电厂发电机励磁系统建模试验方案
励磁系统建模试验方案资料
励磁系统建模试验方案目录1.试验目的 (1)2.试验内容 (1)3.试验依据 (1)4.试验条件 (1)5.设备概况及技术数据 (2)6.试验内容 (4)7.试验分工 (5)8.环境、职业健康安全风险因素辨识和控制措施 (6)9.试验设备 (6)1.试验目的对被测试机组的励磁系统进行频率响应以及动态响应测试,确认励磁系统模型参数和特性,为电力系统分析计算提供可信的模型数据。
2.试验内容2.1励磁系统模型传递函数静态验证试验。
2.2发电机空载特性测量及空载额定状态下定子电压等各物理量的测量。
2.3发电机时间常数测量。
2.4 A VR比例放大倍数测量试验。
2.5系统动态响应测试(阶跃试验)。
2.6 20%大干扰阶跃试验。
2.7对发电机进行频率响应测试。
3.试验依据Q/GDW142-2012《同步发电机励磁系统建模导则》设备制造厂供货资料及有关设计图纸、说明书。
4.试验条件4.1资料准备励磁调节器制造厂应提供AVR和PSS模型和参数。
电机制造厂应提供发电机的有关参数和特性曲线。
4.2设备状态要求被试验发电机组励磁系统已完成全部常规的检查和试验,调节器无异常,具备开机条件。
5.设备概况及技术数据容量为135MW,励磁系统形式为自并励励磁方式,励磁调节器采用南瑞电控公司生产的NES6100型数字励磁调节器。
其励磁系统结构框图如图1:图1 励磁系统框图5.1励磁调节器模型:图2 励磁调节器模型5.2发电机:生产厂家:南京汽轮机电机厂型号:QFR-135-2额定视在功率:158.8 MV A额定有功功率:135 MW额定定子电压:13.8 kV额定定子电流:6645 A额定功率因数:0.85额定励磁电流:893 A额定励磁电压:403 V额定空载励磁电流:328 A额定空载励磁电压:147 V额定转速:3000 r/min发电机轴系(发电机+燃气轮机)转动惯量(飞轮转矩):18.91t.m2转子绕组电阻:0.3073Ω(15℃)0.3811Ω(75℃), 0.4179Ω(105℃试验值) 转子绕组电感:直轴同步电抗Xd(非饱和值/饱和值):219.04/197.15直轴瞬变电抗Xd’(非饱和值/饱和值):30.02/27.02直轴超瞬变电抗Xd”(非饱和值/饱和值):19.63/17.67横轴同步电抗Xq(非饱和值/饱和值):205.96/182.36横轴瞬变电抗Xq’(非饱和值/饱和值):36.03/32.42横轴超瞬变电抗Xq”(非饱和值/饱和值):23.1/20.79直轴开路瞬变时间常数Td0’ : 9.8 秒横轴开路瞬变时间常数Tq0’ : 1.089秒直轴开路超瞬变时间常数Td0” : 0.06秒横轴开路超瞬变时间常数Tq0” : 0.054秒6.试验内容本试验为空载动态试验。
2023年度电力系统同步发电机励磁系统的建模与仿真
2023年度电力系统同步发电机励磁系统的建模与仿真随着电力系统的快速发展和电力负荷的不断增加,同步发电机在电力系统中的作用日益重要。
在发电过程中,同步发电机的励磁系统起着至关重要的作用,它不仅决定了发电机的输出功率和电压稳定度,还直接影响到电力系统的稳定性和安全性。
因此,对同步发电机励磁系统进行建模和仿真,分析其特性及优化其性能具有十分重要的实用价值和工程应用前景。
本文将针对电力系统同步发电机励磁系统的建模和仿真,从理论分析、实验研究和实际应用等角度进行探讨,并提出相应的解决方案和建议。
一、同步发电机励磁系统的基本原理同步发电机是电力系统中常用的发电设备之一,其工作原理是通过励磁系统对转子产生恒定电磁势,使得电动机的旋转速度与电网同步。
励磁系统由调节回路和发电机励磁机组成,前者用于调节励磁电流大小,后者用于产生励磁电流。
励磁机由交流电源供电,将电能转换为磁能,形成恒定的磁场,以激励转子产生电势,并与电网同步。
二、同步发电机励磁系统的建模方法同步发电机励磁系统建模方法通常采用开环和闭环两种方法。
开环方法着重考虑发电机励磁机的特性和参数,而忽略负载和电力系统的影响;闭环方法则将发电机励磁系统与负载和电力系统耦合起来,考虑更加全面的影响因素。
基于此,可以利用MATLAB等软件对同步发电机励磁系统建立模型并进行仿真。
三、同步发电机励磁系统的特性分析同步发电机励磁系统特性分析是建模和仿真的重要内容,其目的是分析系统的性能和稳定性。
特性分析主要包括励磁电路特性分析、励磁系统数学模型建立、励磁机暂态过程仿真等方面。
四、同步发电机励磁系统的优化同步发电机励磁系统的优化可以通过改变发电机励磁电路参数、控制环节参数等方式进行。
其中,提高励磁机的内部反馈控制效果,降低负载波动对励磁系统的影响,并采用先进的励磁控制算法等方法,可以显著提升系统的质量和性能。
五、同步发电机励磁系统仿真结果分析通过对同步发电机励磁系统的仿真分析,可以建立电网和发电机系统的各种工况和稳态性能参数,并提出相应的改进措施和建议。
励磁系统检查及投入试验方案
目录1.编制目的 (02)2.编制依据 (02)3.设备系统简介 (02)4.调试内容及验评标准 (06)5.组织分工及使用仪器设备 (07)6.调试应具备的条件 (07)7.调试步骤 (07)8.安全注意事项 (11)9.附录 (12)1 编制目的为使发电机励磁系统安全可靠地投入运行,须对励磁系统的回路接线的正确性、自动励磁调节器的性能和品质以及励磁系统所有一、二次设备进行检查和试验,确保励磁调节器各项技术指标满足设计要求,特编制此调试方案。
2 编制依据2.1 《火电工程启动调试工作规定》建质[1996]40号2.2 《火力发电厂基本建设工程启动及竣工验收规程(1996)》2.3 《火电机组达标投产考核标准(2001年版)》2.4 《电气装置安装工程电力变压器、互感器施工及验收规范(1996年版)》2.5 《电力安装工程电气设备交接试验标准》(GB50150-2006)2.6 《电气装置安装工程母线装置施工及验收规范(1996)》2.7 《数据采集系统校准规范(1995)》2.8 《电力建设安全健康与环境管理工作规定(2002年版)》2.9 《电气装置安装工程高压电器施工及验收规范(1996年版)》2.10 制造厂技术规范2.11《大、中型同步发电机励磁系统基本技术条件(GB7409-97)》2.12《大中型水轮发电机静止整流励磁系统及装置技术条件(DL/T583-1995)》3 设备系统简介孟庄热电厂2×300MW工程发电机励磁系统采用北京四方吉思电气有限公司提供的 GEC-313励磁型微机型自并励励磁,该系统由三相干式励磁变压器、微机型自动励磁调节器、可控整流器、磁场断路器(灭磁开关)和过电压保护装置以及控制回路等几部分组成,其工作原理为:通过励磁变从发电机端取得励磁能源,励磁变将发电机端的三相交流电压降低为励磁调节器可接受的交流电压送给可控整流器进行整流,整流后的直流电流经磁场断路器提供给发电机转子以建立磁场,AVR根据机组的运行状况依据程序设定的参数自动地改变导通角,从而控制磁场电流的大小,达到自动调节发电机机端电压的目的。
发电机励磁系统建模及参数测试现场试验方案
发电机励磁系统建模及参数测试现场试验方案一、引言发电机励磁系统是发电机的重要组成部分,负责提供稳定的励磁电流,以产生磁场来激发旋转母线产生电能。
励磁系统的建模及参数测试是确保发电机正常运行和电能输出的重要环节。
本试验方案旨在介绍发电机励磁系统建模及参数测试的具体步骤和方法,以保证测试过程准确、可靠。
二、试验目的1.建立发电机励磁系统的电路模型,以研究和优化发电机励磁控制策略;2.获取发电机励磁系统的相关参数,包括励磁电感、励磁电阻、励磁时间常数等,以指导实际运行和维护。
三、试验步骤1.参数检查与准备工作(1)检查发电机励磁系统的相关设备,包括励磁电源、励磁控制器等,确保其正常工作;(2)准备励磁电源的额定电压及额定电流;(3)进一步了解发电机的额定容量、充电时间等相关参数。
2.励磁系统建模试验(1)根据发电机励磁系统的具体结构和控制方式,建立励磁系统的电路模型;(2)根据建模结果,优化励磁系统的控制策略,如PID控制、模糊控制等。
3.励磁系统参数测试(1)将励磁电源的电压调整至额定电压,并将电流调整至0;(2)开始记录励磁电流、时间,并持续一段时间,以计算励磁系统的励磁时间常数;(3)在给定一定励磁电流的情况下,记录励磁电源的输出电压,以计算励磁系统的励磁电阻;(4)通过改变励磁电源的输出电流,记录励磁电流和励磁电压的关系,从而计算励磁系统的电感值。
四、试验数据处理与结果分析根据试验记录的数据,进行如下数据处理与结果分析:1.使用最小二乘法拟合得到励磁时间常数;2.根据励磁时间常数计算发电机启动所需的总时间;3.根据励磁电流和励磁电压的关系确定励磁系统的电感值;4.根据励磁电流和励磁电阻的关系确定励磁系统的励磁电阻。
五、试验安全措施1.在试验过程中,严格遵守相关电气安全操作规程,确保人员安全;2.在试验现场设置明显的安全警示标志,并保证试验区域的安全通道畅通;3.使用严密可靠的电气隔离装置,以防止电击事故的发生。
励磁系统建模试验方案
励磁系统建模试验方案1.背景介绍励磁系统是电力系统中必不可少的组成部分,用于产生磁场以激励发电机产生电压。
建立励磁系统的数学模型是进行稳定性分析和控制设计的前提,因此对励磁系统进行建模试验具有重要意义。
2.建模目标本试验的目标是建立励磁系统的动态数学模型,以描述励磁系统的响应特性和稳定性。
通过试验获得的模型参数可以用于系统的控制设计和分析。
3.试验装置本试验使用一台实际的发电机作为被试对象,利用适当的测试设备(如数据采集仪、励磁装置等)对发电机的励磁系统进行测试和记录。
4.试验步骤(1)准备工作:检查试验装置的各个部件是否正常工作,确保安全可靠。
(2)建立基准条件:将发电机运行到额定工况下,并记录电压、电流、反馈信号等参数。
(3)激励信号测试:通过改变励磁系统的激励信号并记录响应,以确定激励信号对系统动态性能的影响。
(4)负荷变化测试:改变发电机的负荷,记录系统的动态响应,研究负荷变化对系统稳定性的影响。
(5)故障情况测试:模拟故障情况,如短路、开路等,记录系统的响应,研究故障情况对系统的影响。
(6)数据处理:将试验获得的数据进行整理和分析,根据试验结果确定励磁系统的数学模型。
5.可能存在的问题及解决办法(1)试验装置的不稳定性:可以采用合适的稳定补偿措施,例如引入稳压器或改进电源的稳定性。
(2)环境条件的影响:试验环境应选择尽量稳定的条件,并进行必要的校正和修正。
(3)数据采集和处理的准确性:使用合适的设备和方法进行数据采集,并进行数据校验和分析。
6.预期结果通过本试验,预期可以建立一个准确的励磁系统动态数学模型,描述励磁系统的响应特性和稳定性。
得到的模型参数可以为控制设计提供依据,使励磁系统具有较好的稳定性和动态性能。
7.风险评估本试验涉及到电力系统设备和高电压,存在一定的风险。
在试验过程中,必须严格遵守安全操作规程,确保试验的安全可靠。
在试验方案制定前,必须进行风险评估,并制定相应的安全措施。
发电机励磁系统建模及仿真
12倍额定 电压下的饱和系数/ 。 . | s
2・
・
第 2期
刘金森 , : 电机励磁 系统建模及仿真 等 发
型的 P S S 。根据原始资料提供的 P S S 传递函数及试 验中确定的参数 , B A暂态稳定程序 中, 在 P 可以确 定采用 s 型 P S I S 模型 , 其框 图如 图 5所示 , 参数设
tm d lsr c u e a d p r mee s I h spa e ,h n mi haa t rsisa d r lv n a a tr ft e e c t- e mo e tu t r a a t r . n t i p r t edy a c c r ce t n e e a tp r mee o h x i n i c s a
21 0 1年 2月 第 l 4卷 第 2期
2 1 ,V l 4,No 2 0 1 o ,1 .
贵州电力技术
GUI ZHOU ELECTRI POW ER C TECHNOLOGY
电 网科 技
Po rGrd Te hn lg we i c oo y
发 电 机 励 磁 系 统 建 模 及 仿 真
关键 词 : 励磁 系统; 电机 ; 发 系统建模 ; 参数 ; P BA 文章编 号 :0 8— 8 X 2 1 ) 0 0 — 3 中图分类号 : M 4 文献标识码 : 10 0 3 ( 0 1 2- 0 1 0 T7 B
电力 系 统 已进 入 大 电 网、 电 压 、 机 组 的时 高 大 代 。随 着 电网规 模 的扩大 , 机组 容 量 的提高 , 机组 运 行稳 定性 的要 求 也 随之提 高 。发 电机励 磁 系统参 数 是 电 网运行 的重 要 参数 之 一 , 电力 系统 的暂 态 稳 对 定控 制具 有重 要 作 用 。 因此 , 有必 要 对 发 电机 组 的 励 磁 系统 进行 研究 分 析 , 仿 真 软件 中建 立 励 磁 系 在
基于RTDS的发电机励磁系统建模
图 1 励磁系统原始模型参数框图
- 1-
采用 频域 辨识 法、 时域 辨识 法和 智能 辨识 法进 行该 发电 机励 磁系 统的 现场 测试 和模 型参 数辨 识。
频域 辨识 法基 于经 典控 制理 论, 将励 磁系统 的 各 环节 视 为单 输 入- 单 输 出 系统 , 在 MEC3300T 调 节 器的 综 合端 输 入 0.1~400 Hz 的伪 随 机小 幅 信号 , 用以 产生 小幅 扰动 的输 出信 号, 利 用 HP35670A 动 态 信 号 分 析 仪 器 进 行 频 谱 特性 分 析 和 现 场 参 数 拟
合 , 即 可得 出发 电机励 磁系 统的 模型 参数 。 时 域辨 识法 基于 现代 控制 理论 , 利 用时 域辨 识
软 件可 获得 发电 机励 磁系 统各 环节 的参 数。 当机 组 保 持 空 载 、额 定 运 行 工 况 时 , 在 MEC3300T 调 节 器 的 综合 端输 入 10 %及- 10 %阶跃 信号 , 录 取机 端 电 压 和 AVR 输出 的 励磁 电压 等信 号 , 得 到图 2 和 图 3 的 阶跃 响应 试验 波形 。
随 着地 区联 网、全 国 联网 和新 技 术的 应用 , 电 力 系 统的 稳定 分析 从过 去的 单 一故 障暂 态稳 定 分析 发 展 为暂 态稳 定与 电压 稳定 交 织的 综合 性 长过 程的 稳 定 分析 。发 电机 励磁 系 统作 为电 力系 统 机电 暂态 过 程 数学 模型 的重 要组 成 部分 , 对 电网 的电 压 控制 和 暂 态稳 定具 有重 要的 作用 , 对电 力系 统的 动 态过 程 影 响较 大。因此 , 开 展主要 机组 励磁 系统 建模 研究 和 参 数实 测工 作, 对加 强电 力 系统 基础 数据 平 台的 建 设 , 提 高安全 稳定 分析 水平 有重 要意 义。
励磁系统试验方案
- --习水电厂#3发电机励磁调节系统改造投运试验方案批准:审定审核:编制:二〇一三年十一月七日一、概况习水电厂#3发电机励磁调节系统运行多年,元器件老化严重,故障频繁,运行不可靠,给机组及电网安全运行带来严重威胁,经厂部批准决定进行改造,将原ABB公司生产的ABB UNITROL-F励磁调节设备改造为南瑞科技公司生产的NES-5100励磁调节设备,该工程于2013年11月3日开工,现已安装结束,准备进入调试阶段,为保证调试工作的顺利开展,特编制本调试方案。
二、编制依据试验遵循以下规但不限于:发电机励磁系统调度管理规程DL 279-2012-T。
发电机励磁系统及装置安装、验收规程DLT 490-2011。
大型汽轮发电机励磁系统技术条件DLT 843-2010。
三、组织措施1、领导小组:组长:邓先进副组长:志刚雷涛成员:丁明奎邹彬美韦金鹏廷模班平胡猛职责:负责#3发电机励磁调节系统调试工作的整体协调及指导。
2、试验实施组组长:雷涛副组长:廷模成员:时国恩华宋力杰运行当班值长职责:负责#3发电机励磁调节系统的整体调试操作、记录等工作。
3、安全保障组组长:冬成员:胡猛晓伶谭刚职责:负责检查#3发电机励磁调节系统调试期间安全措施的执行情况。
四、调试步骤㈠静态试验1.外围回路检查励磁调节装置及可控硅整流柜等装置接线无误,符合设计要求。
2.设备通电前检查通电前,励磁调节装置及其它设备作外观、机械结构、插件、元件检查。
无任何异常,应符合通电条件。
3.小电流试验如图:1)用调压器在可控硅整流桥交流开关处加电压(100V),在直流开关处加滑动变阻器作为负载,使得流过负载的电流大于2A。
2)投入调节器电源,按就地开机按钮,通过增、减磁,观察工控机显示触发角度、转子电压、转子电流与示波器是否一致。
4.模拟量测量校验⑴用三相保护校验仪输出电压电流,模拟发电机励磁PT 、保护及测量用PT 、发电机定子CT 、发电机转子CT 、同步变压器二次侧输入,观察工控机和信息窗定子电流,转子电流是否各为100%。
1发电机励磁系统建模试验
励磁系统建模试验
励磁建模试验项目_三机励磁
➢励磁机空载特性试验 试验条件:发电机额定转速,灭磁开关断开,投入一组整流桥,在直流测接 大电阻负载(直流电流大于1A)。 试验目的:确定励磁机基值、去磁系数、饱和系数等。 试验方法:平稳调整励磁机励磁电流使励磁机输出电压至1.55倍额定电压, 再降至最低。测录励磁机转子电流及励磁机定子直流侧电压上升和下降的曲 线。 ➢励磁机负载特性试验 同发电机空载特性试验,需增加励磁机励磁电压、电流等电气量的记录
化率
U0 U N 100%
UN
•国标规定小于1%,汽机自并励规定小于1%。
•励磁系统静态增益K决定电压静差率。
➢为满足静差率要求,励磁系统最小静态增益估算 1. K>Xd/ε,Xd为发电机直轴电抗 2. K>(Ufn-Uf0)/Uf0/ε+1,其中Ufn为额定励磁电压,Uf0为空载励磁电压
8
励磁系统建模试验
9
励磁系统建模试验 术语与定义 ➢调差系数Xc:电压给定点处与无功电流成正比的比例系数,理论上KRCC =(1-D0)×Xc
修改发电机励磁系统中的调差系数,可以调整发电机励磁系统调节作用对 系统无功变化的灵敏度。
10
励磁系统建模试验
术语与定义 ➢励磁系统的主要任务及其对电力系统静态稳定、暂态稳定、动态稳定 的影响
Kc 3 X K U N 2
RFDB SN 22
励磁系统建模试验 模型参数的计算 ➢励磁系统输出限幅的计算
根据大阶跃试验可计算出可控 硅最大最小触发角,同时计算 出励磁系统最大最小输出电压 ,折算成标幺值即为Vrmax, Vrmin。可控硅放大倍数KA计算 式:
KA
1.35 U B U FDB
火电厂发电机励磁系统现场试验方法和常见问题
火电厂发电机励磁系统现场试验方法和常见问题同步电机励磁系统在国标中的定义是“提高电机磁场电流的装置,包括所有调节与控制元件,还有磁场放电或灭磁装置以及保护装置”。
其主要作用就是维持机端电压的恒定。
当机端电压上升时,励磁调节的结果是使其下降;而发电机端电压下降时,励磁调节的作用是使其上升。
从励磁系统的励磁方式来看,主要有常规励磁(三机系统)、自并励、两机它励、无刷高起始励磁系统等几种。
本文讨论的问题主要针对同步电机自并励静止励磁系统。
1.概述自并励静止励磁系统由于运行可靠性高、技术和经济性能优越的原因,已成为大中型汽轮发电机组的主要励磁方式之一。
自并励静止励磁系统由励磁变压器、励磁调节装置、功率整流装置、发电机灭磁及过电压保护装置、起励设备及励磁操作设备等部分组成。
励磁系统现场主要有四大部分工作,分别是:励磁系统外部电缆接线正确性检查;励磁系统带电传动检查;励磁系统静态检查;励磁系统动态试验。
其中静态检查和动态试验是重点内容并且试验过程有很多值得注意的地方。
2.励磁系统现场试验的内容和方法2.1 励磁系统静态检查2.1.1 试验内容这部分包括检查励磁系统中各个单元及软件是否符合要求;交直流电源的检查;各个通道模拟量精度检查;各种限制器定值和动作情况检查;PID环节调节精度检查;可控硅整流柜通流试验等。
其中可控硅整流柜通流试验值得注意。
2.1.2 重要的试验方法可控硅整流柜通流试验也被称为假负载试验。
首先由6kV工作段引一路电源接至励磁变高压侧,断开励磁变高压侧与发电机出口封母的联接,断开发电机转子母线与整流柜输出直流母线的连接,在灭磁开关下口,联接模拟负载电阻(约2W、200A)。
接下来检查励磁变二次母线的对地绝缘大于5M,直流母线对地绝缘大于2M。
然后断开起励电源在端子排上的连接,用6kV给励磁变送电,测量二次母线电压及相序,同时在交流母线及调节器内部检查同步电压的显示值。
再然后合上励磁灭磁开关的操作电源和交流辅助电源开关,检查手动给定值为0%,可控硅控制角为150度,选择A VR手动方式,合上灭磁开关,投入励磁,用增减励磁方式检查励磁系统在手动方式下,工作稳定,输出电流正常。
(整理)同步发电机的励磁建模
2.1同步电机模型同步电机是电力系统的主要元件,电磁暂态和机电互动现象十分丰富,模型的建立和求解往往决定着仿真的精度和能够反映实际系统动态过程的程度,因此,很多专家在同步发电机建模方面展开研究并取得多项成果。
同步电机是励磁控制系统的控制对象,又和励磁控制系统密切相关系。
研究励磁系统的动态特性,离不开对同步电机动态特性的分析。
同步电机的过渡过程比较复杂,通过以d,q 坐标系统推导出来的派克(Park)方程作为同步电机的基本方程,求出完整的动态模型;在某些特定的条件下,可由完整的动态模型得到简化模型。
在小干扰情况下,可以将非线性的完整模型在工作点附近线性化,得出线性化模型:同样,在某些特定的条件下,还可以求得简化的线性模型。
同步电机dqO 坐标下的暂态方程称为派克方程,它是一组非线性的微分方 程组。
由于dqO 三轴之间的解耦以及aqO 坐标下的电感参数是常数,因此派克变换及同步电机的派克方程在实用分析中得到广泛的应用。
同步电机具有三个定子绕组、一个转子绕组、两个阻尼绕组。
六个绕组间 都有磁的耦合,加上转子位置不断变化,绕组间的耦合又必然是转子的位置函 数。
要正确反映上述情况就需要七个非线性微分方程。
2.1.1同步电机基本方程由同步电机在d,q 轴的park 微分方程组出发,电压和磁链方程(以标幺值形式)如(2.1)-(2.10)所示:电压方程: 定子绕组:d q d d ri p U --=ωψψ (2.1)q d q q ri p U --=ωψψ (2.2) 励磁绕组: f f f f p r i U ψ-= (2.3) 阻尼绕组: d d d p i r 1110ψ-= (2.4) q q q p i r 1110ψ-= (2.5)磁链方程: 定子绕组:d ad f ad d d d i X i X i X 1++-=ψ (2.6)q aq q q q i X i X 1+-=ψ (2.7) 励磁绕组:d ad f f d ad f i X i X i X 1++-=ψ (2.8)阻尼绕组:d d f ad d ad d i X i X i X 111++-=ψ (2.9)q q q aq q i X i X 111+-=ψ (2.10) 其中,dtd p θθω==。
发电机励磁系统建模及参数测试现场试验方案
发电机励磁系统建模及参数测试现场试验方案一、背景介绍发电机励磁系统是发电机的重要组成部分,控制和调节发电机输出电压和电流的稳定性。
励磁系统的合理运行对于保证发电机的安全运行和电力系统的稳定性至关重要。
因此,对发电机励磁系统建模和参数测试进行现场试验是必要的。
二、试验目的1.建立发电机励磁系统的数学模型,准确描述其工作原理,对励磁系统进行仿真分析。
2.测试励磁系统参数,评估其性能和稳定性,发现存在的问题并提出优化建议。
三、试验方案1.建模与仿真1.1收集和分析发电机的电气参数,包括发电机的电感、电阻、励磁电枢电阻、励磁电枢电感等。
1.2根据收集的参数,建立发电机励磁系统的数学模型。
模型可以采用经典的励磁系统模型,如PI控制、PID控制等。
1.3 利用仿真软件,如MATLAB/Simulink,进行励磁系统的仿真分析,观察发电机输出电压和电流的波形,评估励磁系统的性能和稳定性。
2.参数测试2.1制定测试计划,明确测试的参数和步骤。
2.2测试发电机励磁系统的基本参数,包括励磁电流、励磁电流反馈回路增益、励磁电枢电流反馈系数等。
2.3测试励磁系统的稳定性参数,如动态响应时间、控制精度、超调量等。
2.4根据测试结果,分析励磁系统的工作状态和性能,对比模拟结果,确定是否存在问题。
3.问题发现与优化建议3.1根据测试结果和模拟分析,发现存在的问题,如励磁系统的响应速度过慢、控制精度不高等。
3.2针对存在的问题,提出优化建议,如调整控制器参数、增加反馈环节等。
3.3制定优化方案,对励磁系统进行优化,并再次进行现场试验,验证优化效果。
四、试验计划1.准备工作1.1收集发电机的电气参数,包括电感、电阻等。
1.2确定试验设备和工具,如发电机功率测试仪、多用表等。
1.3建立仿真模型,准备仿真软件。
2.建模与仿真2.1建立发电机励磁系统的数学模型。
2.2利用仿真软件进行仿真分析。
3.参数测试3.1制定测试计划,明确测试的参数和步骤。
发变组及励磁系统试验
5.2 发变组系统5.2.1 定期试验项目5.2.1.1 发电机-变压器组启动试验A 试验前的准备工作①发电机-变压器组设备检修工作全部结束,质量验收合格。
②发电机-变压器组启动试验方案完成审批手续。
③试验接线已完成,试验用仪器仪表符合计量管理规定。
④检修和运行人员熟悉并了解发电机-变压器组启动方案要求和步骤。
⑤按照调度规程提前向调度提出申请,电气一次主接线符合试验要求。
⑥短路试验电流经过开关时,应做好开关跳闸的防范措施。
B 试验过程中的注意事项①必须保证通讯畅通。
②短路试验电流调节必须平稳,试验期间,短路点处必须有专人看护。
③空载试验时,如果定子三相电压有差别,应以最高相的电压作为升压监视电压。
计算时取三相电压的平均值。
记录各相电压值和相间电压值,作为历史资料备查。
④空载试验时不论电压上升或下降,励磁调节只能按升或降的一个方向调节,严禁中途反向调节,以免磁滞的影响,若中途不慎反向调节,必须重做试验。
⑤空载试验时,电压升至50%额定电压后,巡视检查发电机和母线等一次回路有无异常,检查三相电压是否对称,和此时的相应转子电流是否与历史资料相符,如有异常,应立即降压切断励磁,查明原因方可重新开始试验。
⑥电压回路测量工具要有绝缘防护,防止电压回路短路。
⑦短路试验中如有三相电流严重不平衡或有其他异常,应及时汇报当班值长,并说明情况,停止试验进行处理。
C 试验内容试验内容5.3 发电机励磁系统5.3.1 定期试验项目无5.3.2 定期测试项目5.3.2.1 发电机励磁系统调节器参数测试A 测试前的准备工作①准备好励磁系统录波数据下载的测试工具(笔记本电脑)。
②测试用的连接线、电源盘、试验小车等。
B 测试过程中的注意事项①不要误碰其他带电运行的设备。
②将带电的部位用明显的标志区分开。
③测试过程中如果出现报警信号或任何异常情况,应立即停止测试工作,并报告当班值长,待查明原因后方可继续工作。
5.3.3 定期检验项目5.3.3.1 励磁电源柜和调节器全部检验A 检验前的准备工作①熟悉励磁系统检验规程及图纸资料。
励磁系统试验方案
#3发电机励磁系统调试方案习水电厂#3发电机励磁调节系统改造投运试验方案批准:审定审核:编制:二〇一三年十一月七日一、概况习水电厂#3发电机励磁调节系统运行多年,元器件老化严重,故障频繁,运行不可靠,给机组及电网安全运行带来严重威胁,经厂部批准决定进行改造,将原ABB公司生产的ABB UNITROL-F 励磁调节设备改造为南瑞科技公司生产的NES-5100励磁调节设备,该工程于2013年11月3日开工,现已安装结束,准备进入调试阶段,为保证调试工作的顺利开展,特编制本调试方案。
二、编制依据试验遵循以下规范但不限于:发电机励磁系统调度管理规程DL 279-2012-T。
发电机励磁系统及装置安装、验收规程DLT 490-2011。
大型汽轮发电机励磁系统技术条件DLT 843-2010。
三、组织措施1、领导小组:组长:邓先进副组长:刘志刚雷涛成员:丁明奎邹彬美韦金鹏杨廷模班平胡猛职责:负责#3发电机励磁调节系统调试工作的整体协调及指导。
2、试验实施组组长:雷涛副组长:杨廷模成员:李时国杨恩华宋力刘杰运行当班值长职责:负责#3发电机励磁调节系统的整体调试操作、记录等工作。
3、安全保障组组长:杨冬成员:胡猛李晓伶谭刚职责:负责检查#3发电机励磁调节系统调试期间安全措施的执行情况。
四、调试步骤㈠静态试验1.外围回路检查励磁调节装置及可控硅整流柜等装置接线无误,符合设计要求。
2.设备通电前检查通电前,励磁调节装置及其它设备作外观、机械结构、插件、元件检查。
无任何异常,应符合通电条件。
3.小电流试验如图:1)用调压器在可控硅整流桥交流开关处加电压(100V),在直流开关处加滑动变阻器作为负载,使得流过负载的电流大于2A。
2)投入调节器电源,按就地开机按钮,通过增、减磁,观察工控机显示触发角度、转子电压、转子电流与示波器是否一致。
4.模拟量测量校验⑴用三相保护校验仪输出电压电流,模拟发电机励磁PT 、保护及测量用PT 、发电机定子CT 、发电机转子CT 、同步变压器二次侧输入,观察工控机和信息窗定子电流,转子电流是否各为100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
**电厂#4发电机励磁系统建模和参
数测试试验方案
批准:
审核:
编写:
**电厂
2004年9月8日
目录
一总则 (1)
1 概述 (1)
2 试验目的 (1)
3 试验原理方法 (1)
4 试验仪器 (2)
5 安全注意事项 (2)
6 组织措施 (2)
二试验项目 (3)
1 空载频域法试验 (3)
2 空载时域法(阶跃响应)试验 (4)
3 解除试验接线 (4)
附表:需要提供的发电机励磁系统有关参数表 (5)
一总则
1 概述
**电厂4号机为容量100MW的汽轮发电机组,励磁系统为交流励磁机励磁方式,采用**厂生产的微机WKLT-05型自动励磁调节器。
根据省公司纪总[2002]25号《**省发电机励磁系统建模和参数测试工作会议纪要》的要求,需进行发电机励磁系统模型建立和参数测试工作,特编制此测试方案。
2 试验目的
开展励磁系统建模和参数测试工作对电网安全稳定运行和各发电企业安全经济发供电都具有重要意义,也是**电网与华东联网后,联合电网运行管理的一项重要工作。
发电机励磁系统对电力系统的电压控制和稳定控制具有重要的作用,对电力系统的动态过程影响大。
在电力系统分析工作中广泛应用发电机励磁系统数学模型,励磁系统(包括PSS)的数学模型是对发电机励磁系统物理过程的数学描述,作为电力系统机电暂态过程数学模型的重要组成部分,必须比较精确地模拟,才能为合理安排系统和电厂的运行方式、布置安全措施提供较为精确的仿真依据,从而充分利用各发电厂的发电能力,满足大功率向华东送电的需要。
根据省公司的检修计划,在**电厂选4号机检修完成前后,进行该发电机励磁系统模型和参数测试的现场试验。
试验时间约为8小时
3 试验原理方法
3.1 原理方法一(频域分析法)
将发电机励磁系统及其各环节视为单输入-单输出系统,在A VR 的输入端注入由0.1~12Hz的伪随机小幅信号(HP35670A动态信号分析仪或其他装置输出的)产生的小幅伪随机干扰,用HP35670A仪器同时测量单输入-单输出环节的两端的随机摆动信号,由HP35670A仪器分析出频谱特性图,再的拟合出该环节的传递函数,即可以得出发电机励磁系统及其各环节的模型参数。
频域分析法测试工作分别在被试机组的空载工况下进行,将伪随机码(PRBS)信号从电压检测器环节备用端输入,该信号引起励磁系统的轻微扰动,将转子励磁电压(即A VR输出电压)、发电机端电压和A VR内各主要节点电量(根据现场再定)分别引出,并经接口装置或变送器,各自变换成直流电压的变化量记录在HP35670A动态信号分析仪器中,并获取频谱特性图数据。
3.2 原理方法二(时域分析法)
进行空载阶跃响应试验,并测录发电机的励磁电压、机端电压响应曲线,利用时域分析软件进行现场分析得出模型和参数,与频域法比较。
若WKLT-05型励磁调节装置没有A/D接口,将无法从外部加入干扰信号,需励磁厂家加装一个A/D接口才能完成频谱试验。
请电厂方面联系厂家解决此问题。
如厂家无法解决,试验时现场应根据实际情况采取相关措施或对试验项目进行必要的调整。
4 试验仪器
HP35670A动态信号分析仪、NICOLET动态数据采集系统、ZCL-II型电力系统参数综合测试仪、FLUKE万用表等。
5 安全注意事项
a)本试验属科学研究工作,向省公司安监部门申请非人为原因跳机不作事故考核。
b)试验时系统应安排一定的旋转备用容量,有**电厂4号机组切机和失磁的安全
措施。
c)试验时被试机组的成组控制(如AGC等)应退出。
d)参加试验人员应熟悉本方案,分工明确,听从试验小组指挥。
e)励磁系统的有关调节应缓慢进行,密切监视励磁调节器的输出。
f)试验现场与集控室设临时直达电话,保证通讯畅通。
g)应准备好足够的工具和仪器,且试验仪器应采用隔离型工作电源,并与A VR装
置的接地相接良好,保证和励磁调节器装置共地,以免影响励磁调节器的安全运行。
h)试验仪器的输入信号应处理好抗干扰问题(如采用屏蔽线、双绞信号线等措施),
且接入仪器的信号幅值应确保其在仪器允许范围内。
i)尽量采用被试设备配套接头并缩短试验测试仪器引出到励磁调节器之间试验导
线的长度。
j)在关断试验测试仪器工作电源后,要尽快拆除所有接到励磁调节器的试验引接线。
6 组织措施
a)试验现场设立发电机励磁建模试验指挥小组,由**电厂、调通中心和试验院人
员组成,总指挥由**电厂人员担任;
试验指挥组组长:
成员:中试院相关技术人员、省调通中心技术人员、**电厂:
b)由**电厂技术人员开具工作票,并担任工作负责人;
c)试验接拆线分工:4号机励磁系统运行设备侧由**电厂技术人员负责,试验仪
器侧由我院试验人员负责,双方互相配合;
d)试验中的运行操作由**电厂运行人员按运行规程进行操作。
二试验项目
1 空载频域法试验
**电厂4号机保持空载额定运行状态下,将伪随机码信号从励磁调节器的信号综合端输入(需励磁厂家增加A/D和D/A转换接口),使该信号引起励磁系统的轻微扰动,将励磁调节器输出电压和发电机机端电压分别引出,取其变化量记录在HP35670A动态信号分析仪器中,获取幅频和相频特性图数据。
图1:微机型励磁系统参数测试接线图
接线方式1(并接):
2 空载时域法(阶跃响应)试验
a)根据试验需要,按照下表进行空载阶跃响应试验接线(具体接线端子由现场
确认)。
b)选择励磁调节器为“手动”方式,手动升压至90%U N。
c)将励磁调节器切换为“自动”方式。
d)缓慢增加输入电压,使发电机电压达到额定值。
e)进行-3~10%阶跃响应试验并录取波形。
f)进行+3~10%阶跃响应试验并录取波形。
3 解除试验接线
试验完成后,4号机降压灭磁,解除试验接线,恢复原来临时解除的PT二次回路电缆。
附表:**电厂#4发电机有关参数。