同步发电机励磁控制系统实验报告
同步发电机励磁系统实验研究
摘要同步发电机励磁系统对电力系统的可靠性和稳定性起着重要作用,在我国,励磁系统的可靠性和技术性能指标还不能令人满意。
除了制作水平的提高外,利用特殊的动态测试设备在设计、生产、运行、维护等各个阶段对励磁系统进行设计验证和动态性能测试,是提高励磁系统可靠性和技术性能指标的重要手段。
随着计算机技术的发展,数字仿真测试技术在电力系统研究领域正起着越来越重要的作用。
因此研究采用数字仿真测试技术对同步发电机励磁系统进行动态性能测试,对提高励磁系统的可靠性和技术指标有着重要意义。
关键词:同步发电机,励磁系统AbstractThe excitation system of synchronous generator plays an important role in reliability and stability of power system. However, the reliability of current excitation system in China is not very satisfactory. To improve the reliability and performance of excitation system, in addition to enhancing the fabrication technology, it is critical to conduct design verifying and dynamic performance testing at the stages of design, manufacture, run and maintenance with special dynamic testing devices. With the rapid development of computer science and technology, digital simulation testing is becoming more and mo re important in Power System research field. Adopting digital simulation testing technology in the dynamic performance testing of synchronous generator excitation systems has a great significance in improving the reliability and performance of an excitation system.Keyword: Synchronous Generator, Excitation System目录摘要 (1)目录 (2)1 综述 (3)1.1课题的研究背景和意义 (3)1.2同步发电机励磁系统的主要任务 (3)1.3励磁的发展演绎 (4)1.4同步发电机对励磁的基本要求 (4)2同步发电机励磁系统的基本原理 (6)3同步发电机励磁系统的实验研究 (10)3.1 WDT-ⅢC型电力系统综合自动化试验台介绍 (10)3.2同步发电机励磁系统试验装置 (12)3.3同步发电机励磁控制实验 (23)4结论 (29)参考文献 (30)致谢 (31)1 综述1.1课题的研究背景和意义近年来,随着发电机容量的不断增大,远方水电厂到负荷中心的长距离输电线路的出现,这时,发电机间的联系变得比较松散,就出现了输送功率的极限问题。
典型方式下的同步发电机起励实验数据
典型方式下的同步发电机起励实验数据同步发电机起励实验是电力系统中的重要实验之一。
本文将介绍以典型方式下的同步发电机起励实验数据,包括实验目的、实验原理、实验步骤、实验结果及分析等方面。
一、实验目的同步发电机起励实验的主要目的是研究同步发电机的起励过程,掌握同步发电机的起励方法和技术,为电力系统的稳定运行提供支持。
二、实验原理同步发电机是电力系统中的重要设备,其起励过程是通过将发电机的励磁电流逐渐增大,使发电机的磁场逐渐增强,从而使同步发电机达到同步转速,开始发电。
同步发电机起励实验中,主要采用串联励磁方式对同步发电机进行励磁,同时通过调节励磁电流的大小和方向,使同步发电机的磁场逐渐增强,最终达到发电条件。
三、实验步骤1、将同步发电机接入实验装置中,同时将串联励磁装置与同步发电机连接。
2、启动同步发电机,并将励磁电流调节至最小值。
3、逐渐增大励磁电流,同时观察同步发电机的转速和电压变化情况。
4、当同步发电机的转速和电压稳定在设定值时,即可停止励磁电流的增加,同步发电机开始正常发电。
5、记录同步发电机的起励过程数据,包括励磁电流、转速、电压等参数。
四、实验结果及分析通过同步发电机起励实验数据的记录和分析,可以得到如下结论:1、同步发电机起励过程中,励磁电流的大小和方向对同步发电机的起励影响较大,需要逐渐增加励磁电流,同时注意励磁电流的方向是否正确。
2、同步发电机起励过程中,转速和电压的稳定性是判断同步发电机起励成功与否的重要指标,需要注意记录和观察这些参数的变化。
3、同步发电机起励过程中,需要注意安全问题,避免发生电气事故。
同步发电机起励实验是电力系统中的重要实验之一,通过对同步发电机起励过程的研究和实验,可以掌握同步发电机的起励技术和方法,为电力系统的稳定运行提供支持。
同步发电机励磁实验
同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α 角限制。
微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α 方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁控制实验报告
竭诚为您提供优质文档/双击可除同步发电机励磁控制实验报告篇一:同步发电机励磁控制实验同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒uF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――pss是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁控制实验
课程名称:电力系统分析综合实验指导老师:成绩:__________________实验名称:同步发电机励磁控制实验实验类型:________________同组学生姓名:__________一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.掌握励磁调节器的基本使用方法;6.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图如图l所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90︒;当正常停机或事故停机时,调节器使控制角α大于90︒,实现逆变灭磁。
三、实验项目和方法(一) 不同α角(控制角)对应的励磁电压波形观测(1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;(2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器面板“它励”指示灯亮;(3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面板上的“恒α”指示灯亮;(4)合上励磁开关,合上原动机开关;(5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。
同步发电机运行及控制实验报告
同步发电机运行及控制实验报告
实验目的:
掌握同步发电机的基本结构和工作原理,了解发电机的运行特性,掌握发电机的运行和控制方法。
实验仪器与设备:
实验步骤:
1.将同步发电机连接到电源,使其与电网同步运行。
2.调节电源的输出电压,使电流表和电压表示值满足同步发电机额定电流和电压的要求。
3.通过电阻箱调节电源输出电阻,改变电网和发电机的功率因数,并观察电网电流和发电机输出电压的变化。
4.测量发电机的绕组电流、电压和功率因数,以及电网的电流。
实验结果与讨论:
在实验过程中,我们观察到随着电阻箱电阻的增加,发电机的绕组电流和功率因数逐渐增加,而电压保持稳定。
这是因为增加电阻可以提高发电机的励磁电流,使其能够提供更大的功率输出,从而提高功率因数。
同时,电网电流也会相应增加。
根据实验结果
1.同步发电机的运行与电网的同步性密切相关。
只有当发电机的转速与电网的频率相同,才能实现电能的传输和接收。
2.发电机的输出电压和电流受到电网电压的控制。
如果电网电压发生变化,发电机的输出电压和电流也会相应变化。
3.发电机的功率因数可以通过调节励磁电流来改变。
增加励磁电流可以提高功率因数,使发电机能够提供更大的功率输出。
结论:
通过本次实验,我们深入了解了同步发电机的运行原理和控制方法。
了解发电机的运行特性对于电力系统的稳定运行和电能的高效传输具有重要意义。
同时,实验结果也为我们进一步研究和探索发电机的优化设计和控制提供了基础。
同步发电机励磁调节及励磁系统实验
同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁实验
同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α 角限制。
微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α 方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
电力系统自动化-实验二 同步发电机励磁控制实验
实验二 同步发电机励磁控制实验1.本次实验的目的和要求1)、了解微机励磁调节器的几种控制方式及其各自特点。
2)、了解强励的作用,掌握励磁电压上升速度和强励倍数等几个概念。
3)掌握可控励磁发电系统励磁系统电路原理及其工作特性。
2.实践内容或原理1)微机励磁调节器的几种控制方式及其各自特点励磁调节器具有四种控制方式:恒发电机电压U g ,恒励磁电流I e ,恒给定电压U R 和恒无功Q 。
其中,恒U R 为开环控制,而恒U g ,恒I e 和恒Q 三种控制方式均采用PID 控制,PID 控制原理框图如图2-3-1所示,系统由PID 控制器和被控对象组成,PID 算法可表示为:()()-()e t r t c t = (1)(){()1/() [()]/}P I D u t K e t T e t dt T d e t dt =+⎰+ (2)其中:u(t )—调节计算的输出; K P —比例增益;T I —积分常数; T D —微分常数。
因上述算法用于连续模拟控制,而此处采用采样控制,故对上述两个方程离散化,当采样周期T 很小时,用一阶差分代替一阶微分,用累加代替积分,则第n 次采样的调节量为:0(){()/() /[()- (-1)]}P I D u n K e n T T e i T T e n e n u =+∑++ (3)式中:u 0—偏差为0时的初值。
则第n-1次采样的调节量为:0(-1){(-1)/() /[(-1)- (-2)]}P I D u n K e n T T e i T T e n e n u =+∑++ (4)两式2-3-3和2-3-4式相减,得增量型PID 算法,表示如下:()()- (-1) [()- (-1)]()[()-2(-1)(-2)]P I D u n u n u n K e n e n K e n K e n e n e n ∆==+++ (5) 式中:K P —比例系数;K I —积分系数, I P IT K K T =; K D —微分系数, D D P TK K T =每种控制方式对应一套PID 参数(K P 、K I 和K D ),可根据要求设置,设置原则:比例系数加大,系统响应速度快,减小误差,偏大,振荡次数变多,调节时间加长,太大,系统趋于不稳定;积分系数加大,可提高系统的无差度,偏大,振荡次数变多;微分系数加大,可使超调量减少,调节时间缩短,偏大时,超调量较大,调节时间加长。
电力系统自动控制技术2个实验
电力系统自动控制技术2个实验实验一同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。
二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。
线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。
它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。
自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。
准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。
当所有条件均满足时,在整定的越前时刻送出合闸脉冲。
三、实验项目和方法(一)机组启动与建压1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。
调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮;3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮;4.励磁调节器选择它励、恒UF 运行方式,将“手动励磁”调到0后,合上“励磁开关”,调节“增磁”/“减磁”按钮使数码显示管上的给定电压Ug 参数为380V ;5.把实验台上“同期方式”开关置“断开”位置;6.合上系统电压开关和线路开关QF 1,QF 3,检查系统电压接近额定值380V ;7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;松开“灭磁”按钮,“灭磁”指示灯灭。
电力系统实验二
实验二同步发电机励磁控制实验一、认识设备图1 发电机组控制屏面板示意图图2 发电机组控制屏5区控制屏5区为自动励磁装置及其控制区。
启动/停止:此拨码开关为装置主控制,只有在启动状态下其它操作才有效;打到停止状态后,装置所有数据清零。
(注意:在并网状态时切勿改变其状态)远方/就地:即远程控制方式/就地控制方式的切换。
在一种状态时,另一种控制方式的任何操作均不起作用。
恒Ug/恒IL/恒Q/恒α:即4种控制方式。
注意在将励磁装置“方式选择”开关拨到中间位置(“恒Q/恒α”)后,应等待10秒再选择“恒Q”或“恒α”方式。
增磁/减磁:利用该按钮可对发电机励磁进行控制。
升压/降压:当与同期装置“升压”、“降压”端子相连时,可由同期装置自动调速。
二、实验内容-同步发电机励磁控制实验1. 实验目的1) 加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。
2) 了解微机励磁调节装置的基本控制方式。
3) 了解几种常用励磁限制器的作用。
4) 掌握励磁调节装置的基本使用方法。
2.原理与说明同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。
励磁控制系统的三大基本任务:稳定电压、合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图3,交流励磁电源取自380V市电,构成他励励磁系统。
G~TQLC-III型微机自动励磁装置F1F2市电图3 励磁控制系统示意图励磁装置的控制方式有四种:恒U g(恒机端电压方式)、恒I L(恒励磁电流方式)、恒Q(恒无功方式)和恒α(恒控制角方式)。
恒Q和恒α方式一般在抢发无功的时候才投入。
大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调差特性。
注:具体励磁装置的说明请参照附录《TQLC-III 微机型自动励磁装置用户手册》。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
同步发电机的实训报告
一、实训目的1. 加深对同步发电机基本原理和工作特性的理解。
2. 掌握同步发电机的结构、性能和运行参数。
3. 熟悉同步发电机的启动、并网和励磁控制过程。
4. 提高实际操作技能和故障排除能力。
二、实训内容1. 同步发电机结构观察- 观察同步发电机的整体结构,包括定子、转子、端盖、轴承等部件。
- 分析各部件的材质、形状和作用。
2. 同步发电机性能测试- 测试同步发电机的空载电压、负载电压、励磁电流等参数。
- 分析参数变化对发电机性能的影响。
3. 同步发电机启动与并网- 学习同步发电机的启动步骤和注意事项。
- 实际操作同步发电机的启动和并网过程。
4. 励磁控制系统操作- 学习励磁控制系统的组成和原理。
- 实际操作励磁控制系统的调节和切换。
5. 同步发电机故障排除- 学习同步发电机常见故障及其原因。
- 实际操作故障排除过程。
三、实训过程1. 结构观察- 实训老师首先介绍了同步发电机的整体结构,并带领我们逐一观察了定子、转子、端盖、轴承等部件。
- 通过观察,我们了解了各部件的材质、形状和作用。
2. 性能测试- 实训老师讲解了同步发电机性能测试的原理和方法。
- 我们按照要求进行了空载电压、负载电压、励磁电流等参数的测试。
- 通过分析测试数据,我们了解了参数变化对发电机性能的影响。
3. 启动与并网- 实训老师讲解了同步发电机的启动步骤和注意事项。
- 我们在老师的指导下,实际操作了同步发电机的启动和并网过程。
- 通过实际操作,我们掌握了启动和并网的技巧。
4. 励磁控制系统操作- 实训老师介绍了励磁控制系统的组成和原理。
- 我们在老师的指导下,实际操作了励磁控制系统的调节和切换。
- 通过实际操作,我们熟悉了励磁控制系统的操作方法。
5. 故障排除- 实训老师讲解了同步发电机常见故障及其原因。
- 我们在老师的指导下,实际操作了故障排除过程。
- 通过实际操作,我们提高了故障排除能力。
四、实训总结通过本次实训,我们深入了解了同步发电机的结构、性能和运行参数,掌握了同步发电机的启动、并网和励磁控制过程,提高了实际操作技能和故障排除能力。
同步发电机励磁实验
同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自 380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于 90°;当正常停机或事故停机时,调节器使控制角α大于 90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
完整版同步发电机试验报告
完整版同步发电机试验报告1.引言同步发电机是电力系统中的重要设备,其稳定运行对于保证电网的安全和稳定具有重要意义。
本次试验旨在对同步发电机进行全面测试,评估其性能和运行状态。
本报告将详细描述试验的目的、试验设备、试验原理、试验步骤、试验结果和结论。
2.试验设备本次试验使用的同步发电机主要包括发电机组、励磁系统和监测设备。
发电机组由发电机和发动机组成,励磁系统用于调节发电机的电磁激励。
监测设备包括电气参数监测仪、转子温度计和振动传感器等。
3.试验原理同步发电机将机械能转化为电能,其运行稳定性和发电效率直接影响电力系统的负荷平衡和能源利用。
发电机的输出电压和频率受多种因素影响,包括励磁电流、转子温度和负荷变化等。
试验原理主要包括发电机的励磁特性测试、转速控制测试和负荷调整测试。
4.试验步骤4.1励磁特性测试:通过改变励磁电流,记录发电机的输出电压和励磁电流之间的关系。
4.2转速控制测试:通过调整发电机组的转速,记录发电机的输出频率和转速之间的关系。
4.3负荷调整测试:改变发电机组的负荷,在不同负荷下记录发电机的输出电压和频率,评估其负荷适应性和稳定性。
5.试验结果5.1励磁特性测试结果表明,在适当的励磁电流范围内,发电机的输出电压基本稳定,满足电网的要求。
5.2转速控制测试结果显示,发电机的输出频率与转速呈线性关系,在额定速度附近频率稳定。
5.3负荷调整测试结果表明,发电机组能够在不同负荷下自动调整输出电压和频率,保持稳定运行。
6.结论本次同步发电机试验结果显示,发电机具有较好的励磁特性、转速控制和负荷调整能力。
发电机的输出电压、频率和稳定性满足电力系统的要求。
但仍需要定期进行运行状态监测和维护,确保其可靠稳定地工作。
7.建议在今后的同步发电机试验中,可以进一步优化试验操作和数据记录流程,提高试验效率和准确性。
同时,对试验设备进行定期维护,确保其正常运行。
此外,可参考相关标准和规范,进一步完善试验流程和数据分析方法,提高试验的科学性和可靠性。
同步发电机励磁控制系统实验报告
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行地稳定性, 是保证电力系统安全、经济运行,及延长发电机寿命而进行地同步发电机励磁方式, 励磁原理, 励磁地自动控制进行了深入地解剖. 发电机在正常运行时,负载总是不断变化地, 而不同容量地负载, 以及功率因数地不同, 对发电机励磁磁场地作用是不同地, 对同步发电机地内部阻抗压降也是不一样地. 为了保持同步发电机地端电压稳定,需要根据负载地大小及负载地性质调节同步发电机地励磁电流,因此, 研究同步发电机地励磁控制具有十分重要地应用价值. 本课题主要研究同步发电机励磁控制在不同状态下地情况, 同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等. 主要目地是是同学们加深理解同步发电机励磁调节原理和励磁控制系统地基本任务;了解自并励励磁方式和它励励磁方式地特点;了解微机励磁调节器地基本控制方式.关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机地转子励磁绕组供给励磁电流地整套装置叫做励磁系统. 励磁系统是同步发电机地重要组成部分, 它地可靠性对于发电机地安全运行和电网地稳定有很大影响. 发电机事故统计表明发电机事故中约1/3 为励磁系统事故, 这不但影响发电机组地正常运行而且也影响了电力系统地稳定, 因此必须要提高励磁系统地可靠性, 而根据实际情况选择正确地励磁方式是保证励磁系统可靠性地前提和关键. 我国电力系统同步发电机地励磁系统主要有两大类一类是直流励磁机励磁系统, 另一类是半导体励磁系统. b5E2RGbCAP1.2同步发电机励磁系统地分类与性能1.2.1直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源, 供给发电机转子回路地励磁电流.其中直流发电机称为直流励磁机. 直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流, 形成有碳刷励磁. 直流励磁机励磁系统又可分为自励式和它励式. 自励与他励地区别是对主励磁机地励磁方式而言地, 他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机地电压增长速度,因而减小了励磁机地时间常数, 他励直流励磁机励磁系统一般只用在水轮发电机组上. p1EanqFDPw 采用直流励磁机供电地励磁系统, 在过去地十几年间, 是同步发电机地主要励磁系统. 目前大多数中小型同步发电机仍采用这种励磁系统.长期地运行经验证明,这种励磁系统地优点是:具有独立地不受外系统干扰地励磁电源, 调节方便,设备投资及运行费用也比较少. 缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷地维护工作量大且检修励磁机时必须停主机,很不方便. 近年来, 随着电力生产地发展, 同步发电机地容量愈来愈大, 要求励磁功率也相应增大, 而大容量地直流励磁机无论在换向问题或电机地结构上都受到限制. 因此,直流励磁机励磁系统愈来愈不能满足要求. 目前, 在100MW及以上发电机上很少采用. DXDiTa9E3d1.2.2半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后, 作为供给同步发电机励磁电流地直流电源. 半导体励磁系统分为静止式和旋转式两种. RTCrpUDGiT1.2.2.1 静止式半导体励磁系统静止式半导体励磁系统又分为自励式和它励式两种1)自励式半导体励磁系统自励式半导体励磁系统中发电机地励磁电源直接由发电机端电压获得经过控制整流后,送至发电机转子回路, 作为发电机地励磁电流,以维持发电机端电压恒定地励磁系统, 是无励磁机地发电机自励系统.最简单地发电机自励系统是直接使用发电机地端电压作励磁电流地电源, 由自动励磁调节器控制励磁电流地大小,称为自并励可控硅励磁系统,简称自并励系统.自并励系统中,除去转子本体极其滑环这些属于发电机地部件外, 没有因供应励磁电流而采用地机械转动或机械接触类元件,所以又称为全静止式励磁系统. 下图为无励磁机发电机自并励系统框图, 其中发电机转子励磁电流电源由接于发电机机端地整流变压器ZB 提供, 经可控硅整流向发电机转子提供励磁电流, 可控硅元件SCR由自动励磁调节器控制.系统起励时需要另加一个起励电源. 5PCzVD7HxA 无励磁机发电机自并励系统地优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组地长度, 减少了基建投资及有利于主机地检修维护;由可控硅元件直接控制转子电压, 可以获得较快地励磁电压响应速度;由发电机机端获取励磁能量, 与同轴励磁机励磁系统相比,发电机组甩负荷时,机组地过电压也低一些.其缺点是:发电机出口近端短路而故障切除时间较长时, 缺乏足够地强行励磁能力对电力系统稳定地影响不如其它励磁方式有利. 由于以上特点, 使得无励磁机发电机自并励系统在国内外电力系统大型发电机组地励磁系统中受到相当重视. jLBHrnAILg (2)它励式半导体励磁系统它励式半导体励磁系统包括一台交流主励磁机JL 和一台交流副励磁机FL,三套整流装置. 两台交流励磁机都和同步发电机同轴,主励磁机为100HZ中频三相交流发电机, 它地输出电压经过硅整流装置向同步发电机供给励磁电流. 副励磁机为500HZ中频三相交流发电机, 它地输出一方面经可控硅整流后作为主励磁机地励磁电流,另一方面又经过硅整流装置供给它自己所需要地励磁电流. 自动调励地装置也是根据发电机地电压和电流来改变可控硅地控制角, 以改变励磁机地励磁电流进行自动调压. xHAQX74J0X 它励式半导体励磁系统地优点是:系统容量可以做得很大, 励磁机是交流发电机没有换向问题而且不受电网运行状态地影响. 缺点是:接线复杂, 有旋转地主励磁机和副励磁机,启动时还需要另外地直流电源向副励磁机供给励磁电流. 这种励磁系统多用于10万千瓦左右地大容量同步发电机. LDAYtRyKfE1.2.2.2旋转式半导体励磁系统在它励和自励半导体励磁系统中, 发电机地励磁电流全部由可控硅<或二极管)供给, 而可控硅<或二极管)是静止地故称为静止励磁.在静止励磁系统中要经过滑环才能向旋转地发电机转子提供励磁电流. 滑环是一种转动接触元件随着发电机容量地快速增大,巨型机组地出现, 转子电流大大增加, 转子滑环中通过如此大地电流, 滑环地数量就要增加很多. 为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小地电流. 为了提高励磁系统地可靠性取消滑环这一薄弱环节, 使整个励磁系统都无转动接触地元件,就产生了无刷励磁系统, 如图4 所示. Zzz6ZB2Ltk副励磁机FL是一个永磁式中频发电机, 其永磁部分画在旋转部分地虚线框内.为实现无刷励磁, 主励磁机与一般地同步发电机地工作原理基本相同,只是电枢是旋转地.其发出地三相交流电经过二极管整流后, 直接送到发电机地转子回路作励磁电源,因为励磁机地电枢与发电机地转子同轴旋转, 所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁. 主励磁机地励磁绕组JLLQ是静止地, 即主励磁机是一个磁极静止, 电枢旋转地同步发电机. 静止地励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流地控制, 以维持发电机端电压保持恒定. 无刷励磁系统地优点是:取消了滑环和碳刷等转动接触部分.缺点是:在监视与维修上有其不方便之处. 由于与转子回路直接连接地元件都是旋转地, 因而转子回路地电压电流都不能用普通地直流电压表、直流电流表直接进行监视, 转子绕组地绝缘情况也不便监视, 二极管与可控硅地运行状况,接线是否开脱, 熔丝是否熔断等等都不便监视,因而在运行维护上不太方便. dvzfvkwMI1 1.3同步发电机励磁系统地发展史由于电力系统运行稳定性地破坏事故, 会造成大面积停电, 使国民经济遭受重大损失,给人民生活带来重大影响,因此, 改善与提高电力系统运行地稳定性意义重大.早在20世纪40 年代,有电力系统专家就强调指出了同步发电机励磁地调节对提高电力系统稳定性地重要作用, 随后这方面地研究工作一直受到重视. 研究主要集中在2 个方面: 一是励磁方式地改进, 二是励磁控制方式地改进. rqyn14ZNXI在励磁方式方面, 世界各大电力系统广泛采用可控硅静止励磁方式, 因为这种无旋转励磁机地可控硅自并励方式具有结构简单、可靠性高及造价低廉等优点。
电力系统自动化实验报告(含数据)
实验一励磁控制方式及其相互切换实验一、实验目的1 .加深理解同步发机电励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3 .熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位挪移;4 .了解微机励磁调节器的基本控制方式。
二、原理与说明同步发机电的励磁系统由励磁功率单元和励磁调节器两部份组成,它们和同步发机电结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
实验用的励磁控制系统示意图如图1 所示。
可供选择的励磁方式有两种:自并励和它励。
图1 励磁控制系统示意图三、实验项目和方法(一)不同 α 角(控制角)对应的励磁电压波形观测计算公式: Ud=1.35UacCOS α (0≤α ≤π /3) (二)控制方式及其相互切换选择它励恒 I 方式,开机建压不并网,改变机组转速45Hz ~55Hz ,记录频 内,即实现了恒 U =400V 的功能,满足要求。
G率在 50±5Hz 范围内变化时, 励磁调节器可将发电机电压恒定在 400±2V 的范围发机电频率发电机电压 (V )励磁电流(A )励磁电压(V )给定电压(V )45Hz 398.2 1.702 40.85 4.44 46Hz 400.9 1.628 39.82 4.51 47Hz 401.7 1.512 38.20 4.61 48Hz 400.0 1.433 36.57 4.70 49Hz 401.5 1.333 35.47 4.77 50Hz 400.8 1.250 34.00 4.85 51Hz 401.3 1.176 32.97 4.92 52Hz 400.6 1.106 31.7 4.99 53Hz 400.7 1.057 30.92 5.05 54Hz 400.61.00630.055.1155Hz400.70.95929.375.17励磁电流 Ifd 显示控制角 α励磁电压 Ufd交流输入电压 U AC 由公式计算的 α示波器读出的 α2.5A 38.49°63.460.838.49°42°1.5A62.73°38.161.462.73°66°0.5A86.6°14.3262.286.6°84° 0.0A120°62.7120°120° LG测试结论:由测试数据可知,整定励磁调节方式为恒U =400V 时,当发机电频率与发电机电压、励磁电流、控制角 α的关系数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行的稳定性,是保证电力系统安全、经济运行,及延长发电机寿命而进行的同步发电机励磁方式,励磁原理,励磁的自动控制进行了深入的解剖。
发电机在正常运行时,负载总是不断变化的,而不同容量的负载,以及功率因数的不同,对发电机励磁磁场的作用是不同的,对同步发电机的内部阻抗压降也是不一样的。
为了保持同步发电机的端电压稳定,需要根据负载的大小及负载的性质调节同步发电机的励磁电流,因此,研究同步发电机的励磁控制具有十分重要的应用价值。
本课题主要研究同步发电机励磁控制在不同状态下的情况,同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等。
主要目的是是同学们加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;了解自并励励磁方式和它励励磁方式的特点;了解微机励磁调节器的基本控制方式。
关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
1.2同步发电机励磁系统的分类与性能1.2.1 直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。
目前大多数中小型同步发电机仍采用这种励磁系统。
长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。
缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。
近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。
因此,直流励磁机励磁系统愈来愈不能满足要求。
目前,在100MW及以上发电机上很少采用。
1.2.2 半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。
半导体励磁系统分为静止式和旋转式两种。
1.2.2.1静止式半导体励磁系统静止式半导体励磁系统又分为自励式和它励式两种。
(1)自励式半导体励磁系统自励式半导体励磁系统中发电机的励磁电源直接由发电机端电压获得,经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电机端电压恒定的励磁系统,是无励磁机的发电机自励系统。
最简单的发电机自励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。
自并励系统中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。
下图为无励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元件SCR由自动励磁调节器控制。
系统起励时需要另加一个起励电源。
无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运行可靠性高;缩短了机组的长度,减少了基建投资及有利于主机的检修维护;由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电机机端获取励磁能量,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组的过电压也低一些。
其缺点是:发电机出口近端短路而故障切除时间较长时,缺乏足够的强行励磁能力对电力系统稳定的影响不如其它励磁方式有利。
由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发电机组的励磁系统中受到相当重视。
(2)它励式半导体励磁系统它励式半导体励磁系统包括一台交流主励磁机JL和一台交流副励磁机FL,三套整流装置。
两台交流励磁机都和同步发电机同轴,主励磁机为100HZ中频三相交流发电机,它的输出电压经过硅整流装置向同步发电机供给励磁电流。
副励磁机为500HZ中频三相交流发电机,它的输出一方面经可控硅整流后作为主励磁机的励磁电流,另一方面又经过硅整流装置供给它自己所需要的励磁电流。
自动调励的装置也是根据发电机的电压和电流来改变可控硅的控制角,以改变励磁机的励磁电流进行自动调压。
它励式半导体励磁系统的优点是:系统容量可以做得很大,励磁机是交流发电机没有换向问题而且不受电网运行状态的影响。
缺点是:接线复杂,有旋转的主励磁机和副励磁机,启动时还需要另外的直流电源向副励磁机供给励磁电流。
这种励磁系统多用于10万千瓦左右的大容量同步发电机。
1.2.2.2旋转式半导体励磁系统在它励和自励半导体励磁系统中,发电机的励磁电流全部由可控硅(或二极管)供给,而可控硅(或二极管)是静止的故称为静止励磁。
在静止励磁系统中要经过滑环才能向旋转的发电机转子提供励磁电流。
滑环是一种转动接触元件。
随着发电机容量的快速增大,巨型机组的出现,转子电流大大增加,转子滑环中通过如此大的电流,滑环的数量就要增加很多。
为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小的电流。
为了提高励磁系统的可靠性取消滑环这一薄弱环节,使整个励磁系统都无转动接触的元件,就产生了无刷励磁系统,如图4所示。
副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框内。
为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只是电枢是旋转的。
其发出的三相交流电经过二极管整流后,直接送到发电机的转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁。
主励磁机的励磁绕组JLLQ是静止的,即主励磁机是一个磁极静止,电枢旋转的同步发电机。
静止的励磁机励磁绕组便于自动励磁调节器实现对励磁机输出电流的控制,以维持发电机端电压保持恒定。
无刷励磁系统的优点是:取消了滑环和碳刷等转动接触部分。
缺点是:在监视与维修上有其不方便之处。
由于与转子回路直接连接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅的运行状况,接线是否开脱,熔丝是否熔断等等都不便监视,因而在运行维护上不太方便。
1.3同步发电机励磁系统的发展史由于电力系统运行稳定性的破坏事故,会造成大面积停电,使国民经济遭受重大损失,给人民生活带来重大影响,因此,改善与提高电力系统运行的稳定性意义重大。
早在20世纪40年代,有电力系统专家就强调指出了同步发电机励磁的调节对提高电力系统稳定性的重要作用,随后这方面的研究工作一直受到重视。
研究主要集中在2个方面:一是励磁方式的改进,二是励磁控制方式的改进。
在励磁方式方面,世界各大电力系统广泛采用可控硅静止励磁方式,因为这种无旋转励磁机的可控硅自并励方式具有结构简单、可靠性高及造价低廉等优点;在励磁控制方式上,针对静止励磁方式的控制器研究也取得了很大的进展,到现在为止,已经经历了3个阶段,即单变量控制阶段、线性多变量控制阶段、非线性多变量控制阶段。
由于电力系统具有高度的非线性特性,当系统的运行点改变时,系统的动态特性会显著改变,此时,单一变量的控制方式和线性控制器就难以满足电力系统稳定的要求,只有非线性控制方式的控制器才能有效地提高电力系统稳定能力。
本文将综述半个多世纪以来专家学者在探索可控硅静止励磁控制方式中取得的成就第二章实验装置及其工作原理2.1实验操作台介绍实验操作台是由输电线路单元、危机线路保护单元、负荷调节和同期单元、仪表测量和短路故障模拟单元等组成。
其中负荷调节和同期单元是由“TGS-03B 型微机调速装置”、“WL-04B微机励磁调节器”、“HGWT-03B微机准同期控制器”等微机型的自动装置和其对应的那个装置组成。
而同步发电机励磁系统实验研究主要用了TGS-03B型微机调速装置和WL-04B微机励磁调节器。
2.1.1TGS-03B型微机调速装置介绍TGS-03B型微机调速装置面板包括:6位LED数码显示器,13个信号指示灯,7个操作按钮和一个多圈指针电位器等。
其详细介绍如下:信号指示灯13个装置运行指示灯1个电源指示灯1个方式选择指示灯1个并网信号指示灯1个监控电机速度指示灯1个增减速操作指示灯2个开机、停机指示灯各1个平衡指示灯2个操作按钮4个区,共7个按钮开机方式选择区有2个按钮,一个为模拟方式按钮,另一个为微机方式的自动、手动按钮。
显示切换有2个按钮可进行显示切换。
微机调节区有2个按钮,即为“增速”、“减速”操作。
停机开机有1个按钮模拟调节区1个数码显示器2.1.2WL-04B微机励磁调节器装置介绍WL-04B微机励磁调节器其励磁方式可选择:它励自并励两种。
微机励磁调节器的控制方式可选择恒UF、恒IL、恒 、恒Q等四种。
设有定子过电压保护和励磁电流反时限延时过励限制、最大励磁电流瞬间限制、欠励限制、伏赫限制等励磁限制功能。
设有按有功功率反馈的电力系统稳定器(PSS)。
励磁调节器控制参数可在线修改,在线固化,灵活方便,能做到最大限度地满足教学科研的灵活多变的需要。
具有实验录波功能,可以记录UF、IL、UL、P、Q、α等信号的时间响应曲线,供实验分析用。
微机励磁调节器面板包括:8位LED数码显示器,若干指示灯和按钮,强、弱电测试孔。
8位LED数码显示器用途1:用以显示同步发电机励磁控制系统状态量,包括:发电机机端电压、发电机输出有功功率和无功功率发电机励磁电压、励磁电流发电机频率励磁调节器输出控制角等用途2:用以查询、修改励磁调节器的控制参数,如:PID反馈系数指示灯励磁调节器面板公有32只指示灯,共分成三个类型。
第一类:“控制电源”指示灯4只第二类:励磁调节器“输出”触发脉冲指示灯6只第三类:励磁调节器工作状态指示灯22只微机正常指示灯定子过压指示灯同步异常指示灯进相运行指示灯自励指示灯助磁指示灯功柜故障指示灯母线无压指示灯仪变断线指示灯调变断线指示灯灭磁指示灯减磁指示灯增磁指示灯恒IL指示灯恒UF指示灯恒α指示灯它励指示灯参数设置指示灯欠励限制指示灯过励限制指示灯伏赫限制指示灯PSS指示灯测试孔励磁调节器面板共有14个测试孔,分为两个测试区。