初高中数学衔接教材参考答案

合集下载

初升高暑假数学衔接教材含答案

初升高暑假数学衔接教材含答案

初升高暑假数学衔接教材第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显着的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

当然,能力的发展是渐进的,不是一朝一夕的。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3 知识内容的整体数量剧增。

高中数学在知识内容的“量”上急剧增加了。

初高中衔接数学及参考答案

初高中衔接数学及参考答案

数 学代数部分第一讲 乘法公式一、知识要点1.平方差公式: 22()()a b a b a b +-=-﹒ 2.完全平方公式:222()2a b a ab b ±=±+;2222()222a b c a b c ab bc ac ++=+++++﹒3.立方和公式: 2233()()a b a ab b a b +-+=+﹒ 4.立方差公式: 2233()()a b a ab b a b -++=-﹒ 5.完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-﹒二、例题选讲例1、填空(1)=++-)9)(3)(3(2x x x _______________﹒ 解:原式=81)9)(9(422-=+-x x x ﹒ (2)=+--22)2()12(x x ______________﹒解:原式=383)44(144222--=++-+-x x x x x x ﹒ 例2、已知31=+xx ,求下列各式的值: (1)221x x +;(2)331xx +﹒ 解:(1)21112)1(22222++=+⋅⋅+=+xx x x x x x x Θ,7292)1(1222=-=-+=+∴x x xx ﹒ (2) 18)17(3)11)(1(12233=-⨯=+-+=+x x x x x x ﹒例3、已知2x y +=,求代数式336x y xy ++的值. 解:33226()()6x y xy x y x xy y xy ++=+-++2222(3)2()8x xy y xy x y =-++=+=﹒例4、 已知8,9,x y y z -=-=试求代数式222x y z xy yz xz ++---的值. 解:8,9,17x y y z x z -=-=∴-=Q ,2222221(222222)2x y z xy yz xz x y z xy yz xz ∴++---=++---22222211[()()()](8917)21722x y y z x z =-+-+-=++= 三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.计算=+-++-++-))(())(())((a c a c c b c b b a b a _________. 2.计算22()2()()()x y x y x y x y +-+-+-= . 3.2200620082004-⨯= . 4.已知2510x x -+=,则221x x += . 5.计算16842321)13)(13)(13)(13(⋅-++++= .6.计算222222221234562009201012345620092010----++++++++L +201220112012201122+-﹒7.已知2a c b +=+,则222222a b c ab bc ac ++--+= .8.已知2x y -=,求代数式336x y xy --的值.9.已知1,3x y xy -==,试求下列各式的值: (1)22;x y +(2)33.x y -第二讲 因式分解一、知识要点1.因式分解:把一个整式化为几个整式的乘积形式. 2.因式分解的基本方法:(1)提公因式法 )(c b a m mc mb ma ++=++ (2)运用公式法 常见公式有:①22()()a b a b a b -=+-, ②2222()a ab b a b ±+=±, ③3322()()a b a b a ab b ±=±+m , ④3223333()a a b ab b a b ±+±=±,⑤2222222()a b c ab ac bc a b c +++++=++, (3)十字相乘法:2()()()x a b x ab x a x b +++=++ (4)配方法、添项拆项法,分组分解法 二、例题选讲例1、 因式分解:(1)244x x -+ ;(2)38x -;(3)33)2()2(a y a x ---﹒ 解:(1)244x x -+2(2)x =-(2)38x -3322(2)(24)x x x x =-=-++(3)33)2()2(a y a x ---=)()2()2()2(333y x a a y a x +-=-+-例2 、因式分解(1)256x x -+;(2)2215x x --;(3)26136x x -+﹒ 解:(1)256x x -+(2)(3)x x =--;(2)2215x x --(25)(3)x x =+-; (3)26136x x -+(23)(32)x x =--﹒例3、 因式分解225636x xy y x y -+-+ 解:225636x xy y x y -+-+(2)(3)3(2)x y x y x y =----(2)(33)x y x y =---例4、因式分解523325a ab a b b --+ 解:523325a ab a b b --+233233()()a a b b a b =---3322()()a b a b =-- 222()()()a b a b a ab b =-+++三、自我小结:__________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ __________________________________________________________________________ 四、巩固练习1.将下列各式分解因式: (1)32x x y -__________________________________________________________________ (2)44-x__________________________________________________________________ (3)33125x y -__________________________________________________________________ (4)1322+-x x__________________________________________________________________ (5)2(1)x a x a -++__________________________________________________________________(6)32331a a a +++__________________________________________________________________ (7)222221a b ab a b ++--+__________________________________________________________________ (8)22122512x xy y ++__________________________________________________________________ (9)2226x xy y x y ++---__________________________________________________________________ 2.已知25a b -=,346a b +=,求多项式22328a ab b --的值.第三讲 因式定理一、知识要点定理1(因式定理):若a 是一元多项式)(0111是非负整数n a x a x a x a n n n n ++⋅⋅⋅++--的根,即00111=++⋅⋅⋅++--a a a a a a a n n n n ,则多项式0111a x a x a x a n n n n ++⋅⋅⋅++--有一个因式a x -.根据因式定理,找出一元多项式的一次因式的关键是求出该多项式的一个根,对于任意的多项式,求出它的根是没有一般方法的,然而对于整系数多项式常用下面的定理来判定它是否有有理根。

2024年暑期初升高数学衔接教材12讲-专项训练【含答案】

2024年暑期初升高数学衔接教材12讲-专项训练【含答案】

初高中数学衔接教材编者的话高中数学难学,难就难在初中教材与高中教材之间剃度过大,因此我们要认真搞好初高中数学教学的衔接,使初高中的数学教学具有连续性和统一性。

现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的四心:重心、内心、外心、垂心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

高一数学相对于初中数学而言,逻辑推理强,抽象程度高,知识难度大。

2024年新高一数学初升高衔接《对数及其运算》含答案解析

2024年新高一数学初升高衔接《对数及其运算》含答案解析

第16讲 对数及其运算模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解对数的概念,掌握对数的基本性质;2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程;3.理解对数的运算性质,能用换底公式将一般对数转化成自然对数或常用对数;4.会运用运算性质进行一些简单的化简与证明.知识点 1 对数的概念与性质1、对数的概念:如果x a N =(0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2、常用对数与自然对数名称定义记法常用对数以10为底的对数叫做常用对数lg 自然对数以无理数 2.71828e =⋅⋅⋅为底的对数称为自然对数ln3、对数的性质(1)当0a >,且1a ≠时,x a N =⇔log a x N =;(2)负数和0没有对数,即0>N ;(3)特殊值:1的对数是0,即log 1a =0(0a >,且1a ≠);底数的对数是1,即log 1a a =(0a >,且1a ≠);(4)对数恒等式:log a N a N =;(5)log ba ab =.知识点 2 对数的运算性质及应用1、运算性质:0>a ,且1≠a ,0,0>>N M (1)N M MN a a a log log )(log +=;(2)N M NMa a alog log log -=;(3)M n M a na log log =2、换底公式(1)换底公式:abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).(2)可用换底公式证明以下结论:①ab b a log 1log =; ②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b n mb a ma n log log =; ⑤b b a alog log 1-=.知识点 3 对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式.2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式xyza b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y za b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解.考点一:对数的概念及辨析例1.(23-24高一上·全国·专题练习)(多选)下列选项中错误的是( )A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做自然对数D .以e 为底的对数叫做常用对数【变式1-1】(23-24高一上·贵州贵阳·月考)使式子(31)log (2)x x --有意义的x 的取值范围是( )A .2x >B .123x <<C .123x <<且23x ≠D .2x <,【变式1-2】(23-24高一上·吉林延边·期中)在对数式()()3log 5a b a -=-中,实数a 的取值范围是( )A .()(),35,-∞⋃+∞B .()3,5C .()3,4D .()()3,44,5【变式1-3】(22-23高一上·江苏宿迁·期中)在下列四个命题中,正确的是( )A .若M N =则log log a a M N =;B .若log log a a M N =,则M N =;C .22log log a a M N =,则M N =;D .若M N =,则22log log a a M N =.考点二:对数式与指数式互化例2.(23-24高一上·新疆乌鲁木齐·期末)将3log 0.81x =化成指数式可表示为( )A .30.81x =B .0.813x =C .0.813x=D .30.81x=【变式2-1】(23-24高一上·黑龙江哈尔滨·期中)将328=化为对数式正确的是( )A .2log 38=B .2log 83=C .8log 23=D .3log 28=【变式2-2】(23-24高一上·江苏连云港·期中)已知)4x =,则x =( )A .2-B .0C .2D .4【变式2-3】(23-24高一上·江西宁冈·期中)(多选)下列指数式与对数式的互化,正确的一组是( )A .0e 1=与ln1=0B .131273-=与2711log 33=-C .2log 42=与1242=D .5log 5=1与155=考点三:利用对数性质解对数方程例3.(23-24高一·江苏·假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-【变式3-1】23-24高一上·山东烟台·月考)方程()3log 941xx -=+的实数解为.【变式3-2】(23-24高一上·广东深圳·期中)已知a ,b 是方程22(ln )3ln 10x x -+=的两个实数根,则log log a b b a +=.【变式3-3】(23-24高一上·全国·练习)已知a ,b 是方程3273log log 433x x +=-的两个根,试给出关于a ,b 的一个结论.考点四:利用对数运算性质化简例4.(23-24高一下·云南昆明·期中)下列等式正确的是( )A .22(lg5)2lg2(lg2)1+-=B .335log 5log 2log 93⋅⋅=C.ln 2eπ+=D122.535[(0.064)]1-=【变式4-1】(23-24高一下·浙江·期中)化简()2151515155log 91log 3log 5log log 155⎛⎫+-⋅= ⎪⎝⎭.【变式4-2】(23-24高一上·贵州毕节·期末)计算:(1)2+00.5281(log 8log 2)(3)16⋅-;(2)ln3427log 9log 8lg 4lg 25e+⋅++.【变式4-3】(24-25高一上·全国·课后作业)计算:(1)420.5251log log 3log 95+-;(2)()2323223log 2log 3log 2log 3log 3log 2+--.考点五:用已知对数表示其他对数例5.(23-24高一下·江苏盐城·期末)若lg2a =,lg3b =,则用a ,b 表示lg12=( )A .2a bB .2abC .2+a bD .2a b+【变式5-1】(23-24高一上·江苏淮安·期中)已知25a=,则lg 2=( )A .1aa +B .1a a -C .11a +D .1a a -【变式5-2】(23-24高一上·江苏宿迁·期末)已知2log 3a =,27b =,用a ,b 表示42log 56为( )A .3b a b++B .3b a b+C .31b a b +++D .31b a b ++【变式5-3】(23-24高一上·甘肃武威·月考)已知lg2,lg3a b ==,则30log 18=( )A .21a bb +-B .21a b b ++C .21a b b --D .21a b b -+考点六:利用换底公式证明等式例6.(23-24高一上·山东淄博·期末)设a ,b ,c 都是正数,且346a b c ==,那么下列关系正确的是( )A .2a b c+=B .2ac bc ab+=C .1112a b c+=D .112a b c+=【变式6-1】(23-24高一上·全国·随堂练习)求证:28log 643log 64=.【变式6-2】(23-24高一上·全国·随堂练习)设0a >,0b >,0α≠,且1a ≠,1b ≠,利用对数的换底公式证明:(1)1log log a b b aαα=;(2)log log a a b b αββα=.【变式6-3】(23-24高一上·河北石家庄·月考)设000a b a >>≠,,,且11a b ≠≠,,利用对数的换底公式证明:(1)log log a a b b αββα=;(2)1log log a b b aαα=;(3)计算:若2log 32x =,求33x x -+的值.一、单选题1.(23-24高一上·全国·专题练习)在()log 5a b a =-中,实数a 的取值范围是( )A .5a >或a<0B .01a <<或15a <<C .01a <<D .15a <<2.(23-24高一下·湖南株洲·月考)若lg a (0a >)与lgb (0b >)互为相反数,则( )A .1a b +=B .0a b -=C .1ab =D .1ab=3.(23-24高一上·全国·课后作业)将31128⎛⎫= ⎪⎝⎭化为对数式正确的是( )A .121log 38=B .121log 38=C .181log 32=D .311log 28=4.(23-24高一下·陕西西安·月考)1lg 22+=( )A .12B .1C .lg 5D.5.(23-24高一上·北京·月考)若1ab >,则下列等式中正确是的是( )A .()lg lg lg ab a b=+B .lg lg lg a a bb ⎛⎫=- ⎪⎝⎭C .()21lg()lg 2a b a b +=+D .()1lg log 10ab ab =6.(23-24高一上·天津·期末)化简2345log 3log 4log 5log 8⨯⨯⨯的值为( )A .1B .3C .4D .8二、多选题7.(23-24高一上·贵州安顺·期末)下列运算正确的有( )A .lg 2lg 3lg 5+=B .33log 10010log 10=C .4log 545=D .34log 4log 31⋅=8.(23-24高一上·吉林延边·期中)下列命题中正确的是( )A .已知25a=,8log 3b =,则34a b -=259B .222(lg 2)3lg 2lg 5(lg 5)lg 2++-的值为1C .若3log 41x =,则44x x -+的值为103D .若23m n k ==且112m n+=,则k =6三、填空题9.(23-24高一下·上海嘉定·月考)已知2log 3a =,25b =则12log 45= .(用含,a b的式子表示)10.(23-24高一下·云南昆明·期中)若4312,log 12a b ==,则11a b+=.11.(23-24高一上·辽宁沈阳·期末)设m ,n 是方程()23lg lg 10x x -+=的两个实根,则mn =.四、解答题12.(22-23高一上·新疆喀什·期末)求值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭;(2)ln 2145log 2lg 4lg e 2+++.(3)()()48392log 3log 3log 2log 2++13.(23-24高一上·安徽蚌埠·期末)(1)若3515a b ==,求55a b+的值;(2)求值:()()22327lg 5lg 2lg 503π++⨯--.第16讲 对数及其运算模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解对数的概念,掌握对数的基本性质;2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程;3.理解对数的运算性质,能用换底公式将一般对数转化成自然对数或常用对数;4.会运用运算性质进行一些简单的化简与证明.知识点 1 对数的概念与性质1、对数的概念:如果x a N =(0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2、常用对数与自然对数名称定义记法常用对数以10为底的对数叫做常用对数lg自然对数以无理数 2.71828e =⋅⋅⋅为底的对数称为自然对数ln3、对数的性质(1)当0a >,且1a ≠时,x a N =⇔log a x N =;(2)负数和0没有对数,即0>N ;(3)特殊值:1的对数是0,即log 1a =0(0a >,且1a ≠);底数的对数是1,即log 1a a =(0a >,且1a ≠);(4)对数恒等式:log a N a N =;(5)log ba ab =.知识点 2 对数的运算性质及应用1、运算性质:0>a ,且1≠a ,0,0>>N M (1)N M MN a a a log log )(log +=;(2)N M NMa a alog log log -=;(3)M n M a na log log =2、换底公式(1)换底公式:abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).(2)可用换底公式证明以下结论:①ab b a log 1log =; ②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b n mb a ma n log log =; ⑤b b a alog log 1-=.知识点 3 对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式.2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式xyza b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y za b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解.考点一:对数的概念及辨析例1.(23-24高一上·全国·专题练习)(多选)下列选项中错误的是( )A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做自然对数D .以e 为底的对数叫做常用对数【答案】BCD【解析】对于A :由对数的定义可知:零和负数没有对数.故A 正确;对于B :只有符合0a >,且10a N ≠>,,才有log xa a N x N =⇔=,故B 错误;对于C :以10为底的对数叫做常用对数,故C 错误;对于D :以e 为底的对数叫做自然对数,故D 错误.故选:BCD.【变式1-1】(23-24高一上·贵州贵阳·月考)使式子(31)log (2)x x --有意义的x 的取值范围是( )A .2x >B .123x <<C .123x <<且23x ≠D .2x <,【答案】C【解析】由式子(31)log (2)x x --有意义,则满足31031120x x x ->⎧⎪-≠⎨⎪->⎩,解得123x <<且23x ≠.故选:C.【变式1-2】(23-24高一上·吉林延边·期中)在对数式()()3log 5a b a -=-中,实数a 的取值范围是( )A .()(),35,-∞⋃+∞B .()3,5C .()3,4D .()()3,44,5 【答案】D【解析】要使对数式()()3log 5a b a -=-有意义,需满足303150a a a ->⎧⎪-≠⎨⎪->⎩,解得34a <<或45a <<,所以实数a 的取值范围是()()3,44,5 .故选:D.【变式1-3】(22-23高一上·江苏宿迁·期中)在下列四个命题中,正确的是( )A .若M N =则log log a a M N =;B .若log log a a M N =,则M N =;C .22log log a a M N =,则M N =;D .若M N =,则22log log a a M N =.【答案】B【解析】对A ,若0M N =≤,则log ,log a a M N 均无意义,故A 错;对B ,若log log a a M N =,说明0M N =>,则B 项正确;对C ,若22log log a a M N =,则22M N =,不一定能推出M N =,故C 错;对D ,若0M N ==,则22log ,log a a M N 无意义,故D 错.故选:B考点二:对数式与指数式互化例2.(23-24高一上·新疆乌鲁木齐·期末)将3log 0.81x =化成指数式可表示为( )A .30.81x =B .0.813x =C .0.813x=D .30.81x=【答案】A【解析】把对数式3log 0.81x =化成指数式,为30.81x =.故选:A .【变式2-1】(23-24高一上·黑龙江哈尔滨·期中)将328=化为对数式正确的是( )A .2log 38=B .2log 83=C .8log 23=D .3log 28=【答案】B【解析】328=化为对数式为2log 83=,故选:B .【变式2-2】(23-24高一上·江苏连云港·期中)已知)4x =,则x =( )A .2-B .0C .2D .4【答案】C【解析】由)4x =得42x =,即22x x =,又0x >且1x ≠,所以2x =,故选:C .【变式2-3】(23-24高一上·江西宁冈·期中)(多选)下列指数式与对数式的互化,正确的一组是( )A .0e 1=与ln1=0B .131273-=与2711log 33=-C .2log 42=与1242=D .5log 5=1与155=【答案】ABD【解析】根据指数式与对数式的互化公式log Na ab b N =⇔=(0a >且1,0)a N ≠>可知,ABD 正确;对于C ,22log 4242=⇔=,故C 错误.故选:ABD考点三:利用对数性质解对数方程例3.(23-24高一·江苏·假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-【答案】B【解析】由()()2lg 1lg 22x x -=+,得2212210220x x x x ⎧-=+⎪->⎨⎪+>⎩,即2223010220x x x x ⎧--=⎪->⎨⎪+>⎩,解得3x =,所以方程()()2lg 1lg 22x x -=+的根为3.故选:B【变式3-1】23-24高一上·山东烟台·月考)方程()3log 941xx -=+的实数解为.【答案】3log 4【解析】由()3log 941x x -=+,得()133log 94log 3x x +-=,所以1943x x +-=,即()23433x x -=⋅,即()()34310x x-+=,所以34x =或31x =-(舍去),所以3log 4x =.故答案为:3log 4.【变式3-2】(23-24高一上·广东深圳·期中)已知a ,b 是方程22(ln )3ln 10x x -+=的两个实数根,则log log a b b a += .【答案】52/2.5【解析】方法一:因为a ,b 是方程()22ln 3ln 10x x -+=的两个实数根,由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=,则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a b a b b a b a a b a b a b a b ++-⋅++=+===-=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t -+=的根为1t =或12t =,不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +=+=+=.故答案为:52.【变式3-3】(23-24高一上·全国·练习)已知a ,b 是方程3273log log 433x x +=-的两个根,试给出关于a ,b 的一个结论 .【答案】1081a b +=(答案不唯一)【解析】根据换底公式有33333log log lo 7g l 343og 32x x +=-,即33114133log log x x ++=-+,令3g 1lo x t +=,则1433t t +=-,解得1t =-或3t =-.所以31log 1x +=-或31log 3x +=-,解得19x =或181x =.故答案为:1081a b +=(答案不唯一)考点四:利用对数运算性质化简例4.(23-24高一下·云南昆明·期中)下列等式正确的是( )A .22(lg5)2lg2(lg2)1+-=B .335log 5log 2log 93⋅⋅=C.ln 2e π+=D122.535[(0.064)]1-=【答案】A【解析】对于A 中,由2222(lg5)2lg2(lg2)(1lg2)2lg2(lg2)1+-=-+-=,所以A 正确;对于B 中,由335lg5lg22lg3log 5log 2log 93lg3lg3lg5⋅⋅=⋅⋅≠,所以B 错误;对于C中,由ln 27e log 825ππ=++-≠,所以C 错误;对于D 中,122.513551515[(0.064)](0.4)122222--=+⨯=+⨯≠,所以D错误.故选:A【变式4-1】(23-24高一下·浙江·期中)化简()2151515155log 91log 3log 5log log 155⎛⎫+-⋅= ⎪⎝⎭.【答案】1【解析】原式()()()()22221515151515151515log 3log 9log 5log 5log 32log 3log 5log 5=+⋅+=+⋅+()21515log 3log 5=+()215log 151==.故答案为:1.【变式4-2】(23-24高一上·贵州毕节·期末)计算:(1)2+00.5281(log 8log 2)(3)16⋅-;(2)ln3427log 9log 8lg 4lg 25e+⋅++.【答案】(1)0;(2)6【解析】(1)原式=1122234937(1()1021644+-=+-=(2)原式=3+log 23⋅log 32+lg100=3+1+2=6.【变式4-3】(24-25高一上·全国·课后作业)计算:(1)420.5251log log 3log 95+-;(2)()2323223log 2log 3log 2log 3log 3log 2+--.【答案】(1)0;(2)2【解析】(1)420.5251log log 3log 95+-22222251log log 95log 3log 4log 0.5=+-2225log log 3log 53=+-225log 35log 103⎛⎫=⨯÷== ⎪⎝⎭;(2)()2323223log 2log 3log 2log 3log 3log 2+--2ln 2ln 3ln 2ln 2ln 3ln 3ln 3ln 2ln 3ln 3ln 2ln 2⎛⎫=+-⋅-⋅ ⎪⎝⎭2222ln 2ln 3ln 2ln 322ln 3ln 2ln 3ln 2⎛⎫⎛⎫⎛⎫⎛⎫=++--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.考点五:用已知对数表示其他对数例5.(23-24高一下·江苏盐城·期末)若lg2a =,lg3b =,则用a ,b 表示lg12=( )A .2a bB .2abC .2+a bD .2a b+【答案】D【解析】由对数运算性质可得()2lg12lg 34lg3lg4lg3lg2lg32lg22a b =⨯=+=+=+=+,故选:D.【变式5-1】(23-24高一上·江苏淮安·期中)已知25a=,则lg 2=( )A .1aa +B .1a a -C .11a +D .1a a -【答案】C 【解析】由25a=得,2lg 51lg 2log 5lg 2lg 2a -===,则1lg 21a =+,故选:C .【变式5-2】(23-24高一上·江苏宿迁·期末)已知2log 3a =,27b =,用a ,b 表示42log 56为( )A .3b a b++B .3b a b+C .31b a b +++D .31b a b ++【答案】C【解析】因为27b =,所以2log 7=b ,2222242222222log 56log 7log 8log 73log 23log 56log log 7742log log log l g 62o ++==+=++31+=++b b a .故选: C.【变式5-3】(23-24高一上·甘肃武威·月考)已知lg2,lg3a b ==,则30log 18=( )A .21a bb +-B .21a b b ++C .21a b b --D .21a b b -+【答案】B 【解析】30lg18lg2lg92log 18lg30lg311a bb ++===++,故选:B.考点六:利用换底公式证明等式例6.(23-24高一上·山东淄博·期末)设a ,b ,c 都是正数,且346a b c ==,那么下列关系正确的是( )A .2a b c +=B .2ac bc ab+=C .1112a b c+=D .112a b c+=【答案】C【解析】由346a b c k ===,得3log a k =,4log b k =,6log c k =,1log 3k a=,1log 4k b =,1log 6k c =,则11log 4log 222k k b ==,根据log 3log 2log 6k k k +=可知,1112a b c+=.故选:C 【变式6-1】(23-24高一上·全国·随堂练习)求证:28log 643log 64=.【答案】证明见解析【解析】左边622log 26log 26===,右边362263log 23log 263==⨯⨯=,所以左边=右边,得证.【变式6-2】(23-24高一上·全国·随堂练习)设0a >,0b >,0α≠,且1a ≠,1b ≠,利用对数的换底公式证明:(1)1log log a b b aαα=;(2)log log a a b b αββα=.【答案】(1)证明见解析;(2)证明见解析【解析】(1)log 1log log log b a b b b b a aααα==,所以等式成立;(2)log log log log log log a a a a a a b b b b a a αββαββαα===,所以等式成立.【变式6-3】(23-24高一上·河北石家庄·月考)设000a b a >>≠,,,且11a b ≠≠,,利用对数的换底公式证明:(1)log log a a b b αββα=;(2)1log log a b b aαα=;(3)计算:若2log 32x =,求33x x -+的值.【答案】(1)证明见解析;(2)证明见解析;(3)174【解析】(1)因为log log log log log a a a a a a b b b b a a αββββα===,所以命题log log a ab b αββα=得证.(2)因为log 1log log log b a a b b b b a aαα==,所以命题1log log ab b a αα=得证.(3)因为2log 32x =,所以22322log 22log 4log 3log 3x ===,故1333log 4log 4log 4117333343444x x---+=+=+=+=,即33x x -+的值为174.一、单选题1.(23-24高一上·全国·专题练习)在()log 5a b a =-中,实数a 的取值范围是( )A .5a >或a<0B .01a <<或15a <<C .01a <<D .15a <<【答案】B【解析】由对数的定义可知5001a a a ->⎧⎪>⎨⎪≠⎩,解得05a <<,且1a ≠,故选:B .2.(23-24高一下·湖南株洲·月考)若lg a (0a >)与lg b (0b >)互为相反数,则( )A .1a b +=B .0a b -=C .1ab =D .1a b=【答案】C【解析】因为lg a (0a >)与lg b (0b >)互为相反数,所以lg lg lg 0a b ab +==,所以1ab =.故选:C.3.(23-24高一上·全国·课后作业)将31128⎛⎫= ⎪⎝⎭化为对数式正确的是( )A .121log 38=B .121log 38=C .181log 32=D .311log 28=【答案】B【解析】31128⎛⎫= ⎪⎝⎭化为对数式:121log 38=,故选:B 4.(23-24高一下·陕西西安·月考)1lg 22+=( )A .12B .1C .lg 5D.【答案】A【解析】11111lg 2lg 2lg 5lg(25)22222+=+=⨯=.故选:A5.(23-24高一上·北京·月考)若1ab >,则下列等式中正确是的是( )A .()lg lg lg ab a b=+B .lg lg lg a a bb ⎛⎫=- ⎪⎝⎭C .()21lg()lg 2a b a b +=+D .()1lg log 10ab ab =【答案】D【解析】当0,0a b <<时,ABC 均不成立,由换底公式知D 正确.故选:D .6.(23-24高一上·天津·期末)化简2345log 3log 4log 5log 8⨯⨯⨯的值为( )A .1B .3C .4D .8【答案】B【解析】由题意可得:2345ln 3ln 4ln 5ln 8ln 83ln 2log 3log 4log 5log 83ln 2ln 3ln 4ln 5ln 2ln 2⨯⨯⨯=⨯⨯⨯===.故选:B.二、多选题7.(23-24高一上·贵州安顺·期末)下列运算正确的有( )A .lg 2lg 3lg 5+=B .33log 10010log 10=C .4log 545=D .34log 4log 31⋅=【答案】CD【解析】对A ,lg 2lg 3lg 6+=,故A 错误;对B ,33log 1002log 10=,故B 错误;对C ,4log 545=正确;对D ,34log 4log 31⋅=正确.故选:CD8.(23-24高一上·吉林延边·期中)下列命题中正确的是( )A .已知25a=,8log 3b =,则34a b -=259B .222(lg 2)3lg 2lg 5(lg 5)lg 2++-的值为1C .若3log 41x =,则44x x -+的值为103D .若23m n k ==且112m n+=,则k =6【答案】ABC 【解析】因为25a=,则2log 5a =,且821log 3log 33b ==,则22253log 5log 3log 3a b -=-=则()22252log 253log 9332542229a b a b--====,故A 正确;()()222(lg 2)3lg 2lg 5(lg 5)lg 22lg 2lg 5lg 2lg 5lg 22lg 2lg 5lg 2++-=++-=+-lg 2lg 51=+=,故B 正确;由3log 41x =可得431log 3log 4x ==,则44log 3log 31104444333x x --+=+=+=,故C 正确;因为23m n k ==,则23log ,log m k n k ==,则11log 2,log 3k k m n==,所以11log 2log 3log 62k k k m n+=+==,所以k =D 错误;故选:ABC 三、填空题9.(23-24高一下·上海嘉定·月考)已知2log 3a =,25b =则12log 45=.(用含,a b的式子表示)【答案】22a b a ++【解析】因为25b =,所以2log 5b =,又2log 3a =,所以()()2222122222log 59log 45log 5log 9log 45log 12log 34log 3log 4⨯+===⨯+222222log 52log 3log 32log 2a ba ++=++=.故答案为:22a b a ++10.(23-24高一下·云南昆明·期中)若4312,log 12ab ==,则11a b +=.【答案】1【解析】因为312a =,所以3log 12a =,所以121212341111log 3log 4log 121log 12log 12a b +=+=+==.故答案为:1.11.(23-24高一上·辽宁沈阳·期末)设m ,n 是方程()23lg lg 10x x -+=的两个实根,则mn =.【答案】1000【解析】()23lg lg 10x x -+=,即()2lg 3lg 10x x -+=,设lg t x =,由题意lg lg m n ,是方程2310t t -+=的两个根,由根与系数关系得lg lg 3m n +=,即lg 3mn =,所以1000mn =.故答案为:1000.四、解答题12.(22-23高一上·新疆喀什·期末)求值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭;(2)ln 2145log 2lg 4lg e 2+++.(3)()()48392log 3log 3log 2log 2++【答案】(1)53-;(2)52;(3)2【解析】(1)()()()111113443344410.027160.32147--⎛⎫⎡⎤-+=-+- ⎪⎣⎦⎝⎭10521433=-+-=-(2)2ln 221245log 2lg 4lg e log 2lg 2lg 5lg 222-+++=++-+13352lg 2lg 5lg 22lg 2lg 512222=-++-+=++=+=(3)()()()()232483932232log 3log 3log 2log 22log 3log 3log 2log 2++=++223311log 3log 3log 2log 232⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭2343log 3log 2232⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭13.(23-24高一上·安徽蚌埠·期末)(1)若3515a b ==,求55a b+的值;(2)求值:()()22327lg 5lg 2lg 503π++⨯--.【答案】(1)5;(2)13π-【解析】(1)因为3515a b ==,所以35log 15,log 15==a b ,3551,1lo 1g 15l g 1o 1a b ==,则()()15151535551155log 3log 55log 355log 15log 15a b ⎛⎫+=+=+=⨯= ⎪⎝⎭;(2)()()()()()22223331027lg 5lg 2lg 503π3lg 5lglg 105π35++⨯--=++⨯⨯-+()()()()()22223lg 51lg 51lg 5π312πlg 51lg 513π=++-⨯+-+=-++-=-.。

2024年新高一数学初升高衔接《指数及其运算》含答案解析

2024年新高一数学初升高衔接《指数及其运算》含答案解析

第14讲指数及其运算模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解n 次方根及根式的概念,掌握根式的性质;能利用根式的性质对根式进行运算;2.理解分数指数幂的含义,掌握根式与分数指数幂的互化;3.了解指数幂由有理数扩充到无理数的过程;理解指数幂的运算性质;能进行指数幂(实数幂)的运算.知识点1根式1、n 次方根的定义与性质(1)定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且*n ∈N .(2)性质:①当n 是奇数时,0,00,0>>⎧⎨<<⎩a x a x ,x②当n 是偶数,0>a 时,x 的有两个值,且互为相反数,记为;0<a 时,x 不存在;③负数没有偶次方根(负数的偶次方根无意义);④0的任何次方根都是00(,1)n N n +=∈>.2、根式的定义与性质(1n 叫做根指数,a 叫做被开方数.(2)性质:(1n >,且n *∈N)n=a;,,,.⎧⎪=⎨⎪⎩为奇数为偶数na n a n 知识点2指数幂1、分数指数幂(1)正分数指数幂:规定:mn a=()0,,,1a m n n *>∈>N (2)负分数指数幂:规定:1mn m naa-==()0,,,1a m n n *>∈>N (3)性质:0的正分数指数幂等于0,0的负分数指数幂没有意义.【要点辨析】分数指数幂的注意事项:①分数指数幂是指数概念的又一推广,分数指数幂m na 不可理解为mn个a 相乘,它是根式的一种新的写法.在这样的规定下,根式与分数指数幂是表示相同意义的量,只是形式不同而已.化成分数指数幂的形式时,不要轻易对mn进行约分.③在保证相应的根式有意义的前提下,负数也存在分数指数幂,如()235-=有意义,但()345-=就没有意义.2、实数指数幂的运算性质①(0,,)+=>∈r s r s a a a a r s R .②()=sra rs a (0,,)a r s >∈R .③()=r ab r r a b (0,0,)a b r >>∈R .3、无理数指数幂一般地,无理数指数幂a α(0a >,α为无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.【注意】(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围.知识点3指数幂运算解题方法与技巧1、指数幂的运算中常用的乘法公式(1)完全平方公式:222()2a b a ab b -=-+;222()2a b a ab b +=++;(2)平方差公式:22()()a b a b a b -=-+;(3)立方差公式:3322()()a b a b a ab b -=-++;(4)立方和公式:3322()()a b a b a ab b +=+-+;(5)完全立方公式:33223()33a b a a b ab b -=-+-;33223()33a b a a b ab b +=+++.2、条件求值问题的解题思路(1)将条件中的式子用待求式表示出来,进而代入化简得出结论;(2)当直接代入不易时,可以从总体上把握已知式和所求式的特点,从而巧妙求解,一般先利用平方差、立方和(差)以及完全平方公式对其进行化简,再用整体代入法来求值;(3)适当应用换元法,能使公式的使用更加清晰,过程更简洁.考点一:根式的概念及辨析例1.(23-24高一上·全国·专题练习)若a 是实数,则下列式子中可能没有意义的是()AB C D 【变式1-1】(23-24高一上·全国·课后作业)R a ∈,下列各式一定有意义的是()A .2a -B .14a C .23a D .0a【变式1-2】(2023高一·江苏·a 的取值范围是()A .0a ≥B .1a ≥C .2a ≥D .Ra ∈【变式1-3】(223-24高一下·贵州遵义·月考)若34(12)x --有意义,则实数x 的取值范围为考点二:利用根式的性质化简求值例2.(23-24高一上·北京·期中)下列各式正确的是()A3=-Bx=C2=D .01a =【变式2-1】(23-24高一上·贵州贵阳·月考)若0ab <,则化简)A .-1B .0C .1D .2【变式2-2】(23-24高一上·全国·;【变式2-3】(23-24高一上·甘肃兰州·期中)(多选)若412x<-,3的结果可能为()A .210x -B .46x -C .24x -+D .410x --考点三:根式与分数指数幂互化例3.(23-24高一上·湖南株洲·月考)下列关于nm a -(),m n *∈N 的形式的运算正确的是()A.538-=B.538-=C.538-=D .()328--=【变式3-1】(23-24高一上·浙江杭州·期中)(多选)下列各式正确的是()A .46a=B 5=-C.(36=D .23a -=【变式3-2】(23-24高一上·江西新余·期中)(多选)下列根式与分数指数幂的互化中正确的有()A .)130xx -=≠B()120aa =≥C.21320,0)x y x y ->>D .3142(0)x x ⎤=->【变式3-3】(23-24高一上·广东广州·期中)用分数指数幂表示并计算下列各式(式中字母均正数),写出化简步骤.(2)154m⋅考点四:利用指数幂运算性质化简例4.(23-24高一上·全国·专题练习)下列等式一定成立的是()A .1332a a a⋅=B .11220⋅=a a C .329()a a =D .111362a a a ÷=【变式4-1】(23-24高一上·广东江门·期中)102x =,103y =,则10x y +=.【变式4-2】(23-24高一上·河南·期中)若a b =()2312222a ab ---⎡⎤=⎢⎥⎣⎦.【变式4-3】(23-24高一上·江西九江·期中)化简或计算下列各式.(1)121121332a b a b ---⎛⎫ ⎪;(2)()10.52332770.02721259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.考点五:解简单的指数方程例5.(23-24高一·全国·专题练习)方程11416x -=的解为()A .2B .﹣2C .﹣1D .1【变式5-1】(22-23高一上·河北沧州·期中)关于x 的方程112250x x +--+=的解的个数为()A .0B .1C .2D .4【变式5-2】(23-24高一上·北京顺义·期中)关于x 的方程422x x -=的解为.【变式5-3】(22-23高三·全国·对口高考)方程(2522xx x -+=的解为.考点六:整体换元法解决条件求值例6.(23-24高一下·辽宁抚顺·开学考试)已知12a a+=,则1122a a -+等于()A .2B .4C .2±D .4±【变式6-1】(23-24高一上·全国·专题练习)已知11223a a -+=,则33221122a a a a--++的值为.【变式6-2】(23-24高一上·全国·专题练习)已知11223x x-+=,计算:22111227x x x x x x---+-+++.【变式6-3】(23-24高一上·湖南娄底·期末)已知11223a a -+=,求下列各式的值:(1)1a a -+;(2)33222232a a a a --+-+-.一、单选题1.(23-24高一上·青海海南·期中)已知R a ∈,则下列各式一定有意义的是()A .2a -B .13a C .12a D .0a 2.(23-24高一上·陕西咸阳·期末)化简32的结果为()A .5BC .5-D.3.(23-24高一上·北京大兴·月考)已知0a >=()A .12a B .32a C .2a D .3a 4.(23-24高一上·安徽淮南·月考)下列根式与分数指数幂的互化错误的是()A()120a a =>B.)340xx -=>C.)21320,0x y x y -=>>D .()32140x x =>5.(23-24高一上·江苏泰州·期中)已知14x x -+=,则22x x -+等于()A .6B .12C .14D .166.(23-24高一上·四川德阳·月考)010.256371.586-⎛⎫⨯-++= ⎪⎝⎭()A .110B .109C .108D .100二、多选题7.(23-24高一上·四川成都·期中)以下运算结果等于2的是()AB .C .D 8.(23-24高一上·浙江·月考)已知0a >,0b >,则下列各式正确的是()A π3=-B1=C.mna-=D .121133332463b ab a b ---⎛⎫÷-=- ⎪⎝⎭三、填空题9.(22-23高一上·上海奉贤·期末)化简()222a b ⋅=(其中0a >,0b >).10.(23-24高一上·全国·单元测试)方程2129240x x +-⋅+=的解集是.11.(23-24高一上·重庆沙坪坝·期中)已知12102α-=,131032β=,则314210βα+=(填数值)四、解答题12.(23-24高一上·安徽马鞍山·期中)化简求值:(1)()120120.344⎛⎫+ ⎪⎝⎭(2)20.5231103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭;13.(23-24高一上·辽宁丹东·期中)已知正实数a 满足11221a a --=.(1)求1a a -+的值;(2)求33221122a a a a---+的值.第14讲指数及其运算模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解n 次方根及根式的概念,掌握根式的性质;能利用根式的性质对根式进行运算;2.理解分数指数幂的含义,掌握根式与分数指数幂的互化;3.了解指数幂由有理数扩充到无理数的过程;理解指数幂的运算性质;能进行指数幂(实数幂)的运算.知识点1根式1、n 次方根的定义与性质(1)定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且*n ∈N .(2)性质:①当n 是奇数时,0,00,0>>⎧⎨<<⎩a x a x ,x②当n 是偶数,0>a 时,x 的有两个值,且互为相反数,记为;0<a 时,x 不存在;③负数没有偶次方根(负数的偶次方根无意义);④0的任何次方根都是00(,1)n N n +=∈>.2、根式的定义与性质(1n 叫做根指数,a 叫做被开方数.(2)性质:(1n >,且n *∈N)n=a;,,,.⎧⎪=⎨⎪⎩为奇数为偶数na n a n 知识点2指数幂1、分数指数幂(1)正分数指数幂:规定:mn a=()0,,,1a m n n *>∈>N (2)负分数指数幂:规定:1mn m naa-==()0,,,1a m n n *>∈>N (3)性质:0的正分数指数幂等于0,0的负分数指数幂没有意义.【要点辨析】分数指数幂的注意事项:①分数指数幂是指数概念的又一推广,分数指数幂m na 不可理解为mn个a 相乘,它是根式的一种新的写法.在这样的规定下,根式与分数指数幂是表示相同意义的量,只是形式不同而已.化成分数指数幂的形式时,不要轻易对mn进行约分.③在保证相应的根式有意义的前提下,负数也存在分数指数幂,如()235-=有意义,但()345-=就没有意义.2、实数指数幂的运算性质①(0,,)+=>∈r s r s a a a a r s R .②()=sra rs a (0,,)a r s >∈R .③()=r ab r r a b (0,0,)a b r >>∈R .3、无理数指数幂一般地,无理数指数幂a α(0a >,α为无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.【注意】(1)对于无理数指数幂,我们只需要了解两点:①它是一个确定的实数;②它是有理数指数幂无限逼近的结果.(2)定义了无理数指数幂之后,幂的指数就由原来的有理数范围扩充到了实数范围.知识点3指数幂运算解题方法与技巧1、指数幂的运算中常用的乘法公式(1)完全平方公式:222()2a b a ab b -=-+;222()2a b a ab b +=++;(2)平方差公式:22()()a b a b a b -=-+;(3)立方差公式:3322()()a b a b a ab b -=-++;(4)立方和公式:3322()()a b a b a ab b +=+-+;(5)完全立方公式:33223()33a b a a b ab b -=-+-;33223()33a b a a b ab b +=+++.2、条件求值问题的解题思路(1)将条件中的式子用待求式表示出来,进而代入化简得出结论;(2)当直接代入不易时,可以从总体上把握已知式和所求式的特点,从而巧妙求解,一般先利用平方差、立方和(差)以及完全平方公式对其进行化简,再用整体代入法来求值;(3)适当应用换元法,能使公式的使用更加清晰,过程更简洁.考点一:根式的概念及辨析例1.(23-24高一上·全国·专题练习)若a 是实数,则下列式子中可能没有意义的是()AB C D 【答案】D【解析】A.R a ∈有意义;B.R a ∈有意义;C.R a ∈有意义;D.a<0无意义;故选:D【变式1-1】(23-24高一上·全国·课后作业)R a ∈,下列各式一定有意义的是()A .2a -B .14a C .23a D .0a 【答案】C【解析】对于A ,当0a =时,2a -无意义,A 不是;对于B ,当a<0时,14a 无意义,B 不是;对于C ,23a =C 是;对于D ,当0a =时,0a 无意义,D 不是.故选:C【变式1-2】(2023高一·江苏·a 的取值范围是()A .0a ≥B .1a ≥C .2a ≥D .Ra ∈【答案】B102R a a -≥⎧⎨-∈⎩,解得1a ≥,所以a 的取值范围是1a ≥.故选:B【变式1-3】(223-24高一下·贵州遵义·月考)若34(12)x --有意义,则实数x 的取值范围为【答案】1(,2-∞【解析】由34(12)x --120x ->,解得12x <,故答案为:1(,2-∞.考点二:利用根式的性质化简求值例2.(23-24高一上·北京·期中)下列各式正确的是()A3=-B x =C 2=D .01a =【答案】C【解析】A 3=,故A 错误;B x =,故B 错误;C2=,故C 正确;D :01a =,当0a ≠时成立,故D 错误;故选:C.【变式2-1】(23-24高一上·贵州贵阳·月考)若0ab <,则化简)A .-1B .0C .1D .2【答案】B【解析】+==a b a b ⎛=+ ⎝因为0ab <,所以,a b 异号,0a b a b +=,所以0a b a b a b a b a b++==,所以,0+=.故选:B.【变式2-2】(23-24高一上·全国·;【答案】6-=6(446-++=-.【变式2-3】(23-24高一上·甘肃兰州·期中)(多选)若412x<-,3的结果可能为()A .210x -B .46x -C .24x -+D .410x --【答案】AC 【解析】由题意知412x <-,即4102x-<-,即202x x +>-,故(2)(2)0,2x x x +->∴<-或2x >,3|2|3x =+-3523210,23523352324,2x x x x x x x x x x ----=->⎧=--+-=⎨-+++-=-+<-⎩,故选:AC考点三:根式与分数指数幂互化例3.(23-24高一上·湖南株洲·月考)下列关于nm a -(),m n *∈N 的形式的运算正确的是()A.538-=B.538-=C.538-=D .()328--=【答案】A【解析】由于5353818-==,A 正确,B ,C 错误;()328--=D 错误,故选:A【变式3-1】(23-24高一上·浙江杭州·期中)(多选)下列各式正确的是()A .46a=B 5=-C.(36=D .23a -=【答案】AC【解析】对于A:4263a a ==A正确;对于B 5=,故B 错误;对于C:(2636===,故C 正确;对于D:23231aa-==D 错误.故选:AC【变式3-2】(23-24高一上·江西新余·期中)(多选)下列根式与分数指数幂的互化中正确的有()A .)130xx -=≠B()120a a =≥C.21320,0)x y x y ->>D .3142(0)x x ⎤=->【答案】BC【解析】对选项A:)130xx -=≠,错误;对选项B()1313220a a a ⎛⎫==≥ ⎪⎝⎭,正确;对选项C22133212(0,0)y x y x y x-==>>,正确;对选项D :33214432(0)x x x ⎛⎫==> ⎪⎝⎭,错误;故选:BC【变式3-3】(23-24高一上·广东广州·期中)用分数指数幂表示并计算下列各式(式中字母均正数),写出化简步骤.(2)154m⋅【答案】(1)14b ;(2)1【解析】(1111224b b ⎛⎫=== ⎪⎝⎭.(2)154m⋅111115324023651641m m m mm m m-⋅⋅====⋅.考点四:利用指数幂运算性质化简例4.(23-24高一上·全国·专题练习)下列等式一定成立的是()A .1332a a a ⋅=B .11220⋅=a a C .329()a a =D .111362a a a ÷=【答案】D【解析】对于A :11311333262a a a a +⋅==,故A 错误;对于B :11212221+⋅==a a a a ,故B 错误;对于C :326()a a =,故C 错误;对于D :1111132362a a a a -÷==,故D 正确;故选:D【变式4-1】(23-24高一上·广东江门·期中)102x =,103y =,则10x y +=.【答案】6【解析】102x =Q ,103y =,101010236x y x y +∴=⋅=⨯=,故答案为:6.【变式4-2】(23-24高一上·河南·期中)若a b =()2312222a ab ---⎡⎤=⎢⎥⎣⎦.【答案】1【解析】由题意,0,0a b >>,所以()()231222232246a b ab a b a b -----⎡==⎤⎢⎥⎣⎦,又11322,2a b --===,所以原式6411223222221----⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪⎝⎭⎝⎭.故答案为:1.【变式4-3】(23-24高一上·江西九江·期中)化简或计算下列各式.(1)121121332a b a b ---⎛⎫ ⎪;(2)()10.52332770.02721259-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)1a;(2)0.09【解析】(1)原式2111111111532322132623615661ab a baba aa b⎛⎫--⎪⎝⎭-+--⋅====.(2)原式22333273550.0910001033⨯⎛⎫⎛⎫==+-= ⎪⎪⎝⎭⎝⎭.考点五:解简单的指数方程例5.(23-24高一·全国·专题练习)方程11416x -=的解为()A .2B .﹣2C .﹣1D .1【答案】C 【解析】∵1214416x --==,∴x ﹣1=﹣2,∴x =﹣1.故选:C .【变式5-1】(22-23高一上·河北沧州·期中)关于x 的方程112250x x +--+=的解的个数为()A .0B .1C .2D .4【答案】B【解析】解:原方程即222502x x ⨯-+=,化简可得()2225220x x ⨯+⨯-=,令2(0)x t t =>,可得22520t t +-=,该方程有且只有一个正根,由于2x t =单调递增,所以t 与x 一一对应,即原方程只有一个解.故选:B .【变式5-2】(23-24高一上·北京顺义·期中)关于x 的方程422x x -=的解为.【答案】1x =【解析】由422x x -=可得()22220x x --=,即()()21220x x+-=,因为20x >,可得22x =,故1x =.所以,方程关于x 的方程422x x -=的解为1x =.故答案为:1x =.【变式5-3】(22-23高三·全国·对口高考)方程(2522xx x -+=的解为.【答案】5x =或12x =【解析】由题意可得(2599222222xxx x x -+⎛⎫=== ⎪⎝⎭,所以25922x x x -+=,即221150x x -+=,解得5x =或12x =,故答案为:5x =或12x =考点六:整体换元法解决条件求值例6.(23-24高一下·辽宁抚顺·开学考试)已知12a a+=,则1122a a -+等于()A .2B .4C .2±D .4±【答案】A【解析】112221()2224a a a a-+=++=+=,所以11222a a -+=.故选:A.【变式6-1】(23-24高一上·全国·专题练习)已知11223a a -+=,则33221122a a a a--++的值为.【答案】6【解析】因为11223a a-+=,所以2112223a a -⎛⎫+= ⎪⎝⎭,即129a a -++=,所以17a a -+=,所以3333112222a aa a --⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭22111111222222a a a a a a ---⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-⋅+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()11122371181a a a a --⎛⎫=++=⨯- ⎝-=⎪⎭,所以332211221863a a a a--+==+.【变式6-2】(23-24高一上·全国·专题练习)已知11223x x -+=,计算:22111227x x x x x x---+-+++.【答案】4【解析】因为11223x x-+=,所以211229x x -⎛⎫+= ⎪⎝⎭,所以129x x -++=,所以17x x -+=,所以()2127x x -+=,即22249x x -++=,所以2247x x -+=,所以22111227477473x x x x x x---+--==++++.【变式6-3】(23-24高一上·湖南娄底·期末)已知11223a a -+=,求下列各式的值:(1)1a a -+;(2)33222232a a a a --+-+-.【答案】(1)7;(2)13【解析】(1)由题意11223a a-+=,所以21112222327a a a a --⎛⎫+=+-=-= ⎪⎝⎭.(2)由题意11223a a -+=,所以()()1111212233222222213371331512744534a a a a a a a a a a a a ------⎛⎫⎛⎫- ⎪⎪⨯--+-⎝⎭⋅⎝⎭==-==+--+++-.一、单选题1.(23-24高一上·青海海南·期中)已知R a ∈,则下列各式一定有意义的是()A .2a -B .13a C .12a D .0a 【答案】B【解析】对于A ,由221aa -=可知,0a =时表达式无意义;对于B ,根据幂函数性质可知,R a ∈时,表达式13a 恒有意义;对于C,易知12a =a<0时,表达式无意义;对于D ,当0a =时,0a 无意义;故选:B2.(23-24高一上·陕西咸阳·期末)化简32的结果为()A .5BC .5-D.【答案】A【解析】332232232332555⨯⎛⎫=== ⎪⎝⎭=,故选:A3.(23-24高一上·北京大兴·月考)已知0a >=()A .12a B .32a C .2a D .3a 【答案】A12a =,故选:A4.(23-24高一上·安徽淮南·月考改编)下列根式与分数指数幂的互化错误的是()A()120aa =>B.)340xx -=>C.)21320,0x y x y -=>>D .()32140x x =>【答案】B【解析】对于A()1313220a a a ⎛⎫==> ⎪⎝⎭,故A 正确;对于B选项,)334410xx x -⎛⎫=> ⎪⎝⎭,故B 错误;对于C,)21321210,0x y x y x-=>>,故C 正确;对于D,)()33321444320x x x ⎛⎫⎤===> ⎪⎝⎭,故D 正确.故选:B .5.(23-24高一上·江苏泰州·期中)已知14x x -+=,则22x x -+等于()A .6B .12C .14D .16【答案】C【解析】由14x x -+=可得:()2122216x x x x --+=++=,则2214x x -+=.故选:C.6.(23-24高一上·四川德阳·月考)010.256371.586-⎛⎫⨯-++= ⎪⎝⎭()A .110B .109C .108D .100【答案】A【解析】原式()11133333112344131442222223221083331210810231-⎛⎫=+=+= ⎪⎝⎭⎛⎫⎛⎫⎛⎫⨯+⨯+⨯-=⨯+- ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A.二、多选题7.(23-24高一上·四川成都·期中)以下运算结果等于2的是()A B .C .D 【答案】BCD【解析】对于A π44π=-=-,不合题意;对于B ,2=,符合题意;对于C ,()22=--=,符合题意;对于D 22=-=,符合题意.故选:BCD8.(23-24高一上·浙江·月考)已知0a >,0b >,则下列各式正确的是()A π3=-B 1=C .mna-=D .121133332463b ab a b ---⎛⎫÷-=- ⎪⎝⎭【答案】ABD【解析】A 选项:由π30->π3=-,A 选项正确;B ()11111123612312600222221a b b a ab a b ⎛⎫⎛⎫-⨯-+⨯ ⎪ ⎪--⎝⎭⎝⎭⎡⎤====⎢⎥⎣⎦,B 选项正确;C 选项:m na-C 选项错误;D 选项:112121101333333331246663b ab a a b a b b ⎛⎫⎛⎫------- ⎪ ⎪⎝⎭⎝⎭⎛⎫÷-=-=-=- ⎪⎝⎭,D 选项正确;故选:ABD.三、填空题9.(22-23高一上·上海奉贤·期末)化简()222a b ⋅=(其中0a >,0b >).【答案】4ab【解析】()((4222222a b ab a b +-⋅=⋅=.故答案为:4ab .10.(23-24高一上·全国·单元测试)方程2129240x x +-⋅+=的解集是.【答案】{1,2}-【解析】令2x t =,则0t >,方程可化为22940t t -+=,解得12t =或4t =,所以,122x =或24x =,解得=1x -或2x =.所以,方程的解集为{1,2}-.故答案为:{1,2}-.11.(23-24高一上·重庆沙坪坝·期中)已知12102α-=,131032β=,则314210βα+=(填数值)【答案】2【解析】()()31131113113142513422342242101010=322222αβα⎛⎫⎛⎫⨯⨯+-⨯+- ⎪⎝⎭⎝⎭⎛⎫⎛⎫=⨯⨯=== ⎪ ⎪⎝⎭⎝⎭.故答案为:2四、解答题12.(23-24高一上·安徽马鞍山·期中)化简求值:(1)()120120.344⎛⎫+ ⎪⎝⎭(2)20.52031103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;【答案】(1)52;(2)0【解析】(1)()120120.344⎛⎫+ ⎪⎝⎭1293511422⎛⎫=+=+= ⎪⎝⎭.(2)20.52031103522216274--⎛⎫⎛⎫⎛⎫-⨯-⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222364493322220273444-⎛⎫⎛⎫⎛⎫⎛⎫⨯-÷=-⨯-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13.(23-24高一上·辽宁丹东·期中)已知正实数a 满足11221a a --=.(1)求1a a -+的值;(2)求33221122a a a a ---+的值.【答案】(1)3;(2)5【解析】(1)将11221a a --=两边平方得121a a -+-=,所以13a a -+=.(2)因为a 是正实数,令1122(0)a a x x -+=>,则2125x a a -=++=,所以x 可得()33111222214a a a a a a ---⎛⎫-=-++= ⎪⎝⎭,所以332211225a a a a ---==+.。

初中升高中数学衔接:教材8讲word版配答案(行知版)

初中升高中数学衔接:教材8讲word版配答案(行知版)

初高中数学衔接教材一、现有初高中数学知识存在以下“脱节〞:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1〞的分解,对系数不为“1〞的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基此题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系〔韦达定理〕在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这局部内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

8.几何局部很多概念〔如重心、垂心等〕和定理〔如平行线分线段比例定理,射影定理,相交弦定理等〕初中生大都没有学习,而高中都要涉及。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

二、初高中数学衔接目录:前言第一讲数与式的运算〔两课时〕第二讲因式分解〔两课时〕第三讲一元二次方程根与系数的关系〔一课时〕第四讲不等式〔两课时〕第五讲二次函数的最值问题〔一课时〕第六讲简单的二元二次方程组〔一课时〕第七讲分式方程和无理方程的解法〔一课时〕第八讲直线、平面与常见立体图形〔一课时〕第九讲直线与圆,圆与圆的位置关系〔一课时〕初高中数学衔接教材初高中衔接从观念开始----致即将毕业的初三同学一、初、高中的比拟和初中数学相比,高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你开展的前途。

最新暑期初高中数学衔接教程【含答案】

最新暑期初高中数学衔接教程【含答案】

课堂笔记第一章 乘法公式与因式分解§1.1 乘法公式我们知道(a +b )2=a 2+2ab +b 2,将公式左边的指数变为3时,又有什么结论呢?由于(a +b )3=(a +b )2(a +b )=a 2+2ab +b 2 (a +b )=a 3+a 2b +2a 2b +2ab 2+ab 2+b 3=a 3+3a 2b +3ab 2+b 3,因此得到和的立方公式(a +b )3=a 3+3a 2b +3ab 2+b 3.将公式中的b 全部改为-b ,又得到差的立方公式(a -b )3=a 3-3a 2b +3ab 2-b 3.上述两个公式称为完全立方公式,它们可以合写为(a ±b )3=a 3±3a 2b +3ab 2±b 3.【例1】化简:(x +1)3-x x 2+3x +3 .【解答】(x +1)3-x x 2+3x +3 =x 3+3x 2+3x +1-x 3-3x 2-3x =1.由完全立方公式可得(a +b )3-3a 2b -3ab 2=a 3+b 3,即(a +b )(a +b )2-3ab =a 3+b 3,由此可得立方和公式(a +b )a 2-ab +b 2 =a 3+b 3.将立方和公式中的b 全部改为-b ,得到立方差公式(a -b )a 2+ab +b 2 =a 3-b 3.【例2】对任意实数a ,试比较(1+a )(1-a )1+a +a 2 1-a +a 2 与1的大小.【解析】观察(1+a )(1-a )1+a +a 2 1-a +a 2 的结构特点,可运用立方和(差)公式将其化简.【解答】(1+a )(1-a )1+a +a 2 1-a +a 2=(1+a )1-a +a 2 (1-a )1+a +a 2=1+a 3 1-a 3 =1-a 6因为1-a 6-1=-a 6,对任意实数a ,-a 6≤0,所以课堂笔记(1+a)(1-a)1+a+a21-a+a2≤1.通过将完全平方公式(a+b)2=a2+2ab+b2中的指数2推广到3,我们得到了完全立方公式.有兴趣的同学可以将指数推广到4,5,⋯.另外,我们也可以从项数的角度推广(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2bc+2ca.灵活应用等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ca,可以为代数式运算带来方便.【例3】已知a+b+c=0,ab+bc+ca=-12,求下列各式的值:(1)a2+b2+c2(2)a4+b4+c4【解析】将(1)与已知联系,联想已知中的等式,发现可将a2+b2+c2用a+b+ c和ab+bc+ca表示.由于a4+b4+c4=a22+b2 2+c2 2,由(1)得到启发,如果知道a2b2+b2c2+c2a2的值,就能得解.【解答】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.由上式和已知得0=a2+b2+c2-1,即a2+b2+c2=1.(2)由ab+bc+ca=-12,得a2b2+b2c2+c2a2+2abc(a+b+c)=14.因为a+b+c=0,所以a2b2+b2c2+c2a2=14.再由(1)的结论,得a4+b4+c4+2a2b2+2b2c2+2c2a2=1.因此a4+b4+c4=12.【例4】已知x2+x-1=0,求证:(x+1)3-(x-1)3=8-6x.【证法1】(x+1)3-(x-1)3=x3+3x2+3x+1-x3-3x2+3x-1=x3+3x2+3x+1-x3+3x2-3x+1=6x2+2.由已知得x2=1-x,故6x2+2=6(1-x)+2=8-6x.因此,(x+1)3-(x-1)3=8-6x.【证法2】(x+1)3-(x-1)3=(x+1-x+1)(x+1)2+(x+1)(x-1)+(x-1)2=2x2+2x+1+x2-1+x2-2x+1课堂笔记=6x 2+2.以下同证法1习题1.11.若a +b =8,ab =2,则a 3+b 3=()A.128B.464C.496D.5122.若x +y +z =0,则x 3+y 3+z 3=()A.0B.x 2y +y 2z +z 2xC.x 2+y 2+z 2D.3xyz3.设A =n +1n 3,B =n 3+1n 3+6,对于任意n >0,则A ,B 大小关系为()A.A ≥BB.A >BC.A ≤BD.不一定4.(5-x )25+5x +x 2 =.5.观察下列各式的规律:(a -b )(a +b )=a 2-b 2,(a -b )a 2+ab +b 2 =a 3-b 3,(a -b )a 3+a 2b +ab 2+b 3 =a 4-b 4.可得到(a -b )a n +a n -1b +⋯+ab n -1+b n =.(其中n 为正整数).6.求函数y =(x -2)3-x 3的最大值.7.当x =33时,求代数式2x +1x 4x 2-2+1x 2 -1x 3的值.8.已知a ,b ,c 为非零实数,a 2+b 2+c 2 x 2+y 2+z 2 =(ax +by +cz )2,求证:x a =yb =zc .课堂笔记§1.2 因式分解因式分解就是将一个多项式化成几个整式的积的形式,它与多项式乘法运算是互逆变形.我们已学过两种分解因式的方法:提取公因式法与公式法.下面我们继续学习一些分解因式的方法.1.十字相乘法我们知道,形如x2+(p+q)x+pq的二次三项式,它的特点是二次项系数是1,常数pq与一次项系数p+q可以通过如图1.2-1的“十字相乘,乘积相加”方式建立联系,得到x2+(p+q)x+pq=(x+p)(x+q).这种方法能否推广呢?如果要对2x2-7x+3分解因式,我们把二次项系数2分解为1×2,把常数项3分解成1×3或(-1)×(-3),按图1.2-2至图1.2-5的运算方式,也用“十字相乘,乘积相加”验算.12311×3+2×1=512131×1+2×3=712-3-11×- 3 +2×-1=-512-1-31×-1+2×-3=-7图1.2-2图1.2-3图1.2-4图1.2-5可以发现图1.2-5对应的结果1×(-1)+2×(-3)=-7,恰好等于一次项系数-7.由于(x-3)(2x-1)=2x2-7x+3,从而2x2-7x+3=(x-3)(2x-1).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.【例1】将下列各式分解因式:(1)2x2+x-3;(2)-6a2+7a+5【解析】(1)因为2=1×2,-3=(-1)×3=1×(-3),且一次项系数是1,所以可按图1.2-6用十字相乘法分解因式.(2)当二次项系数为负时,二次项系数分解成的两个因数异号,则十字辅助图的各种可能性就会更多.因此先把负号提到括号外面,即-6a2+7a+5=-6a2-7a-5,然后再把6a2-7a-5按图1.2-7用十字相乘法分解因式.【解答】(1)因为1×3+2×(-1)=1,恰好等于一次项系数1,所以2x2+x-3=(x-1)(2x+3).(2)因为-6a2+7a+5=-6a2-7a-5,而根据十字相乘法,6a2-7a-5= (2a+1)(3a-5),所以-6a2+7a+5=-(2a+1)(3a-5).11pq1×p+1×q=p+q图1.2-1123-1123-1图1.2-6图1.2-7课堂笔记【例2】分解因式:x 2-x 2-x 2-x -2.【解析】先将x 2-x 视为一个整体,通过两次十字相乘法得到解决.【解答】x 2-x 2-x 2-x -2=x 2-x -2 x 2-x +1 =(x -2)(x +1)x 2-x +1 .2.分组分解法观察多项式xm +xn +ym +yn ,它的各项并没有公因式,因此不能用提取公因式来分解因式;这是一个四项式,因此也不能直接用公式法或十字相乘法来分解因式.观察多项式的各项,前两项有公因式x ,后两项有公因式y ,分别提取后得到x (m +n )+y (m +n ).这时又有了公因式(m +n ),因此能把多项式xm +xn +ym +yn 分解因式.分解过程是xm +xn +ym +yn =x (m +n )+y (m +n )=(m +n )(x +y ).一般地,如果把一个多项式的项适当分组,并提出公因式后,各组之间又出现新的公因式,那么这个多项式就可以用分组方法来分解因式.【例3】将下列各式分解因式:(1)x 3-x 2+x -1;(2)x 2+4(xy -1)+4y 2.【解答】(1)【解法1】x 3-x 2+x -1=x 3-x 2 +(x -1)=x 2(x -1)+(x -1)=(x -1)x 2+1 .【解法2】x 3-x 2+x -1=x 3+x -x 2+1 =x x 2+1 -x 2+1 =x 2+1 (x -1).(2)x 2+4(xy -1)+4y 2=x 2+4xy -4+4y 2=x 2+4xy +4y 2 -4=(x +2y )2-4=(x +2y +2)(x +2y -2).【注】本题第(2)小题的解法是先将多项式分组,再用公式法分解因式.先将多项式分组后分解因式的方法称为分组分解法.用这种方法分解因式,分组时应预见到下一步分解的可能性.【例4】分解因式:x 3+3x -4.【解析】本题用前面学过的方法似乎均不奏效,若将其中一项拆成两项,就可考虑分组分解.【解答】x 3+3x -4=x 3+3x -1-3=x 3-1 +(3x -3)=(x -1)x 2+x +1 +3(x -1)=(x -1)x 2+x +4 .课堂笔记【例5】已知x3-2x2y-xy2+2y3=0,x>y>0,化简:xz-2yz+1.【解答】因为x3-2x2y-xy2+2y3=x2(x-2y)-y2(x-2y)=(x-2y)x2-y2=(x-2y)(x+y)(x-y),所以(x-2y)(x+y)(x-y)=0.又因为x>y>0,所以x+y≠0,x-y≠0,即只有x-2y=0.从而xz-2yz+1=z(x-2y)+1=1.习题1.21.对多项式4x2+2x-y-y2用分组分解法分解因式,下面分组正确的是()A.4x2+2x-y+y2B.4x2+2x-y2-yC.4x2-yD.4x2-y+(2x-y2)+2x-y2.要使二次三项式x2-6x+m在整数范围内可分解,m为正整数,那么m的取值可以有()A.2个B.3个C.5个D.6个3.把多项式2ab+1-a2-b2分解因式,结果是()A.(a+b-1)(b-a+1)B.(a-b+1)(b-a+1)C.(a+b-1)(a-b+1)D.(a-b+1)(a-b-1)4.m4+m2+1=m4+-m2+1=m2+.m2+5.将下列各式分解因式:(1)4x2-x-3;(2)3x2+2ax-a2.6.将下列各式分解因式:(1)x3-y3-x2y+xy2;(2)2a2-b2+ab-2a+b.7.已知m=x-y,n=xy,试用m,n表示x3+y32.8.当x=-1时,x3+2x2-5x-6=0.请根据这一事实,将x3+2x2-5x-6分解因式课堂笔记第一章测试题(满分为100分,考试时间45分钟)一、选择题(本题有6小题,每小题5分,共30分)1.多项式-3y 2-2yx +x 2分解因式的结果是()A.-(y +x )(3y +x )B.(x +y )(x -3y )C.-(y -x )(3y -x )D.(x +y )(3x -y )2.若a 3-b 3=3a 2b -3ab 2+1,其中a ,b 为实数,则a -b =()A.0B.-1C.1D.±13.若多项式2x 2+7x +m 分解因式的结果中有因式x +3,则此多项式分解因式的结果中另一因式为()A.2x -1B.2x +1C.x +1D.x -14.若a +1a =3,则a 2+a 3+a 4+1a 2+1a 3+1a 4=()A.7B.25C.47D.725.多项式4-x 2-2xy -y 2分解因式的结果是()A.(2+x +y )(2-x -y )B.(2+x +y )(2-x +y )C.(1+x -y )(4-x -y )D.(1-x +y )(4+x +y )6.若x -y -z =3,yz -xy -xz =3,则x 2+y 2+z 2=()A.0B.3C.9D.-1二、填空题(本题有3小题,每小题8分,共24分)7.若8x 3+12x 2y 2+6xy 4+y 6可分解为2x +y m 3,则m =.8.若关于x 的二次三项式ax 2+3x -9的两个因式的和为3x ,则a =.9.x 2+x +1x 2+1x -4=1x +x + 1x +x - .三、解答题(本题有3小题,第10,11题各15分,第12题16分,共46分)10.分解因式:(1)x 3-5x 2+6x ;(2)4m 3+m -1.11.已知x 2-x -1=0,求x 5-x 4-3x 3+3x 2+x 的值.12.已知a 2-9x 2+6xy -y 2(a +3x )2-(ay +3xy )=1,求证:y =6x .课堂笔记第二章分式与根式§2.1分式及其运算1.分式的运算分式运算与因式分解关系密切,掌握了各种乘法公式和因式分解方法,可以使我们的分式运算能力得到提高.【例1】计算:a2+7a+10a2-a+1×a3+1a2+4a+4÷a+1a+2.【解析】分式乘除运算与约分相关,应考虑先将各分式的分子分母分解因式.【解答】原式=a+2a+5a2-a+1×a+1a2-a+1a+22×a+2a+1=a+5【例2】先化简,再求值:m2+n2m2+2mn+n2-2mn÷m+nmn2×m3+3m2n+3mn2+n3m3+m2n-mn2-n3,其中m=57,n=3.【解析】分式混合运算时需合理安排运算顺序,小心完成每一步.本题代数式最后乘上的分式其分子是完全立方,分母可以进行分组分解.【解答】原式=m2+n2(m+n)2-2mn×m2n2(m+n)2×(m+n)3(m+n)2(m-n)=m2+n2(m+n)2-2mn(m+n)2×(m+n)(m-n)=m2-2mn+n2(m+n)2×(m+n)(m-n)=m-nm+n.当m=57,n=3时,原式=m-nm+n=57-357+3=910.【例3】已知xx2-3x+1=1,求x2x4-9x2+1的值.【解析】观察题目特点,对条件与结论采用取倒数处理,建立条件与结论间的联系,从而达到解题的目的.【解答】因为xx2-3x+1=1,所以x2-3x+1x=1,得x+1x=4.于是x4-9x2+1x2=x2+1x2-9=x+1x2-11=16-11=5.因此x2x4-9x2+1=15.【注】本题解答中灵活应用了x2+1x2=x+1x2-2.课堂笔记2.分式的证明【例4】已知b +1c =1,c +1a =1,求证:a +1b =1,【解析】由已知两式消去c ,即可得到含a ,b 的关系式.【解答】由b +1c =1,得1c =1-b ;由c +1a =1,得c =1-1a .所以(1-b )1-1a =1,得1-1a -b +b a =1,即-1a -b +b a =0.两边都乘以a ,得-1-ab +b =0,两边再都除以b ,得-1b -a +1=0,移项得a +1b =1.【例5】已知abc =1,求证:a ab +a +1+b bc +b +1+c ac +c +1=1.【解析】此题直接通分太繁,不可取.观察求证式子的左边,发现作轮换a →b→c →a ,可将其中一项变为另两项,结合已知条件,可以有以下两种策略.【解答】【解法1】因为abc =1,所以a ,b ,c 均不为零.原式=a ab +a +1+ab a (bc +b +1)+abc ab (ac +c +1)=a ab +a +1+ab abc +ab +a +abc abac +abc +ab=a ab +a +1+ab 1+ab +a +1a +1+ab=a +ab +1ab +a +1=1.【解法2】因为abc =1,所以a ,b ,c 均不为零.原式=a ab +a +abc +b bc +b +1+bc b (ac +c +1)=1b +1+bc +b bc +b +1+bc bac +bc +b=1b +1+bc +b bc +b +1+bc 1+bc +b=1+b +bc bc +b +1=1.3.繁分式我们知道,像2m ,ab 1+b ,⋯这样分母中含有字母的代数式叫做分式.而像1x +1x ,a 1+b b 1+a,⋯这样分子或分母中含有分式的分式就叫繁分式.繁分式可以通过适当的代数变换转化成普通的分式.例如,1x +1x =课堂笔记xx x+1x=xx2+1【例6】化简:1+1-xx1-1-xyxy.【解析】对于繁分式化简,可以利用分式基本性质,在分式的分子、分母上都乘以它们各分母的最简公分母,从而达到使分子、分母转化为整式的目的;也可以利用分式的概念,将繁分式转化为分式的除法.【解答】【解法1】原式=1+1-xxxy1-1-xyxyxy=xy+y-xyxy-1+xy=y2xy-1.【解法2】原式=1+1-xx÷1-1-xyxy=x+1-xx÷xy-1+xyxy= y2xy-1.【例7】化简:x+1x2-x+1x-11-x-1x2÷x2+1x2-x-1x+3x2+1x2-2x-2x+3.【解析】观察发现,上式中出现最多的是x+1x,而x2+1x2=x+1x2-2,因此设x+1x=a,原式的形就变简单了,从而有利于化简.换元法在繁分式化简中是一种常用的方法.【解答】设x+1x=a,则x2+1x2=x+1x2-2=a2-2.原式=a2-a-11-a2÷a2-a+1a2-2a+1=a2-a2-a+1a-12×(a-1)2a2-a+1 =a2-a2-a+1=a-1=x+1x-1.课堂笔记习题2.11.下列运算中,错误的是()A.a b =acbc (c ≠0) B.-a -ba +b =-1C.0.5a +b 0.2a -0.3b =5a +10b 2a -3b D.x -y x +y =y -x y +x 2.若x +1x =4,则x 2x 4+x 2+1=()A.10 B.15C.115D.1163.若a +1b=1,b +2c =1,则c +2a =()A.1B.2C.3D.44.化简:11-11-1x .5.化简:a 3-a 2-a +1a 3-3a 2+3a -1.6.计算:1-a -11-a 2÷a 3+1a 2-2a +1×11-a.7.已知1a +1b+1c =0,求证:a 2+b 2+c 2=(a +b +c )2.8.已知xyz =1,x +y +z =2,x 2+y 2+z 2=16,求1xy +2z +1yz +2x+1zx +2y的值.课堂笔记§2.2根式及其迲算1.根式的运算一个代数式的运算结果若含有根式,就必须把它化为最简根式.最简根式满足以下3个条件:(1)被开方数的指数与根指数互质;(2)被开方数的每一个因式的指数都小于根指数;(3)被开方数不含分母.把分母中的根号化去,叫分母有理化.例如,620=625=6×525×5=355.在根式运算中,一般最后结果要进行分母有理化,使分母不含根号.【例1】化简:(1)12-3;(2)x-yx+y(x≠y);(3)x-y3x-3y-x+y3x+3y.【解析】分母有理化通常是把分子和分母都乘以同一个不等于零的适当代数式(有理化因式),使分母不含根号.其中第(2)题还可以将分子用平方差公式分解因式后进行约分,同样第(3)题也可以将分子用立方和(差)公式分解因式后进行约分.【解答】(1)【解】12-3=2+3(2-3)(2+3)=2+32-3=-(2+3)=-2-3.(2)【解法1】x-yx+y=(x-y)(x-y)(x+y)(x-y)=(x-y)(x-y)x-y=x-y.【解法2】x-yx+y=(x+y)(x-y)x+y=x-y.(3)【解】x-y3x-3y-x+y3x+3y=(3x)3-(3y)33x-3y-(3x)3+(3y)33x+3y=(3x)2+3x3y+(3y)2-(3x)2+3x3y-(3y)2 =23xy【例2】计算:1+23+5(1+3)(3+5)+5+27+3(5+7)(7+3).【解析】观察分式的分子和分母,发现(1+3)+(3+5)=1+23+5,(5+7)+(7+3)=5+27+3.因此可先将他们拆成两项之和,然后分别进行分母有理化.【解答】原式=11+3+13+5+15+7+17+3=1-3(1+3)(1-3)+3-5(3+5)(3-5)+5-7(5+7)(5-7)课堂笔记+7-3(7+3)(7-3)=-12(1-3+3-5+5-7+7-3)=-12(1-3)=1【例3】计算:1-x -11+x -1+22-x ÷2+xx -1.【解析】二次根式的混合运算,要根据算式的形式特征安排计算程序,使计算简便.【解答】原式=(1-x -1)2(1+x -1)(1-x -1)+22-x×x -12+x=1-2x -1+x -11-x +1+2x -12-x =x2-x.【例4】已知a =12+3,求1-2a +a 2a -1-a 2-2a +1a 2-a的值.【解析】先化简再求值,同时注意(a -1)2=|a -1|.【解答】因为a =12+3=2-3<1,所以原式=(a -1)2a -1-(a -1)2a (a -1)=(a -1)-|a -1|a (a -1)=a -1--(a -1)a (a -1)=a -1+1a=2-3-1+2+3=3.2.根式的证明【例5】已知(x +c )2+y 2+(x -c )2+y 2=2a ,且a 2-c 2=b 2,其中a >b >0,求证:x 2a 2+y 2b2=1.【解析】当已知等式中含有二次根式时,可以考虑把等式两边平方.【解答】【证明】因为(x +c )2+y 2+(x -c )2+y 2=2a ,所以(x +c )2+y 2=2a -(x -c )2+y 2两边平方,整理得a 2-cx =a (x -c )2+y 2.两边再平方,整理得a 2-c 2 x 2+a 2y 2=a 2a 2-c 2 .把a 2-c 2=b 2代入得b 2x 2+a 2y 2=a 2b 2,两边同除以a 2b 2,得x 2a 2+y 2b2=1.【例6】已知a ,b 都是非负数,并且1-a 2×1-b 2=ab ,求证:a 1-b 2+b 1-a 2=1.【解析】当已知式或求证式中含有二次根式时,可以考虑把两边平方化为整式再证明.但A 2=B 2,未必有A =B ,因此在证明过程中必须确定A ,B 是课堂笔记否同号.【解答】【证明】将1-a2×1-b2=ab两边平方,得1-a21-b2=a2b2,即1-a2-b2+a2b2=a2b2,得a2+b2=1.a1-b2+b1-a22=a21-b2+b21-a2+2ab1-b2×1-a2=a2+b2-2a2b2+2a2b2=1.因为a,b都是非负数,所以a1-b2+b1-a2≥0.因此a1-b2+b1-a2=1.3.n次根式实际上,数的平方根的概念可以推广.一般地,如果x n=a,那么x叫做a的n 次方根.例如,由于24=16和(-2)4=16,我们把2或-2叫做16的4次方根.当n 是偶数时,正数a的正的n次方根用符号n a表示,负的n次方根用符号-n a表示,也可以把两个方根合起来写作±n a.例如,416=2,-416=-2,合起来写作±416=±2.类比平方根与立方根的性质,我们不难发现:在实数范围内,正数有两个相反的偶次方根,负数没有偶次方根,但任意实数都只有一个与它同号的奇次方根.本节所讨论的n次方根运算都限在实数范围内.【例7】(1)求-32243的5次方根;(2)求(-8)2的6次方根.【解析】根据n次方根的定义,可以逆用乘方运算求得开方运算的结果.需要注意正数的偶次方根一定有两个,不要漏掉负的一个.求方根时,为了降低难度,可以把被开方数中比较大的数作质因数分解.【解答】(1)5-32243=5-2535=-23.(2)±6(-8)2=±626=±2.【例8】(1)当x<0时,求|x|+4x4+23x3的值.(2)若n为自然数,2n a2n=-a,a的取值范围是什么?【解析】根据n次根式的性质,可以对含字母的根式进行化简与讨论.【解答】(1)当x<0时,|x|+4x4+23x3=|x|+|x|+2x=-x-x+2x=0.(2)因为n为自然数,所以2n为偶数,于是2n a2n=|a|.又因为2n a2n=-a,所以a≤0.类似于二次根式的性质,我们也可以得到n次根式的性质:(1)(n a)n=a.课堂笔记(2)当n 为奇数时,na n =a ;当n 为偶数时,na n =|a |=a ,a ≥0;-a ,a <0.(3)mpa mp =na m (a ≥0),n ab =n a ⋅n b (a ≥0,b ≥0),na b=na n b(a ≥0,b >0),n a m =(n a )m (a ≥0).从指数式的角度看,a =a 12,3a =a 13,⋯,n a =a 1n ,所以a m =na m ,a -mn =1n am .课堂笔记习题2.21.下列说法正确的是()A.正数有一个偶次方根B.负数没有偶次方根C.负数有两个奇次方根D.正数有两个奇次方根2.当a>0时,-ax3=()A.x axB.x-axC.-x-axD.-x ax3.把a-ba+b(a≠b)分母有理化的结果是()A.-1B.a+ba-b C.a+b-2aba-bD.a+b-2abb-a4.(-1)101的7次方根是,0的8次方根是,(-4)2的4次方根是,(-4)4的4次方根是,5.计算:-5-132=,6(-27)2=,(2×32)4=,18÷32=.6.已知a=13+22,b=13-22,求1b-1-1a-1的值.7.化简:(a-b)3+2a a+b ba a+b b-3b-3aba-b.8.化简:(1)a-2a-1(1<a<2);(2)n(a-b)n+n(a+b)n a<b<0,n>1,n∈N∗.9.证明:a2+1b2+a2(ab+1)2=a+1b-aab+1.课堂笔记第二章测试题(满分为100分,考试时间45分钟)一、选择题(本题有6小题,每小题5分,共30分)1.若分式x +yx -y中的x ,y 的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的13D.是原来的162.计算a b-b a÷a +b a 的结果是()A.a -b aB.a +b bC.a -bbD.a +b a3.把a +ba -b(a ≠b )分母有理化的结果是()A.-1B.a +b a -bC.a +b +2aba -bD.a +b +2abb -a4.下列式子错误的是()A.(a )2=aB.3a 3=aC.(n a )n =a (n >1的整数)D.na n =a (n >1的整数)5.化简x -|x |x的结果是()A.-|x |B.-xC.x 2D.x6.若n 为自然数,2n +1a 2n +1=a ,则a 的取值范围是()A.a ≥0B.a <0C.a ≤0D.a 为全体实数二、填空题(本题有4小题,每小题6分,共24分)7.64的平方根是,立方根是,6次方根是.8.化简:1x -1+1x +1+2x x 2+1+4x 3x 4+1=.9.化简:11+11+1x=.10.当x <0时,5x 5+4x 4+3x 3=.三、解答题(本题有3小题,第11,12题各15分,第13题每题16分,共46分)11.若(x -10)2+4y -4=0,求y x 的10次方根.课堂笔记12.化简:x+1x-1-x-1x+11x2-1.13.当a=12-1时,求a2+6a2-1-a+1a-1+1÷a3+8a4+3a3+2a2的值.课堂笔记第三章方程与方程组§3.1三元一次方程组我们已经学习了二元一次方程组及其解法, 知道解二元一次方程组的基本思想是:二元一次方程组⟶消元一元一次方程. 解二元一次方程组的基本方法有代人消元法和加减消元法. 消元的目的是把二元一次方程组化归为一元一次方程.在现实生活中, 我们会遇到末知数不止两个的方程, 下面我们就来学习三元一次方程组.像x +y +z =12,x +2y +5z =22,x =4y ,4x +2y +z =0,x +2y -z =3,2x -y +2z =-4这类方程组中含有三个末知数, 含末知数的项的次数都是1 , 这样的方程组叫做三元一次方程组.解三元一次方程组的基本思想与解二元一次方程组一致, 通过消元转化为我们会解的方程组:三元一次方程组⟶消元二元一次方程组⟶消元一元一次方程. 解三元一次方程组的基本方法有代人消元法和加减消元法.【例1】解方程组x +y +z =12,①x +2y +5z =22,②x =4y .③【分析】将方程③分别代入方程①②, 得到只含y ,z 的二元一次方程组.【解】将方程③分别代入方程①②, 得方程组5y +z =12④6y +5z =22⑤解得y =2,z =2.把y =2,z =2代人方程①, 得x +2+2=12, 所以x =8.方程组的解是x =8,y =2,z =2.【例2】解方程组课堂笔记4x+2y+z=0①x+2y-z=3②2x-y+2z=-4③【分析】解三元一次方程组的关键是逐步消元, 转化为二元一次方程组. 将方程①+②, 可以消去z, 将方程③+②×2, 也可以消去z, 从而得到二元一次方程组.【解】方程①+②, 得5x+4y=3.④方程③+②×2, 得4x+3y=2. ⑤方程④和方程⑤组成方程组5x+4y=34x+3y=2解得x=-1,y=2.把x=-1,y=2代人方程②, 得-1+2×2-z=3, 所以z=0.方程组的解是x=-1,y=2,z=0.【例3】解方程组x:y:z=1:2:7,2x-y+3z=21.本题含有三个末知数, 只有两个方程, 其中方程①含有比例. 如果设x=a, 则y=2a,z=7a, 就得到了关于x,y,z三个末知数之间的关系, 代入方程②即可求解.【解】由方程①, 设x=a,y=2a,z=7a.代人方程②, 得2a-2a+21a=21, 即a=1.于是x=1,y=2,z=7.方程组的解是x=1,y=2,z=7.【注】本题的解答实际上用了比例的性质(第五章). 虽然方程组形式上是两个方程, 但方程①实际上隐含了两个方程:2x=y,7y=2z.通过上面几道例题, 我们发现, 三元一次方程组的解法仍是用代人法或加减法消元, 化归为二元一次方程组, 再化归为一元一次方程. 实际上, 消元是解一次方程组的主要方法. 解一次方程组的消元“化归”基本思想, 可以推广到“四元”“五元”等多元方程组.习題3.1课堂笔记1.解方程组3x -y +2z =3,2x +y -4z =11,若要使运算简便,消元的方法应选取.7x +y -5z =1,()A.先消去x .B.先消去y .C.先消去z .D.以上说法都不对.2.已知方程组2x -y +z =5,5x +8y -z =9,则x +y 的值是()A.14.B.2.C.-14.D.-2.3.已知方程3x -y -7=0,2x +3y =1,y =kx -9有公共解, 则k 的值是()A.6.B.5.C.4.D.3.4.当x =0,1,-1时, 二次三项式ax 2+bx +c 的值分别为5,6,10, 则a =b = ,c =.5.已知方程组x -2y +z =0,2x +4y -z =0,则x :y :z =6.解下列三元一次方程组:①x -4y +z =-32x +y -z =18x -y -z =7②x :y :z =2:3:5x +y +z =1007.若|a -b -1|+(b -2a +c )2+|2c -b |=0, 求a ,b ,c 的值.8.己知4x -3y -6z =0,x +2y -7z =0,求2x 2+3y 2+6z 2x 2+5y 2+7z 2的值.§3.2一元二次方程的根的判别式一元二次方程ax 2+bx +c =0(a ≠0)由配方法可化为x +b 2a 2=b 2-4ac 4a 2.因为a ≠0, 所以4a 2>0. 式子b 2-4ac 的值有以下三种情况:①b 2-4ac >0这时b 2-4ac 4a 2>0, 由①式得x +b 2a =±b 2-4ac 2a , 方程有两个不相等的实数根x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a.②b 2-4ac =0课堂笔记这时b2-4ac4a2=0, 由①式得x+b2a2=0, 方程有两个相等的实数根x1=x2=-b2a.③b2-4ac<0这时b2-4ac4a2<0, 由①式得x+b2a2<0, 而x取任何实数都不能使x+b2a2<0, 因此方程无实数根.这说明, 根据b2-4ac的值的符号, 我们可以判定一元二次方程ax2+bx+c= 0(a≠0)的根的情况. 一般地, 式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式, 通常用希腊字母Δ表示它, 即Δ=b2-4ac.归纳起来, 有①Δ>0⇔方程有两个不相等的实数根;②Δ=0⇔方程有两个相等的实数根;③Δ<0⇔方程没有实数根.【例1】【例1】不解方程, 判别下列方程的根的情况:②5x2=2(x-10);③8x2+(m+1)x+m-7=0.①x2+2x-1=0;【解】①因为Δ=22-4×(-1)=8>0, 所以方程有两个不相等的实数根.②将原方程整理, 可得5x2-2x+20=0.因为Δ=(-2)2-4×5×20=-396<0, 所以方程没有实数根.③Δ=(m+1)2-4×8×(m-7)=m2-30m+225=(m-15)2.因为无论m取何值, 都有Δ=(m-15)2≥0, 所以方程有两个实数根.【例2】【例2】已知关于x的方程(k-2)x2+k=(2k-1)x有两个不相等的实数根, 求k的范围.【分析】将方程化成一般形式, 二次项系数k-2≠0. 因为一元二次方程有两个不相等的实数根, 所以Δ>0.【解】方程(k-2)x2+k=(2k-1)x可化为(k-2)x2-(2k-1)x+k=0.因为方程有两个不相等的实数根, 所以课堂笔记k -2≠0,Δ=[-(2k -1)]2-4k (k -2)=4k +1>0.解得k >-14且k ≠2.所以k 的取值范围是k >-14且k ≠2.【例3】证明:关于x 的一元二次方程m 2+1 x 2-2mx +m 2+4 =0没有实数根.【分析】要证一元二次方程没有实数根, 只要证Δ<0即可.【证明】二次项系数m 2+1≠0.Δ=(-2m )2-4m 2+1 m 2+4 =-4m 4+4m 2+4 =-4m 2+2 2.因为无论m 取什么实数, 都有m 2+2>0, 所以-4m 2+2 2<0, 即Δ<0. 因此, 一元二次方程m 2+1 x 2-2mx +m 2+4 =0没有实数根.【例4】当m 为何值时, 关于x 的方程m 2-4 x 2+2(m +1)x +1=0有实数根.和m 2-4≠0两种情形讨论.【解】①当m 2-4=0, 即m =±2时, 2(m +1)≠0, 方程为一元一次方程, 总有实数根.②当m 2-4≠0, 即m ≠±2时, 要使方程m 2-4 x 2+2(m +1)x +1=0有实数根, 则Δ=[2(m +1)]2-4m 2-4 =8m +20≥0, 解得m ≥-52.因此, 当m ≥-52且m ≠±2时, 方程有实数根.综合①②, 当m ≥-52时, 方程有实数根.习题3.21.方程x 2+1=0,x 2+x =0,x 2+x -1=0,x 2-x =0中, 无实根的方程有()A.1个.B.2个.C.3个.D.4个.2.关于x 的方程ax 2-2x +1=0中, 若a <0, 则根的情况是().A.有两个相等的实数根.B.有两个不相等的实数根.课堂笔记C.没有实数根.D.无法确定.3.关于x的方程ax2+bx+c=0(a≠0)中, 若a与c异号, 则根的情况是()A.有两个不相等的实数根.B.有两个相等的实数根.C.没有实数根.D.无法确定4.若关于x的一元二次方程(m-2)2x2+2(m+1)x+1=0有两个不相等的实数根, 则m的取值范围是5.若二次三项式3x2-4x+2k在实数范围内总能分解成两个一次因式的积, 则k的取值范围是6.不解方程, 判别下列方程的根的情况:③5x2+1-7x=0.①2x2+3x-4=0;②16y2+9=24y7.证明:关于x的方程mx2-(m+2)x=-1必有实数根.8.已知关于x的方程k2-1x2+2(k+1)x+1=0有实数根, 求k的取值范围.§3.3书达定理及其应用方程ax2+bx+c=0(a≠0)的求根公式x=-b±b2-4ac2a, 不仅表示可以由方程的系数a,b,c决定根的值, 而且反映了根与系数之间的联系. 本节我们进一步讨论根与系数的关系.根据求根公式可知, 当b2-4ac≥0时, 一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.由此可得x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=-2b2a=-ba,x1x2=-b+b2-4ac2a⋅-b-b2-4ac2a=(-b)2-b2-4ac4a2=c a.因此, 方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-b a,x1x2=c a.这个一元二次方程的根与系数的关系叫做韦达定理.课堂笔记反过来, 如果x 1,x 2满足x 1+x 2=-b a ,x 1x 2=ca, 那么x 1,x 2一定是方程ax 2+bx +c =0(a ≠0)的两个根, 这就是韦达定理的逆定理.特别地,①如果方程x 2+px +q =0的两个根是x 1,x 2, 那么x 1+x 2=-p ,x 1x 2=q ;②以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-x 1+x 2 x +x 1x 2=0【例1】根据一元二次方程根与系数的关系, 求下列方程两根的和与积:①x 2-5x -8=0;②3x 2=1-6x ;③2x 2-43x -22=0. 化成一元二次方程的一般形式ax 2+bx +c =0(a≠0), 直接应用韦达定理x 1+x 2=-b a ,x 1x 2=ca 来求.【解】①x 1+x 2=-(-5)=5,x 1x 2=-8.②方程化为3x 2+6x -1=0, 则x 1+x 2=-2,x 1x 2=-13.③x 1+x 2=--432=26,x 1x 2=-222=-2.【例2】已知方程5x 2+2x -15=0, 求:①两根的倒数和;②两根的平方和.【分析】本题可以先求出方程的根, 但是计算较繁. 根据韦达定理, 将代数式变形成念有x 1+x 2和x 1x 2形式的式子, 可以筒化运算.【解】设方程的两根为x 1,x 2, 根据韦达定理, 有x 1+x 2=-25,x 1x 2=-3.①1x 1+1x 2=x 1+x 2x 2x 2=-25-3=215.②x 21+x 22=x 1+x 2 2-2x 1x 2=-252-2×(-3)=15425.【例3】当k 取何值时, 关于x 的方程3x 2-2(3k +1)x +3k 2-1=0, ①有一根为零;②有两个互为相反数的实根;(3)两根互为倒数.【解】要使方程有根, 必须Δ=[-2(3k +1)]2-4×33k 2-1 ≥0, 解得k ≥-23.①若方程有一根为零, 则x 1x 2=0. x 1x 2=3k 2-13=0, 解得k =±33.课堂笔记因为±33>-23, 所以当k=±33时, 方程有一个根为零.②若方程有两个互为相反数的实根, 则x1+x2=0. x1+x2=23(3k+1)=0, 解得k=-13, 因为-13>-23, 所以当k=-13时, 方程有两个互为相反数的实数根.③若方程两根互为倒数, 则x1x2=1. x1x2=3k2-13=1, 解得k=±233.因为233>-23, 而-233<-23, 所以当k=233时, 方程的两实根互为倒数.【例4】写出一个二元二次方程, 使它的两个根为-5和23.【分析】方程的根是由它的系数决定的, 给出根与系数的关系可以构造出一元二次方程, 但得到的一元二次方程不唯一, 不过它们各次项的系数对应成比例. 为了方便, 一般设所求的方程为x2+px+q=0.【解】设所求的方程为x2+px+q=0, 由根与系数的关系可知-5+23=-p, -5×23=q, 得p=133,q=-103.因此, 一元二次方程为x2+133x-103=0, 即3x2+13x-10=0.1.设x1,x2是方程2x2-6x+3=0的两根, 则x21+x22的值是().A.15.B.6.C.12.D.3 .2.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是().A.y2+5y-6=0.B.y2+5y+6=0.C.y2-5y+6=0.D.y2-5y-6=0.3.若m,n是方程x2+2x-2002=0的两实数根, 代数式3m+mn+3n的值是().A. -2008.B. -1996.D. 1996 .C. 2008 .课堂笔记4.若关于x 的方程m 2-2 x 2-(m -2)x +1=0的两实根互为倒数, 则m 的值是5.以方程x 2-3x -1=0的两个根的平方为根的一元二次方程是6.设x 1,x 2是方程2x 2+4x -3=0的两个根, 利用根与系数的关系求下列各式的值:①x 1+1 x 2+1 ;②x 1x 2+x 2x 1;③x 1-x 27.已知关于x 的一元二次方程ax 2+bx +c =0, 两根之比为3:5, 求证:64ac =15b 2.8.已知关于x 的一元二次方程2x 2+ax -2a +1=0, 两个实根的平方和为294, 求a 的值.§3.4可化为一元二次方程的分式方程我们已经学过可化为一元一次方程的分式方程及其解法. 本节学习可化为一元二次方程的分式方程的解法.【例1】解方程4x -1x -1=1.【分析】解分式方程, 首先要找这个分式方程的最简公分母, 然后方程两边同乘以最简公分母, 约去分母, 使分式方程化为整式方程.【解】方程的两边同乘最简公分母x (x -1), 得4(x -1)-x =x (x -1).整理, 得x 2-4x +4=0.解得x 1=x 2=2.检验:当x =2时, x (x -1)=2(2-1)=2≠0.所以原方程的根是x =2.验根的一般方法是:把整式方程的根代人最简公分母, 看结果是不是零, 使最简公分母为零的根是增根, 必须舍去.为什么要检验呢?根据方程同解原理:方程两边都乘以不等于零的同一个数, 所得方程与原方程同解. 而我们在解分式方程时, 方程两边同乘以最简公分母, 它是一个整式, 当这个整式为零时, 就不符合方程的同解原理要求, 所得整式方程的根就不一定是原方程的根, 因此解分式方程必须验根.课堂笔记【例2】解方程1x+2-4x-5x2-x-6=1.【分析】将分式方程的分母进行因式分解, 从而确定出最简公分母是(x+2)(x -3).【解】方程两边同乘最简公分母(x+2)(x-3), 得x-3-(4x-5)=x2-x-6整理, 得x2+2x-8=0.解得x1=-4,x2=2.检验:当x=-4或x=2时, (x+2)(x-3)≠0.所以原方程的根是x1=-4,x2=2.课堂笔记【例3】解方程8x 2+2x x 2-1+3x 2-1x 2+2x=11.【分析】按一般解法, 应先去分母, 整理后为一元四次方程, 结果较繁. 观察方程, 左边的两个分式x 2+2x x 2-1和x 2-1x 2+2x 互为倒数, 可以通过“换元”, 将方程化简.【解】设x 2+2x x 2-1=y , 则x 2-1x 2+2x=1y , 于是原方程变形为8y +3y =11.方程两边同乘y , 得8y 2-11y +3=0解得y 1=1,y 2=38.经检验, y 1=1,y 2=38都是方程8y +3y=11的根.当y =1时, x 2+2xx 2-1=1, 去分母, 整理, 得x 2+2x =x 2-1.解得x 1=-12.当y =38时, x 2+2x x 2-1=38, 去分母, 整理, 得5x 2+16x +3=0.解得x 2=-3,x 3=-15.检验:把x =-12,x =-3,x =-15分别代人原方程的分母, 各分母都不为零.所以, 原方程的根是x 1=-12,x 2=-3,x 3=-15.习题3.41解下列方程:(1)2x -12x -1=1;(2)2x 2-6xx -3=x +5.2. 解下列方程:(1)x -1x 2-2x -1x =x x -2;(2)24x 2-4x -3-14x 2-8x +3-2x -51-4x 2=0.课堂笔记3.解下列方程:(1)xx+12+5x x+1+6=0;(2)x2-3x+3xx2-3=132.§3.5简单的根式方程像2x2-7x=x-2,3x-5-x+2=1,x+1-2x+1=3这类根号内含有末知数, 且根指数为2的方程, 叫做二次根式方程.二次根式方程可以通过把方程的两边平方, 化为整式(或分式)方程来解. 不过变形有可能产生增根. 因此, 解二次根式方程时, 必须把变形所得整式(或分式)方程的根, 代人原方程进行检验.【例1】解方程2x2-7x=x-2.【分析】通过两边平方化为整式方程.【解】两边平方, 得2x2-7x=x2-4x+4整理, 得x2-3x-4=0.解得x1=4,x2=-1.检验:把x=4代人原方程, 左边=2×42-7×4=2, 右边=4-2=2, 所以x= 4是原方程的根;把x=-1代人原方程, 右边=-3, 而左边的算术平方根不可能是负数, x=-1是增根.原方程的根是x=4.【例2】解方程3x-5-x+2=1.【分析】方程左边有两个二次根式, 如果直接平方, 结果较繁. 一般把其中一个根式移到方程的右边, 使方程左右两边各含有一个根式.【解】移项,得3x-5=x+2+1.两边平方, 得3x-5=1+2x+2+x+2.化简, 得x-4=x+2.两边再平方并整理, 得x2-9x+14=0.解得x1=2,x2=7.课堂笔记经检验, x =2是增根;x =7是原方程的根.【例3】解方程x 2+8x +x 2+8x =12.【分析】x 2+8x 是x 2+8x 的算术平方根, 如果直接平方, 结果很繁. 若设x 2+8x =y , 则原方程就转化为关于y 的一元二次方程.【解】设x 2+8x =y , 那么x 2+8x =y 2, 原方程就变形为y 2+y -12=0.解得y 1=-4,y 2=3.当y =-4时, x 2+8x =-4无解.当y =3时, x 2+8x =3, 解得x 1=-9,x 2=1.经检验, 原方程的根为x 1=-9,x 2=1.习题3.51.解下列方程:(1)2x -2x +1=5;(2)x +x -3=3.2.解下列方程:(1)2x -5-x -3=1;(2)5x +4-x +3=1.1解下列方程:(1)x -1x +2-52=-x +2x -1;(2)x 2+x -x 2+x -2-4=0.§3.6简单的二元二次方程组像x 2+y 2=1,x 2-2y 2+x +3y -10这类含有两个末知数, 并且含有末知数的项的最高次数是2的整式方程, 叫做二元二次方程. 由含有相同的两个末知数的两个二元二次方程, 或一个二元二次方程和一个二元一次方程, 组成的方程组叫做二元二次方程组.解二元二次方程组就是求方程组中两个方程的公共解. 解二元二次方程组的基本思想是消元和降次, 消元就是把二元化为一元, 降次就是把二次降为一次, 其目的是把二元二次方程组转化为二元一次方程组、一元二次方程甚至一元一次方程来解.本节内容主要解决简单的二元二次方程组问题.【例1】解方程组课堂笔记x2+y2=1------1x+y-1=0----(2【解】由方程(2), 得y=1-x(3)把方程(3)代人方程(1), 得x2+(1-x)2=1.整理, 得x2-x=0.解得x1=0,x2=1把x=0代人方程(3), 得y=1;把x=1代人方程(3), 得y=0.原方程组的解是x1=0,y1=1;x2=1,y2=0.【注】解由一个二元一次方程和一个二元二次方程组成的方程组, 其解法是先由二元一次方程出发, 用含一个末知数的式子表示另一个末知数, 再把这个式子代人二元二次方程, 达到消元的目的, 转化为一元二次方程求解.【例2】解方程组x2+2xy+y2=1,x2+4y2=8【分析】方程(1)变形为(x+y)2=1, 把它化为两个二元一次方程x+y+1=0和x+y-1=0, 分别与方程(2)组成方程组x+y+1=0,x2+4y2=8,x+y-1=0,x2+4y2=8;x2+4y2=8两个方程组即可.【解】由方程(1)得x+y+1=0,x+y-1=0.原方程组变形为x+y+1=0,x2+4y2=8;x+y-1=0,x2+4y2=8.分别解这两个方程组, 得原方程的解为x1=-2,y1=1;x2=25,y2=-75;x3=2,y3=-1;x4=-25,y4=75.【注】由两个二元二次方程组成的方程组, 如果能把其中一个二元二次方程分解为两个二元一次方程, 就可以转化为由一个二元一次方程和一个二元二次方程组成方程组的形式.。

初高中数学衔接教材及初高中数学衔接教材参考答案

初高中数学衔接教材及初高中数学衔接教材参考答案

250 初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m251(2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).-1 -2x x图1.1-1-1 -21 1图1.1-2-2 61 1图1.1-3 -ay -byx x图1.1-4252 说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

2024年新高一数学初升高衔接《等式性质与不等式性质》含答案解析

2024年新高一数学初升高衔接《等式性质与不等式性质》含答案解析

第06讲 等式性质与不等式性质模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.通过用不等式(组)表示实际问题,提升数学抽象与数学建模素养;2.通过比较两个实数的大小、不等式性质的应用,提升逻辑推理、数学运算素养;3.运用不等式的性质解决有关问题.知识点 1 不等关系与不等式1、不等式的概念(1)用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等式关系,含有这些不等式号的式子,叫做不等式.(2)用“<”或“>”连接的不等式叫严格不等式;用“≤”或“≥”连接的不等式叫非严格不等式.2、常见文字语言与符号语言之间的对应关系文字语言大于、高于、超过小于、低于、少于大于或等于、至少、不低于小于或等于、至多、不多于、不超过符号语言><≥≤3、用不等式组表示不等式关系当问题情境中包含两个或两个以上的不等式关系时,需要用不等式组来表示不等关系.知识点 2 等式性质性质文字表述性质内容注意1对称性a b b a=⇔=可逆2传递性,a b b c a c==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向知识点 3 不等式性质性质别名性质内容注意1对称性a >b ⇔b <a 可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点 4 比较大小的方法1、作差法、作商法是比较两个实数(或代数式)大小的基本方法.①作差法的步骤:作差、变形、判断差的符号、得出结论.②作商法的步骤:作商、变形、判断商与1的大小、得出结论.2、介值比较法也是比较大小的常用方法,其实质是不等式的传递性:若a >b ,b >c ,则a >c ;若a <b ,b <c ,那么a <c .其中b 是介于a 与c 之间的值,此种方法的关键是通过恰当的放缩,找出一个比较合适的中介值.3、平方法:对两式先平方,再比较大小.【注意】(1)比较代数式的大小通常采用作差法,如果含有根式,也可以先平方再作差,但此时一定要保证代数式大于零;(2)作差时应该对差式进行恒等变形(如配方、因式分解、有理化、通分等),直到能明显看出其正负号为止;(3)作商法适合于幂式、积式、分式间的大小比较,作商后应变形为能与“1”比较大小的式子,要注意营养函数的有关性质.考点一:用不等式(组)表示不等式关系例1.(23-24高一上·广东深圳·月考)公司运输一批木材,总重600吨,车队有两种货车,A 型货车载重量30吨,B 型货车载重量24吨,设派出A 型货车x 辆,B 型货车y 辆,则运输方案应满足的关系式是( )A .54100x y +<B .54100x y +≥C .54100x y +>D .54100x y +≤【变式1-1】(23-24高一上·贵州遵义·月考)持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ).A .40160x>+B .40160x<+C .355160x+>D .355160x+<【变式1-2】(22-23高一上·甘肃酒泉·期末)铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过130cm ,且体积不超过372000cm ,设携带品外部尺寸长、宽、高分别记为a ,b ,c (单位:cm ),这个规定用数学关系式可表示为( )A .130a b c ++<且72000abc <B .130a b c ++>且72000abc >C .130a b c ++≤且72000abc ≤D .130a b c ++≥且72000abc ≥【变式1-3】(22-23高一上·四川眉山·月考)将一根长为5m 的绳子截成两段,已知其中一段的长度为x m ,若两段绳子长度之差不小于1m ,则x 所满足的不等关系为( )A .25005x x ->⎧⎨<<⎩B .251x -≥或521x -≥C .52105x x -≥⎧⎨<<⎩D .25105x x ⎧-≥⎨<<⎩考点二:比较实数(代数式)的大小例2. (23-24高一上·河南洛阳·期末)今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a 元/斤、b 元/斤()a b ≠,王大妈每周购买10元的白菜,李阿姨每周购买8斤白菜,王大妈和李阿姨两周买白菜的平均价格分别记为1m ,2m ,则1m 与2m 的大小关系为( )A .12m m =B .12m m >C .12m m <D .无法确定【变式2-1】(23-24高一上·江苏常州·期末)设a ,b ,m 都是正数,且a b <,记,a m ax y b m b +==+,则( )A .x y >B .x y=C .x y< D .x 与y 的大小与m的取值有关【变式2-2】(23-24高一上·陕西榆林·月考)设0a b >>,比较2222a b a b -+与a b a b -+的大小【变式2-3】(23-24高一上·山东青岛·月考)已知0a >,0b >的大小;考点三:利用不等式的性质判断命题真假例3. (23-24高一上·河北石家庄·月考)若||||a b >,则下列不等式成立的是( )A .0a b ->B .11a b<C .a b >D .22a b >【变式3-1】(23-24高一上·内蒙古呼和浩特·期中)下列说法正确的是( )A .若a b >,则22ac bc >B .若22a bc c >,则a b >C .若a b >,cd >,则ac bd>D .若0b a >>,则a c ab c b+>+【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列结论错误的是()A .若a b >,则ac bc <B .若a b >,则11a b <C .若a b >,则22a b >D .若22ac bc >,则a b>【变式3-3】(23-24高一上·广西贺州·期末)(多选)若0a b >>,0c <,则下列不等关系正确的是( )A .a c b c+>+B .22a bc c >C .ac bc >D .11a b b a+>+考点四:利用不等式的性质求范围例4. (23-24高一上·陕西咸阳·月考)已知23a <<,21b -<<-,则2a b -的取值范围是( )A .[]6,7B .()2,5C .[]4,7D .()5,8【变式4-1】(23-24高一上·江西景德镇·月考)已知3b a b <<-,则ab的取值范围为( )A .03ab<<B .03a b≤<C .3a b >D .13a b<<【变式4-2】(23-24高一上·河北石家庄·期中)已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( )A .{}410x x -<<B .{}36x x -<<C .{}214x x -<<D .{}210x x -≤≤【变式4-3】(23-24高一上·吉林四平·期中)已知2236x y ≤+≤,3569x y -≤-≤,则113z x y =+的取值范围是( )A .58933z z ⎧⎫≤≤⎨⎬⎩⎭B .5|273z z ⎧⎫≤≤⎨⎬⎩⎭C .8933z z ⎧⎫≤≤⎨⎬⎩⎭D .{}327z z ≤≤考点五:利用不等式的性质证明不等式例5. (23-24高一上·河北保定·月考)设,,a b c ∈R ,0a b c ++=,1abc =.(1)证明:0ab bc ca ++<;(2)若a b >,证明33a b >.【变式5-1】(23-24高一上·陕西榆林·期中)证明下列不等式:(1)已知a b c d >>>,求证:11a db c<--;(2)已知0,0,0a b c d e >><<<,求证:e e a c b d>--.【变式5-2】(23-24高一上·安徽芜湖·月考)(1)已知0b a >>,证明:2a a b b a<+;(2)若a ,b ,c 为三角形的三边长,则2a b cb c a c a b++<+++.【变式5-3】(23-24高一上·云南·月考)证明下列不等式:(1)若0,0a b >>,求证:22a ba b b a++≥;(2)若0a b >>,0c d <<,0e <,求证:()()22eea cb d >--.考点六:不等式性质的实际应用例6. (23-24高一上·四川南充·月考)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨.现计划用A ,B 两种型号的货箱共50节运送这批货物.已知35吨甲种货物和15吨乙种货物可装满一节A 型货箱,25吨甲种货物和35吨乙种货物可装满一节B 型货箱,据此安排A ,B 两种货箱的节数,下列哪个方案不满足:( )A .A 货箱28节,B 货箱22节B .A 货箱29节,B 货箱21节C .A 货箱31节,B 货箱19节D .A 货箱30节,B 货箱20节【变式6-1】(22-23高一上·山东·月考)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产每袋需用4h ;生产此产品的工人不超过200人,每个工人的年工作时间约为2100h ;生产每袋需用原料20kg ,年底库存原料600t ,明年可补充1200t ;此产品今年销售量是60000袋,预计明年的销售量至少在今年的基础上增长13.根据这些数据条件可以预测明年的产量在( )A .70000到75000袋之间B .70000到80000袋之间C .80000到85000袋之间D .80000到90000袋之间【变式6-2】(23-24高一上·全国·专题练习)王老师是高三的班主任,为了更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成.已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该钉钉群人数的最小值为( )A .18B .20C .22D .28【变式6-3】(23-24高一上·吉林长春·月考)不等关系是数学中一种最基本的数关系,生活中随处可见.例如.已知b 克糖水中含有a 克糖(0)b a >>,再添加m 克糖(0)m >(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式.并证明这个不等式成立:(2)利用(1)中的结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.一、单选题1.(22-23高一上·河北邢台·月考)在开山工程爆破时,已知导火索燃烧的速度是每秒0.5厘米,人跑开的速度为每秒4米,距离爆破点150米以外(含150米)为安全区.为了使导火索燃尽时人能够跑到安全区,导火索的长度x (单位:厘米)应满足的不等式为( )A .41500.5x⨯<B .41500.5x⨯≥C .41500.5x⨯≤D .41500.5x⨯>2.(23-24高一上·云南昆明·期中)设2254M a a =++,(1)(3)N a a =++,则M 与N 的大小关系为( )A .M N>B .M N=C .M N<D .无法确定3.(23-24高一上·广东深圳·期末)已知,,R,a b c a b ∈>,则下列一定成立的是( )A .11a b<B .2ab b >C .b c ba c a+>+D .()()2211a c b c +>+4.(23-24高一上·安徽宣城·自主招生)已知实数a ,b ,则下列选项中正确的是( )A .若a b >,则22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若a b >,则11a b<5.(23-24高一上·河南驻马店·期末)已知15,31a b -<<-<<,则以下错误的是( )A .155ab -<<B .46a b -<+<C .28a b -<-<D .553ab-<<6.(23-24高一上·山东菏泽·月考)已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( )A .2328x y ≤-≤B .3328x y ≤-≤C .2327x y ≤-≤D .53210x y ≤-≤二、多选题7.(23-24高一上·山东日照·期末)若实数a ,b ,c 满足()0a b b >≠且0a >,0c >,则下列不等式正确的是( )A .11a b<B .ac bc-<-C .b c ba c a+>+D .22222b a a b+>8.(23-24高一上·四川乐山·期中)下列不等式中,一定成立的是( )A .若0,a b c >>∈R ,则22c ca b<B .若0,a b c >>∈R ,则22ac bc >C .若0a b <<,则22a ab b >>D .若0a b <<,则22a a b b+<+三、填空题9.(23-24高一上·广东韶关·月考)已知x ∈R ,则23x + 2x .(填“<”,“>”,或“=”)10.(23-24高一上·北京西城·期中)已知a ,b ,c 为实数,能说明“若a b c >>,则2a bc >”为假命题的一组a ,b ,c 的值是.11.(23-24高一上·山东菏泽·期中)“双节”遇上亚运会,民宿成为潮流趋势.民宿的改造中,窗户面积与地板面积之比越大,采光效果越好.现有一所地板面积为180平方米的民宿需要同时增加窗户和地板的面积,已知地板增加的面积是窗户增加的面积的2倍,且民宿改造后的采光效果不逊于改造前,则改造前的窗户面积最大为平方米.四、解答题12.(23-24高一上·福建泉州·月考)(1)已知R a ∈,设()21M a a =+,()()21N a a =+-,比较M 与N 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c ca cb c>--.13.(23-24高一上·湖北·期中)(1)已知b 克糖水中含有a 克糖(0b a >>),再添加m 克糖(0m >)(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式,不必证明.利用此结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.(2)超市里面提供两种糖:白糖每千克1p 元,红糖每千克2p 元()12p p ≠.小东买了相同质量的两种糖,小华买了相同价钱的两种糖.请问谁买的糖的平均价格比较高?请证明你的结论.(物品的平均价格=物品的总价钱÷物品的总质量)第06讲 等式性质与不等式性质模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.通过用不等式(组)表示实际问题,提升数学抽象与数学建模素养;2.通过比较两个实数的大小、不等式性质的应用,提升逻辑推理、数学运算素养;3.运用不等式的性质解决有关问题.知识点 1 不等关系与不等式1、不等式的概念(1)用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等式关系,含有这些不等式号的式子,叫做不等式.(2)用“<”或“>”连接的不等式叫严格不等式;用“≤”或“≥”连接的不等式叫非严格不等式.2、常见文字语言与符号语言之间的对应关系文字语言大于、高于、超过小于、低于、少于大于或等于、小于或等于、至多、至少、不低于不多于、不超过符号语言><≥≤3、用不等式组表示不等式关系当问题情境中包含两个或两个以上的不等式关系时,需要用不等式组来表示不等关系.知识点 2 等式性质性质文字表述性质内容注意1对称性a b b a=⇔=可逆2传递性,a b b c a c==⇒=同向3可加、减性a b a c b c =⇔±=±可逆4可乘性a b ac bc=⇒=同向5可除性,0a b a b c c c=≠⇒=同向知识点 3 不等式性质性质别名性质内容注意1对称性a >b ⇔b <a 可逆2传递性a >b ,b >c ⇒a >c 同向3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6正数同向可乘性a >b >0,c >d >0⇒ac >bd 同向7正数乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点 4 比较大小的方法1、作差法、作商法是比较两个实数(或代数式)大小的基本方法.①作差法的步骤:作差、变形、判断差的符号、得出结论.②作商法的步骤:作商、变形、判断商与1的大小、得出结论.2、介值比较法也是比较大小的常用方法,其实质是不等式的传递性:若a >b ,b >c ,则a >c ;若a <b ,b <c ,那么a <c .其中b 是介于a 与c 之间的值,此种方法的关键是通过恰当的放缩,找出一个比较合适的中介值.3、平方法:对两式先平方,再比较大小.【注意】(1)比较代数式的大小通常采用作差法,如果含有根式,也可以先平方再作差,但此时一定要保证代数式大于零;(2)作差时应该对差式进行恒等变形(如配方、因式分解、有理化、通分等),直到能明显看出其正负号为止;(3)作商法适合于幂式、积式、分式间的大小比较,作商后应变形为能与“1”比较大小的式子,要注意营养函数的有关性质.考点一:用不等式(组)表示不等式关系例1.(23-24高一上·广东深圳·月考)公司运输一批木材,总重600吨,车队有两种货车,A 型货车载重量30吨,B 型货车载重量24吨,设派出A 型货车x 辆,B 型货车y 辆,则运输方案应满足的关系式是( )A .54100x y +<B .54100x y +≥C .54100x y +>D .54100x y +≤【答案】B【解析】由已知可得,3024600x y +≥,所以有54100x y +≥.故选:B.【变式1-1】(23-24高一上·贵州遵义·月考)持续的高温干燥天气导致某地突发山火,现需将物资运往灭火前线.从物资集散地到灭火前线-共40km ,其中靠近灭火前线5km 的山路崎岖,需摩托车运送,其他路段可用汽车运送.已知在可用汽车运送的路段,运送的平均速度为60km h ,设需摩托车运送的路段平均速度为km h x ,为使物资能在1小时内到达灭火前线,则x 应该满足的不等式为( ).A .40160x>+B .40160x<+C .355160x+>D .355160x+<【答案】D【解析】由题意汽车所用时间加上摩托车所用时间小于1小时,即355160x+<,故选:D .【变式1-2】(22-23高一上·甘肃酒泉·期末)铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过130cm ,且体积不超过372000cm ,设携带品外部尺寸长、宽、高分别记为a ,b ,c (单位:cm ),这个规定用数学关系式可表示为( )A .130a b c ++<且72000abc <B .130a b c ++>且72000abc >C .130a b c ++≤且72000abc ≤D .130a b c ++≥且72000abc ≥【答案】C【解析】由长、宽、高之和不超过130cm 得130a b c ++≤,由体积不超过372000cm 得72000abc ≤.故选:C.【变式1-3】(22-23高一上·四川眉山·月考)将一根长为5m 的绳子截成两段,已知其中一段的长度为x m ,若两段绳子长度之差不小于1m ,则x 所满足的不等关系为( )A .25005x x ->⎧⎨<<⎩B .251x -≥或521x -≥C .52105x x -≥⎧⎨<<⎩D .25105x x ⎧-≥⎨<<⎩【答案】D【解析】由题意,可知另一段绳子的长度为()5m x -.因为两段绳子长度之差不小于1m ,所以()5105x x x ⎧--≥⎪⎨<<⎪⎩,化简得:25105x x ⎧-≥⎨<<⎩.故选:D考点二:比较实数(代数式)的大小例2. (23-24高一上·河南洛阳·期末)今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a 元/斤、b 元/斤()a b ≠,王大妈每周购买10元的白菜,李阿姨每周购买8斤白菜,王大妈和李阿姨两周买白菜的平均价格分别记为1m ,2m ,则1m 与2m 的大小关系为( )A .12m m =B .12m m >C .12m m <D .无法确定【答案】C【解析】由题意可得,0a >,0b >,a b ¹,12021010abm a b a b==++,288162a b a b m ++==,()()221224()()0222ab a b ab a b a b m m a b a b a b +-+---=-==<+++ ,12m m ∴<.故选:C .【变式2-1】(23-24高一上·江苏常州·期末)设a ,b ,m 都是正数,且a b <,记,a m ax y b m b +==+,则( )A .x y >B .x y=C .x y< D .x 与y 的大小与m的取值有关【答案】A【解析】由0,0,0a b m >>>,且a b <,即0b a ->,可得()()0m b a a m a b m b x b b m y --=+-=>++,即x y >,故选:A.【变式2-2】(23-24高一上·陕西榆林·月考)设0a b >>,比较2222a b a b -+与a b a b -+的大小【答案】2222a b a ba b a b-->++【解析】00,0a b a b a b >>⇒+>-> ,()()2222220,0a b a b a b a b a b a b a b +---∴=>>+++,222222222()211a b a b ab a b a b a b a b a b-++∴==+>-+++,2222a b a ba b a b--∴>++.【变式2-3】(23-24高一上·山东青岛·月考)已知0a >,0b >的大小;≤a b =时取等号)=()()3322x y x y x xy y +=+-+,可得分子)33a b =+=,a b+==进一步对其分子利用基本不等式可得a b+≥=,且等号成立当且仅当a b =,1≥,≤a b =时取等号).考点三:利用不等式的性质判断命题真假例3. (23-24高一上·河北石家庄·月考)若||||a b >,则下列不等式成立的是( )A .0a b ->B .11a b<C .a b >D .22a b >【答案】D【解析】因为||||a b >,所以22a b >,D 正确;当2,1a b =-=时,满足||||a b >,但是a b <,A,C 不正确;当2,1a b =-=-时,满足||||a b >,但是11a b>,B 不正确;故选:D 【变式3-1】(23-24高一上·内蒙古呼和浩特·期中)下列说法正确的是( )A .若a b >,则22ac bc >B .若22a bc c >,则a b >C .若a b >,c d >,则ac bd >D .若0b a >>,则a c ab c b+>+【答案】B【解析】对于A :当0c =时,2c =0,若a b >,则220ac bc ==,故A 错误;对于B :因为22a b c c>,所以20c ≠,即20c >,所以a b >,故B 正确;对于C :当1a =,0b =,1c =-,2d =-时,满足a b >,c d >,但是ac bd <,故C 错误;对于D :当0c =时,a c ab c b+=+,故D 错误.故选:B 【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列结论错误的是()A .若a b >,则ac bc <B .若a b >,则11a b <C .若a b >,则22a b >D .若22ac bc >,则a b>【答案】AB【解析】取2,2,1a b c ==-=可得,a b >,但22ac bc =>-=,A 错误;取2,2a b ==-可得,a b >,但111122a b=>-=,B错误;因为a b >,又0b ≥,所以22a b >,故22a b >,C 正确;由22ac bc >,可得20c >,所以a b >,D 正确;故选:AB.【变式3-3】(23-24高一上·广西贺州·期末)(多选)若0a b >>,0c <,则下列不等关系正确的是( )A .a c b c +>+B .22a bc c >C .ac bc >D .11a b b a+>+【答案】ABD【解析】对A, 0a b >>,0c <,由不等式性质易知 a c b c +>+,故A 正确;对B, 0a b >>,0c <,则22210,a bc c c >∴>,故B 正确;对C, 0a b >>,0c <,由不等式性质易知ac bc <,故C 错误;对D, 若0a b >>,则()11110⎛⎫⎛⎫+-+=-+> ⎪ ⎪⎝⎭⎝⎭a b a b b a ab , 故D 正确.故选:ABD.考点四:利用不等式的性质求范围例4. (23-24高一上·陕西咸阳·月考)已知23a <<,21b -<<-,则2a b -的取值范围是( )A .[]6,7B .()2,5C .[]4,7D .()5,8【答案】D【解析】由题意可知426a <<,12b <-<,所以528<-<a b ,故选:D【变式4-1】(23-24高一上·江西景德镇·月考)已知3b a b <<-,则ab的取值范围为( )A .03a b<<B .03a b≤<C .3a b >D .13a b<<【答案】B【解析】因为3b a b <<-,所以0b <,则有10b<,将不等式3b a b <<-的两边同时乘1b ,可得31a b-<<,所以03a b ≤<.故选:B .【变式4-2】(23-24高一上·河北石家庄·期中)已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是( )A .{}410x x -<<B .{}36x x -<<C .{}214x x -<<D .{}210x x -≤≤【答案】D【解析】由12a b -≤-≤,14a b ≤+≤,得()()06a b a b ≤-++≤,即026a ≤≤,()224a b -≤-≤,所以()22210a b a -≤-+≤,即24210a b -≤-≤,故选:D【变式4-3】(23-24高一上·吉林四平·期中)已知2236x y ≤+≤,3569x y -≤-≤,则113z x y =+的取值范围是( )A .58933z z ⎧⎫≤≤⎨⎬⎩⎭B .5|273z z ⎧⎫≤≤⎨⎬⎩⎭C .8933z z ⎧⎫≤≤⎨⎬⎩⎭D .{}327z z ≤≤【答案】D【解析】设)231156(3)(x y x x y n y m +=-++,则25)(113(36)x y m n y m n x +++=-,所以2511363m n m n +=⎧⎨-=⎩,解得31m n =⎧⎨=⎩,于是1133(56)23)(x y y x x y +++=-又63(23)18x y ≤+≤,3569x y -≤-≤,所以33(56)2723)(x y x y ++≤-≤,即311327x y ≤+≤.故{}327z z ≤≤.故选:D .考点五:利用不等式的性质证明不等式例5. (23-24高一上·河北保定·月考)设,,a b c ∈R ,0a b c ++=,1abc =.(1)证明:0ab bc ca ++<;(2)若a b >,证明33a b >.【答案】(1)证明见解析;(2)证明见解析【解析】(1)证明:∵()22222220a b c a b c ab ac bc ++=+++++=,∴()22212ab bc ca a b c ++=-++.a ,b ,c 不同时为0,则2220a b c ++>,∴()222102ab bc ca a b c ++=-++<;(2)()()3322a b a b a ab b -=-++.∵222213024a ab b a b b ⎛⎫++=++≥ ⎪⎝⎭,取等号的条件为0a b ==,而a b >,∴等号无法取得,即222213024a b b a ab b ⎛⎫=++> ⎪⎝+⎭+,又a b >,∴()()33220a b a b a ab b -=-++>,∴33a b >.【变式5-1】(23-24高一上·陕西榆林·期中)证明下列不等式:(1)已知a b c d >>>,求证:11a db c<--;(2)已知0,0,0a b c d e >><<<,求证:e e a c b d>--.【答案】(1)证明见解析;(2)证明见解析【解析】(1)a b c d >>>Q ,即,a b d c >->-,0a d b c ∴->->,则11a db c<--.(2)0,0,0a b c d e >><<< ,0c d ∴->->,0,0,0a c b d b a c d ∴->->-<-<,则()()()()()()()()()()0e b d e a c e b d a c e b a c d e ea cb d ac bd a c b d a c b d -----+-+--===>--------,.e ea cb d∴>--【变式5-2】(23-24高一上·安徽芜湖·月考)(1)已知0b a >>,证明:2a a b b a<+;(2)若a ,b ,c 为三角形的三边长,则2a b cb c a c a b++<+++.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)()()()()22a b a ab a a b a ab b a b b a b b a +---==+++,由0b a >>,得0a b -<,而0b >,0b a +>,0a >,则()()0a a b b b a -<+,所以2a ab b a<+.(2),,a b c 为ABC 的三边长,则有0a b c +>>,0a c b +>>,0b c a +>>,由(1)知:c c c a b a b c +<+++,a a a b c a b c +<+++,b b ba c ab c+<+++,将以上不等式左右两边分别相加得:2c a b c c a a b b a b b c a c a b c a b c a b c+++++<++=+++++++++,所以2c a b a b b c c a++<+++.【变式5-3】(23-24高一上·云南·月考)证明下列不等式:(1)若0,0a b >>,求证:22a ba b b a++≥;(2)若0a b >>,0c d <<,0e <,求证:()()22eea cb d >--.【答案】(1)证明见解析;(2)证明见解析【解析】(1)证明:因为()()()2223322a b a b a b a b a b ab a b b a ab ab +-⎛⎫+--+-+== ⎪⎝⎭,又因为0,0a b >>,所以()()20a b a b ab+-≥,所以22a b a b b a++≥.(2)证明:由()()()()()()222222e b d a c eea cb d ac bd ⎡⎤---⎣⎦-=----()()()()()()22e a b c d b a c d a c b d ⎡⎤⎡⎤+-+-+-⎣⎦⎣⎦=--,因为0a b >>,0c d <<,所以0a b +>,0c d +<,0b a -<,0c d -<,所以()()0a b c d +-+>,()()0b a c d -+-<.因为0e <,所以()()()()0e a b c d b a c d ⎡⎤⎡⎤+-+-+->⎣⎦⎣⎦又因为()()220a c b d -->,所以()()220eea cb d ->--,即()()22eea cb d >--.考点六:不等式性质的实际应用例6. (23-24高一上·四川南充·月考)火车站有某公司待运的甲种货物1530吨,乙种货物1150吨.现计划用A ,B 两种型号的货箱共50节运送这批货物.已知35吨甲种货物和15吨乙种货物可装满一节A 型货箱,25吨甲种货物和35吨乙种货物可装满一节B 型货箱,据此安排A ,B 两种货箱的节数,下列哪个方案不满足:( )A .A 货箱28节,B 货箱22节B .A 货箱29节,B 货箱21节C .A 货箱31节,B 货箱19节D .A 货箱30节,B 货箱20节【答案】C【解析】设A 、B 货箱分别有x ,y 节,则503525153015351150x y x y x y +=⎧⎪+≥⎨⎪+≥⎩,A :共50节且352825221530⨯+⨯=,1528352211901150⨯+⨯=>,满足;B :共50节且3529252115401530⨯+⨯=>,1529352111701150⨯+⨯=>,满足;C :共50节且3531251915601530⨯+⨯=>,1531351911301150⨯+⨯=<,不满足;D :共50节且3530252015501530⨯+⨯=>,153035201150⨯+⨯=,满足;故选:C.【变式6-1】(22-23高一上·山东·月考)某化工厂制定明年某产品的生产计划,受下面条件的制约:生产每袋需用4h ;生产此产品的工人不超过200人,每个工人的年工作时间约为2100h ;生产每袋需用原料20kg ,年底库存原料600t ,明年可补充1200t ;此产品今年销售量是60000袋,预计明年的销售量至少在今年的基础上增长13.根据这些数据条件可以预测明年的产量在( )A .70000到75000袋之间B .70000到80000袋之间C .80000到85000袋之间D .80000到90000袋之间【答案】D【解析】设明年的产量为x 袋,则()42002100160000132060012001000x x x ⎧≤⨯⎪⎪⎛⎫≥+⎨ ⎪⎝⎭⎪⎪≤+⨯⎩,所以8000090000x ££,故可以预测明年的产量在80000到90000袋之间,故选:D.【变式6-2】(23-24高一上·全国·专题练习)王老师是高三的班主任,为了更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成.已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该钉钉群人数的最小值为( )A .18B .20C .22D .28【答案】C【解析】依题意,设教师、家长、女生、男生人数分别为,,,x y z t ,且,,,N x y z t *∈,于是1,12,123y x z y x t z y x ≥+≥+≥+≥+≥+≥+,则46x y z t x +++≥+,又23x t x >≥+,解得3x >,因此min 4x =,此时22x y z t +++≥,所以当4,5,6,7x y z t ====时,min ()22x y z t +++=,即该钉钉群人数的最小值为22.故选:C【变式6-3】(23-24高一上·吉林长春·月考)不等关系是数学中一种最基本的数关系,生活中随处可见.例如.已知b 克糖水中含有a 克糖(0)b a >>,再添加m 克糖(0)m >(假设全部溶解),糖水变甜了.(1)请将这一事实表示为一个不等式.并证明这个不等式成立:(2)利用(1)中的结论证明:若,,a b c 为三角形的三边长,则2a b cb c a c a b++<+++.【答案】(1)a a mb b m+<+,(0,0)b a m >>>,证明见解析;(2)证明见解析;【解析】(1)糖水变甜了得出不等式a a mb b m+<+,(0,0)b a m >>>.证明:()()()aa ma b m b a m b b m b b m ++-+-==++()()()ab am ba bm m a b b b m b b m +---=++.0,0,0b a a b b >>∴-<> .0,0m b m >∴+> ,()0()m a b b b m -∴<+,a a mb b m+∴<+.(2)设ABC 的三边长分别为,,a b c ,则有,,a b c a c b b c a +>+>+>,由(1)已证不等式可得:c c c a b a b c +<+++,a a a b c a b c +<+++,b b ba c ab c+<+++,将以上不等式左右两边分别相加得:2c a b c c a a b b a b b c a c a b c a b c a b c+++++<++=+++++++++,所以,2c a b a b b c c a++<+++.一、单选题1.(22-23高一上·河北邢台·月考)在开山工程爆破时,已知导火索燃烧的速度是每秒0.5厘米,人跑开的速度为每秒4米,距离爆破点150米以外(含150米)为安全区.为了使导火索燃尽时人能够跑到安全区,导火索的长度x (单位:厘米)应满足的不等式为( )A .41500.5x⨯<B .41500.5x⨯≥C .41500.5x⨯≤D .41500.5x⨯>【答案】B【解析】由题意知导火索的长度x (单位:厘米),故导火索燃烧的时间为0.5x秒,人在此时间内跑的路程为40.5x ⎛⎫⨯ ⎪⎝⎭米,由题意可得41500.5x ⨯≥.故选:B.2.(23-24高一上·云南昆明·期中)设2254M a a =++,(1)(3)N a a =++,则M 与N 的大小关系为( )A .M N >B .M N=C .M N<D .无法确定【答案】A【解析】因为()()()22213254131024M N a a a a a a a ⎛⎫-=++-++=++=++> ⎪⎝⎭,所以M N >.故选:A.3.(23-24高一上·广东深圳·期末)已知,,R,a b c a b ∈>,则下列一定成立的是( )A .11a b<B .2ab b >C .b c ba c a+>+D .()()2211a c b c +>+【答案】D【解析】对于A ,当1,2a b ==-,则11a b>,故A 不正确;对于B ,当0b =时,由a b >可得20ab b ==,故B 不正确;对于C ,当2,1,0a b c ===时,b c ba c a+=+,故C 不正确;对于D ,因为210c +>恒成立,所以由a b >可得()()2211a c b c +>+,故D 正确.故选:D.4.(23-24高一上·安徽宣城·自主招生)已知实数a ,b ,则下列选项中正确的是( )A .若a b >,则22a b >B .若a b >,则22a b >C .若a b >,则22a b >D .若a b >,则11a b<【答案】C【解析】对于A 选项,1,1a b ==-,满足a b >,此时221,1a b ==,不满足22a b >,故A 错误;对于B 选项,1,1a b ==-,满足a b >,此时221,1a b ==,不满足22a b >,故B错误;对于C 选项,0a b >≥,所以222a b b >=,故C 正确;对于D 选项,1,1a b ==-,满足a b >,此时,1111a b==-,不满足11a b <,故D错误,故选:C.5.(23-24高一上·河南驻马店·期末)已知15,31a b -<<-<<,则以下错误的是( )A .155ab -<<B .46a b -<+<C .28a b -<-<D .553ab-<<【答案】D【解析】因为1,153a b -<<-<<,所以13b -<-<,对于A ,1515330a ab b -<<⎧⇒-<<⎨-<<⎩,1500a ab b -<<⎧⇒=⎨=⎩,151501a ab b -<<⎧⇒-<<⎨<<⎩,综上可得155ab -<<,故A 正确;对于B ,314156a b --=-<+<+=,故B 正确;对于C ,112358a b --=-<-<+=,故C 正确;对于D ,当14,2a b ==时,8a b=,故D 错误;故选:D.6.(23-24高一上·山东菏泽·月考)已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( )A .2328x y ≤-≤B .3328x y ≤-≤C .2327x y ≤-≤D .53210x y ≤-≤【答案】A【解析】设()()()()32x y m x y n x y m n x m n y -=+--=-++,所以32m n m n -=⎧⎨+=-⎩,解得1252m n ⎧=⎪⎪⎨⎪=-⎪⎩,即可得()()153222x y x y x y -=++-,因为11x y -≤+≤,13x y ≤-≤,所以2≤()()153222x y x y x y -=++-8≤,故选:A .二、多选题7.(23-24高一上·山东日照·期末)若实数a ,b ,c 满足()0a b b >≠且0a >,0c >,则下列不等式正确的是( )A .11a b <B .ac bc-<-C .b c ba c a +>+D .22222b a a b+>【答案】BC【解析】对于A ,若1,1a b ==-,则1111a b=>=-,所以A 错误,对于B ,因为a b >,所以a b -<-,因为0c >,所以ac bc -<-,所以B 正确,对于C ,因为a b >,0a >,0c >,所以()0c a b ->,()0a a c +>,所以()()()0()()b c b a b c b a c c a b a c a a a c a a c ++-+--==>+++,所以b c ba c a+>+,所以C 正确,对于D ,若1,1a b ==-,则2222112b a a b+=+=,所以D 错误,故选:BC8.(23-24高一上·四川乐山·期中)下列不等式中,一定成立的是( )A .若0,a b c >>∈R ,则22c ca b<B .若0,a b c >>∈R ,则22ac bc >C .若0a b <<,则22a ab b >>D .若0a b <<,则22a a b b+<+【答案】AC【解析】对于A ,由0a b >>,20c>,知110a b <<,得22c ca b<,故A 正确;对于B ,当0c =时,故B 错误;对于C ,当0a b <<时,由()20a ab a a b -=->,得2a ab >,又()20ab b b a b -=->,则2ab b >,故有22a ab b >>,故C 正确;对于D ,当2a =-,1b =-时,22a a b b +>+,D 中不等式不一定成立,故D 错误.故选:AC.三、填空题9.(23-24高一上·广东韶关·月考)已知x ∈R ,则23x + 2x .(填“<”,“>”,或“=”)【答案】>【解析】()2232120x x x +-=-+>,故232x x +>.故答案为:>.10.(23-24高一上·北京西城·期中)已知a ,b ,c 为实数,能说明“若a b c >>,则2a bc >”为假命题的一组a ,b ,c 的值是.【答案】1a =,1b =-,2c =-(答案不唯一)【解析】当1,1,2a b c ==-=-时,21a =,2bc =,此时满足a b c >>,但是2a bc <.故答案为:1,1,2a b c ==-=-(答案不唯一).11.(23-24高一上·山东菏泽·期中)“双节”遇上亚运会,民宿成为潮流趋势.民宿的改造中,窗户面积与地板面积之比越大,采光效果越好.现有一所地板面积为180平方米的民宿需要同时增加窗户和地板的面积,已知地板增加的面积是窗户增加的面积的2倍,且民宿改造后的采光效果不逊于改造前,则改造前的窗户面积最大为 平方米.【答案】90【解析】设改造前的窗户面积为x ,窗户增加的面积为y ,0,0x y >>,依题意1801802x x yy+≤+,即1802180180,2180,90x xy x y xy y x +≤+≤≤,所以改造前的窗户面积最大为90平方米.故答案为:90四、解答题12.(23-24高一上·福建泉州·月考)(1)已知R a ∈,设()21M a a =+,()()21N a a =+-,比较M 与N 的大小;(2)证明:已知a b c >>,且0a b c ++=,求证:c ca cb c>--.【答案】(1)M N >;(2)证明见解析.【解析】(1)()()()221721212()024M a a a a N a a a ++-=++==+--+>,则M N >;(2)因为a b c >>,且0a b c ++=,则0,0a c ><,则0a c b c ->->,则()()0a c b c -->,则10()()a cbc >--,则11()()0()()()()a c b c a c b c a c b c ⋅->⋅->----,则110b c a c>>--,又0c <则c c a c b c>--.命题得证.13.(23-24高一上·湖北·期中)(1)已知b 克糖水中含有a 克糖(0b a >>),再添加m 克糖。

【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)

【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)

第1章 乘法公式与因式分解【知识衔接】————初中知识回顾————1.乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.2.因式分解因式分解是代数式的一种重要的恒等变形,初中课本涉及到的常用方法主要有:提取公因式法和公式法(平方差公式和完全平方公式),因式分解与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.————高中知识链接————我们知道乘法公式可以使多项式的运算简便,进入高中后,我们会用到更多的乘法公式:(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-. 我们用多项式展开证明式子(3),其余请自行证明:学-科网证明:3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.【经典题型】初中经典题型1.如果,那么代数式的值是()A.6 B.2 C.-2 D.-6【答案】A【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于()A.-1 B.0 C.D.1【答案】B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴∴ab=1,即(n-2011)(2012-n)=1,故选B.【点睛】本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件. 3.已知:,则代数式的值是______.【答案】8【解析】分析:先将所求式子化简,然后将a 2+a =4整体代入计算即可求答案. 详解:==,∵,∴原式=4+4=8. 故答案为:8.【点睛】本题考查了整式的加减运算、整体思想.正确进行计算,并利用整体思想将式子的值直接代入是解题的关键.4.已知x 2﹣2x ﹣1=0.求代数式(x ﹣1)2+x (x ﹣4)+(x ﹣2)(x+2)的值. 【答案】0【解析】分析:根据整式的运算法则即可求出答案. 详解:原式=x 2-2x-1+x 2-4x+x 2-4 =3x 2-6x-3 ∵x 2-2x-1=0∴原式=3(x 2-2x-1)=0【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 5.把下列各式分解因式:(1)224y x - (2)338y x -(2)22312123xy y x x +- (4)2232n mn m -+(5)b b a a 44222+-- (6)2222ab axy ay ax --+6.把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解析】(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示). (2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5).7.求证:四个连续正整数3,2,1,+++n n n n (其中n 表示正整数)的积与1的和是完全平方数. 证明:(方法一)由题意,1)]2)(1)][(3([1)3)(2)(1(++++=++++n n n n n n n n2222222)13(1)3(2)3(1]2)3)[((3(++=++++=++++=n n n n n n n n n n-1-2 x x 图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5所以得证.说明:将n n 32+看成整体进行配方即可.(方法二)由题意得,161161)3)(2)(1(234++++=++++n n n n n n n n 要证明上式是完全平方数,只要证明上式等于一个式子的平方. 令上式22)1(++=an n ,从而求得3=a ,所以得证.高中经典题型1.计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.2.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a ,,的值. 解:由题设,得)3)(32(1437622c y x b y x a y x y xy x +++-=+++--bc y c b x c b y xy x +-+++--=)3()23(37622比较对应项系数,得⎪⎩⎪⎨⎧==-=+a bc c b c b 131423,所以⎪⎩⎪⎨⎧===144c b a .3.把2105ax ay by bx -+-分解因式.【解析】把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 4.把2222()()ab c d a b cd ---分解因式.【解析】按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.22222222()()ab c d a b cd abc abd a cd b cd---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由此例可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. 5.把22x y ax ay -++分解因式.【解析】把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+6.把2222428x xy y z ++-分解因式.【解析】先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.学科!网22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.【实战演练】————先作初中题 —— 夯实基础————A 组1.如果多项式29x mx -+是一个完全平方式,则m 的值是2.如果多项式k x x ++82是一个完全平方式,则k 的值是 3.()()22_________a b a b +--= ()222__________a b a b +=+-4.已知17x y +=,60xy =,则22x y += 5.把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 6.把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++————再战高中题 —— 能力提升————B 组1.填空,使之符合立方和或立方差公式或完全立方公式:(1)3(3)()27x x -=-; (2)3(23)()827x x +=+ (3)26(2)()8x x +=+; (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=2.运用立方和与立方差公式计算:(1)2(3)(39)y y y +-+ (2)224224()()x y x x y y -++ 3.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.若112x y -=,则33x xy y x xy y+---的值为( ) A .35B .35-C .53-D .535.若2210x x +-=,则221x x +=____________;331x x -=____________. 6.已知2310x x -+=,求3313x x++的值.7.展开3(2)x -8.计算(1)(2)(3)x x x ---9.计算()()()()x y z x y z x y z x y z ++-++-++- 10.把下列各式分解因式:(1) 2222()()ab c d cd a b -+-(2) 22484x mx mn n -+-(3) 464x + (4) 32113121x x x -+-(5) 3223428x xy x y y --+11.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 12.证明:当n 为大于2的整数时,5354n n n -+能被120整除. 13.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.第1章 乘法公式与因式分解答案1.乘法公式答案A 组1.6± 2.16 3.4ab ; 2ab 4.1695.(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴ 276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.6.(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.B 组1.(1)239x x ++ (2)2469x x -+ (3)4224x x -+(4)2964a a ++ (5)326128x x x +++ (6)32238365427x x y xy y -+-2.(1)327y - (2)66x y -3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4. D5.解:2210x x +-=,0≠∴x ,212x x ∴-=-,12x x∴-=-. (1)222211()2(2)26x x x x +=-+=-+=; (2)331x x -2211()(1)2(61)14x x x x=-++=-⨯+=-.6.解:2310x x -+= 0≠∴x 31=+∴xx原式=22221111()(1)3()[()3]33(33)321x x x x x x x x+-++=++-+=-+=7.326116x x x -+-8.43210355024x x x x -+-+ 9.444222222222x y z x y x z y z ---+++10.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +--+--+++ 2(1)(3)(7),(2)(2)x x x x y x y ----+. 11.28312.5354(2)(1)(1)(2)n n n n n n n n -+=--++13. 322322()()a a c b c abc b a ab b a b c ++-+=-+++。

初高中数学衔接答案

初高中数学衔接答案

初高中数学衔接答案【篇一:初高中衔接教材含答案】学衔接教材第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 2.1 一元二次方程2.1.1根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根: (1)0322=-+x x ;(2)0122=++x x ;(3)0322=++x x 。

} 用配方法可把一元二次方程ax 2+bx +c =0(a ≠0)变为2224()24b b ac x a a -+=①a ≠0,∴4a 2>0。

于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根。

由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示。

综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根,x 1,2(2)当Δ=0时,方程有两个相等的实数根,x 1=x 2=-2ba; (3)当Δ<0时,方程没有实数根。

例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根。

(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3) x 2-ax +(a -1)=0;(4)x 2-2x +a =0。

解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根。

(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=,22a x -=(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根x 1=1,x 2=a -1。

初高中数学衔接教材 word版配答案(精品版)

初高中数学衔接教材 word版配答案(精品版)

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

初高中衔接教材(二次函数)含答案

初高中衔接教材(二次函数)含答案

莆田八中初高中衔接教材(3)二次函数y =ax 2+bx +c 的图像和性质一、主要知识点(1).问题1 :函数y =ax 2与y =x 2的图象之间存在怎样的关系?二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.(2)问题2 : 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.二次函数y =ax 2+bx +c (a ≠0)具有下列性质:[1]当a >0时,函数y =ax 2+bx +c 图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y 随着x 的增大而 ;当 时,y 随着x 的增大而 ;当 时,函数取最小值 .[2]当a <0时,函数y =ax 2+bx +c 图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y 随着x 的增大而 ;当 时,y 随着x 的增大而 ;当 时,函数取最大值 .xyO x =-2b aA 24(,)24b ac b a a -- xyO x =-2ba A 24(,)24b ac b a a--上述二次函数的性质可以分别通过上图直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题. 上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.二、精选例题例1 ; 求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.例2 : 某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:x /元130 150 165y/件70 50 35若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?例3 把二次函数y=x2+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数y=x2的图像,求b,c的值.例4 已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.三、课后练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2(B)y=2x2-4x+2(C)y=2x2-1 (D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n=.(2)已知二次函数y=x2+(m-2)x-2m,当m=时,函数图象的顶点在y轴上;当m=时,函数图象的顶点在x轴上;当m=时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;(2)y=1+6 x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.莆田八中初高中衔接教材(4)二次函数的三种表示方式(1)知识点:通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:2.顶点式:抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有交点;反过来,若抛物线y =ax2+bx+c(a≠0)与x轴有交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴交点;反过来,若抛物线y =ax2+bx+c(a≠0)与x轴交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++) = a[x2-(x1+x2)x+x1x2=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:,其中x1,x2是二次函数图象与x轴交点的横坐标..(2)精选例题例1 :已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.例2 : 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.例3 : 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.课后练习1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( ) (A )0个 (B )1个 (C )2个 (D )无法确定(2)函数y =-12(x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a (a ≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 . 3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).莆田八中初高中衔接教材(5)二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1: 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.2.对称变换问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题. 例2 : 求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式: (1)直线x =-1; (2)直线y =1.xy Ox =-1 A (1,-1)A 1(-3,-1)图2.2-7二、分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.例3:在国内投递外埠平信,每封信不超过20g付邮资80分,超过20g不超过40g 付邮资160分,超过40g不超过60g付邮资240分,依此类推,每封x g(0<x≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象.例4:如图9-2所示,在边长为2的正方形ABCD的边上有一个动点P,从点A出发沿折线ABCD移动一周后,回到A点.设点A移动的路程为x,ΔP AC的面积为y.(1)求函数y的解析式;(2)画出函数y的图像;(3)求函数y的取值范围.AC BDP 图2.2-10。

初升高衔接教本数学答案

初升高衔接教本数学答案

初升高衔接教本数学答案尊敬的老师和同学们:为了帮助同学们更好地适应高中数学的学习,我们特此提供了初升高衔接教本数学的答案。

请注意,这些答案仅供学习参考,我们鼓励同学们在遇到难题时先自己思考,然后再对照答案进行学习。

【第一章:代数基础】1. 问题1:解一元一次方程。

答案:对于方程 \( ax + b = 0 \),解为 \( x = -\frac{b}{a} \)。

2. 问题2:因式分解。

答案:多项式 \( ax^2 + bx + c \) 可以通过公式 \( x^2 + (b+c)x + bc \) 进行因式分解。

【第二章:几何初步】1. 问题1:证明三角形的内角和。

答案:在三角形ABC中,设角A、角B、角C分别为α、β、γ,则\( α + β + γ = 180^\circ \)。

2. 问题2:证明勾股定理。

答案:在直角三角形ABC中,设直角边为a、b,斜边为c,根据勾股定理,有 \( a^2 + b^2 = c^2 \)。

【第三章:函数与方程】1. 问题1:求函数的值域。

答案:对于函数 \( f(x) = ax + b \),其值域为 \( (-\infty,+\infty) \)。

2. 问题2:解一元二次方程。

答案:对于方程 \( ax^2 + bx + c = 0 \),当 \( a \neq 0 \) 时,解为 \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。

【第四章:解析几何】1. 问题1:求直线的方程。

答案:给定直线上的两点 \( (x_1, y_1) \) 和 \( (x_2, y_2) \),直线的斜率为 \( m = \frac{y_2 - y_1}{x_2 - x_1} \),直线方程为 \( y - y_1 = m(x - x_1) \)。

2. 问题2:求圆的方程。

答案:给定圆心 \( (h, k) \) 和半径 \( r \),圆的标准方程为\( (x - h)^2 + (y - k)^2 = r^2 \)。

【初升高 数学衔接教材】1~16讲参考答案

【初升高 数学衔接教材】1~16讲参考答案

第一讲 因式分解例1:解:由多项式的乘法法则易得))(()(2d cx b ax bd x bc ad acx ++=+++∴∴3×(-3)+2×1=-7∴)32)(13(3762-+=--x x x x 例2:解:∴原式=])([])([2222b a x b a x +-⋅-- =))()()((b a x b a x b a x b a x --+++--+ 例3:解:原式=)3103()44(422+--+-y y x y x=)3)(13()44(42---+-y y x y x =)]3(2)][13(2[-+--y x y x =)32)(132(-++-y x y x点评:以上三例均是利用十字相乘来因式分解,其中例3中有x 、y ,而我们将其整理x 的二次三项式。

故又称“主元法”。

例4:解:如果要分解的因式的形式是,唯一确定的,那么可以考虑利用待定系数法 ∵)3)(32(93222y x y x y xy x +-=-+则可设)3)(32(2031493222n y x m y x y x y xy x +++-=+-+-+(m 、n 待定) ∴原式=mn y n m x n m y xy x +-+++-+)33()2(93222比较系数得⎪⎩⎪⎨⎧=-=-=+20333142m n n m n m 解得m =4,n =53 2 1-3 x 2 -(a -b)2 x 2-(a -b)22x -(3y -1)2xy -3∴原式=)53)(432(+++-y x y x(2)在例3中利用了十字相乘法,请同学们用待定系数法解决。

例5:解:(1))61)(1()1(6)1)(1()66()1(762233+++-=-+++-=-+-=-+x x x x x x x x x x x =)7)(1(2++-x x x或)7)(1()1(7)1)(1()77()(76233++-=-+-+=-+-=-+x x x x x x x x x x x x 或)7)(1()1)(1(6)1)(1(7)66()77(7622333++-=-+-++-=---=-+x x x x x x x x x x x x x x解:(2)15++x x =)1()1()1()(232225+++-=+++-x x x x x x x x)1()1)(1(222+++++-=x x x x x x )1)(1(232+-++=x x x x例6:解:把198757623+-+x x x 用含有132--x x 的代数式表示∴321990339 198739 261987576132223232+--+--+----x x x x x x x x x x x x∴19901990)13)(32(1987576223=+--+=+-+x x x x x x 课堂练习答案:1、(1)))()()()((2222y xy x y xy x y x y x z y x +++--+-+ (2))1)(1)(1)(1(--+--+++b a b a b a b a (3))42)(2)(14(2++-+m m m m2、(1))22)(22(22+-++x x x x (2))8)(1(2-+-x x x3、(1))1)(23(+-++y x y x (2))23)(12(+--+y x y x4、-15、2-=ab第二讲 分式例题解析答案:例1:解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2例2:解:观察各分母的特点知,式中第一、二项,第三、四项分别组合通分较容易∴原式=4422442222232))(())((b a b a b a b b a b a b b a b a a -+--++-+++ =011))((22224422222222=---=-+-+-+ba b a b a b a b a b a b a 例3:解:设a m n =,b nm=,则1=ab ∴原式=2)(32223322-++÷---++b a ba b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(n m n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c ba abc b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+-----------=ac b c a c a b c b c a b a -=---+-+-----2111111 例5:解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bcb bcbc b b bc b 例6:解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学衔接教材参考答案第一讲 数与式的运算例1. 解:原式=22]31)2([+-+x x例2. 解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+例3. 解:(1)原式=333644m m +=+例7. 解:(1) 原式6==-(2) 原式ab(3) 原式=-+=-例8. 解:(1) 原式=22(1()21a b a +--+=--+(2) 原式=+=+例9.解:77 14,123x y x y xy ===+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=例10. 解法一:1.3.4.-5.例1. 解:(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+例2. 解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-例3. 解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--例4. 解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 例5. 解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+例6. 解:22222224282(24)x xy y z x xy y z ++-=++-例7. 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-2 例8. (1) 24- 15(5)-=-例 例10. 例11. 练习1.(a +1(2645525216p -.2222()(),()(),n x x y y xy x x x y x xy y +-+-++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x --+++--+ 4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)n ax x x a a b a b x x x x x x x --+--+-+-++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x -+-++++-+--+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b -++--+---+第三讲 一元二次方程根与系数的关系例1. 解:(1)2 (3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根.(2) 原方程可化为:241290y y -+=2 (12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+=例2. 2(2)4=--例3. 例4. (4) 12||x x -====例5. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5.(2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去. 综上可得,3例6. ∴ 要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---.练习1. B 2. A 3.A 4. 3 5. 9或3-6.1或47.21(1)1650 (2)2m m ∆=+>=-8.3(1) (2)22k k ≥=第四讲 不 等 式例1. 解:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解是32x x <->或.例2.例3. 例4. 例5. 3(1)3k ⎪⎪-⋅=-⎪⎩例6. 解:(1) 解法(一) 原不等式可化为:解法(二) 原不等式可化为:3(23)(1)012x x x -+<⇒-<<. (2) ∵ 22131(024x x x -+=-+>原不等式可化为:303x x +≥⇒≥- 例7. 解:原不等式可化为:(35)(2)013535530002202223x x x x x x x x x x ++≥⎧--+-≤⇒≤⇒≥⇒⇒<-≥-⎨+≠+++⎩或例8. 解:原不等式可化为:(2)2m m x m ->-(1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <.无解.例9.1.(1)2.(1)x 3.5.(1)当2m >时,12m x m ->-;(2)当2m <时,12m x m -<-; (3) 当2m =时,x 取全体实数. 6.1k =- 7.1x ≠第五讲 二次函数的最值问题例1. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2. 解:作出函数的图象.当1x =时, 1max-=y,当2x =时, 5min-=y.由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:例3. 解:作出函数2(2)2y x x x x=--=-在0x≥内的图象.可以看出:当1x=时,min 1y=-,无最大值.例例5.∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习1.4 , 14或2,322.2216lm3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=. 5.5y≥-6.当56x =时,min 36y =-;当23x =或1时,max 3y =.7.当54t =-时,min 0y =. 第六讲 简单的二元二次方程组例1. 解:由(1)得:2y x = (3)22 例2.例3. 例4. ∴ 原方程组可化为两个二元一次方程组:22300,44x y x y xy y xy y -=+=⎧⎧⎨⎨+=+=⎩⎩. 用代入法解这两个方程组,得原方程组的解是:121233,11x x y y ==-⎧⎧⎨⎨==-⎩⎩. 例5. 解:(1) +(2)2⨯得:222236()3666x y xy x y x y x y ++=⇒+=⇒+=+=-或, (1)-(2)2⨯得:222216()1644x y xy x y x y x y +-=⇒-=⇒-=-=-或.解此四个方程组,得原方程组的解是: 例6. 解:(1) 3(2)⨯-得:313 1 (3)x y y x -=⇒=-代入(1)得:212(31)33311x x x x x x -+=⇒=⇒==-或. 分别代入(3)得:1224y y ==-或.∴ 原方程组的解是:1211x x ==-⎧⎧⎨⎨或. 练习1.(1)x y ⎧⎨⎩2. (1)⎧⎨⎩3.(1)⎧⎨⎩44x y ⎧⎨⎩4.(1) ⎧⎪⎪⎨⎪⎪⎩第七讲 分式方程和无理方程的解法例1. 解:原方程可化为:方程两边各项都乘以24x -:即2364x x -=-, 整理得:2320x x -+= 解得:1x =或2x =.检验:把1x =代入24x -,不等于0,所以1x =是原方程的解;把2x =代入24x -,等于0,所以2x =是增根.所以,原方程的解是1x =.例2. 解:设21x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-. (1)当4y =时,241x x =-,去分母,得224(1)4402x x x x x =-⇒-+=⇒=;例3. (1)(2) 例4. 移项,合并同类项得:260x x +-=解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根. 所以,原方程的解是2x =.例5. 解:3=-两边平方得:3293x x -=-+整理得:1427x x =-⇒=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根. 把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.例6. 1.(1)x 2.x =3.(1)x 4.(1)5.(1)x 第八讲 直线、平面与常见立体图形例1. 解:正方体有6个面,12条棱,8个顶点,18对平行棱。

例2. 解:① 34 ② π)12(+;π31 ③ π2;π6例3. 解:图一 图二例4. 解:可以,如图过A 、B 1、D 1的截面为正三角形,过A 、A 1、C 、C 1的截面为长方形设M 、N 、P 、Q 、R 、S 为对应棱的中点,则MNPQRS 恰为正六边形练习1. (1)(2)(3)(4)(5)2. (1)(2 (3.5OD cm =在Rt ∆10BD ∴=例则由3OM ON -=3,解得5r =.(2)若O 在两条平行线的内侧(含线上), AB=64,CD =6,则由3OM ON +=3=,无解.综合得,圆的半径为5.例3. 解: 连AB 交12O O 于C ,则12O O AB ⊥,且C 为AB 的中点,设AC x =,则12O C O C ==124O O ==,解得x =. 故弦AB的长为2x =. 图3.3-8。

相关文档
最新文档