被())2(1++x x 整除,求b a ,的值.5.若b ax x x x f ++-=2332)(除以1+x 所得的余数为7,除以1-x 所得的余数为5,试求b a ,的值.6.多项式)(x f 除以)2(),1(--x x 和)3(-x 所得的余数分别为1,2,3求)(x f 除以)3)(2)(1(---x x x 所得的余式.7.已知多项式128)(23--+=x bx ax x f 被2-x 和3-x 整除,试求b a ,的值,并求)(x f 除以)3)(2(--x x 后所得的商式.8.若r px x 455+-被2)2(-x 整除,求q 与r 的值.9.若164-x 除以14-x 得256,求x 的值.10.若0132=--x x ,求200257623+-++x x x 的值.11.当m p ,为何值时,多项式23-+px x 能被12-+mx x 整除?整式的除法及余数定理作业1.设n mx x x f ++=2)((n m ,都是整数)既是多项式25624++x x 的因式,又是多项式5284324+++x x x 的因式,求)(x f2.求一个关于x 的二次三项式)(x f ,它被1-x 除余2,被)2(-x 除余8,并且它被1+x 整除.3.用综合除法求商式和余式)4()181496(345+÷+-++x x x x x4.当2=x 或3=x 时,多项式6632)(234++++=bx x ax x x f 的值都为0,试求多项式)(x f 除以652+-x x 的商式和余式.。
初中七年级数学整式的除法
内容全解
1.单项式÷单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式.
如:(3a 2b )÷(5a )=(3÷5)·(a 2÷a )·b =5
3ab . 注意啦:Ⅰ.单项式除以单项式主要是通过转化为同底数幂的除法解决的.
Ⅱ.本节只研究结果为整式的单项式除法,所以单项式相除的结果中的字母少于或等于被除式的字母,而结果的次数为被除式、除式的次数之差.
2.多项式÷单项式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 如:(3x 2y -4xy 2)÷(xy )=(3x 2y )÷(xy )-(4xy 2)÷(xy )=3x -4y
说明:Ⅰ.多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项.
Ⅱ.本节只研究结果为整式的情况,则结果的次数小于或等于被除式的次数.。
整式的除法-2023年新七年级数学核心知识点与常见题型通关讲解练(沪教版)(解析版)
整式的除法【知识梳理】一:单项式除以单项式1、单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 二:多项式除以单项式1、多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(2)中容易丢掉最后一项. (2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.【考点剖析】 题型一:单项式除以单项式 例1.计算:(1)527398b b ÷;(2)645242x y x y −÷; (3)362424a b a b ÷;(4)()22153ab b ÷−.【答案】(1)35627b ;(2)22xy −;(3)212ab ;(4)5a −. 【解析】(1)52523737356989827b b b b −⎛⎫÷=÷= ⎪⎝⎭;(2)()64526542242422x y x y x y xy −−−÷=−÷=−;(3)()362432642124242a b a b a b ab −−÷=÷=;(4)()()()22221531535ab b ab a−÷−=÷−=−.【总结】本题考查了单项式除以单项式:两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 【变式1】计算:(1)()226ab ab ÷=;(2)()()2515xy xy ÷−=;(3)()231255a x a ÷=;(4)()32243a b ab ÷=−.【答案】(1)2312a b ;(2)2375x y −;(3)325ax ;(4)28a b −.【解析】(1)2236212ab ab a b ⋅=;(2)22351575xy xy x y −⋅=−; (3)233125525a x a ax ÷=;(4)()3222438a b ab a b÷−=−.【总结】本题考查了单项式乘以单项式以及单项式除以单项式,注意法则的准确运用. 【变式2】计算:()2233310.52x y z x y ⎛⎫−÷− ⎪⎝⎭.【答案】3212xy z −.【解析】()()22333462332311120.50.524x y z x y x y z y z x xy ⎛⎫−÷−=÷−= −⎪⎝⎭.【总结】本题主要考查了单项式除以单项式.【变式3】计算:()()4312282x y y x ⎡⎤+÷−+⎣⎦.【答案】332x y −−.【解析】()()()()443312282128232x y y x x y x y −⎡⎤+÷−+=÷−+=−−⎡⎤⎣⎦⎣.【总结】本题主要考查了单项式除以单项式. 【变式4】若32144m n x y x y x ÷=,求2531335m n mn ÷的值.【答案】259.【解析】33121444mnm n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得 原式2552551999mn ==⨯⨯=. 【总结】本题考查了单项式除以单项式,以及幂的运算. 【变式5】计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−. 【解析】()()()56423333523633413123212322a b c a b c a b c ab c −−−−−−÷−÷=÷−÷=−⎡⎤⎣⎦.【总结】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 题型二:多项式除以单项式 例2.计算:(1)()3286x x x −÷;(2)()()2101055x x −−÷−.【答案】(1)286x x −;(2)2221x x −++.【解析】(1)()32322868686x x x x x x x x x−÷=÷−÷=−;(2)()()()()()22210105510510555221x x x x x x −−÷−=÷−−÷−−÷−=−++.【总结】本题考查了多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加. 【变式1】计算:()22642xy x y xy −÷. 【答案】32y x −.【解析】()2222642624232xyx y xy xy xy x y xy y x−÷=÷−÷=−.【总结】本题考查了多项式除以单项式. 【变式2】计算:(1)()324222a a a a −+÷;(2)()643396123a a a a −+÷.【答案】(1)221a a −+;(2)3324a a −+.【解析】(1)()32322422242222221a a a a a a a a a a a a −+÷=÷−÷+÷=−+; (2)()64336343333961239363123324a a a a a a a a a a a a −+÷=÷−÷+÷=−+.【总结】本题考查了多项式除以单项式. 【变式3】计算:(1)()312273ax ax ax −÷;(2)()2322224822x y x y xy xy +−÷.【答案】(1)249x −;(2)241xy x +−.【解析】(1)()3321227312327349ax ax ax ax ax ax ax x −÷=÷−÷=−;(2)()232222232222224822428222x y x y xy xy x y xy x y xy xy xy +−÷=÷+÷−÷241xy x =+−.【总结】本题考查了多项式除以单项式.【变式4】计算:()()33232222181263x y x y x y x y −+−÷−. 【答案】642xy y −+.【解析】()()33232222181263x yx y x y x y −+−÷−()()()33222322222218312363x y x y x y x y x y x y =−÷−+÷−−÷−642xy y =−+.【总结】本题考查了多项式除以单项式.【变式5】计算:()()755364523521287x y x y x y x y −+÷−.【答案】232534x y y xy −+−.【解析】()()755364523521287x yx y x y x y −+÷−()()()755253526452357217287x y x y x y x y x y x y =÷−−÷−+÷−232534x y y xy =−+−. 【总结】本题考查了多项式除以单项式,计算时注意商的符号.【变式6】计算:()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦.【答案】13b .【解析】()()222233ab a ab a b a b a b ⎡⎤−−−÷⎣⎦()3223222233a b a b a b a ba b =−−+÷222133a b a b b =÷=.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式7】计算:()()()22342343223x x x x x x x x ++⋅−++÷−.【答案】543223321x x x x x ++−−−.【解析】()()()22342343223xx x x x x x x ++⋅−++÷−()345232123x x x x x =++−++543223321x x x x x =++−−−.【总结】本题考查了多项式乘单项式、合并同类项及多项式除以单项式. 【变式8】已知一个多项式与单项式22x y −的积是32212x y x y −,求这个多项式. 【答案】1124x y−+.【解析】()32221112224x y x y x y x y ⎛⎫−÷−=−+ ⎪⎝⎭.【总结】本题考查了多项式除以单项式,计算时要准确理解题意.【过关检测】一、单选题1.(2022秋·七年级单元测试)计算(﹣6xy 2)2÷(﹣3xy )的结果为( ) A .﹣12xy 3 B .2y 3 C .12xy D .2xy 3【答案】A【分析】先算积的乘方,再进行除法计算 【详解】原式=36x2y4÷(﹣3xy )=﹣12xy3, 故选:A .【点睛】本题考查了积的乘方,单项式的除法,掌握计算方法和计算顺序是解题关键.2.(2023·上海·七年级假期作业)小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( ) A .(2a +b 2) B .(a +2b ) C .(3ab +2b 2) D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可. 【详解】∵(4a2b+2ab3)÷2ab =2a+b2, ∴被墨汁遮住的一项是2a+b2. 故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.3.(2020秋·七年级校考课时练习)计算()()42357153x y x y −÷−的结果为( ) A .55xy B .355x yC .5xD .35x【答案】B【分析】根据单项式除以单项式除法的运算法则进行计算即可. 【详解】()()()423578125785127351531531535x y x y x yx y x y x y −−−÷−=÷=÷=,故选:B .【点睛】本题考查了单项式除以单项式,掌握运算法则是解题关键. 4.(2023·上海·七年级假期作业)下列运算中正确的是( ). A .()()632632x x x ÷= B .()()826842x x x ÷= C .()()233xy x y ÷=D .()()222x y xy xy ÷=【答案】B【分析】根据积的乘方和单项式的除法法则逐项计算判断即可.【详解】解:A 、()()633632x x x ÷=,故本选项计算错误;B 、()()826842x x x ÷=,故本选项计算正确; C 、()()22333xy x xy ÷=,故本选项计算错误;D 、()()2221x y xy ÷=,故本选项计算错误.故选:B .【点睛】本题主要考查积的乘方和单项式的除法,熟练掌握运算法则是解题关键.【答案】B【分析】把被除式、除式里的系数、同底幂分别相除可得解. 【详解】解:211131344a b c ac −−⎛⎫÷= ⎪⎝⎭,故选B .【点睛】本题考查整式的除法,熟练掌握整式的除法法则是解题关键.6.(2023·上海·七年级假期作业)如图,墨迹污染了等式中的运算符号,则污染的是( )A .+B .-C .×D .÷【答案】D【分析】根据整式的加减乘除计算法则逐一判断可求解. 【详解】解:∵332x 与4x 不是同类项,不能进行加减计算,∴A 、B 选项不符合题意;∵34324128x x x ⨯=,∴C 选项不符合题意;∵323248÷=x x x ,∴D 选项符合题意; 故选:D .【点睛】本题主要考查整式的四则运算,掌握相关计算法则是解题的关键.二、填空题7.(2023·上海·七年级假期作业)如果一个单项式乘以3x 的积是3x 2y ,那么这个单项式是 ___. 【答案】xy【分析】根据单项式的除法求解即可.【详解】解:由题意可得,这个单项式为233x yxy x =故答案为xy【点睛】此题考查了单项式除以单项式,解题的关键是熟练掌握单项式除法的运算法则.【答案】﹣8x3y【分析】单项式除以单项式:把系数,同底数幂分别相除,对于只在被除式里含有的字母则连同它的指数一起作为商的一个因式,根据运算法则直接计算即可. 【详解】解:原式=﹣8x3y . 故答案为:﹣8x3y .【点睛】本题考查的是单项式除以单项式,掌握单项式除以单项式的法则是解本题的关键. 9.(2019秋·上海青浦·七年级校考阶段练习)计算:232-93a b b ÷=_____________ 【答案】-3a2b【分析】根据单项式除以单项式的运算法则计算可得.【详解】解:23293a b b −÷=-3a2b故答案为-3a2b .【点睛】本题主要考查整式的除法,解题的关键是掌握单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.【答案】29a b【分析】先根据除数=被除数÷商,可知A=32133a b ab÷,再根据整式的除法运算法则进行计算即可. 【详解】解:∵32133a b A ab÷=, ∴A=32133a b ab ÷=29a b . 故答案为:29a b .【点睛】本题考查整式的除法运算,正确掌握运算法则是解题关键. 11.(2020秋·七年级校考阶段练习)计算:4262÷=a b a _________.【答案】23a b【分析】利用单项式除以单项式的法则计算即可【详解】解:422623b ÷=a b a a故答案为:23a b【答案】24168x y −+【分析】根据多项式除以单项式的运算法则计算即可.【详解】()322322223181264x yx y x y x y ⎛⎫−+−÷− ⎪⎝⎭()()32222322222233318126444x y x y x y x y x y x y ⎛⎫⎛⎫⎛⎫=−÷−+÷−+−÷− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭32232222222218126333444x y x y x y x y x y x y −−=++−−− 24168x y =−+,故答案为:24168x y −+.【点睛】本题主要考查了多项式除以单项式的知识,掌握多项式除以单项式的运算法则是解答本题的关键.【答案】13n ab+−【分析】根据单项式的乘法和除法法则从左到右依次计算即可.【详解】原式=3221124n n a b a b −−÷=13n ab +−.故答案为13n ab+−.【点睛】本题考查了单项式的乘法和除法,熟练掌握单项式的乘法和除法是解答本题的关键. 14.(2021秋·上海·七年级期末)计算:8x 2y 4÷(﹣2xy 2)=_____. 【答案】﹣4xy2【分析】根据单项式除以单项式运算法则,本题只需要把系数、同底数幂分别相除作为商的因式,计算得出答案即可.【详解】解:8x2y4÷(﹣2xy2)=21424x y −−−=﹣4xy2.故答案为:﹣4xy2.【点睛】本题考查了单项式除以单项式,掌握单项式除以单项式的运算法则是解题关键. 15.(2022秋·上海·七年级专题练习)计算:4a 3÷2a =_____. 【答案】2a2【分析】直接利用整式的除法运算法则计算得出答案 【详解】解:4a3÷2a =312a − =2a2.故答案为:2a2.【点睛】本题考查同底数幂的除法法则,正确使用法则是重点 16.(2022秋·上海·七年级校考期中)计算:446x x ÷=_____. 【答案】323x /323x【分析】根据单项式除以单项式运算法则进行计算即可. 【详解】解:432463x x x ÷=. 故答案为:323x .【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式运算法则是解答本题的关键.【答案】3x2y【分析】根据单项式除以单项式的法则计算即可. 【详解】原式=3x2y ,故答案为3x2y .【点睛】本题考查整式的运算有关知识,根据整式的运算法则即可求出答案. 18.(2019秋·上海黄浦·七年级统考期末)计算:(2xy )2÷2x =_____. 【答案】2xy2【分析】首先根据积的乘方的运算方法,求出(2xy )2的值是多少;然后用它除以2x 即可. 【详解】(2xy )2÷2x =4x2y2÷2x =2xy2 故答案为:2xy2.【点睛】此题主要考查了整式的除法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.三、解答题19.(2020·七年级上海市建平中学西校校考期中)计算:()()322563−÷a b a a【答案】22523a b a −【分析】根据整式的除法法则,用多项式的每一项去除单项式,应用单项式除以单项式的除法法则计算,再把所得的商相加即可得出答案.【详解】解:()()322563−÷a b a a 3225363=÷−÷a b a a a 22523=−a b a .【点睛】本题考查了多项式除以单项式,解题的关键是熟练掌握运算法则进行解题. 20.(2021·上海奉贤·七年级校联考期末)计算:(6x 3+3x 2﹣2x )÷(﹣2x )﹣(x ﹣2)2. 【答案】﹣4x2+52x ﹣3【分析】直接利用整式的除法运算法则计算得出答案.【详解】原式=6x3÷(﹣2x )+3x2÷(﹣2x )+(﹣2x )÷(﹣2x )﹣(x ﹣2)2 =﹣3x2﹣32x+1﹣(x2﹣4x+4)=﹣3x2﹣32x+1﹣x2+4x ﹣4=﹣4x2+52x ﹣3.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.21.(2023秋·上海嘉定·七年级上海市育才中学校考期末)计算:()342(2)(12)(12)x x x x x −÷−−+−.【答案】22x【分析】先算除法和乘法,再去括号合并同类项即可. 【详解】解:()342(2)(12)(12)x x x x x −÷−−+−324(2)2(2)(14)x x x x x =÷−−÷−−−222114x x =−+−+22x =【点睛】本题考查了整式的四则混合运算,熟练掌握运算顺序是解答本题的关键.四则混合运算的顺序是先算乘除,再算加减;同级运算,按从左到右的顺序计算.【答案】9【分析】根据单项式除以单项式法则将等式左边化简,再根据左边等于右边,列出等式求得m 、n 的值,再根据单项式除以单项式法则将原式化简,代入数据计算即可.【详解】解:∵33121444m n m n x y x y x y x −−÷==,∴3210m n −=⎧⎨−=⎩,解得51m n =⎧⎨=⎩,∴253215321313535359m n mn m n mn −−⎛⎫÷=÷= ⎪⎝⎭,把51m n =⎧⎨=⎩代入得,原式2552551999mn ==⨯⨯=. 【点睛】本题考查了单项式除以单项式,以及幂的运算.利用法则将代数式进行化简是解决此题的关键.23.(2023·上海·七年级假期作业)计算:()()564233331232a b c a b c a b c ÷−÷.【答案】2−【分析】根据单项式除以单项式进行计算即可.【详解】解:()()564233331232a b c a b c a b c ÷−÷()5236334131232a b c −−−−−−=÷−÷⎡⎤⎣⎦2=−.【点睛】本题主要考查了单项式除以单项式的运算,注意先确定符号,再去计算. 24.(2022秋·七年级单元测试)小伟同学的错题本上有一题练习题,这道题被除式的第二项和商的第一项不小心被墨水污染了(污染处用字母M 和N 表示),污染后的习题如下:()()422223012632x y M x y x y N xy y ++÷−=+−.(1)请你帮小伟复原被污染的M 和N 处的代数式,并写出练习题的正确答案;(2)爱动脑的小芳同学把练习题的正确答案与代数式2x y xy y ++相加,请帮小芳求出这两个代数式的和,并判断所求的和能否进行因式分解?若能,请分解因式;若不能,请说明理由.【答案】(1)3218M x y =−;25N x y =−;2532x y xy y −+−(2)能,()221y x −−【分析】(1)根据多项式与单项式的除法法则计算即可(2)先求正确答案与2x y xy y ++的和,再因式分解即可. 【详解】(1)()2323618M xy x y x y =−=−,()42223065N x y x y x y =÷−=−,∴原题为())32422221830126x y x y x y x y +÷−−. 则答案为:2532x y xy y −+− (2)()22253244x y xy y x y xy y x y xy y −+−+++=−+−,能因式分解:()()2224444121x y xy y y x x y x −+−=−−+=−−【点睛】本题考查多项式除以单项式及因式分解,掌握相应法则时解题关键.【答案】44x y −【分析】先计算完全平方公式、单项式乘以多项式,再计算括号内的整式加减,然后计算多项式除以单项式即可得.【详解】解:原式22211164444x xy y xy y x ⎛⎫−++−÷ ⎪⎝⎭=()21634x xy x −=÷344x y =−.【点睛】本题考查了完全平方公式、单项式乘以多项式、多项式除以单项式等知识点,熟练掌握整式的运算法则是解题关键.【答案】(1)21600− (2)53225a a +(3)264【分析】(1)根据新定义的运算法则计算即可;(2)根据新定义的运算法则及整式的混合运算法则计算即可;(3)将2a =代入(2)中结论即可求解.【详解】(1)解:243 1.2−2314832 1.23421600=−⨯−÷=−; (2)解:()()()()86323386168626216822a a a a a a a a a a a a −+=+−−−−()53534242a a a a =+−−53534242a a a a =+−+ 53225a a =+;(3)解:2−的相反数是2,当2a =时,386621682a aa a a a +−−535322522252264a a =+=⨯+⨯=.【点睛】本题考查新定义运算,整式的混合运算,含乘方的有理数的混合运算,掌握新定义的运算法则并正确计算是解题的关键.【答案】2223x x −+− 【分析】根据多项式除以单项式法则进行运算,即可求解.【详解】解:()43222423x x x x ⎛⎫−+÷− ⎪⎝⎭211223x x =−+− 【点睛】本题考查了多项式除以单项式法则,熟练掌握和运用多项式除以单项式法则是解决本题的关键.【答案】5【分析】根据整式的运算法则,幂的运算法则处理.【详解】解:∵2223421111533n n n n xyz m x y z x y z ++−+⎛⎫−⋅=÷ ⎪⎝⎭, ∴22232311915x y z m x y z ⋅=.∴3232221131595m x y z x y z xz =÷=.∵正整数x 、z 满足:1223723x z −⋅==,∴3x =,12z −=.∴3x =,3z =,∴3273355m =⨯⨯=. 【点睛】本题考查幂的运算法则,整式的混合运算,掌握相关法则是解题的关键.。
初一数学整式的除法试题答案及解析
初一数学整式的除法试题答案及解析1.若4x3﹣2x2+k﹣2x能被2x整除,则常数k的值为()A.1B.﹣1C.2D.0【答案】D【解析】因为多项式的前面几项均能被2x整除,所以k也能被2x整除,结合k为常数,可得k 只能为0.解:∵4x3、﹣2x2、﹣2x均能被2x整除,∴k也能被2x整除,又∵k为常数,∴k=0.故选D.2.(0.14m4n3﹣0.8m3n3)÷0.2m2n2等于()A.0.7m2n2﹣0.4mnB.0.28m2n﹣0.16nC.0.7m2n﹣4mnD.0.7m2n﹣4n【答案】C【解析】根据多项式除单项式,先把多项式的每一项除以单项式,再把所得的商相加的法则计算即可.解:(0.14m4n3﹣0.8m3n3)÷0.2m2n2,=0.14m4n3÷0.2m2n2﹣0.8m3n3÷0.2m2n2,=0.7m2n﹣4mn.故选C.3.如图,沿着正方形的对称轴对折,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2个B.4个C.6个D.8个【答案】C【解析】从图中看出,有四个小正方形,即有四个整式,把对折后重合的两个小正方形内的整式相乘即可.解:正方形有四条对称轴,有六组对应整式的积:x(x+1),x2(x﹣1),x2(x+1),x(x﹣1),(x+1)(x﹣1),x•x2,故选C.4.计算(28a3﹣14a2+7a)÷(﹣7a)的结果为()A.﹣4a2+2a B.4a2﹣2a+1C.4a2+2a﹣1D.﹣4a2+2a﹣1【答案】D【解析】此题直接利用多项式除以单项式的法则即可求出结果,也可以提取公因式(﹣7a),然后得出结果.解:原式=(28a3﹣14a2+7a)÷(﹣7a)=28a3÷(﹣7a)﹣14a2÷(﹣7a)+7a÷(﹣7a)=﹣4a2+2a﹣1.故选D.5.若(x3+27y3)÷(x2﹣axy+by2)=x+3y,则a2+b=.【答案】18【解析】先计算(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,依此可得a=3,b=9,再代入计算即可求解.解:∵(x3+27y3)÷(x+3y)=x2﹣3xy+9y2,∴a=3,b=9,∴a2+b=9+9=18.故答案为:18.6.已知一个长方形的面积为4a2﹣2ab+,其中一边长是4a﹣b,则该长方形的周长为.【答案】10a﹣b【解析】利用长方形面积除以长=宽,求得另一条边的长,再进一步求得长方形的周长即可.解:(4a2﹣2ab+)÷(4a﹣b)=(16a2﹣8ab+b2)÷(4a﹣b)=(4a﹣b)2÷(4a﹣b)=(4a﹣b);则长方形的周长=[(4a﹣b)+(4a﹣b)]×2=[a﹣b+4a﹣b]×2=[5a﹣b]×2=10a﹣b.故答案为:10a﹣b.7.已知多项式3x3+ax2+3x+1能被x2+1整除,且商式是3x+1,那么a的值是.【答案】1【解析】先根据被除式=商×除式(余式为0时),得出3x3+ax2+3x+1=(x2+1)(3x+1),再运用多项式乘多项式的法则将等式右边展开,然后根据多项式相等的条件,对应项的系数相等得出a的值.解:由题意,得3x3+ax2+3x+1=(x2+1)(3x+1),∴3x3+ax2+3x+1=3x3+x2+3x+1,∴a=1.故答案为1.8.÷a2=4a3b4﹣2a3b3+4.【答案】2a5b4﹣a5b3+4a2【解析】用商乘以除数求得被除数即可.解:∵(4a3b4﹣2a3b3+4)×a2=2a5b4﹣a5b3+4a2,∴2a5b4﹣a5b3+4a2÷a2=4a3b4﹣2a3b3+4.故答案为:2a5b4﹣a5b3+4a2.9.()÷0.3x3y2=27x4y3+7x3y2﹣9x2y.【答案】8.1x7y5+7x6y4﹣9x5y3【解析】由于被除式等于商乘以除式,所以只需计算(27x4y3+7x3y2﹣9x2y)•0.3x3y2即可.解:(27x4y3+7x3y2﹣9x2y)•0.3x3y2=8.1x7y5+7x6y4﹣9x5y3.故答案为8.1x7y5+7x6y4﹣9x5y3.10.计算3x3÷x2的结果是()A.2x2B.3x2C.3x D.3【答案】C【解析】单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.解:原式=3x3﹣2=3x.故选C.11.计算6a6÷(﹣2a2)的结果是()A.﹣3a3B.﹣3a4C.﹣a3D.﹣a4【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算.解:6a6÷(﹣2a2)=[6÷(﹣2)]•(a6÷a2)=﹣3a4.故选B.12.一颗人造地球卫星的速度为2.88×107米/时,一架喷气式飞机的速度为1.8×106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的()A.1600倍B.160倍C.16倍D.1.6倍【答案】C【解析】根据速度=路程÷时间列出算式,再利用同底数幂相除,底数不变指数相减计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16,则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.故选C.13.下列计算正确的是()A.(﹣a2)3=a6B.2a6÷a3=2a2C.a2÷a×=a2D.a2+2a2=3a2【答案】D【解析】根据幂的乘方,底数不变指数相乘;单项式的除法和同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解:A、应为(﹣a2)3=﹣a6,故本选项错误;B、应为2a6÷a3=2a3,故本选项错误;C、应为a2÷a×=a×=1,故本选项错误;D、a2+2a2=3a2,正确.故选D.14.已知a=1.6×109,b=4×103,则a2÷b=()A.4×107B.8×1014C.6.4×105D.6.4×1014【答案】D【解析】根据题意得到a2÷b=(1.6×109)2÷(4×103),根据积的乘方得到原式=1.6×1.6×1018÷(4×103),再根据同底数的幂的除法法则得到原式=6.4×1014.解:a2÷b=(1.6×109)2÷(4×103)=1.6×1.6×1018÷(4×103)=6.4×1014.故选D.15.化简12a2b÷(﹣3ab)的结果是()A.4a B.4b C.﹣4a D.﹣4b【答案】C【解析】按照单项式的除法的运算法则进行运算即可;解:12a2b÷(﹣3ab)=12÷(﹣3)(a2÷a)(b÷b)=﹣4a,故选C.16.(﹣a4)2÷a3的计算结果是()A.﹣a3B.﹣a5C.a5D.a3【答案】C【解析】先算乘方(﹣a4)2=a8,再根据同底数幂的除法法则进行计算即可.解:原式=a8÷a3=a5,故选C.17.计算:9x3÷(﹣3x2)=.【答案】﹣3x【解析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.解:9x3÷(﹣3x2)=﹣3x.18.计算:(﹣2a)2÷a=.【答案】4a【解析】本题是积的乘方与同底数幂的除法的混合运算,求解时按照各自的法则运算即可.解:(﹣2a)2÷a=4a2÷a=4a.故填4a.19.计算:6x3÷(﹣2x)=.【答案】﹣3x2【解析】根据单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则就可以求出结果.解:6x3÷(﹣2x)=﹣(6÷2)x3﹣1=﹣3x2.20.计算:(a2b)2÷a4=.【答案】b2【解析】根据积的乘方,单项式除单项式的运算法则计算即可.解:(a2b)2÷a4=a4b2÷a4=b2.故填b2.。
(附答案)《整式的除法》典型例题
《整式的除法》典型例题
例1 计算:
(1);(2);
(3);(4).分析:这几个题都是多项式除以单项式,要用多项式的每一项分别除以单项式再把除得的结果相加.
解:(1);
(2);
(3);
(4).
说明:在多项式除以单项式一定要用多项式的每一项分别除以单项式,注意不要“漏除”.
例2 计算:.
分析:这道题是科学记数法表达的单项式之间的除法运算,同样可以运用法则运算.
解:
说明:数的运算更要注意运算的顺序.
例3计算题:
(1);(2);
(3);
(4);
(5).
解:(1)
(2)=
(3)=
(4)
(5)
=
说明:计算单项式除以单项式时要注意①商的符号;②运算顺序与有理数运算顺序相同.
例4(1)已知一多项式与单项式-7x5y4的积为21 x5y7- 28x6y5+7y(2x53y2)3,求这个多项式.
(2)已知一多项除以多项式所得的商是,余式是,求这个多项式.
解:(1)所求的多项为
(2)所求多项式为
说明:乘法和除法互为逆运算在多项式中经常运用。
根据是“被除式=除式×商式+余式”.
例5 计算:
(1);
(2).
分析:(1)题的底数不同,首先应化为同底数幂,把视作整体进行计算,(2)题先对除式进行乘方,把视作整体运用法则运算.
解:(1)
(2)
说明:多项式因式如果互为相反数时,注意符号.
学习这件事,不是缺乏时间,而是缺乏努力。
学习要有三心:一信心;二决心;三恒心.
知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。
初一数学整式的除法试题
初一数学整式的除法试题1.计算:(﹣2x3y2﹣3x2y2+2xy)÷2xy,结果是()A.B.C.D.【答案】C【解析】利用多项式除以单项式的,首先转化为单项式除以单项式,系数和相同字母分别相除,再把所得的结果合并起来即可.解:原式=﹣2x3y2÷(2xy)﹣3x2y2÷(2xy)+2xy÷(2xy)=﹣x2y﹣xy+1.故选:C.2.对于任意正整数n,按照n→平方→+n→÷n→﹣n→答案程序计算,应输出的答案是()A.n2﹣n+1B.n2﹣n C.3﹣n D.1【答案】D【解析】首先根据题意列出算式,然后将式子化简.解:由题意,有(n2+n)÷n﹣n=n+1﹣n=1.故选D.3.已知多项式ax3+bx2﹣47x﹣15可被3x+1和2x﹣3整除,则a+b=.【答案】26【解析】因为多项式ax3+bx2﹣47x﹣15可被3x+1和2x﹣3整除,则说明(3x+1)、(2x﹣3)都是多项式ax3+bx2﹣47x﹣15的一个因式,故使(3x+1)、(2x﹣3)等于0的数必是多项式ax3+bx2﹣47x﹣15的解,即把(3x+1)=0、(2x﹣3)=0求出的x的值代入多项式,即得到关于a、b的二元一次方程,解即可,从而可求出a+b.解:由已知可知,得,解得,∴a+b=24+2=26.4.计算:12x5y3z÷3x4y=.【答案】4xy2z【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算.解:12x5y3z÷3x4y=(12÷3)(x5÷x4)(y3÷y)z=4xy2z.故答案为:4xy2z.5.若A和B都是整式,且A÷x=B,其中A是关于x的4次多项式,则B是关于x的次多项式.【答案】3【解析】根据整式的除法法则,多项式÷x,根据同底数幂的除法法则可得出答案.解:∵A是关于x的4次多项式,∴A÷x是关于x的3次多项式,即B是关于x的3次多项式.故答案为:3.6.计算3x3÷x2的结果是()A.2x2B.3x2C.3x D.3【答案】C【解析】单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.解:原式=3x3﹣2=3x.故选C.7.太阳的质量约为1.8×1027t,地球的质量约为6×1021t,则太阳的质量约是地球质量的倍数是()A.3×107B.3×106C.3×105D.3×104【答案】C【解析】根据整式的除法运算法则计算得出即可.解:∵太阳的质量约为1.8×1027t,地球的质量约为6×1021t,∴太阳的质量约是地球质量的倍数是:1.8×1027÷(6×1021)=3×105.故选:C.8.计算:(a2b)2÷a=.【答案】a3b2【解析】先根据积的乘方计算,再利用单项式的除法和同底数幂的除法计算.解:(a2b)2÷a=a4b2÷a=a3b2.9.计算:(a2b)2÷a4=.【答案】b2【解析】根据积的乘方,单项式除单项式的运算法则计算即可.解:(a2b)2÷a4=a4b2÷a4=b2.故填b2.10.计算:6x2y3÷2x3y3=.【答案】【解析】6除以2,x的指数相减为﹣1,y的指数为0(得1),而解得.解:原式==.故答案为:.。
整式的除法练习题(含答案)
整式的除法练习题(含答案).doc 整式的除法》题一、选择题1.正确答案是B。
改写为:a+a4=a5是错误的,应为a+a4=a4+a,所以选项B正确。
2.正确答案是D。
改写为:(-3b3)2÷b2=9b6÷b2=9b4,所以选项D正确。
3.正确答案是A。
改写为:(ab)2=a2b2,所以选项A正确。
4.正确答案是C。
改写为:(x3y2)•(xy2)=x4y4,所以选项C正确。
5.正确答案是B。
改写为:(a3b6)÷(a2b2)=a(b4),所以a2b8=a(b4)•a2b2=ab6•a2b2=9a2b8,所以选项B正确。
6.正确答案是D。
改写为:(a3+a2)÷a=a2+a,所以选项D正确。
7.正确答案是D。
改写为:x+2x-12=(x-2)(x+6),所以选项D正确。
8.正确答案是C。
改写为:(-4-5n)(4-5n)=-16+20n+20n-25n2=25n+16,所以选项C正确。
二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-a,所以答案为ab-a。
10.另一边长为2a-3b,所以答案为2a-3b。
11.除式为x2+4x-1,所以答案为x2+4x-1.12.计算:(6x5y-3x2)÷(-3x2)=-2y,所以答案为-2y。
13.计算:5=1·5=18·xy,所以xy=1/18.14.计算:-2x2y·(-x)·(-y)=2x3y3,所以答案为2x3y3/8x2=-y/4.15.计算:x=(x+y)+(x-y)=1004+2=1006,所以x-y=1006-2=1004.16.计算:2x-4=5,所以x=3.5.代入4x2-16x+16得到答案为16.25.17.计算:m=3,n=6,所以2a3b9+3=8a9b15,解得a=2/3,b=3/2.所以答案为2a3b6+3.18.加上的单项式为4x,因为16x2+4x=(4x)2,所以答案为4x。
初中数学整式的除法(含答案)
1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。
七年级下册数学整式的除法
七年级下册数学整式的除法一、同底数幂的除法同底数幂除法法则:同底数幂相除,底数不变,指数相减。
即:n m n m a a a -=÷(其中a ≠0, m,n 都是正整数,且m >n)基础练习:(1)47a a ÷ (2)36)()(x x -÷-(3))()(4xy xy ÷(4)23y y ÷-)( (5)m m b b-+÷222(6))(33y y ÷-二、零指数幂和负整数指数幂的意义 法则:10=a 、pp a a 1=-(0≠a ,p 为正整数) 例2 23212121-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(注意运算顺序)2211181⎪⎭⎫⎝⎛++= 4181++=815=练习: (1); (2);(3) ()()0130233.0360030110π⨯⨯---⨯⎪⎭⎫ ⎝⎛+--03321()(1)()333-+-+÷-15207(27)(9)(3)---⨯-÷-(4) .二、科学计数法法则:把绝对值小于1的数写成10n a -⨯(n 为正整数,1≤a <10)n 为该数第一个非零数字前面所有零的个数(包括小数点前面的那个零). 例如:000001.010110166==⨯-,9911100.00000000110-⨯==.反过来0.000001=6-101⨯,0.000000001=9-101⨯ 练习:1、把下列各数用科学记数法表示:0.00002 0.000707 0.000122 0.0000560.000 000 72 0.000 861 0.000 000 000 342 5例1 计算:35)()(x y y x -÷-分析: 对于本题我们可以将底数多项式看作整体,先将底数调整为相同的,进行同底数幂的除法解:原式=35)()(x y y x -÷-35)()(x y x y -÷--= 2)(x y --= )2(22x xy y +--= 222x xy y -+-=33230165321()()()()(3)356233---÷+-÷--+练习:(1)()()26416b a b a -÷-(2)()()[]()()[]235616b a b a a b a b a -+÷-+例2 计算:)41()52(243ab c b a -÷-分析: 单项式除以单项式将系数、同底数的幂分别结合成一组相除,单独在被除式中出现的字母作为商的一个因式.c b a 2413)41(52:--⎥⎦⎤⎢⎣⎡-÷-=原式解.5822c b a =练习:(1)223247173y x z y x ÷-(2)()⎪⎭⎫⎝⎛-÷-2232232y x y x(3)33233212116⎪⎭⎫⎝⎛-⋅÷xy y x y x(4)32232512152⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛xy y x y x例3 计算: 236274319132)()(ab b a b a -÷-。
七年级下册数学整式的乘除与因式分解知识点+习题
整式的乘除与因式分解1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
bc a 22-的 系数为 ,次数为 ,单独的一个非零数的次数是 。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
122++-x ab a ,项有 ,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,叫 次 项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:1223223--+-y xy y x x按x 的升幂排列: 按y 的升幂排列: 按x 的降幂排列: 按y 的降幂排列:5、同底数幂的乘法法则:m n m n a a a +=(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
例1.若6422=-a ,则a= ;若8)3(327-=⨯n ,则n= .例2.若125512=+x ,则 x x +-2009)2(的值为 。
例3 .设4x =8y-1,且9y =27x-1,则x-y 等于 。
6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a)()(==如:23326)4()4(4==7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
(523)2z y x -=8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)m n >同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷9、零指数和负指数; 10=a ,即任何不等于零的数的零次方等于1。
(用二)整式除法与因式分解
整式的除法及因式分解一.回顾知识点1、主要知识回顾:幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.()n n n b a ab = (n 为正整数)积的乘方等于各因式乘方的积.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. ★ 零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .★ 负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a +b )(a -b )=a 2-b 2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a 2-b 2= (a +b )(a -b )②完全平方公式:a 2+2ab +b 2=(a +b )2a 2-2ab +b 2=(a -b )2三、例题解析例1 计算:(1)28x 4y 2÷7x 3y ; (2)-5a 5b 3c ÷15a 4b .注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意.例2 计算(1)(12a 3-6a 2+3a)÷3a ; (2)(21x 4y 3-35x 3y 2+7x 2y 2)÷(-7x 2y ); (3)[(x+y )2-y(2x+y)-8x]÷2x注:这里重要的是能理解运算法则及其探索过程,能够运用自己的语言叙述如何进行运算,不必要求背诵法则.用字母概括法则是使算法一般化,可深化和发展对数的认识.例3、把下列各式分解因式:(1)25-16x 2; (2)9a 2-41b 2. 例4、把下列完全平方式分解因式:(1)2616x x +- (2)(m +n )2-6(m +n )+9. 解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-(35)(35)(8)(2)x x x x =+++-=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解. 例5、把下列各式分解因式:(1)3ax 2+6axy +3ay 2; (2)-x 2-4y 2+4xy .补充例题例题1.若6422=-a ,则a= ;若8)3(327-=⨯n ,则n= . 例题2.若125512=+x ,求x x +-2009)2(的值。
(附答案)《整式的除法》常见题型
整式的除法整式的除法是每年中考的必考内容,整式的除法主要包括单项式除以单项式、多项式除以单项式,本文就其常见题型归纳如下,供同学们学习时参考。
一、单项式除以单项式运算法则:单项式相除,把系数与同底数幂分别相除作为商的一个因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.例1 计算:35)()(x y y x -÷-分析 对于本题我们可以将底数多项式看作整体,先将底数调整为相同的,进行同底数幂的除法(同底数幂的除法可看作单项式相除中最简单的形式),并将结果化到最后.解:35)()(x y y x -÷-35)()(x y x y -÷--=2)(x y --=)2(22x xy y +--=222x xy y -+-=评注 在计算幂的乘除法中,遇到底数不相同时,可先转化成同底数幂然后进行计算.例2 计算:)41()52(243ab c b a -÷- 分析 单项式除以单项式将系数、同底数的幂分别结合成一组相除,单独在被除式中出现的字母作为商的一个因式.c b a 2413)41(52:--⎥⎦⎤⎢⎣⎡-÷-=原式解 .5822c b a = 评注 单项式除以单项式,解题的依据是单项式除法法则,计算时,要弄清两个单项式的系数,哪些是同底数幂,哪些是只在被除式里出现的字母,此外还要特别注意系数的符号。
二、多项式除以单项式运算法则:多项式除以单项式,先把这个多项式中的每一项除以这个单项式,再把所得的商相加.例3 计算: 236274319132)()(ab b a b a -÷-。
分析 这是多项式除以单项式的运算,在运算中要把多项式除以单项式“转化”为单项式除以单项式,再根据单项式除以单项式的法则进行计算.解:原式。
)(1691919132919132262626274626274-=÷-÷=÷-=b a b a b a b a b a b a b a b a 评注 在进行多项式除以单项式的计算时不要漏项,所得结果的项数应与被除式中的项数相同,另外要明确除式与被除式中各项的符号,相除时要带着符号进行。
整式的除法知识点及习题
- 1 -整式的除法同底数幂的除法(第一课时)学习目标1.理解和掌握同底数幂的除法和运算法则.2.运用同底数幂的除法和运算法则,熟练、准确地进行计算.提高表达能力。
3.感受数学法则、公式的简洁美与和谐美。
学习重点准确、熟练地运用法则进行计算. 学习难点根据乘、除互为逆运算关系得出法则. 学习过程一、预习交流,学情检测 复习完成:1.同底数幂的乘法法则是:____m n a a = (m n 、都是正整数) 2.根据同底数幂的乘法法则计算:()()()()81635122;255;==()()()()573631010;4;a a ==二、合作研讨,探究解疑1.问题:一种数码照片的文件大小是28K ,一个存储量为26M (1M=210K )•的移动存储器能存储多少张这样的数码照片?2.怎样进行计算:_____m n a a ÷=(0,a ≠,m n 都是正整数,并且m n >)。
3.探究:根据乘法和除法互为逆运算,由上面“复习完成”第2题的结果填空:()()168122=;÷ ()()53255=;÷()()7531010=;÷ ()()634=.a a ÷4. 观察上述结果,看看计算结果有什么规律,并猜想:_____.m n a a ÷=对于除法运- 2 -算,有没有什么特殊的要求呢?这里的底数a 有什么条件限制?m n 、呢? 5.归纳:同底数幂的除法法则________m n a a ÷=(0,a ≠,m n 都是正整数,并且m n >)。
文字语言:同底数幂相除,底数 ,指数 。
0指数幂的意义6.探究:先分别利用除法的意义填空,再利用m n m n a a a -÷=的方法计算,你能得出什么结论?()()()()()()()2233133;21010;30.m m a a a ÷=÷=÷=≠7.验证:()()()01,,_____0.m m m m a a a a a a a a ÷=÷==∴= 而8.归纳:规定()0_____0.a a =即:任何 0的数的0次幂都等于 . 三、反思总结,测评反馈1.计算32a a ÷的结果是 ( )5.A a .1B a - .C a 2.D a2.若()021x +=成立,则x 满足( ).2A x ≥- .2B x ≠- .1C x ≠- .0D x ≠3.下列计算正确的是( )()()523.A a a a -÷-=- 62623.B x x x x ÷÷==()752.C a a a -÷= ()()862.D x x x -÷-=-- 3 -4.下列计算正确的是( )()236.A a a = 22.B a a a =2.C a a a += 632.D a a a ÷=5. 填空:(1)=÷611x x ;(2)=⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-242121 ;(3)()()=-÷-a a 5;(4)()()=-÷-27xy xy ;(5)()()42a b a b +÷+= ; 6. 计算: (1)()()5222;x x ÷(2) ()()2332;a a ÷(3)()()322.ab ab ÷-(4)()3225;x x x ÷- 4 -7.已知1米=910纳米,某种病毒的直径为100纳米,多少个这种病毒能排成1毫米长?问题拓展1.已知2,32,m n a b ==求3102m n +的值。
整式的除法 知识点总结与典例
整式的除法知识梳理1.同底数幂的除法同底数幂相除,________不变,指数______。
公式表示为:()0,mnm na a aa m n m n -÷=≠>、是正整数,且。
2.零指数幂的意义任何不等于0的数的0次幂都等于1。
用公式表示为:______________. 3.负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为1n n a a-=≠(a 0,n 是正整数)注意点:(1)底数a 不能为0,若a 为0,则除数为0,除法就没有意义了;(2)()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉;(3)只要底数不为0,则任何数的零次方都等于1; 4.整式的除法(1)单项式除以单项式的法则①单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
②根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数.相同字母与不相同字母三部分分别进行考虑。
(2)多项式除以单项式的法则①多项式除以单项式的法则:多项式除以单项式,先把这个多项式的_________分别除以单项式,再把所得的商相加。
②多项式除以单项式,注意多项式各项都包括前面的符号。
参考答案:1.底数, 相减2. ()010a a =≠ 4.(2) 每一项1.同底数幂的除法【例1】a 6·a 2÷(-a 2)3=________..【解析】上面两个式子均是同底数幂的乘除运算,首先我们根据同级运算的顺序,然后在依据同底数幂的计算法则计算即可。
【答案】-a 2练习1.下列计算正确的是( )A.x 2(m +1)÷x m +1=x 2 B.(xy )8÷(xy )4=(xy )2 C.x 10÷(x 7÷x 2)=x 5 D.x 4n ÷x 2n ·x 2n =1【答案】C . 练习2.m 8 ÷m 8 【答案】1练习3.下列算式中,正确的是( )A.(a 2b 3)5÷(ab 2)10=ab 5B.(31)-2=231=91C.(0.00001)0=(9999)0D.3.24×10-4=0.0000324【答案】C .2.单项式除以单项式 【例2】)23(61343z x z y y x ÷【解析】根据单项式除以单项式的法则运算即可。
七年级 第九讲 整式的除法
七年级第九讲整式的除法1.计算:(﹣2 m2)3+m7÷m.2.计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2 3.已知a m=3,a n=4,求a2m﹣n的值.4.已知3m=6,3n=﹣3,求32m﹣3n的值.5.已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.6.如果x m=5,x n=25,求x5m﹣2n的值.7、计算:(1)﹣m9÷m3;(2)(﹣a)6÷(﹣a)3;(3)(﹣8)6÷(﹣8)5;8、、把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)59、计算:(1)(a﹣b)2(b﹣a)2n÷(a﹣b)2n﹣1.(2)(2a2)3•(a2)4÷(﹣a2)510、若(x m÷x2n)3÷x m﹣n与4x2为同类项,且2m+5n=7,求4m2﹣25n2的值.11、已知a m=4,a n=3,a k=2,求a m﹣3k+2n的值.12、计算:(﹣3x 2n+2y n )3÷[(﹣x 3y )2]n 13、已知5x ﹣3y ﹣2=0,求1010x ÷106y 的值.14、已知10a =2,10b =9,求:的值. 15、已知,求n 的值.16、已知a m =2,a n =7,求a 3m+2n ﹣a 2n ﹣3m 的值.17、(1)(﹣a )5•(﹣a 3)4÷(﹣a )2. (2)(x ﹣y )5÷(y ﹣x )318、(1)已知a x =4,a y =9,求a 3x ﹣2y 的值. (2)若32•92a+1÷27a+1=81,求a 的值.9.34单项式除以单项式一课堂小练1.._______362=÷x x 2..______)5.0()3(2353=-÷-n m n m3.._______)102()104(39=⨯-÷⨯ 4.._______)(34)(836=-÷-b a b a 5.2222234)2(c b a c b a ÷-=____________. 6..________])[()(239226=⋅÷÷÷a a a a a7..________)]()(51[)()(523=+--÷+-y x x y y x y x 8.m m 8)(16=÷.二、解答题1.计算:(1)⎪⎭⎫ ⎝⎛-÷2333238ax x a ; (2)()2323342112⎪⎭⎫ ⎝⎛÷-y x y x (3)()()39102104⨯-÷⨯(5)()()322324n nxy y x -÷. (6)()()5621021012⨯÷⨯--(7)322543323)3()18(2)3(c a b a ac c b a ÷-÷⋅- (8).])3(5[])3(5[223-+-÷+-m m b a b a(9)()()()12523223156312--÷⋅⎪⎭⎫ ⎝⎛-⋅n n n n a a a a(10)()()()342232242a a a a a a ÷-+-+÷-.2、月球 质量约是2510351.7⨯克,地球质量约是2710977.5⨯克,问地球质量约是月球质量的多少倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学整式的除法知识点例题
1、单项式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数即系数相除,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式
2、多项式除以单项式的法则
多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。
方法总结:
①乘法与除法互为逆运算。
②被除式=除式×商式+余式
整式的除法的例题
一、选择题
1.下列计算正确的是
A.a6÷a2=a3
B.a+a4=a5
C.ab32=a2b6
D.a-3b-a=-3b
2.计算:-3b32÷b2的结果是
A.-9b4
B.6b4
C.9b3
D.9b4
3.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是
A.ab2=ab2
B.a32=a6
C.a6÷a3=a2
D.a3•a4=a12
4.下列计算结果为x3y4的式子是
A.x3y4÷xy
B.x2y3•xy
C.x3y2•xy2
D.-x3y3÷x3y2
5.已知a3b6÷a2b2=3,则a2b8的值等于
A.6
B.9
C.12
D.81
6.下列等式成立的是
A.3a2+a÷a=3a
B.2ax2+a2x÷4ax=2x+4a
C.15a2-10a÷-5=3a+2
D.a3+a2÷a=a2+a
二、填空题
7.计算:a2b3-a2b2÷ab2=_____.
8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.
9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.
10.计算:6x5y-3x2÷-3x2=_____.
三、解答题
11. 三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?结果用科学记数法表示
12.计算.
130x4-20x3+10x÷10x
232x3y3z+16x2y3z-8xyz÷8xyz
36an+1-9an+1+3an-1÷3an-1.
13.若xm÷x2n3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.
14.若n为正整数,且a2n=3,计算3a3n2÷27a4n的值.
15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?
整式的除法参考答案
一、选择题
1.答案:C
解析:【解答】A、a6÷a2=a4,故本选项错误;
B、a+a4=a5,不是同类项不能合并,故本选项错误;
C、ab32=a2b6,故本选项正确;
D、a-3b-a=a-3b+a=2a-3b,故本选项错误.
故选C.
【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.
2.答案:D
解析:【解答】-3b32÷b2=9b6÷b2=9b4.故选D.
【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相
除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的
指数作为商的一个因式,计算即可.
3.答案:B
解析:【解答】A、应为ab2=a2b2,故本选项错误;
B、a32=a6,正确;
C、应为a6÷a3=a3,故本选项错误;
D、应为a3•a4=a7,故本选项错误.
故选B.
【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.
4.答案:B
解析:【解答】A、x3y4÷xy=x2y3,本选项不合题意;
B、x2y3•xy=x3y4,本选项符合题意;
C、x3y2•xy2=x4y4,本选项不合题意;
D、-x3y3÷x3y2=-y,本选项不合题意,
故选B
【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.
5.答案:B
解析:【解答】∵a3b6÷a2b2=3,
即ab4=3,
∴a2b8=ab4•ab4=32=9.
故选B.
【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.
6.答案:D
解析:【解答】A、3a2+a÷a=3a+1,本选项错误;
B、2ax2+a2x÷4ax=x+a,本选项错误;
C、15a2-10a÷-5=-3a2+2a,本选项错误;
D、a3+a2÷a=a2+a,本选项正确,
故选D
【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;
B、利用多项式除以单项式法则计算得到结果,即可做出判断;
C、利用多项式除以单项式法则计算得到结果,即可做出判断;
D、利用多项式除以单项式法则计算得到结果,即可做出判断.
二、填空题
7.答案:b-1
解析:【解答】a2b3-a2b2÷ab2=a2b3÷a2b2-a2b2÷a2b2=b-1.
【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.
8.答案:2a-3b+1
解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,
∴它的另一边长是:6a2-9ab+3a÷3a=2a-3b+1.
故答案为:2a-3b+1.
【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.
9.答案:x2+3x
解析:【解答】[x3+3x2-1--1]÷x=x3+3x2÷x=x2+3x.
【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.
10.答案:-2x3y+1
解析:【解答】6x5y-3x2÷-3x2=6x5y÷-3x2+-3x2÷-3x2=-2x3y+1.
【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.
三、解答题
11.答案:2×10年
解析:【解答】该市用电量为2.75×103×105=2.75×108
5.5×109÷2.75×108=5.5÷2.75×109-8=2×10年.
答:三峡工程该年所发的电能供该市居民使用2×10年.
【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.
12.答案:13x3-2x2+1;24x2y2+16xy2-1;3-3an+1+3an-1÷3an-1=-3a2+1.
解析:【解答】130x4-20x3+10x÷10x=3x3-2x2+1;
232x3y3z+16x2y3z-8xyz÷8xyz=4x2y2+16xy2-1;
36an+1-9an+1+3an-1÷3an-1=-3an+1+3an-1÷3an-1=-3a2+1.
【分析】1根据多项式除以单项式的法则计算即可;
2根据多项式除以单项式的法则计算即可;
3先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.
13.答案:39.
解析:【解答】xm÷x2n3÷x2m-n=xm-2n3÷x2m-n=x3m-6n÷x2m-n=xm-5n
因它与2x3为同类项,
所以m-5n=3,又m+5n=13,
∴m=8,n=1,
所以m2-25n=82-25×12=39.
【分析】根据同底数幂相除,底数不变指数相减,对xm÷x2n3÷x2m-n化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.
14.答案:1
解析:【解答】原式=9a6n÷27a4n= a2n,
∵a2n=3,
∴原式= ×3=1.
【分析】
先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.
15.答案:20.
解析:【解答】根据题意得:2.6×107÷1.3×106=2×10=20,
则人造地球卫星的速度飞机速度的20倍.感谢您的阅读,祝您生活愉快。