灰度预测模型数学建模论文

合集下载

灰色预测模型论文

灰色预测模型论文

GM(1,1)灰色预测模型摘要灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。

灰数的生成,就是从杂乱中寻找出规律。

同时,灰色理论建立的是生成数据模型,不是原始数据模型,因此,灰色预测的数据是通过生成数据的gm(1,1)模型所得到的预测值的逆处理结果。

本文利用灰色预测对重庆市的人均收入进行模拟,容易理解,操作简单灵活,直接面向用户,精度较高。

一、GM(1,1)预测模型的基本原理:灰色预测的基本原理时间序列预测是采用趋势预测原理进行的.然而时间序列预测存在以下问题:(1)时间序列变化趋势不明显时,很难建立起较精确的预测模型.(2)它是在系统按原趋势发展变化的假设下进行预测的,因而未考虑对未来变化产生影响的各种不确定因素.为克服上述缺点,邓聚龙教授引入了灰色因子的概念,采用“累加”和“累减”的方法创立了灰色预测理论.1.1 GM(1,1)模型的基本原理当一时间序列无明显趋势时,采用累加的方法可生成一趋势明显的时间序列.如时间序列X(0)={32,38,36,35,40,42}的趋势并不明显,但将其元素进行“累加”所生成的时间序列X(1)={32,70,106,141,181,223}则是一趋势明显的数列,按该数列的增长趋势可建立预测模型并考虑灰色因子的影响进行预测,然后采用“累减”的方法进行逆运算,恢复原时间序列,得到预测结果,这就是灰色预测的基本原理.数据来源:重庆市统计年鉴重庆城市居民家庭人均可支配收入:收入4375.435022.965302.05表1二、利用软件对数据进行模拟:模拟值残差相对误差4375.432 3910.0859 -1112.8741 -22.1557433 4368.869126 -933.180874 -17.6003794 4881.482893 -561.357107 -10.313685 5454.243318 -374.186682 -6.4200256 6094.207607 -82.092393 -1.3291527 6809.261006 236.961006 3.605458 7608.213972 370.143972 5.1138499 8500.910713 407.240713 5.03159510 9498.350496 277.390496 3.0082611 10612.823165 368.833165 3.60048312 11858.060575 288.320575 2.49202313 13249.40578 -465.84422 -3.39654214 14804.00209 -904.73791 -5.75945615 16541.004292 -650.095708 -3.78158316 18481.814669 -617.915331 -3.235205三、实验结果表21995200020052010x 104时间(年)人均收入(元)图1所得预测值与实测值折线比较 如图 1。

数学建模灰色模型论文

数学建模灰色模型论文

灰色模型
摘要:
通常可以运用此方法来分析各个因素对于结果的影响程度,也可以运用此方法解决随时间变化的综合评价类问题,其核心是按照一定规则确立随时间变化的母序列,把各个评估对象随时间的变化作为子序列,求各个子序列与母序列的相关程度,依照相关性大小得出结论。

关键词:
灰色理论,灰关联模型
一、问题描述
下表为某地区国内生产总值的统计数据(以百万元计),问该地区从2000年到2005年之间哪一种产业对GDP总量影响最大。

二、问题分析
1.确立母序列,在此需要分别将三种产业与国内生产总值比较计算其关联程度,故
母序列为国内生产总值。

若是解决综合评价问题时则母序列可能需要自己生成,通常选定每个指标或时间段中所有子序列中的最佳值组成的新序列为母序列。

2.无量纲化处理,在此采用均值化法,即将各个序列每年的统计值与整条序列的均值作比值,可以得到如下结果:
3.计算每个子序列中各项参数与母序列对应参数的关联系数,运用公式
其中表示第i个子序列的第j个参数与母序列(即0序列)的第j个参数的关联系数,为分辨系数取值范围在[0,1],其取值越小求得的关联系数之间的差异性越显著,在此取为0.5进行计算可得到如下结果:
4.计算关联度,用公式,可以得到=0.5088、=0.6248、
=0.7577,通过比较三个子序列与母序列的关联度可以得出结论:该地区在2000年到2005年期间的国内生产总值受到第三产业的影响最大。

三、符号说明
参考文献
[1]数学建模——灰色关联分析法
[2]数学建模案例分析--灰色系统方法建模1灰色关联度与优势分析。

灰色预测建模论文

灰色预测建模论文

公共危机事件网络舆情影响趋势预测及其应对策略研究摘要:当前我国正处于突发事件的高发期和社会的转型期,随着网络的日益普及,网络逐渐成为广大民众展现情绪、表达民意的公共话语空间,进而引出的是公共危机事件网络舆情,这是社会政治生活领域里出现的新问题。

若网络舆情未合理引导,则在较大程度上会引发公共危机,危害社会稳定和经济发展。

所谓预警就是指对某一警情的现状和未来进行测度,预报不正常状态的时空范围和危害程度,以及提出防范措施。

本文采用SPSS数据分析软件对原始数据进行分析与聚类,归纳出网络舆情发展的不同种类。

通过对每类事件网络舆情发展趋势的分析,找出规律。

在此基础上应用matlab软件建立预测模型,依据灰色理论,建立预测模型,该模型是微分回归分析的一个特例,以指数形式为基础,以一次累加数据作为原始数据,以初始观测值为准确定积分常数。

本文采用此法将杂乱无章数据列进行整理、生成,将空缺的数据通过计算加以补充,用其所整理过的数据列建立模型并通过它进行决策和预测,将结构、关系、机制不清楚的网络舆情过程作灰色预测以进行提前控制。

关键词:网络舆情;灰色理论;预测模型;预警。

1问题重述公共危机或突发性群体事件是由临时的、自发的同类个体组成的整体,由于某种共同要求,造成对社会具有不平常影响的事情,其从发酵到爆发都伴随相关信息传播活动。

而网络信息传播是指民众以网络为平台,借助网络论坛(BBS)、网络聊天(Chatting)、博客(Blog)、维客(Wiki)、电子邮件(E-mail)及网络新闻组(Usernet News)等网络渠道,围绕即将发生或已发生的群体性事件发布信息。

当传播途径从传统渠道向互联网等途径转移后,出现了流言广泛传播,难以实施有效控制或澄清;舆情信息传播速度快、范围广、影响大;信息交流呈现非理性化、情绪化倾向的新特征。

网络舆情是群体性事件发展演变的一个重要因素,它常直接引发或间接推动群体性事件的恶性发展。

基于灰色模型与指数平滑法对未来汽车销售数额的预测

基于灰色模型与指数平滑法对未来汽车销售数额的预测

基于灰色模型与指数平滑法对未来汽车销售数额的预测摘要:总所周知的,预测汽车的销售量,无论是对于整体的掌控汽车市场的发育与成长态势的政策制定者,还是对于研究市场行情以制定营销策略的汽车厂商而言,都具有极其重要的作用。

我们根据题中所给的历史以来的销量数据,利用灰色模型GM(1,1)根据长期趋势性和周期性,通过灰色预测算法dx/dt+ax=u,x(k+1)=(x⑴-u/a)e+u/a。

对问题进行编程并带入16年和17年的数据进行迭代运算对汽车销量即时间序列的未来值进行数学建模分析预测,然后利用指数平滑法对各个数据进行加权处理,并可利用此对原方法进行优化改进。

根据“最近数据对未来数据影响大,远古数据反之”的特点,且前灰色预测出来的函数图像为曲线增长的模式,则利用三次指数平滑预测公式,yt+1’=yt’+a(yt- yt’),yt+m=(2+am/(1-a))yt’-(1+am/(1-a))yt=(2yt’-yt)+m(yt’-yt)a/(1-a)求解关键词:汽车销量;灰色预测;指数平滑法一、模型的建立首先,我们根据以往几年的数据想要求得2018年的预测数据并希望其理论真实值比较可靠,在某种程度上会持续到未来,所以将较大的权数放在最近的资料。

从而得到2018年的预测数据以及图像。

其次,光是得到2018年的预测数据是不够的,我们希望能够得到以后几年的预测数据,而灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。

同时,灰色理论建立的是生成数据模型,不是原始数据模型,因此,灰色预测的数据是通过生成数据gm(1,1)模型所得到的预测值的逆处理结果。

故利用灰色预测模型对往几年的数据进行拟合,并可根据往几年的数据对以后几年进行预测计算,从而得到比较可靠的问题解决。

在第一种方法中,对于指数平滑法,时间从2000年到2017年。

并分别用一次二次三次指数平滑进行远古数据拟合,观测得到最合理的一个,并对此基础上求得2018年的营销数据。

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)

【数学建模】灰色预测模型(预测)文章目录•一、算法介绍•o 1.灰色预测模型o 2.灰色系统理论o 3. 针对类型o 4. 灰色系统o 5. 灰色生成o 6. 累加生成o7. GM(1,1)模型o▪推导▪精度检验▪精度检验等级参照表•二、适用问题•三、算法总结•o 1. 步骤•四、应用场景举例•o 1. 累加生成o 2. 建立GM(1,1)模型o 3. 检验预测值•五、MATLAB代码•六、实际案例•七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五另外之前看过一篇比较完整的【数学建模常用算法】之灰色预测模型GM,作者:張張張張视频回顾一、算法介绍1.灰色预测模型灰色预测模型(Gray Forecast Model)是通过少量的、不完全的的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

2.灰色系统理论灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测。

目前常用的一些预测方法(如回归分析等),需要较大的样本,若样本较小,常造成较大误差,使预测目标失效。

灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具。

3. 针对类型灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。

二十几年来,引起了不少国内外学者的关注,得到了长足的发展。

目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。

特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.4. 灰色系统灰色系统是黑箱概念的一种推广。

灰色预测模型※※分析

灰色预测模型※※分析

灰色预测模型灰色预测是就灰色系统所做的预测. 所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统. 一般地说,社会系统、经济系统、生态系统都是灰色系统.灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.一、GM(1,1)模型灰色系统理论是邓聚龙教授在1981年提出来的,是一种对含有不确定因素系统进行预测的方法. 通过鉴别系统因素之间发展趋势的相异程度,进行关联分析,并通过对原始数据进行生成处理来寻找系统的变化规律,生成较强规律性数据序列,然后建立相应微分方程模型,从而预测事物未来的发展趋势和未来状态. 目前使用最广泛的灰色预测模型是关于数列预测的一个变量、一阶微分的GM(1,1)模型.GM(1,1)模型是基于灰色系统的理论思想,将离散变量连续化,用微分方程代替差分方程,按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近,用生成数序列代替原始时间序列,弱化原始时间序列的随机性,这样可以对变化过程作较长时间的描述,进而建立微分方程形式的模型. 其建模的实质是建立微分方程的系数,将时间序列转化为微分方程,通过灰色微分方程可以建立抽象系统的发展模型. 经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律时,灰色预测GM(1,1)模型的预测将是非常成功的.1.1 GM(1,1)模型的建立灰色理论认为一切随机量都是在一定范围内、一定时间段上变化的灰色量及灰色过程. 数据处理不去寻找其统计规律和概率分布, 而是对原始数据作一定处理后, 使其成为有规律的时间序列数据, 在此基础上建立数学模型.GM(1,1)模型是指一阶,一个变量的微分方案预测模型,是一阶单序列的线性动态模型,用于时间序列预测的离散形式的微分方程模型.设时间序列()0X有n 个观察值,()()()()()()(){}00001,2,,Xx x x n =,为了使其成为有规律的时间序列数据,对其作一次累加生成运算,即令()()()()101tn xt x n ==∑从而得到新的生成数列()1X,()()()()()()(){}11111,2,,Xx x x n =,新的生成数列()1X 一般近似地服从指数规律. 则生成的离散形式的微分方程具体的形式为dxax u dt+= 即表示变量对于时间的一阶微分方程是连续的. 求解上述微分方程,解为当t =1时,()(1)x t x =,即(1)c x a=-,则可根据上述公式得到离散形式微分方程的具体形式为 ()()()11a t u u x t x e a a --⎛⎫=-+ ⎪⎝⎭其中,ax 项中的x 为dxdt的背景值,也称初始值;a ,u 是待识别的灰色参数,a 为发展系数,反映x 的发展趋势;u 为灰色作用量,反映数据间的变化关系.按白化导数定义有0()()lim t dx x t t x t dt t→+-= 显然,当时间密化值定义为1时,当1t →时,则上式可记为1lim(()())t dxx t t x t dt→=+- 这表明dxdt是一次累减生成的,因此该式可以改写为 (1)(1)(1)()dxx t x t dt=+- 当t 足够小时,变量x 从()x t 到()x t t +是不会出现突变的,所以取()x t 与()x t t +的平均值作为当t 足够小时的背景值,即(1)(1)(1)1()(1)2xx t x t ⎡⎤=++⎣⎦将其值带入式子,整理得 (0)(1)(1)1(1)()(1)2x t a x t x t u ⎡⎤+=-+++⎣⎦ 由其离散形式可得到如下矩阵:(1)(1)(0)(1)(1)(0)(0)(1)(1)1(1)(2)2(2)1(2)(3)(3)2()1(1)()2x x x x x x a u x n x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦⎛⎫ ⎪ ⎪ ⎪⎡⎤-+ ⎪⎣⎦ ⎪=+ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭令 (0)(0)(0)(2),(3),,()TY x x x n ⎡⎤=⎣⎦(1)(1)(1)(1)(1)(1)11(1)(2)211(2)(3)21(1)()12x x x x B x n x n ⎛⎫⎡⎤-+ ⎪⎣⎦ ⎪⎪⎡⎤-+⎣⎦ ⎪= ⎪ ⎪ ⎪⎡⎤--+ ⎪⎣⎦⎝⎭()Ta u α=称Y 为数据向量,B 为数据矩阵,α为参数向量. 则上式可简化为线性模型:Y B α=由最小二乘估计方法得()1T T a B B B Y uα-⎛⎫== ⎪⎝⎭上式即为GM(1,1)参数,a u 的矩阵辨识算式,式中()1TT B B B Y -事实上是数据矩阵B 的广义逆矩阵.将求得的a ,u 值代入微分方程的解式,则()1(1)()((1))a t u ux t x e a a--=-+其中,上式是GM(1,1)模型的时间响应函数形式,将它离散化得(1)(0)(1)ˆ()(1)a t u u xt x e a a --⎛⎫=-+ ⎪⎝⎭ 对序列()()1ˆxt 再作累减生成可进行预测. 即()(0)(1)(1)(0)(1)ˆˆˆ()()(1)(1)1a a t xt x t x t u x e ea --=--⎛⎫=-- ⎪⎝⎭ 上式便是GM(1,1)模型的预测的具体计算式. 或对()atux t cea-=+求导还原得 (0)(0)(1)ˆ()((1))a t uxt a x e a--=-- 1.2 GM(1,1)模型的检验GM(1,1)模型的检验包括残差检验、关联度检验、后验差检验三种形式.每种检验对应不同功能:残差检验属于算术检验,对模型值和实际值的误差进行逐点检验;关联度检验属于几何检验范围,通过考察模型曲线与建模序列曲线的几何相似程度进行检验,关联度越大模型越好;后验差检验属于统计检验,对残差分布的统计特性进行检验,衡量灰色模型的精度. ➢ 残差检验残差大小检验,即对模型值和实际值的残差进行逐点检验. 设模拟值的残差序列为(0)()e t ,则(0)(0)(0)ˆ()()()e t x t xt =- 令()t ε为残差相对值,即残差百分比为(0)(0)(0)ˆ()()()%()x t xt t x t ε⎡⎤-=⎢⎥⎣⎦令∆为平均残差,11()nt t n ε=∆=∑.设残差的方差为22S ,则[]22211()n t S e t e n ==-∑. 故后验差比例C 为21/C S S =,误差频率P 为{}1()0.6745P P e t e S =-<.对于,C P 检验指标如下表:检验指标好合格勉强不合格P >0.95 >0.80 >0.70 <0.70 C <0.35 <0.50 <0.65 >0.65表 1 灰色预测精确度检验等级标准一般要求()20%t ε<,最好是()10%t ε<,符合要求.➢ 关联度检验关联度是用来定量描述各变化过程之间的差别. 关联系数越大,说明预测值和实际值越接近.设 {}(0)(0)(0)(0)ˆˆˆˆ()(1),(2),,()Xt xx x n =⋯ {}(0)(0)(0)(0)()(1),(2),,()X t x x x n =⋯序列关联系数定义为(){}{}{}(0)(0)(0)(0)(0)(0)(0)(0)ˆˆmin ()()max ()(),0ˆˆ()()max ()()1,0x t x t x t x t t t x t x t x t x t t σξσ⎧-+-⎪≠⎪=⎨-+-⎪=⎪⎩ 式中,(0)(0)ˆ()()xt x t -为第t 个点(0)x 和(0)ˆx 的绝对误差,()t ξ为第t 个数据的关联系数,ρ称为分辨率,即取定的最大差百分比,0ρ<<1,一般取0.5ρ=.(0)()x t 和(0)ˆ()xt 的关联度为()11nt r t n ξ==∑精度等级 关联度均方差比值小误差概率好(1级) 0.90≥ 0.35≤ 0.95≥ 合格(2级) 0.80≥ 0.50≤ 0.80≥ 勉强(3级) 0.70≥ 0.65≤ 0.70≥ 不合格(4级)0.70< 0.65>0.70<表 2 精度检验等级关联度大于60%便满意了,原始数据与预测数据关联度越大,模型越好.➢ 后验差检验后验差检验,即对残差分布的统计特性进行检验. 检验步骤如下:1、计算原始时间数列(){}0(0)(0)(0)(1),(2),,()Xx x x n =的均值和方差()2(0)(0)2(0)11111(),()n n t t xx t S x t x n n ====-∑∑ 2、计算残差数列{}(0)(0)(0)(0)(1),(2),,()ee e e n =的均值e 和方差22s()2(0)2(0)21111(),()n n t t e e t S e t e n n ====-∑∑其中(0)(0)(0)ˆ()()(),1,2,,e t x t xt t n =-=为残差数列.3、计算后验差比值21C S S =4、计算小误差频率{}(0)1()0.6745P P e t e S =-<令0S =0.67451S ,(0)()|()|t e t e ∆=-,即{}0()P P t S =∆<.若对给定的00C >,当0C C <时,称模型为方差比合格模型;若对给定的00P >,当0P P >时,称模型为小残差概率合格模型.>0.95 <0.35 优 >0.80 <0.5 合格 >0.70 <0.65 勉强合格 <0.70>0.65不合格表 3 后验差检验判别参照表1.3 残差GM(1,1)模型当原始数据序列(0)X建立的GM(1,1)模型检验不合格时,可以用GM(1,1)残差模型来修正. 如果原始序列建立的GM(1,1)模型不够精确,也可以用GM(1,1)残差模型来提高精度.若用原始序列(0)X建立的GM(1,1)模型(1)(0)ˆ(1)[(1)]at u uxt x e a a-+=-+ 可获得生成序列(1)X 的预测值,定义残差序列(0)(1)(1)ˆ()()()e k x k x k =-. 若取k=t , t+1, …, n ,则对应的残差序列为{}(0)(0)(0)(0)()(1),(2),,()e k e e e n =计算其生成序列(1)()e k ,并据此建立相应的GM(1,1)模型(1)(0)ˆ(1)[(1)]e a k e ee eu u et e e a a -+=-+ 得修正模型(1)(0)(0)(1)(1)()()(1)e a k ak e e e u u u x t x e k t a e e a a a δ--⎡⎤⎡⎤+=-++---⎢⎥⎢⎥⎣⎦⎣⎦其中1()0k tk t k t δ≥⎧-=⎨≤⎩为修正参数.应用此模型时要考虑:1、一般不是使用全部残差数据来建立模型,而只是利用了部分残差.2、修正模型所代表的是差分微分方程,其修正作用与()k t δ-中的t 的取值有关.1.4 GM(1,1)模型的适用范围定理:当GM(1,1)发展系数||2a ≥时,GM(1,1)模型没有意义.我们通过原始序列()0i X 与模拟序列()0ˆiX 进行误差分析,随着发展系数的增大,模拟误差迅速增加. 当发展系数0.3a -≤时,模拟精度可以达到98%以上;发展系数0.5a -≤时,模拟精度可以达到95%以上;发展系数1a ->时,模拟精度低于70%;发展系数 1.5a ->时,模拟精度低于50%. 进一步对预测误差进行考虑,当发展系数0.3a -<时,1步预测精度在98%以上,2步和5步预测精度都在90%以上,10步预测精度亦高于80%;当发展系数0.8a ->时,1步预测精度已低于70%.通过以上分析,可得下述结论:1、当0.3a -<时,GM(1,1)可用于中长期预测;2、当0.30.5a <-≤时,GM(1,1)可用于短期预测,中长期预测慎用;3、当0.50.8a <-≤时,GM(1,1)作短期预测应十分谨慎;4、当0.81a <-≤时,应采用残差修正GM(1,1)模型;5、当1a ->时,不宜采用GM(1,1)模型.1.5 GM(1,1)模型实例分析例:则该学生成绩时间序列如下:()()(0)(0)(0)(0)(0)(1),(2),(3),(4)79,74.825,74.29,76.98X x x x x ==对(0)X作一次累加后的数列为()()(1)(1)(1)(1)(1)(1),(2),(3),(4)79,153.825,228.115,305.095X x x x x ==对(1)X做紧邻均值生成. 令(1)(1)(1)()0.5()0.5(1)Z k x k x k =+-,得()()(1)(1)(1)(1)(2),(3),(4)116.4125,151.47,150.1925Z z z z ==则数据矩阵B 及数据向量Y 为(1)(1)(1)(2)1116.41251(3)1151.471(4)1150.19251z B z z ⎡⎤--⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,(0)(0)(0)(2)74.825(3)74.29(4)76.98x Y x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对参数列ˆ[,]Taa b =进行最小二乘估计,得 176.61ˆ()[,]0.0144T T T T a B B B Y B Y a u -⎡⎤====⎢⎥-⎣⎦即 0.0144a =-,76.61u = 则GM(1,1)模型为()()110.014476.61dx x dt-= 时间响应式为(1)0.0144ˆ(1)5399.13895320.1389xk e -+=- 当1k =时,我们取(1)(0)(0)ˆˆ(1)(1)(0)79xx x === 还原求出(0)X的模拟值. 由(0)(1)(1)ˆˆˆ()()(1)Xk x k x k =--,取2,3,4k =,得 ()()(0)(0)(0)(0)(0)ˆˆˆˆˆ(1),(2),(3),(4)79,74.281,74.3584,76.4513xx x x x == 通过预测,得到实际值与预测值如下表:实际值 预测值 相对误差()k ε 第一学期79 79 0 第二学期 74.825 74.2810 0.73% 第三学期 74.29 74.3584 0.0921% 第四学期76.9876.45130.7051%表 4 四学期的实际值与预测值的误差表因为()10%k ε<,那就可得学生的预测值,与现实值进行比较得出该模型精度较高,可进行预测和预报.我们对学生未来两个学期(也就是第五、六个学期)的成绩进行预测,分别为77.5602分和78.6851分.例:某大型企业1999年至2004年的产品销售额如下表,试建立GM(1,1)预测模型,并预测2005年的产品销售额。

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1,1)及其应用

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1,1)及其应用

§2 灰色预测模型GM(1,1)及其应用蠕变是材料在高温下的一个重要性能。

处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。

高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。

为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。

过去,人们都是通过蠕变试验测量断裂时间。

而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。

如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。

一、灰色预测模型GM (1,1) 建模步骤如下:(1)GM (1,1)代表一个白化形式的微分方程:u aX dtdX =+)1()1( (1) 式中,u a ,是需要通过建模来求得的参数;)1(X是原始数据)0(X的累加生成(AGO )值。

(2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。

表示为:∑==kn n X k X1)0()1()()( (2)不直接采用原始数据)0(X建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。

(3)对GM (1,1),其数据矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a ,N TT Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α (4) (5)建立时间响应函数,求微分方程(1)的解为au e a u X t Xat +-=+-))1(()1(ˆ)0()1( (5) 这就是要建立的灰色预测模型。

大学生数学建模竞赛模板--sars模型灰色预测

大学生数学建模竞赛模板--sars模型灰色预测

SARS对经济指标的影响王海燕徐昊天吴德春摘要本文针对SARS 疫情传播对经济指标影响的问题,建立灰色预测模型,得到03年预测数据,并与实际数据作比较,进而研究SARS疫情对该市各经济指标的影响及其程度。

为研究SARS疫情对该市各经济指标的影响,我们作出了不同经济指标的散点图和数据列表,使得对问题的研究更直观。

(1)SARS对零售业的影响为简化计算,我们以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。

利用方程先预测出2003年零售额的年总值,根据各月综合服务业数额在年总值中所占比例求得各月预测值。

利用MATLAB软件求解,得到得预测值与实际值有一定的相差但相差并不大。

从表三我们得出结论:SARS疫情的传播对零售业从4月份开始产生影响,5、6月份影响最大,10月份以后影响就很小了。

(2)SARS对海外旅游业的影响以1997--2002年每年同期的数据构造参考数列,可以得到1-12月的共12个预测方程,即可预测2003年各月的海外旅游人数。

利用MATLAB软件求解,得到的预测值和实际值相差很大,说明从4月份开始SARS疫情就对旅游业产生影响,尤其5、6月份影响最大,但10月份以后影响就变小甚至没有影响了。

(3)SARS对综合服务业总额的影响以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。

利用方程先预测出2003年的年总值,再根据各月综合服务业数额在年总值中所占比例求得各月的预测值。

利用MATLAB软件求解,得到得预测值与实际值是很一致的。

因此,我们得出结论:SARS疫情的传播对综合服务业没有影响。

另外,本文对模型的误差进行了准确的分析,使得结论更加科学更加有说服力。

虽然模型的建立都是采用了灰色预测法,但在具体的数据处理时,采用了不同的方法,使模型更加丰满,更有特色。

关健词:经济指标;灰色预测;MATLAB;相对误差§1问题的提出背景知识与要解决的问题2003年SARS疫情席卷全球,对世界各国各地区各行业都造成一定的影响。

灰色预测模型在公路货运量预测中应用论文

灰色预测模型在公路货运量预测中应用论文

灰色预测模型在公路货运量预测中的应用摘要:为了提高公路运输行业的管理水平,为设计、修建货运场站或现代物流中心提供数据依据和决策支持,就必须要准确的预测公路货运量。

在运输业今年运量统计的基础上,利用灰色预测理论的gm(1,1)模型,给出了gm(1,1)模型的详细步骤,并以公路货运量历年数据预测为例进行了实际应用。

可有效处理小样本、贫信息的不确定性,并在一定预测时段内有良好的预测精度和实用性。

关键词:公路货运量 gm(1,1)模型预测1.现有的预测方法当前普遍存在的对于社会经济的预测方法主要有时间序列法、回归分析法、灰色预测法、指数平滑法、神经网络预测法以及将不同的预测方法结合起来,按照提供信息量的多少和精度的不同,分别取不同的权重形成的组合预测模型。

货运量作为交通运输的一个重要评价指标,对于货运量的预测可以采取不同的方法进行预测,不同的方法提供的有价值信息各不相同,预测精度也各异。

本文主要采用灰色预测模型对公路货运量进行预测。

2.灰色理论与灰色预测模型由于环境对系统的干扰,系统信息中原始数据序列往往呈现离乱情况,离乱数列即为灰色数列或称灰色过程,灰色理论利用那些较少的或不确切的表示系统行为特征的原始数据序列作生成变换后建立微分方程,建立的模型称为灰色模型(greymodel),简称gm模型。

gm(1,1)表示一阶单个变量微分方程,是最常用的灰色预测模型,其形式为:式中,x=x(t),u和b为待估参数。

这个微分方程的解是:3.灰色预测模型的应用3.1灰色模型建模机理灰色系统建模是利用离散的时间序列数据建立近似连续的微分方程模型。

在这一过程中,累加生成运算(ago)是基本手段,其生成函数是灰色建模、预测的基础。

来自所收集的描述过去、现在状况的数据,是构造系统数学模型的依据。

在贫信息情况下,用概率统计方法寻求其统计规律,或用模糊统计方法寻求其隶属规律是困难的,但对于离散过程,在一定程度上相对强化确定性(规律性)和弱化不确定性是可能的,其途径就是通过累加生成运算得到生成时间序列x。

灰色预测建模技术研究

灰色预测建模技术研究

灰色预测建模技术研究一、本文概述随着大数据时代的到来,预测建模技术在众多领域如经济、社会、环境、医疗等中发挥着越来越重要的作用。

灰色预测建模技术,作为一种重要的预测方法,具有对数据量少、信息不完全、规律性不强等问题的处理能力,因此在处理复杂系统预测问题时具有显著优势。

本文旨在对灰色预测建模技术进行深入研究,探讨其理论基础、方法原理、应用现状以及未来发展趋势,以期为该领域的研究者和实践者提供有益的参考和指导。

本文首先对灰色预测建模技术的起源、发展及现状进行概述,明确其在预测领域的重要地位。

接着,详细阐述灰色预测建模技术的基本原理和核心算法,包括灰色模型的基本类型、建模步骤、参数估计方法等,以便读者全面理解并掌握该技术的核心要点。

在此基础上,本文还将对灰色预测建模技术在各个领域的应用案例进行梳理和分析,展示其在解决实际问题中的实际效果和潜在价值。

本文还将对灰色预测建模技术的未来发展趋势进行展望,探讨其在、大数据、云计算等新技术背景下的发展方向和应用前景。

本文将对灰色预测建模技术的局限性进行讨论,并提出相应的改进建议,以期为该领域的技术创新和应用拓展提供新的思路和方向。

本文将全面系统地研究灰色预测建模技术的理论基础、方法原理、应用现状以及未来发展趋势,以期为该领域的研究者和实践者提供有益的参考和指导。

二、灰色预测建模理论基础灰色预测建模技术,作为一种针对“小样本、贫信息”问题的预测方法,其核心在于利用已有的不完全信息进行建模和预测。

该理论由我国著名学者邓聚龙教授提出,并逐步发展成为一门独立的学科——灰色系统理论。

灰色预测建模的基础理论主要包括灰色生成、灰色关联分析、灰色预测等几个方面。

其中,灰色生成是通过累加生成、累减生成等操作,将原始数据转化为规律性更强的新数据序列,从而弱化原始数据的随机性,提高数据的规律性。

灰色关联分析则是通过计算各因素之间的关联度,找出系统中的主要因素,为后续的预测和决策提供依据。

灰色预测模型及应用论文

灰色预测模型及应用论文

灰色预测模型及应用论文公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]灰色系统理论的研究GM(1,1)预测与关联度的拓展摘要:科学地预测尚未发生的事物是预测的根本目的和任务。

无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。

在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。

本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。

通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。

另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论The Research of Grey System TheoryGM(1,1) prediction and the expansion of correlationxueshenping Instructor: tangshaofangAbstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements.This paper is derived GM (1,1) model, the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing.Key words:Grey prediction model ; Grey relational grade;Grey system theory目录灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。

数学建模——灰色预测模型

数学建模——灰色预测模型

数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。

它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。

灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。

该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。

灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。

其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。

通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。

灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。

2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。

3.求解微分方程:求解微分方程,得到预测模型的参数。

4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。

示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。

然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。

这种情况下,你可以考虑使用灰色预测模型来预测销售量。

步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。

2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。

3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。

4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。

这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。

虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。

灰色预测模型论文

灰色预测模型论文

灰色预测模型论文
灰色预测模型是一种基于小样本数据的预测方法,该方法通过对已有数据的分析和处理,得到未来趋势的预测结果。

灰色预测模型适用于预测非常规变化或变化不规则的时间序列数据,具有简单、方便、快速的特点。

在灰色预测模型的基础上,研究者们持续进行着探索和研究。

相关的论文和研究逐渐丰富。

例如,张贵耀等人在《基于FFT变换与遗传算法的灰色预测模型及其在环境优化中的应用》中,提出了一种基于FFT变换和遗传算法的灰色预测模型,该方法在应用于环境优化中取得了较好的预测效果。

另外,魏伟等人在《基于灰色理论和神经网络的锂电池SOH 估计方法研究》中,将灰色理论与神经网络相结合,提出了一种新的锂电池SOH估计方法。

该方法不仅能够准确地评估锂电池的状态,而且还能够预测其未来的寿命。

此外,吕振国等人在《一种基于蚁群算法和灰色预测的PM2.5浓度预测方法》中,将蚁群算法和灰色预测模型相结合,开发出一种新的PM2.5浓度预测方法。

该方法在实际应用中,能够较准确地预测PM2.5浓度变化趋势。

综上所述,灰色预测模型是一种有效的预测方法,在各个领域得到了广泛的应用和研究。

未来,随着人工智能和大数据技术
的发展,灰色预测模型也将在更多领域得到应用并取得更好的预测效果。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。

该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。

然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。

因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。

本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。

二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。

该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。

其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。

三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。

其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。

1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。

2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。

3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。

四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。

下面以几个典型领域为例,介绍其应用。

1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。

2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。

3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。

灰度预测模型数学建模论文

灰度预测模型数学建模论文

承诺书我们仔细阅读了全国大学生数学建模的竞赛规则()。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们的参赛(报名)队号为:参赛组别:本科组参赛队员(先打印,后签名,并留联系电话) :题目节能减排摘要本文通过建立模型对全国各省会城市的大气环境质量做出定量的综合评价,并对未来各地区大气的污染状况进行分析比较。

经过查阅资料得到大量数据,利用MATLAB软件编写程序计算得到了各城市的空气质量综合评价模型;通过曲线拟合和灰度预测模型,分别预测出了未来空气质量的趋势,并比较实际数据得到较好的模型;利用EXCEL软件将各城市每年的空气质量绘制成各种图表,给人更加直观的感受。

在大气环境质量的量化问题上,通过计算空气质量指数AQI来综合评价各城市的空气质量。

利用MATLAB软件编写程序计算得到结果,如2010年空气质量最好的三个城市为海口、拉萨、呼和浩特,其AQI分别为40、48、59;空气质量最差的三个城市为兰州、乌鲁木齐、西安,其AQI分别为10.5、91.5、88。

在空气质量预测问题上,我们分别尝试了曲线拟合与灰度预测两种方法,将2011年的预测值和实际值比较,发现灰度预测在数据量较少情况下更具有优势。

基于此在后续问题处理上都沿用了灰度预测模型,并预测了2012年的空气质量指数和不节能减排情况下2007至2011年的空气质量指数。

解决问题3、4时,用之前建模得到的数据,用EXCEL软件绘制图表,清晰直白的分析节能减排对大气环境质量改善所起作用,文章的最后给出了下一步实施节能减排提出建议。

灰色预测模型及应用论文

灰色预测模型及应用论文

灰色系统理论的研究GM(1,1)预测与关联度的拓展摘要:科学地预测尚未发生的事物是预测的根本目的和任务。

无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。

在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。

本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。

通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。

另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。

关键词:灰色预测模型;灰关联度;灰色系统理论The Research of Grey System TheoryGM(1,1) prediction and the expansion of correlationxueshenping Instructor: tangshaofangAbstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements. This paper is derived GM (1,1) model,the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing.Key words:Grey prediction model ; Grey relational grade;Grey system theory目录1、引言 (1)1.1、研究背景 (1)111.2、研究意义 (2)2、灰色系统及灰色预测的概念 (2)2.1、灰色系统理论发展概况 (2)22232.2、灰色系统的特点 (4)2.3、常见灰色系统模型 (5)2.4、灰色预测 (6)2.5、基本概念 (7)7778883、简单的灰色预测——GM(1,1)预测 (9)3.1、GM(1,1)预测模型的基本原理 (9)3.2、GM(1,1)模型检验 (12)1 2 1 3 1 3 3.3、GM(1,1)残差模型 (14)3.4、GM(1,N)模型 (15)3.5、灰色系统建模的基本思路 (16)4、灰色关联度分析 (16)4.1、灰色关联分析理论及方法 (16)4.2、灰色关联技术的应用 (17)4.3、灰色关联度计算式及改进 (18)5、传染病的问题 (20)5.1、传染病发病率的的预测 (21)5.2、三种传染病的关联分析 (22)6、小结 (23)参考文献: (24)附录 (25)灰色系统理论的研究GM(1,1)预测与关联度的拓展1、引言模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。

(整理)灰色预测法

(整理)灰色预测法

灰色预测理论在数学建模中的应用作者:胡金杭摘要:灰色系统理论在自动控制领域中已取得了广泛的应用,本文针对灰色预测理论的特点,分析了它在数学建模中的具体应用。

首先,本文对如何将实际问题转化为灰色GM(1,1)预测模型给了具体的步骤,同时针对模型的特点,可以对其的预测精度进行后验差检验,随后,针对基本灰色GM(1,1)预测模型单调性的特点,我们可以采用改进的等维灰数递补模型,这样可以大大的提高模型对实际问题的预测精度。

关键字:GM(1,1)预测模型后验差检验等维灰数递补模型引言现实中的很多实际问题,都需要通过分析现有的数据,对该问题未来的发展趋势进行预测,随后决策者参考预测得到的结果,就可以制定合理的解决方案。

在预测分析中,最基本的预测模型为线性回归方程,针对一些规律性较强的数据,该模型能作出精确的预测,但在实际中,我们得到的常是一些离散的,规律性不强的数据,为解决此类问题,线性的方法就不适用了,此时,就需要采用灰色预测的方法。

灰色预测理论是将看似离散的数据序列经数据变换后形成有规律的生成数列( 如累加生成、累减生成) ,然后对生成数列建立微分方程,得到模型的计算值后,再与实测值比较获得残差,用残差再对模型作修正,然后便可用建立的灰色模型对该问题进行预测。

一、具体的灰色GM(1,1)预测模型的建立:我们设已知数据变量组成序列,则我们可得到数据序列,用1-AGO生成一阶累加生成序列为:其中 (1-1) 由于序列具有指数增长规律,而一阶微分方程的解恰是指数增长形式的解,因此我们可以认为序列满足下述一阶线性微分方程模型(1-2)我们利用离散差分方程的形式对上微分方程可以得到下矩阵形式:(1-3)简记为: (1-4)式中;;上述方程组中,和B 为已知量,A 为待定参数。

可用最小二乘法得到最小二乘近似值。

因此,式(1-4)可改写为式中,E —误差项。

利用矩阵求导公式,可得(1-5)解得结果代入(2-2)中,我们可以得到(1-6)写成离散形式(令),得到GM(1,1)模型的时间响应函数(K =1,2,…)(1-7) 我们对其做累减还原,即可得到原始数列的灰色预测模型为:(K =1,2,…) (1-8) 将相关数据代入公式中进行运算,我们得到系数的具体值,即得到了具体的预测公式。

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用一、本文概述灰色预测GM模型是一种基于灰色系统理论的预测方法,具有对样本数据量少、信息不完全的复杂系统进行有效预测的优势。

然而,传统的GM模型在处理某些实际问题时,可能会遇到预测精度不高、模型适应性不强等问题。

因此,本文旨在深入研究灰色预测GM模型的改进方法,以提高其预测精度和适应性,并探讨改进后的模型在各个领域的应用价值。

具体而言,本文首先将对灰色预测GM模型的基本原理和算法进行详细阐述,为后续研究提供理论基础。

然后,针对传统GM模型存在的问题,本文将从模型参数优化、数据预处理、模型结构改进等方面提出一系列改进措施,并通过实验验证其有效性。

在此基础上,本文将进一步探讨改进后的GM模型在经济管理、生态环境、社会发展等领域的实际应用,以展示其广泛的应用前景和实用价值。

本文旨在通过深入研究灰色预测GM模型的改进方法,提高其预测精度和适应性,推动灰色系统理论在实际问题中的应用,为相关领域的研究和实践提供有益参考。

二、灰色预测GM模型的基本理论灰色预测GM模型,简称GM模型,是灰色系统理论的重要组成部分。

灰色系统理论是由我国著名学者邓聚龙教授于1982年提出的,它主要用于解决信息不完全、数据不充分的“小样本”和“贫信息”问题。

GM模型以其独特的优势,在众多领域如经济预测、环境科学、工程技术等得到了广泛应用。

GM模型的基本思想是通过生成变换,将原始数据转化为规律性较强的生成数据,然后建立微分方程模型进行预测。

其核心步骤包括:数据累加生成:原始数据序列经过一次或多次累加生成,使原本杂乱无章的数据呈现出明显的规律性,这是灰色预测的关键步骤。

建立微分方程:基于累加生成的数据序列,建立一阶线性微分方程,该方程能够较好地描述数据序列的变化趋势。

还原预测值:通过还原操作,将微分方程求解得到的预测值还原为原始数据序列的预测值。

模型检验:对预测结果进行后验差检验或残差检验,以评估模型的预测精度和可靠性。

数学建模论文(城市空气质量评估及预测)

数学建模论文(城市空气质量评估及预测)

城市空气质量评估及预测摘要: 本文对我国十个城市的空气质量进行了深入的研究,利用统计学等相关原理,结合我国现行的“创模”和“城考”体系中的环境空气质量指标,就城市空气污染程度,空气质量的预测和影响因素等问题建立出相应的数学模型。

利用层次分析法和Perron-Frobenions等相关原理建立数学模型对中国十大城市的空气污染严重程度给出分析并排名。

运用GM(1,1)灰色预测模型,结合相关数据运用excel软件进行数据统计,对成都市2010年11月份的空气质量状况进行预测。

使用优势分析原理分析空气中可吸入颗粒、二氧化硫、二氧化氮等因素对空气质量的影响程度。

关键词:空气质量,层次分析,判断矩阵,相对权重,排名,灰色预测,优势分析,可吸入颗粒,二氧化硫,二氧化氮一、问题的提出1.1背景介绍随着中国经济的进一步发展,环境问题已是制约我国发展的关键因素之一,而环境问题最突出的就是空气污染。

“十一五”“创模”考核指标“空气污染指数”要求:API指数≤100的天数超过全年天数85%。

“城考”依据API指数≤100的天数占全年天数的比例来确定空气质量得分。

“API指数≤100的天数”,通常又被称为空气质量达到二级以上的天数。

根据已有数据,运用数学建模的方法,对中国空气质量做出分析和预测是一个重要问题,同时通过对影响空气质量因素的分析,以正确做好环境保护措施也极为重要。

本文主要针对以下几个问题进行相关分析:(1)利用已知的数据,建立数学模型通过分析给出十个城市空气污染严重程度的科学排名。

(2)建立模型对成都市11月的空气质量状况进行预测。

(3)收集必要的数据,建立模型分析影响城市空气污染程度的主要因素是什么。

二、基本假设1)表格中已有的数据具有权威性,值得相信,具有使用价值。

2)空气质量相同等级的污染程度相同。

3)假设该市各种影响空气质量的软因素(如工业发展,人口数量)保持平稳变化。

4)不考虑突发事件即人为因素(如工业事故)造成的空气质量突变。

基于灰色预测的SARS疫情影响的分析 - 模式识别数学建模论文

基于灰色预测的SARS疫情影响的分析 - 模式识别数学建模论文

基于灰色预测的SARS疫情影响的分析摘要灰色系统模型在农业科学、经济管理、环境科学、医药卫生、矿业工程、教育科学、水利水电、图像信息、生命科学、控制科学、航空航天等众多领域中得到了广泛的应用,解决了许多过去难以解决的实际问题,展示了极为广泛的应用前景。

2003年的SARS 疫情对商品零售业、旅游业和综合服务业产生了巨大的影响。

本文使用灰色预测对影响进行分析,得到了若在2003年未发生疫情时的预测数据,与SARS疫情影响下的实际数据进行比较,得出了较为客观的评价结果。

然后以对疫情期间接待海外旅游人数的分析为例,通过使用多项式拟合模型及最小二乘法拟合模型进行分析,同时与灰色预测模型得出的结果进行比较分析,使得结果更加全面、客观。

一、问题的提出2003 年的SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分疫情较严重的省市的相关行业所造成的影响是显著的,经济影响主要分为直接经济影响和间接影响。

直接经济影响涉及商品零售业、旅游业、综合服务等行业。

很多方面难以进行定量地评估,现仅就SARS 疫情较重的某市商品零售业、旅游业和综合服务业的影响进行定量的评估分析。

究竟SARS 疫情对商品零售业、旅游业和综合服务业的影响有多大,已知某市从1997 年1 月到2003 年12 月的商品零售额、接待旅游人数和综合服务收入的统计数据如表1、表2 和表3。

2试根据这些历史数据建立预测评估模型,评估2003 年SARS 疫情给该市的商品零售业、旅游业和综合服务业所造成的影响。

二、问题的分析与假设根据所掌握的历史统计数据可以看出,在正常情况下,全年的平均值较好地反映了相关指标的变化规律,这样可以把预测评估分成两部分:(1)利用灰色理论建立GM(1,1)模型,由1997-2002 年的平均值预测2003年平均值;(2)通过历史数据计算每个月的指标值与全年总值的关系,从而可预测出正常情况下2003 年每个月的指标值,再与实际值比较可以估算出SARS 疫情实际造成的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了全国大学生数学建模的竞赛规则()。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们的参赛(报名)队号为:参赛组别:本科组参赛队员(先打印,后签名,并留联系电话) :题目节能减排摘要本文通过建立模型对全国各省会城市的大气环境质量做出定量的综合评价,并对未来各地区大气的污染状况进行分析比较。

经过查阅资料得到大量数据,利用MATLAB软件编写程序计算得到了各城市的空气质量综合评价模型;通过曲线拟合和灰度预测模型,分别预测出了未来空气质量的趋势,并比较实际数据得到较好的模型;利用EXCEL软件将各城市每年的空气质量绘制成各种图表,给人更加直观的感受。

在大气环境质量的量化问题上,通过计算空气质量指数AQI来综合评价各城市的空气质量。

利用MATLAB软件编写程序计算得到结果,如2010年空气质量最好的三个城市为海口、拉萨、呼和浩特,其AQI分别为40、48、59;空气质量最差的三个城市为兰州、乌鲁木齐、西安,其AQI分别为10.5、91.5、88。

在空气质量预测问题上,我们分别尝试了曲线拟合与灰度预测两种方法,将2011年的预测值和实际值比较,发现灰度预测在数据量较少情况下更具有优势。

基于此在后续问题处理上都沿用了灰度预测模型,并预测了2012年的空气质量指数和不节能减排情况下2007至2011年的空气质量指数。

解决问题3、4时,用之前建模得到的数据,用EXCEL软件绘制图表,清晰直白的分析节能减排对大气环境质量改善所起作用,文章的最后给出了下一步实施节能减排提出建议。

关键字:AQI MATLAB 灰度预测一、问题的提出环境保护是重大民生问题,随着社会对环境保护的日益重视,人们越来越重视环境的改善,工业革命以来,世界各国尤其是西方国家经济的飞速发展是以大量消耗能源资源为代价的,并且造成了生态环境的日益恶化。

节约能源资源,保护生态环境,已成为世界人民的广泛共识。

我国从2007年8月起,中央财政开始实施节能减排工作,既是对人类社会发展规律认识的不断深化,也是积极应对全球气候变化的迫切需要。

《国民经济和社会发展第十一个五年规划纲要》提出了“十一五”期间单位国内生产总值能耗降低20%左右,主要污染物排放总量减少10%的约束性指标。

根据这两个指标,如中国GDP年均增长一成,五年内就需要节能六亿吨标准煤,减排二氧化硫六百二十多万吨、化学需氧量五百七十多万吨。

试根据我国近年污染物总量减排和大气环境相关数据,并结合经济发展情况,根据附录中的数据,结合你们收集到的相关资料,建立数学模型,完成以下问题:1、建立模型对全国各省会城市的大气环境质量做出定量的综合评价,并对2012年各地区大气的污染状况进行分析比较。

2、假如不采取节能减排,依照过去几年的主要统计数据,对我国大气环境的发展趋势做出预测分析,3、建立模型分析讨论节能减排对大气环境质量改善所起作用。

4、建立模型对节能减排实施前后各省会城市大气环境质量改善情况进行科学分析。

5、对下一步实施节能减排提出建议。

二、问题分析如题所述,环境问题是重大的民生问题,就我国而言,我们在发展经济的同时往往忽略了对环境的保护。

而今人们对环境的重视程度逐步提升,节约能源资源,保护生态环境,已成为世界人民的广泛共识。

本题就是对我国环境质量以及我国主动采取环保措施的效果进行统计与分析:对于问题一中的综合评价各省会城市的大气环境质量,通过查阅《中国统计年鉴》【1】和《环境空气质量指数(AQI)技术规定》【2】,获取相关数据及的计算公式,得出各省会城市在各年的大气环境质量。

对于问题一中的预测2012年大气的污染状况,可以通过数值方法估测2012年的空气质量指数,从而反映2012年的环境质量。

问题二要求依照过去几年的主要统计数据预测出假如2007年不采取节能减排措施时我国大气环境的发展趋势。

利用2003到2006年的数据即可做出预测。

问题三和问题四可以合并为一个问题:讨论节能减排对大气环境质量改善所起作用并对改善情况进行科学分析。

为解决此问题,可以将利用2003至2006年的数据所得的2007至2011年的不节能减排的预测值与这些年的实际空气质量指数值相对比并分析。

问题五是对下一步实施节能减排提出建议。

此问题是根据问题三和四对节能减排政策实施的效果的分析而得的。

三、基本假设1.由于仅已知2003到2011年的数据,且题目要求利用这些数据来进行相关预测,故假设已知数据已足够多,可以进行准确预测;2.各个省份的指标的统计数据信息均由《中国统计年鉴》【1】所得,故假设所有数据真实有效;3.假设二氧化硫、二氧化氮及可吸入颗粒物的浓度即可正确反映出空气质量的状况;4.假设忽略由于自然灾害等原因造成的空气质量突变情况;5.假设节能减排措施是全国统一地在2007年8月开始实施的,各地区同步。

四、符号说明五、模型设计与模型求解5.1问题一:对全国各省会城市的大气环境质量定量综合评价,分析比较2012年各地区大气的污染状况5.1.1、问题分析大气质量优劣与人们的生活息息相关,所以能知道当天或者某一阶段的大气质量十分必要。

题目中问题1要求我们能给出全国个省会城市大气质量综合评价的模型。

我们通过查阅《中国统计年鉴》【1】和《环境空气质量指数(AQI )技术规定》【2】,得知空气质量主要与空气中的二氧化硫、二氧化氮、一氧化碳、臭氧、可吸入颗粒物等的浓度有关,通过计算各成分的IAQI ,取最大值,即为当地空气质量指数AQI ,其值越大,污染越严重。

同时《环境空气质量指数(AQI )技术规定》【2】给出了计算AQI 的公式()Lo Lo P LoHi Lo Hi P IAQI BP C BP BP IAQI IAQI IAQI +---=以及},,,m ax {21n IAQI IAQI IAQI AQI =,《中国统计年鉴》【1】上查阅得到了个年份的二氧化硫、二氧化氮、可吸入颗粒物三种成分的浓度。

我们基于这三种污染物,建立计算AQI 的数学模型。

将得到的数据通过EXCEL 处理,绘出更加直观的各个城市在个个年份间AQI 的变化曲线。

对于2012年各地区大气的污染状况的预测,我们建立了两个模型:模型一通过MATLAB 软件利用已计算出的各城市2003到2010年的空气质量指数来进行三次拟合,得出2011年和2012年的预测值;模型二选择灰色系统预测方法,对2011和2012年的指数进行灰色预测。

比较两种模型得出的2011年预测值与我们查到的2011年的实际值,检验结果是否准确。

5.1.2、模型建立与求解5.1.2.1环境质量综合评价在《环境空气质量指数(AQI )技术规定(试行)》【2】中的污染物项目的空气质量分指数的计算公式()Lo Lo P LoHi Lo Hi P IAQI BP C BP BP IAQI IAQI IAQI +---= (5.1.1) 以及空气质量指数的计算公式},,,m ax {21n IAQI IAQI IAQI AQI = (5.1.2)的基础上计算各地的环境空气质量指数,其中123,,IAQI IAQI IAQI 分别为二氧化硫、二氧化氮和可吸入颗粒物的空气质量分指数,Hi BP 、Lo BP 、P Hi IAQI 、PLo IAQI可通过查表而得,P C 通过查阅各年的《中国统计年鉴》【1】得到。

以由此计算出的各年各省份的AQI 为主要依据,对各城市的环境质量给出评价,AQI 数值越低则环境质量越好。

5.1.2.2.预测2012年空气质量指数(1)曲线拟合模型建立将计算得到的各城市2003到2010年AQI 值进行3次曲线拟合,公式为321234()***f x q x q x q x q =+++ (5.1.3)该计算利用MATLAB 软件进行,得到1q 、2q 、3q 、4q 四个参数后,代入年份编号x ,得出2011和2012 的预测值。

(2)灰度预测模型建立将2003至2010个年份各城市的AQI 值写入数据列(0)(0)(0)(0){(1),(2),,(8)}x x x x = (5.1.4)经过一次累加,得到(1)(1)(1)(1){(1),(2),,(7)}x x x x = (5.1.5)假设(1)x 满足一阶常微分方程(1)(1)dx ax u dt (5.1.6)(1)(1)00()t t x x t ==当时的解为0()(1)(1)0()().a t t u u x t x t e a a --⎡⎤=-+⎢⎥⎣⎦ (5.1.7) 由于年分是离散值,所以公示变为(1)(1)(1)[(1)].ak u u x k x e a a-+=-+ (5.1.8) 灰色建模的途径是一次累加序列(1.2.3)通过最小二乘法来估计常数a 与u 。

利用查分代替微分,保留(1)(1)x 做初值,又因等间隔(1)1,t t t ∆=+-=故公式(5.1.9)变为(0)(1)(0)(1)(0)(1)(2)(2),(3)(3),..............................(7)(7).x ax u x ax u x ax u (5.1.10) 写成向量形式(0)(1)(0)(1)(0)(1)(2)[(2),1](3)[(3),1](7)[(7),1]a x x u a x x u a x x u ⎧⎡⎤=-⎪⎢⎥⎣⎦⎪⎪⎡⎤⎪=-⎪⎢⎥⎨⎣⎦⎪⎪⎪⎡⎤=-⎪⎢⎥⎪⎣⎦⎩(5.1.11)如果用矩阵表示(1)(1)(0)12(1)(1)(0)12(1)(1)(0)12[(2)(1)]1(2)[(3)(2)]1(3).1[(7)(6)]1(7)x x x a x x x u x x x ⎡⎤⎡⎤-+⎢⎥⎢⎥-+⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-+⎢⎥⎣⎦⎣⎦(5.1.12) 令(0)(0)(0)T ((2),(3),,()).y x x x N =(1)(1)12(1)(1)12(1)(1)12[(2)(1)]1[(3)(2)]1,,[()(1)]1x x a x x B U u x N x N ⎡⎤-+⎢⎥-+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥-+-⎢⎥⎣⎦ 则(5.1.12)式就变为y BU =,其最小二乘估计为1ˆˆ()ˆT T a U B B B y u-⎡⎤==⎢⎥⎣⎦ (5.1.13) 把估计值ˆˆau 与代入(1.2.10),得到时间相应方程 ˆ(1)(1)ˆˆˆ(1)(1)ˆˆak u u x k x e a a -⎡⎤+=-+⎢⎥⎣⎦ (5.1.14) 因为得到的是一次累加序列的拟合值,所以要用减法还原,即得到原始序列的拟合值。

相关文档
最新文档