初二数学上册单元检测试题 人教版

合集下载

人教版八年级上册数学《分式》单元综合检测附答案

人教版八年级上册数学《分式》单元综合检测附答案
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数

人教版数学八年级上学期《三角形》单元检测题(带答案)

人教版数学八年级上学期《三角形》单元检测题(带答案)
(1)若∠B=40°,∠DEF=10°,求∠C的度数.
(2)当E在A D上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
参考答案
一、选择题(每小题3分,共30分)
1.下列各组中的三条线段能组成三角形的是()
A.3,4,8B.5,6,11C.5,6,10D.4,4,8
点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边.由此可以得到A>3,A<7,因此可以判断A-3和A-7的正负情况.此题还考查了考生绝对值的运算法则:正数的绝对值是其本身,负数的绝对值是它的相反数,零的绝对值还是零.由此可化简|A-3|+|A-7|
[结束]
10.如图,把△A B C纸片沿DE折叠,当点A在四边形B C DE的外部时,记∠AEB为∠1,∠A D C为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()
A. 10°B. 15°C. 20°D. 25°
[答案]B
[解析]
试题分析:根据三角形的外角的性质可得,∠A+45°=60°,解得∠A=15°.
故选B.
考点:三角形的外角的性质.
7.下列度数不可能是多边形内角和的是()
A.360°B.720°
C.810°D.2 160°
[答案]C
[解析]
试题分析:多边形内角和公式为(n-2)×180°,可将四个选项代入公式,计算出n为正整数就是多边形内角和,若不是则说明不是多边形的内角和.经计算可得810°除以180°等于4.5不是整数,所以810°不是多边形的内角和.故选C
二、填空题(每小题3分,共18分)
11.如图,共有______个三角形.
12.如图,点B,C,E,F 一直线上,A B∥D C,DE∥GF,∠B=∠F=72°,则∠D=_____度.

人教版初中八年级上册数学第十一章《三角形》单元达标检测试题及答案

人教版初中八年级上册数学第十一章《三角形》单元达标检测试题及答案

新人教版数学八年级上册第十一章三角形单元达标检测试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是( )A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可画三角形的个数是()A.1 B.2 C.3 D.43.对三角形的高、中线和角平分线概念理解错误的是 ( )A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5 C.6 D.75题图6题图7题图6.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCA=90°。

求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D. 多边形外角和公式7.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是 ( ) A 、3个 B 、4个 C 、5个 D 、6个8.在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上,若∠B =∠ADE ,则下列结论正确的是 ( )A .∠A 和∠B 互为补角B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角9.已知△ABC 中,AB=6,BC=4,那么边AC 的长可能是下列哪个值 ( ) A. 11 B. 5 C. 2 D. 110.n 边形内角和公式是(n-2×180°.则四边形内角和为 ( ) A.180° B.360° C.540° D.720°二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上) 11.已知a ,b ,c 是三角形的三边长,化简:|a -b +c |-|a -b -c |=__________. 12.等腰三角形的周长为20 cm ,一边长为6 cm ,则底边长为__________.13.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是______边形. 14.如图,∠A +∠B +∠C +∠D +∠E +∠F =__________.14题图 15题图 16题图15.如图,点D ,B ,C 在同一直线上,∠A =60°,∠C =50°,∠D =25°,则∠1=______. 16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 。

(人教版数学)初中8年级上册-单元检测-第11章 三角形 单元检测

(人教版数学)初中8年级上册-单元检测-第11章 三角形 单元检测

三角形单元测试题一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①B E=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN 交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为_________;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为_________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为_________.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为_________.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是_________;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案与试题解析一.选择题(共7小题)1.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O 是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④考点:等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.4387773分析:①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.解答:解:连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°,∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故②正确;在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;过点C作CH⊥AB于H,∵∠PAC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确.故选D.点评:本题考查了等腰三角形的判定与性质,关键是正确作出辅助线.2.如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB 最小,则点P应该满足()A.P B=PC B.P A=PD C.∠BPC=90°D.∠APB=∠DPC考点:轴对称-最短路线问题;直角梯形.专题:压轴题;动点型.分析:首先根据轴对称的知识,可知P点的位置是连接点B和点C关于AD的对称点E与AD的交点,利用轴对称和对顶角相等的性质可得.解答:解:如图,作点C关于AD的对称点E,连接BE交AD于P,连接CP.根据轴对称的性质,得∠DPC=∠EPD,根据对顶角相等知∠APB=∠EPD,所以∠APB=∠DPC.故选D.点评:此题的关键是应知点P是怎样确定的.要找直线上一个点和直线同侧的两个点的距离之和最小,则需要利用轴对称的性质进行确定.3.如图,△ABC是等腰直角三角形,△DEF是一个含30°角的直角三角形,将D放在BC的中点上,转动△DEF,设DE,DF分别交AC,BA的延长线于E,G,则下列结论:①AG=CE ②DG=DE③BG﹣AC=CE ④S△BDG﹣S△CDE=S△ABC其中总是成立的是()A.①②③B.①②③④C.②③④D.①②④考点:旋转的性质;全等三角形的判定与性质.4387773专题:开放型.分析:连DA,由△ABC是等腰直角三角形,D点为BC的中点,根据等腰直角三角形的性质得AD⊥BC,AD=DC,∠ACD=∠CAD=45°,得到∠GAD=∠ECD=135°,由∠EDF=90°,根据同角的余角相等得到∠1=∠2,所以△DAG≌△DCE,AG=E C,DG=DE,由此可分别判断.解答:解:连DA,如图,∵△ABC是等腰直角三角形,D点为BC的中点,∴AD⊥BC,AD=DC,∠ACD=∠CAD=45°,∴∠GAD=∠ECD=135°,又∵△DEF是一个含30°角的直角三角形,∴∠EDF=90°,∴∠1=∠2,∴△DAG≌△DCE,∴AG=EC,DG=DE,所以①②正确;∵AB=AC,∴BG﹣AC=BG﹣AB=AG=EC,所以③正确;∵S△BDG﹣S△CDE=S△BDG﹣S△ADG=S△ADB=S△ABC.所以④正确.故选B.点评:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直三角形的性质,特别是斜边上的中线垂直斜边并且等于斜边的一半.4.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.4387773分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BAE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ACB=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥B C于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,∴△CMD≌△CND,∴CN=CM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.5.如图,BC∥AM,∠A=90°,∠BCD=75°,点E在AB上,△CDE为等边三角形,BM交CD于F,下列结论:①∠ADE=45°,②AB=BC,③EF⊥CD,④若∠AMB=30°,则CF=DF.其中正确的有()A.①②③B.①②④C.①③④D.②③④考点:直角梯形;等边三角形的性质;含30度角的直角三角形;等腰直角三角形.4387773分析:由BC∥AM得∠CDA=105°,根据等边三角形的性质得∠CDE=60°,则∠EDA=105°﹣60°=45°;过C作CG⊥AM,则四边形ABCG为矩形,于是∠DCG=90°﹣∠BCD=15°,而∠BCE=75°﹣60°=15°,易证得Rt△CBE≌Rt△CGD,则BC=CG,得到AB=BC;由于AG=BC,而AG≠MD,则CF:FD=BC:MD≠1,不能得到F点是CD的中点,根据等边三角形的性质则不能得到EF⊥CD;若∠AMB=30°,则∠CBF=30°,在Rt△AMB中根据含30度的直角三角形三边的关系得到BM=2AB,则BM=2BC,易得∠BFC=75°,所以BF=BC,得MF=BF,由CB∥AM得CF:FD=BF:MF=1,即可有CF=DF.解答:解:∵BC∥AM,∴∠BCD+∠CDA=180°,∵∠BCD=75°,∴∠CDA=105°,∵△CDE为等边三角形,∴∠CDE=60°,∴∠EDA=105°﹣60°=45°,所以①正确;过C作CG⊥AM,如图,∵∠A=90°,∴四边形ABCG为矩形,∴∠DCG=90°﹣∠BCD=15°,而△CDE为等边三角形,∴∠DCE=60°,CE=CD,∴∠BCE=75°﹣60°=15°,∴Rt△CBE≌Rt△CGD,∴BC=CG,∴AB=BC,所以②正确;∵AG=BC,而AG≠MD,∴CF:FD=BC:MD≠1,∴F点不是CD的中点,∴EF不垂直CD,所以③错误;若∠AMB=30°,则∠CBF=30°,∴在Rt△AMB中,BM=2AB,∴BM=2BC,∵∠BCD=75°,∴∠BFC=180°﹣30°﹣75°=75°,∴BF=BC,∴MF=BF,而CB∥AM,∴CF:FD=BF:MF=1,∴CF=FD,所以④正确.故选B.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形和等边三角形的性质、含30度的直角三角形三边的关系以及相似三角形的判定与性质.6.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;等腰直角三角形.4387773分析:根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.解答:解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.因此选C.点评:此题考查全等三角形的判定和性质,综合性较强.7.如图,AM、BE是△ABC的角平分线,AM交BE于N,AL⊥BE于F交BC于L,若∠ABC=2∠C,下列结论:①BE=EC;②BF=AE+EF;③AC=BM+BL;④∠MAL=∠ABC,其中正确的结论是()A.①②③B.①④C.①②③④D.①②考点:全等三角形的判定与性质;等腰三角形的判定与性质.4387773分析:根据角平分线定义求出∠ABE=∠EBC=∠C,根据等角对等边求出BE=CE,即可判断①;证△ABE∽△ACB,推出AB2=AE×AC,求出AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式即可求出BF=AE+EF,即可判断②;延长AB到N,使BN=BM,连接MN,证△AMC≌△AMN,△AFB≌△BLF,推出AB=BL,即可判断③;设∠LAC=x°,∠LAM=y°,则∠BAM=∠MAC=(x+y)°,证△AFB≌△BLF推出∠BAF=∠BLF,∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,得出方程x°+y°+y°=∠C+x°,求出∠C=2y°,∠ABC=4y°,即可判断④.解答:解:∵BE是∠ABC的角平分线,∴∠EBC=∠ABE=∠ABC,∵∠ABC=2∠C,∴∠ABE=∠EBC=∠C,∴BE=EC,∴①正确;∵∠ABE=∠ACB,∠BAC=∠EAB∴△ABE∽△ACB,∴=,∴AB2=AE×AC,在Rt△AFB与Rt△AFE中,由勾股定理得:AF2=AB2﹣BF2=AE2﹣EF2,把AB2=AE×AC代入入上式得:AE×AC﹣BF2=AE2﹣EF2,则BF2=AC×AE﹣AE2+EF2=AE×(AC﹣AE)+EF2=AE×EC+EF2=AE×BE+EF2,即(BE﹣EF)2=AE×BE+EF2,∴BE2﹣2BE×EF+EF2=AE×BE+EF2,∴BE2﹣2BE×EF=AE×BE,∴BE﹣2EF=AE,BE﹣EF=AE+EF,即BF=AE+EF,∴②正确;延长AB到N′,使BN=BM,连接MN′,则△BMN′为等腰三角形,∴∠BN′M=∠BMN′,△BN′M的一个外角∠ABC=∠BN′M+∠BM′N=2∠BN′M,则∠BN′M=∠ACB,在△AMC与△AMN′中,∴△AMC≌△AMN′(AAS),∴AN′=AC=AB+BN′=AB+BM,又∵AL⊥BE,∴∠AFB=∠LFB=90°,在△AFB与△LFB中,,∴△AFB≌△BLF(ASA),∴AB=BL,则AN′=AC=AB+BN′=AB+BM=BM+BL,即AC=BM+BL,∴③正确;设∠LAC=x°,∠LAM=y°,∵AM平分∠BAC,∴∠BAM=∠MAC=(x+y)°.∵△AFB≌△BLF,∴∠BAF=∠BLF,∵∠BAF=∠BAM+∠MAL=x°+y°+y°,∠BLA=∠C+∠LAC=∠C+x°,∴x°+y°+y°=∠C+x°,∴∠C=2y°,∵∠ABC=2∠C,∴∠ABC=4y°,即∠MAL=∠ABC,∴④正确.故选C.点评:本题考查了勾股定理,相似三角形的性质和判定,角平分线性质,相似三角形的性质和判定等知识点的综合运用.二.解答题(共8小题)8.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.考点:等腰三角形的性质;全等三角形的判定与性质.4387773专题:证明题.分析:(1)根据等腰三角形两底角相等求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CEF,然后计算即可得解;(2)过点E作EH∥AB交BC于H,根据两直线平行,同位角相等可得∠ABC=∠EHC,内错角相等可得∠D=∠FEH,然后求出∠EHC=∠C,再根据等角对等边可得EC=EH,然后求出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得证.解答:(1)解:∵∠A=50°,∴∠C=(180°﹣∠A)=(180°﹣50°)=65°,∵EG⊥BC,∴∠CEG=90°﹣∠C=90°﹣65°=25°,∵∠A=50°,∠D=30°,∴∠CEF=∠A+∠D=50°+30°=80°,∴∠GEF=∠CEF﹣∠CEG=80°﹣25°=55°;(2)证明:过点E作EH∥AB交BC于H,则∠ABC=∠EHC,∠D=∠FEH,∵AB=AC,∴∠ABC=∠C,∴∠EHC=∠C,∴EC=EH,∵BD=CE,∴BD=EH,在△BDF和△HEF中,,∴△BDF≌△HEF(AAS),∴BF=FH,又∵EC=EH,EG⊥BC,∴CG=HG,∴FG=FH+HG=BF+CG.点评:本题考查了等腰三角形的性质,全等三角形的判定与性质,主要利用了等腰三角形两底角相等的性质,等角对等边的性质,(2)作辅助线构造出全等三角形是解题的关键.9.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE 的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.考点:全等三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方;坐标与图形性质;等腰直角三角形.4387773分析:(1)根据a=t,b=t,推出a=b即可;(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.解答:(1)解:∵a,b满足(a﹣t)2+|b﹣t|=0(t>0).∴a﹣t=0,b﹣t=0,∴a=t,b=t,∴a=b,∵B(t,0),点C(0,t)∴OB=OC;(2)证明:延长AF至T,使TF=AF,连接TC,TO,∵F为CE中点,∴CF=EF,在△TCF和△AEF中∴△TCF≌△AEF(SAS),∴CT=AE,∠TCF=∠AEF,∴TC∥AD,∴∠TCD=∠CDA,∵AB=AE,∴TC=AB,∵AD⊥AB,OB⊥OC,∴∠COB=∠BAD=90°,∴∠ABO+∠ADO=180°,∵∠ADO+∠ADC=180°,∴∠ADC=∠ABC,∵∠TCD=∠CDA,∴∠TCD=∠ABO,在△TCO和△ABO中∴△TCO≌△ABO(SAS),∴TO=AO,∠TOC=∠AOB,∵∠AOB+∠AOC=90°,∴∠TOC+∠AOC=90°,∴△TAO为等腰直角三角形,∴∠OAF=45°;(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,∵B和B′关于关于y轴对称,C在y轴上,∴CB=CB′,∴∠CBB′=∠CB′B,∵MH∥CN,∴∠MHB=∠CB′B,∴∠MHB=∠CBB′,∴MH=BM,∵BM=B′N,∴MH=B′N,∵MH∥CN,∴∠NB′T=∠MHT,在△NTB′和△MTH中∴△NTB′≌△MTH,∴TN=MT,又TQ⊥MN,∴MQ=NQ,∵CQ垂直平分BB′,∴BQ=B′Q,∵在∴△NQB′和△MQB中∴△NQB′≌△MQB (SSS),∴∠NB′Q=∠CBQ,而∠NB′Q+∠CB′Q=180°∴∠CBQ+∠CB′Q=180°∴∠B′CB+∠B′QB=180°,又∠B′CB=90°,∴∠B′QB=90°∴△BQB′是等腰直角三角形,∴OQ=OB=t,∴Q(0,﹣t).点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.10.如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形=16.OBAC(1)∠COA的值为45°;(2)求∠CAB的度数;(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.考点:全等三角形的判定与性质;坐标与图形性质.4387773分析:(1)过A作AN⊥OC于N,AM⊥OB于M,得出正方形NOMA,根据正方形性质求出∠COA=∠COB,代入求出即可;(2)求出CN=BM,证△ANC≌△AMB,推出∠NAC=∠MAB,求出∠CAB=∠NAM,即可求出答案;(3)求出∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,求出∠HON=∠NMO=∠LMN,求出OL=ML,证△OLP≌△MLN,推出MN=OP,即可得出答案.解答:解:(1)过A作AN⊥OC于N,AM⊥OB于M,则∠ANO=∠AMO=∠COB=90°,∵A(4,4),∴AN=AM=4,∴四边形NOMA是正方形,∴∠COA=∠COB=×90°=45°.故答案为:45°;(2)∵四边形NOMA是正方形,∴AM=AN=4,OM=ON=4,∴OC×AN+OB×AM=16,∴OC+OB=8=ON+OM,即ON﹣OC=OB﹣OM,∴CN=BM,在△ANC和△AMB中,,∴△ANC≌△AMB(SAS),∴∠NAC=∠MAB,∴∠CAB=∠CAM+∠MAB=∠NAM=360°﹣90°﹣90°﹣90°=90°,即∠CAB=90°;(3)MN=2OH,证明:在Rt△OMH中,∠HON+∠NMO+∠NOM=90°,又∵∠NOM=45°,∠HON=∠NMO,∴∠HON=∠NMO=22.5°,延长OH至点P使PH=OH,连接MP交OA于L,∴OM=MP,∠OMP=2∠OMN=45°,∴∠HON=∠NMO=∠LMN,∴∠OLM=90°=∠PLO,∴OL=ML,在△OLP和△MLN中,∴△OLP≌△MLN(ASA),∴MN=OP,∵OP=2HO,∴MN=2HO.点评:本题考查了坐标与图形性质,等腰三角形的性质和判定,正方形的性质和判定,全等三角形的性质和判定等知识点的应用,题目综合性比较强,有一定的难度.11.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.考点:全等三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根;坐标与图形性质;等边三角形的性质.4387773专题:探究型.分析:(1)根据二次根式以及偶次方都是非负数,两个非负数的和是0,则每个数一定同时等于0,即可求解;(2)连接OC,只要证明OC是∠AOD的角平分线即可判断AC=CD,求出∠ACD的度数即可判断位置关系;(3)延长GA至点M,使AM=OF,连接BM,由全等三角形的判定定理得出△BAM≌△BOF,△FBG≌△MBG,故可得出FG=GM=AG+OF,由此即可得出结论.解答:解:(1)根据题意得:a﹣2=0且b﹣2=0,解得:a=2,b=2,则A的坐标是(2,2);(2)AC=CD,且AC⊥CD.如图1,连接OC,CD,∵A的坐标是(2,2),∴AB=OB=2,∵△ABC是等边三角形,∴∠OBC=30°,OB=BC,∴∠BOC=∠BCO=75°,∵在直角△ABO中,∠BOA=45°,∴∠AOC=∠BOC﹣∠BOA=75°﹣45°=30°,∵△OAD是等边三角形,∴∠DOC=∠AOC=30°,即OC是∠AOD的角平分线,∴OC⊥AD,且OC平分AD,∴AC=DC,∴∠ACO=∠DCO=60°+75°=135°,∴∠ACD=360°﹣135°﹣135°=90°,∴AC⊥CD,故AC=CD,且AC⊥CD.(3)不变.延长GA至点M,使AM=OF,连接BM,∵在△BAM与△BOF中,,∴△BAM≌△BOF(SAS),∴∠ABM=∠OBF,BF=BM,∵∠OBF+∠ABG=90°﹣∠FBG=45°,∴∠MBG=45°,∵在△FBG与△MBG中,,∴△FBG≌△MBG(SAS),∴FG=GM=AG+OF,∴=1.点评:本题考查的是全等三角形的判定与性质,涉及到非负数的性质及等边三角形的性质等知识,难度适中.12.(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.考点:轴对称-最短路线问题.4387773分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P 就是所求作的位置.根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值;(2)首先在斜边AC上截取AB′=AB,连结BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.解答:解:(1)作点B关于CD的对称点E,连接AE交CD于点P此时PA+PB最小,且等于AE.作直径AC′,连接C′E.根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°,∴∠AOE=90°,∴∠C′AE=45°,又AC′为圆的直径,∴∠AEC′=90°,∴∠C′=∠C′AE=45°,∴C′E=AE=AC′=2,即AP+BP的最小值是2.故答案为:2;(2)如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F的长即为所求.(点到直线的距离最短)在Rt△AFB′中,∵∠BAC=45°,AB′=AB=10,∴B′F=AB′•sin45°=AB•sin45°=10×=5,∴BE+EF的最小值为.点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位置是解题关键.13.(2013•六盘水)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE 的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN+MN的值最小,保留作图痕迹,不写作法.考点:圆的综合题;轴对称-最短路线问题.4387773专题:压轴题.分析:(1)观察发现:利用作法得到CE的长为BP+PE的最小值;由AB=2,点E是AB的中点,根据等边三角形的性质得到CE⊥AB,∠BCE=∠BCA=30°,BE=1,再根据含30度的直角三角形三边的关系得CE=;(2)实践运用:过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,根据垂径定理得到CD平分BE,即点E与点B关于CD对称,则AE的长就是BP+AP的最小值;由于的度数为60°,点B是的中点得到∠BOC=30°,∠AOC=60°,所以∠AOE=60°+30°=90°,于是可判断△OAE为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P关于AB和BC的对称点E和F,然后连结EF,EF交AB于M、交BC于N.解答:解:(1)观察发现如图(2),CE的长为BP+PE的最小值,∵在等边三角形ABC中,AB=2,点E是AB的中点∴CE⊥AB,∠BCE=∠BCA=30°,BE=1,∴CE=BE=;故答案为;(2)实践运用如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,∵BE⊥CD,∴CD平分BE,即点E与点B关于CD对称,∵的度数为60°,点B是的中点,∴∠BOC=30°,∠AOC=60°,∴∠EOC=30°,∴∠AOE=60°+30°=90°,∵OA=OE=1,∴AE=OA=,∵AE的长就是BP+AP的最小值.故答案为;(3)拓展延伸如图(4).点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称﹣最短路径问题.14.(2013•抚顺)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是DE=BC;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.考点:全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.4387773分析:(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE=BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE=BC可得到BF+BP=DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP=DE.解答:解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.15.(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.考点:全等三角形的判定与性质;等边三角形的判定.4387773专题:压轴题.分析:(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)与前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.解答:证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

八年级数学上册每章节 新人教版八年级上册各章节测试(共15套)

八年级数学上册每章节 新人教版八年级上册各章节测试(共15套)

八年级数学上册每章节新人教版八年级上册各章节测试(共15套)导读:就爱阅读网友为您分享以下“新人教版八年级上册各章节测试(共15套)”的资讯,希望对您有所帮助,感谢您对的支持!26.在一条平直的南北方向的公路上,有甲、乙、丙三辆汽车依次向北行驶,甲、丙两车快慢相同,乙车较甲、丙两车开得快。

(1)以什么为参照物,三辆车均向北运动?(2)以甲车为参照物,乙、丙两车各向什么方向运动?(3)以乙车为参照物,甲、丙两车各向什么方向运动?27.一列火车长200m,以20m/s的速度匀速通过一座长为1.8km的大桥,问火车全部通过该大桥需要多少时间?第一章机械运动(三)一、选择题(每小题3分,共30分)1.下列现象中不属于机械运动的是()A.一江春水向东流B.星光闪闪C.海水奔腾D.春风拂面2.如图所示,关于长度的测量,下列说法正确的是( ) A.两个人测量方法都正确,他们测同一物体的长度,测得的数值一定相同B.两个人测同一物体的长度,测得的数值不同,其中有一人测量方法是错误的C.两个人测同一物体的长度,测得的数值不同,两个人的测量方法都正确D.一个人测量方法正确,读数是 2.2cm;多次测同一物体的长度,测得的数值不一定相同3.下列关于误差的说法中正确的是( ) A.测量时出现误差,则说明一定是出了差错B.误差是难以避免的,所以减小误差是不可能的C.在测量时,多测量几次取平均值可以减小误差D.改进实验方法和采用精密的测量工具 4.下列几种估测最符合实际情况的是()A.人步行的速度约为5m/sB.全新的2B铅笔长约18cmC.课桌的高度约为1.5 m D.一张试卷的厚度大约1mm 5.摄影师抓拍了一个有趣的场面(如图):一只乌鸦站在飞翔的老鹰背上休憩。

下列说法正确的是()A.以乌鸦为参照物,老鹰是静止的B.以地面为参照物,乌鸦是静止的C.以老鹰为参照物,乌鸦是静止的D. 以地面为参照物,老鹰是静止的6.在上学的路上,当小明正快步追上在前面的小华时,一辆车从他身旁向前快速驶去,则()A.小华相对于车是向前运动的B.小明相对于小华是静止的C.小明相对于车是向后运动的D.小华相对于小明是向前运动的7.某物体做匀速直线运动,由速度公式v?s可知,物体的()tA.速度大小恒定不变B.速度与路程成正比C.速度与时间成反比D.以上说法都对8.一短跑运动员在5s内跑完了50m,汽车行驶的速度是54km/h,羚羊奔跑的速度是20m/s,那么三者速度从大到小的顺序是()A.运动员、汽车、羚羊B.汽车、羚羊、运动员C.羚羊、汽车、运动员D.运动员、羚羊、汽车9.如图所示为A、B两小车向右运动过程的频闪照片.它表示两个小球在相等的时间间隔所在的位置,则对A、B两小车的运动情况判断正确的是( ) A.小车A做变速运动,小车B做匀速运动B.小车A做匀速运动,小车B做变速运动C.小车A、B 都做匀速运动D.小车A、B都做变速运动10.甲、乙两同学沿平直路面步行,他们运动的路程随时间变化的规律如图所示,下列说法中不正确的是() A.甲同学比乙同学晚出发4sB.4s-8s内,甲、乙同学都做匀速直线运动C.0-8s内,甲、乙两同学运动的路程相等D.8s末甲、乙两同学的速度相等二、填空题(每空1 分,共17 分)11.国际单位制中,长度的单位是__________,常用符号__________表示。

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。

最新人教版八年级数学上册单元测试题及答案

最新人教版八年级数学上册单元测试题及答案

最新人教版八年级数学上册单元测试题及答案(含期末试题)第十一章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40° C.60° D.70°(第2题) (第6题)3.(3分)已知三角形的两边长分别为4和6,则第三边可能是()A.2 B.7 C.10 D.124.(3分)正五边形的每一个外角的度数是()A.60° B.108° C.72° D.120°5.(3分)一个多边形的每个内角都等于144°,则这个多边形的边数是() A.8 B.9 C.10 D.116.(3分)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=() A.145° B.150° C.155° D.160°7.(3分)如图,这个五边形ABCDE的内角和等于()A.360° B.540° C.720° D.900°(第7题) (第8题)8.(3分)小明把两个含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D =30°,则∠α+∠β等于()A.180° B.210° C.360° D.270°9.(3分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=12∠ACB C.AE=BE D.CD⊥BE(第9题)(第10题)10.(3分)如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335° B.255° C.155° D.150°11.(3分)a,b,c为△ABC的三边,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|,结果是()A.0 B.2a+2b+2c C.4a D.2b-2c12.(3分)如图,B P是△ABC中∠ABC的平分线,C P是∠ACB的外角的平分线,如果∠AB P=20°,∠AC P=50°,则∠A+∠P=()(第12题)A.70° B.80°C.90° D.100°二、填空题(共6小题,总分18分)13.(3分)在△ABC中,已知∠A=30°,∠B=60°,则∠C=_______.14.(3分)已知△ABC的两条边长分别为2和5,则第三边c的取值范围是_________.15.(3分)如果将一副三角板按如图方式叠放,那么∠1=_________.(第15题) (第16题)16.(3分)如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=_____°. 17.(3分)如图,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是______米.(第17题)(第18题)18.(3分)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=______.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2 009BC 的平分线与∠A2 009CD的平分线交于点A2 010,得∠A2 010,则∠A2 010=______.三、解答题(共8小题,总分66分)19.(6分)如图,△ABC中,∠B=50°,AD平分∠BAC,∠ADC=80°.求∠C的度数.(第19题) 20.(6分)一个多边形的内角和等于它的外角和的6倍,它是几边形?21.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.(第21题)22.(6分)如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.(第22题) 23.(8分)如图,在△ABC中,∠B=40°,∠BCD=100°,CE平分∠ACB.求∠A和∠BEC的度数.(第23题) 24.(10分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.(第24题)25.(12分)已知:如图,点D、E分别在AB、AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.(第25题) 26.(12分)探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,D P、C P分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图③,在四边形ABCD中,D P、C P分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.①②③(第26题)答案一、1.A 2.A 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.A 12.C二、13.90° 14.3<c <7 15.105° 16.45 17.180 18.α2;α22010 三、19.解:∵∠B =50°,∠ADC =80°,∴∠BAD =∠ADC -∠B =80°-50°=30°. ∵AD 平分∠BAC ,∴∠BAC =2∠BAD =60°,∴∠C =180°-∠B -∠BAC =180°-50°-60°=70°.20.解:设多边形的边数是n ,根据题意得,(n -2)·180°=6×360°,解得n =14.故它是十四边形.21.解:∵AD 是BC 边上的高,∠B =42°,∴∠BAD =48°,∵∠DAE =18°, ∴∠BAE =∠BAD -∠DAE =30°, ∵AE 是∠BAC 的平分线, ∴∠BAC =2∠BAE =60°,∴∠C =180°-∠B -∠BAC =78°.22.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<DC <9; (2)∵AE ∥BD ,∠BDE =125°, ∴∠AEC =55°,又∵∠A =55°,∴∠C =70°.23.解:∵∠B =40°,∠BCD =100°, ∴∠A =∠BCD -∠B =100°-40°=60°, 又∵∠BCD =100°,∴∠ACB =180°-100°=80°,而CE 平分∠ACB ,∴∠BCE =40°, ∴∠BEC =180°-∠B -∠BCE =180°-40°-40°=100°.即∠A 和∠BEC 的度数分别为60°,100°.24.解:如图,连接AD 并延长AD 至点E ,∵∠BDE =∠BAE +∠B , ∠CDE =∠CAD +∠C ,∴∠BDC =∠BDE +∠CDE = ∠CAD +∠C +∠BAD +∠B = ∠BAC +∠B +∠C ,∵∠BAC =90°,∠B =21°,∠C =32°, ∴∠BDC =90°+21°+32°=143°.25.证明:(1)∵∠EGH 是△FBG 的外角,∴∠EGH >∠B ,又∵DE ∥BC ,∴∠B =∠ADE (两直线平行,同位角相等), ∴∠EGH >∠ADE ;(2)∵∠BFE 是△AFE 的外角, ∴∠BFE =∠A +∠AEF , ∵∠EGH 是△BFG 的外角, ∴∠EGH =∠B +∠BFE .∴∠EGH =∠B +∠A +∠AEF , 又∵DE ∥BC ,∴∠B =∠ADE (两直线平行,同位角相等), ∴∠EGH =∠ADE +∠A +∠AEF .26.解:探究一:∵∠FDC =∠A +∠ACD ,∠ECD =∠A +∠ADC ,∴∠FDC +∠ECD =∠A +∠ACD +∠A +∠ADC = 180°+∠A ;探究二:∵D P 、C P 分别平分∠ADC 和∠ACD ,∴∠P DC =12∠ADC ,∠P CD =12∠ACD , ∴∠P =180°-∠P DC -∠P CD =180°-12∠ADC -12∠ACD =180°-12(∠ADC +∠ACD )=180°-12(180°-∠A )=90°+12∠A ;探究三:∵D P 、C P 分别平分∠ADC 和∠BCD ,∴∠P DC =12∠ADC ,∠P CD =12∠BCD , ∴∠P =180°-∠P DC -∠P CD =180°-12∠ADC -12∠BCD =180°-12(∠ADC +∠BCD )=180°-12(360°-∠A -∠B )= 12(∠A +∠B ).第十二章质量评估测试卷一、选择题(共12小题,总分36分) 1.(3分)下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等2.(3分)如图,△ABC ≌△CDA ,∠BAC =85°,∠B =65°,则∠CAD 的度数为( )A .85°B .65°C .40°D .30°(第2题)(第3题) (第4题) (第5题)3.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是() A.76°B.62°C.42°D.76°、62°或42°都可以4.(3分)如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个5.(3分)如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =7,则CD的长为()A.5.5B.4C.4.5D.36.(3分)如图,将两根同样的钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB ≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS(第6题)(第7题) (第8题) (第9题)7.(3分)如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对B.2对C.3对D.4对8.(3分)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15° B.20° C.25° D.30°9.(3分)如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD =AB;③∠CDA=∠ABC; 其中正确的结论是()A.①②B.①②③C.①③D.②③10.(3分)如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90° ;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是() A.①②④B.①②③C.②③④D.①③(第10题) (第11题) (第12题)11.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是() A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°12.(3分)如图,在5×5格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有()A.5个B.6个C.7个D.8 个二、填空题(共6小题,总分18分)13.(3分)如图所示的方格中,∠1+∠2+∠3=_______度.(第13题)(第14题) (第15题)14.(3分)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为_______.15.(3分)如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:_______________________,使△ABC≌△FED.16.(3分)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.(第16题) (第17题) (第18题)17.(3分)如图,要测量池塘的宽度AB,在池塘外选取一点P,连接AP、BP并各自延长,使PC=P A,PD=P B,连接CD,测得CD长为25m,则池塘宽AB为________m,依据是___________.18.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=___________cm.三、解答题(共8小题,总分66分)19.(6分)如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.(第19题)20.(6分)如图,已知AF=BE,∠A=∠B,AC=BD.求证:∠F=∠E.(第20题) 21.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.(第21题) 22.(8分)如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.(第22题) 23.(8分)如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.(第23题) 24.(10分)如图,已知CA=CB,点E,F在射线CD上,满足∠BEC=∠CFA,且∠BEC+∠ECB+∠ACF=180°.(1)求证:△BCE≌△CAF;(2)试判断线段EF,BE,AF的数量关系,并说明理由.(第24题) 25.(10分)在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E.(1)若B、C在DE的同侧(如图①),且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图②),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.①②(第25题)26.(10分)问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图②,∠M A N=90°,射线AE在这个角的内部,点B、C在∠M A N的边A M、A N上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;归纳证明:如图③,点B,C在∠M A N的边A M、A N上,点E,F在∠M A N内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为____.答案一、1.C 2.D 3.B 4.D 5.B 6.A 7.D 8.B 9.B 10.A 11.B 12.B 二、13.135 14.415.A C =FD (答案不唯一) 16.80 17.25;全等三角形对应边相等 18.1.5三、19.证明:在△AOC 与△DOB 中,⎩⎨⎧∠AOC =∠DOB ,∠A =∠D ,CO =BO ,∴△AOC ≌△DOB (AAS).20.证明:∵AC =BD ,∴AC +CD =BD +CD .∴AD =BC ,在△ADF 和△BCE 中,⎩⎨⎧AD =BC ,∠A =∠B ,AF =BE ,∴△ADF ≌△BCE (SAS).21.证明:∵BE =FC ,∴BE +EF =FC +EF ,即BF =EC ,在△ABF 和△DCE 中,⎩⎨⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE (SAS), ∴∠A =∠D .22.(1)解:∵∠A =85°,∠B =60°,∴∠ACB =180°-∠A -∠B =35°,∵△ABC ≌△DEF ,AB =8,∴∠F =∠ACB =35°,DE =AB =8, ∵EH =2,∴DH =8-2=6;(2)证明:∵△ABC ≌△DEF ,∴∠B =∠DEF ,∴AB ∥DE .23.解:(1)∵△EFG ≌△NM H ,∠F 与∠M 是对应角,∴EF =NM ,EG =N H ,FG =M H ,∠F =∠M ,∠E =∠N , ∠EGF =∠N H M ,∴FH =G M ,∠EG M =∠N HF ;(2)∵EF =NM ,EF =2.1 cm , ∴MN =2.1 cm.∵FG =M H ,FH +HG =FG ,FH =1.1 cm ,H M =3.3 cm , ∴HG =FG -FH =H M -FH =3.3-1.1=2.2 (cm). 24.(1)证明:∵∠BEC =∠CFA ,∠BEC +∠ECB +∠ACF =180°, ∠CFA +∠ACF +∠FAC =180°, ∴∠BCE =∠FAC ,在△BCE 和△CAF 中,⎩⎨⎧∠BEC =∠CFA ,∠BCE =∠CAF ,BC =CA ,∴△BCE ≌△CAF (AAS);(2)解:AF +EF =BE ,理由如下:∵△BCE ≌△CAF ,∴AF =CE ,CF =BE , ∵CE +EF =CF ,∴AF +EF =BE .25.(1)证明:∵BD ⊥DE ,CE ⊥DE ,∴∠ADB =∠AEC =90°,在Rt △ABD 和Rt △CAE 中,∵⎩⎨⎧AB =CA ,AD =CE , ∴Rt △ABD ≌Rt △CAE (HL).∴∠DAB =∠ECA ,∠DBA =∠EAC .∵∠DAB +∠DBA =90°,∠EAC +∠ACE =90°,∴∠BAD +∠CAE =90°.∠BAC =180°-(∠BAD +∠CAE )=90°.∴AB ⊥AC .(2)解:AB ⊥AC .理由如下:同(1)一样可证得Rt △ABD ≌Rt △CAE . ∴∠DAB =∠ECA ,∠DBA =∠EAC , ∵∠CAE +∠ECA =90°,∴∠CAE +∠BAD =90°,即∠BAC =90°,∴AB ⊥AC . 26.证明:特例探究:∵CF ⊥AE ,BD ⊥AE ,∠M A N =90°,∴∠BDA =∠AFC =90°,∴∠ABD +∠BAD =90°,∠BAD +∠CAF =90°, ∴∠ABD =∠CAF ,在△ABD 和△CAF 中,∵⎩⎨⎧∠ADB =∠CFA ,∠ABD =∠CAF ,AB =CA ,∴△ABD ≌△CAF (AAS).归纳证明:∵∠1=∠2=∠BAC ,∠1=∠BAE +∠ABE ,∠BAC =∠BAE +∠CAF ,∠2=∠FCA +∠CAF ,∴∠ABE =∠CAF ,∠BAE =∠FCA ,在△ABE 和△CAF 中,∵⎩⎨⎧∠ABE =∠CAF ,AB =CA ,∠BAE =∠ACF ,∴△ABE ≌△CAF (ASA). 拓展应用:5第十三章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列图案是轴对称图形的有( )个.A.1 B.2 C.3 D.42.(3分)点A(-2,5)关于y轴对称的点的坐标是()A.(2,5) B.(-2,-5) C.(2,-5) D.(5,-2)3.(3分)若等腰三角形的顶角为80°,则它的一个底角度数为() A.20° B.50° C.80° D.100°4.(3分)如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=CB,∠1=70°,则∠BAC等于()A.40° B.55° C.70° D.110°5.(3分)如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是() A.55° B.45° C.35° D.65°6.(3分)若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或127.(3分)如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为()A.120° B.135° C.145° D.150°8.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使涂黑部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种9.(3分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE 垂直平分AB,则∠C的度数为()A.90° B.84° C.64° D.58°10.(3分)如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点E,D在AC同侧,若∠CAE=118°,则∠B的大小为()A.31° B.32° C.59° D.62°11.(3分)如图,等边三角形ABC与互相平行的直线a,b相交,若∠1=25°,则∠2的大小为()A.25° B.35° C.45° D.55°12.(3分)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B 上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=()A.α210B.α29C.α20D.α18二、填空题(共6小题,总分18分)13.(3分)点M(-2,1)关于x轴的对称点N的坐标是___________.14.(3分)如图,在△ABC中,D M垂直平分AC,交BC于点D,连接AD,若∠C =28°,AB=BD,则∠B的度数为_______度.(第14题)(第15题)(第16题)(第17题)(第18题)15.(3分)如图,在△ABC中,AB<AC,BC边的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为_______.16.(3分)如图,AB∥CD,AF=EF,若∠C=62°,则∠A=_______度.17.(3分)如图,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EA N=_______.18.(3分)如图,将数轴从某一点开始折出一个等边三角形ABC,设点A表示的数为x-3,点B表示的数为2x+1,点C表示的数为-4,则x的值等于_______,若将△ABC向右滚动,数字2 012对应的点将与△ABC的顶点_______重合.三、解答题(共8小题,总分66分)19.(6分)如图,在△ABC中,AD平分∠BAC交BC于点D,过点D作DE∥AB交AC于点E.求证:AE=DE.(第19题)20.(6分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.(第20题)21.(8分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为_______;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得P B+P C的距离最短.( 保留痕迹)(第21题)22.(8分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E,求证:CE=AB.(第22题)23.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交边AB,AC于点E,F.求证:(1)△ABD是等边三角形;(2)BE=AF.(第23题)24.(10分)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD ∥AB,OE∥AC.(第24题)(1)试判断△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.25.(10分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(第25题)(2)探究:当α为多少度时,△AOD是等腰三角形?26.(10分)如图①,AB=AC,BD、CD分别平分∠ABC和∠ACB.问:(答题时,注意书写整洁)(1)图①中有几个等腰三角形?(写出来,不需要证明)(2)过D点作EF∥BC,交AB于E,交AC于F,如图②,图中增加了几个等腰三角形,选一个进行证明.(3)如图③,若将题中的△ABC改为不等边三角形,其他条件不变,图中有几个等腰三角形?线段EF与BE、CF有什么关系?(写出来,不需要证明)(第26题)答案一、1.B 2.A 3.B 4.C 5.A 6.B7.D8.B9.B10.A11.B12.B二、13. (-2,-1)14. 6815. 2216.3117. 32°18. -3;C三、19. 证明:∵AD平分∠BAC交BC于点D,∴∠BAD=∠EAD,∵DE∥AB,∴∠BAD=∠ADE,∴∠EAD=∠ADE,∴AE=DE.20.证明:如答图,过点A作A P⊥BC于P.∵AB=AC,∴B P=P C,∵AD=AE,∴D P=P E,∴B P-D P=P C-P E,∴BD=CE.21.解:(1)4(2)如答图,△A′B′C′即为所求;(3)如答图,点P即为所求.22.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E =∠BAE .∴∠E =∠CAE .∴CE =AC .∵AB =AC ,∴CE =AB .23.证明:(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC =12∠BAC ,∵∠BAC =120°,∴∠BAD =∠DAC =12×120°=60°,∵AD =AB ,∴△ABD 是等边三角形;(2)∵△ABD 是等边三角形,∴∠ABD =∠ADB =60°,BD =AD .∵∠EDF =60°,∴∠BDE =∠ADF ,在△BDE 与△ADF 中,⎩⎪⎨⎪⎧∠DBE =∠DAF =60°,BD =AD ,∠BDE =∠ADF ,∴△BDE ≌△ADF (ASA ),∴BE =AF .24.解:(1)△ODE 是等边三角形,理由如下:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵OD ∥AB ,OE ∥AC ,∴∠ODE =∠ABC =60°,∠OED =∠ACB =60°.∴∠DOE =60°∴△ODE 是等边三角形.(2)BD =DE =EC ,∵OB 平分∠ABC ,且∠ABC =60°,∴∠OBD =∠ABO =30°,∵OD ∥AB ,∴∠BOD =∠ABO =30°,∴∠DBO =∠DOB ,∴DB =DO ,同理,EC =EO ,∵DE =OD =OE ,∴BD =DE =EC .25.解:(1)△AOD 是直角三角形.理由如下:∵△OCD 、△ABC 是等边三角形,∴OC =CD ,BC =AC ,∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =DC ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,∵∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△AOD 是直角三角形;(2)由(1)知,△BOC ≌△ADC ,∴∠CBO =∠CAD .设∠CBO =∠CAD =a ,∠ABO =b ,∠BAO =c ,∠CAO =d ,则a +b =60°,b +c =180°-110°=70°,c +d =60°,∴b -d =10°,∴(60°-a )-d =10°,∴a +d =50°,即∠DAO =50°,综上,当α为110°、125°、140°时,△AOD 是等腰三角形.26.解:(1)有两个等腰三角形:△ABC ,△BDC .(2)增加了三个等腰三角形:△EBD ,△FDC ,△AEF ,选△EBD 进行证明. ∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠DBE =∠DBC ,∴∠DBE =∠EDB ,∴EB =ED ,∴△EBD 为等腰三角形.(3)有两个等腰三角形:△EBD ,△FDC .EF =BE +CF .第十四章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)计算(-a 2b )3的结果是( )A .-a 6b 3B .a 6bC .3a 6b 3D .-3a 6b 32.(3分)在等式a3·a2·()=a11中,括号里填入的代数式应当是() A.a7B.a8C.a6D.a33.(3分)下列运算中,正确的是()A.3a·2a=6a2B.(a2)3=a9C.a6-a2=a4D.3a+5b=8ab 4.(3分)下面运算正确的是()A.3ab·3ac=6a2bc B.4a2b·4b2a=16a2b2C.2x2·7x2=9x4D.3y2·2y2=6y45.(3分)下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac6.(3分)如果(x+1)(5x+a)的乘积中不含x的一次项,则a为()A.5 B.-5 C.15D.-1 57.(3分)多项式a2-9与a2-3a的公因式是()A.a+3 B.a-3 C.a+1 D.a-18.(3分)通过计算几何图形的面积可表示一些代数恒等式,下图可表示的代数恒等式是()(第8题)A.(a-b)2=a2-2ab+b2B.2a(a+b)=2a2+2abC.(a+b)2=a2+2ab+b2D.(a+b)(a-b)=a2-b29.(3分)已知a+b=4,ab=3,则代数式(a+2)(b+2)的值是() A.7 B.9 C.11 D.1510.(3分)下列各式可以分解因式的是()A.x2-(-y2) B.4x2+2xy+y2C.-x2+4y2D.x2-2xy-y211.(3分)已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±2012.(3分)如图①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图②,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是()(第12题)A.60 B.100C.125 D.150二、填空题(共6小题,总分18分)13.(3分)计算:2a2·a3=_______.14.(3分)(-b)2·(-b)3·(-b)5=_______.15.(3分)已知(x m)n=x5,则mn(mn-1)的值为_______.16.(3分)若x+5,x-3都是多项式x2-kx-15的因式,则k=_______.17.(3分)多项式x2-9,x2+6x+9的公因式是_______.18.(3分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.三、解答题(共8小题,总分66分)19.(6分)计算:(1)2a(b2c3)2·(-2a2b)3;(2)(2x-1)2-x(4x-1);(3)632+2×63×37+372.(用简便方法)20.(6分)分解因式:(1)2a3-4a2b+2ab2;(2)x4-y4.21.(8分)已知(a m+1b n+2)(a2n-1b2n)=a5b5,求m+n的值.22.(8分)已知:(x+y)2=6,(x-y)2=2,试求:(1)x2+y2的值;(2)xy的值.23.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形土地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.(第23题)24.(10分)若(x2-3x-2)(x2+px+q)展开后不含x3和x2项,求p,q的值.25.(10分)动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a+b)2,(a-b)2,ab之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.(第25题)26.(10分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:x2-2xy+y2-16;(2)△ABC三边a,b,c满足a2-ab-ac+bc=0,判断△ABC的形状.答案一、1.A 2.C 3.A 4.D 5.C 6.B 7.B 8.B 9.D 10.C 11.B 12.B 二、13. 2a 5 14. b 10 15. 20 16. -2 17. x +3 18. -2三、19. (1) 解:原式=2ab 4c 6·(-8a 6b 3)=-16a 7b 7c 6;(2) 解:原式=4x 2-4x +1-4x 2+x=-3x +1;(3) 解:原式=(63+37)2=1002=10 000.20.(1)解:原式=2a (a 2-2ab +b 2)=2a (a -b )2;(2)解:原式=(x 2+y 2)(x 2-y 2)=(x 2+y 2)(x +y )(x -y ).21.解:(a m +1b n +2)(a 2n -1b 2n )=a m +1×a 2n -1×b n +2×b 2n=a m +1+2n -1×b n +2+2n=a m +2n b 3n +2.∵(a m +1b n +2)(a 2n -1b 2n )=a 5b 5,∴m +2n =5,3n +2=5,解得n =1,m =3,∴m +n =4.22.解:(1)∵(x +y )2+(x -y )2=x 2+2xy +y 2+x 2-2xy +y 2=2(x 2+y 2),∴x 2+y 2=12=12×(6+2)=4;(2)∵(x +y )2-(x -y )2=x 2+2xy +y 2-x 2+2xy -y 2=4xy ,∴xy =14=14×(6-2)=1.23.解:绿化的面积=(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab (平方米),当a =3,b =2时,绿化面积=5×32+3×3×2=63(平方米).24.解:∵(x 2-3x -2)(x 2+px +q )=x 4+(p -3)x 3+(q -3p -2)x 2-(3q +2p )x -2q .又∵乘积中不含x 3和x 2项,∴p -3=0,q -3p -2=0,∴p =3,q =11.25.解:提出问题:(1) (a -b )2;(a +b )2-4ab.(2) (a +b )2-4ab =(a -b )2问题解决:由(2)得(x -y )2=(x +y )2-4xy .∵x +y =8,xy =7,∴(x -y )2=64-28=36.∴x -y =±6.26.解:(1)x 2-2xy +y 2-16=(x -y )2-42=(x -y +4)(x -y -4);(2)∵a 2-ab -ac +bc =0∴a (a -b )-c (a -b )=0,∴(a -b )(a -c )=0,∴a =b 或a =c 或a =b =c ,∴△ABC 的形状是腰和底不相等的等腰三角形或等边三角形.第十五章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)在1x ,m +n m ,ab 25,-0.7xy +y 3,b -c 5+a ,3x 2π中,分式有( ) A .2个 B .3个 C .4个 D .5个2.(3分)无论a 取何值时,下列分式一定有意义的是( )A. 212a a +B. 21a a +C. 211a a -+D. 211a a -+ 3.(3分)如果分式11x x --的值为零,那么x 等于( ) A .1 B .-1 C .0 D .±14.(3分)下列分式不是最简分式的是( )A. 331x x +B. 22x y x y -+C. 222x y x xy y --+D. 64x y5.(3分)如果把分式x y xy+中的x 、y 同时扩大为原来的2倍,那么该分式的值( )A .不变B .扩大为原来的2倍C .缩小为原来的12D .缩小为原来的146.(3分)下列各式约分正确的是( )A. 62x x =x 3B. c a a c b b +=+C. a b a b ++=1D. 6221342y y x x ++=++ 7.(3分)下列关于x 的方程中,是分式方程的是( )A .3x =12 B. 1x=2 C. 2354x x ++= D .3x -2y =1 8.(3分)解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x -1)(x +1)B .方程两边都乘(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程,得x =1D .原方程的解为x =19.(3分)已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x 千米/时,依题意列方程正确的是( )A. 304015x x =+B. 304015x x =-C. 304015x x =-D. 304015x x=+ 10.(3分)分式方程2111x x x +=+-的解为( ) A .x =4 B .x =3 C .x =2 D .x =111.(3分)若分式方程1x a x -+=a 无解,则a 的值为( ) A .0 B .-1 C .0或-1 D .1或-112.(3分)已知关于x 的方程3x a x +-=-1有负解,则实数a 的取值范围是( ) A .a <0且a ≠-3 B .a >0 C .a >3 D .a <3且a ≠-3二、填空题(共6小题,总分18分)13.(3分)当________时,分式3x x -有意义. 14.(3分)当x =________时,分式242x x -+的值为零.15.(3分)化简2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是________. 16.(3分)如果代数式m 2+2m =1,那么22442m m m m m +++÷的值为________. 17.(3分)某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元.18.(3分)一组按规律排列的式子:234525101726,,,,a a a a a,…,其中第7个式子是______,第n 个式子是____________________(用含n 的式子表示,n 为正整数).三、解答题(共8小题,总分66分)19.(6分)解方程:11112x x x +=+--.20.(6分)解方程:12211x x x-+=--.21.(8分)先化简再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中x =13.22.(8分)化简224222a a a a a a+⎛⎫-÷ ⎪--⎝⎭,并从-2,0,1,2这四个数中选取一个合适的数作a 的值代入求值.23.(8分)先化简,再求值:22242m m m m m m ⎛⎫-÷ ⎪--+⎝⎭,其中m 满足方程m 2-4m =0.24.(10分)一辆汽车计划从A 地出发开往相距180千米的B 地,事发突然,加速为原速的1.5倍,结果比计划提前40分钟到达B 地求原计划平均每小时行驶多少千米?25.(10分)某市对一段全长2 000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天.(2)有甲、乙两个工程队参与施工,其中甲工程队每天可修路120米,乙工程队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?26.(10分)六·一前夕,某幼儿园园长到厂家选购A 、B 两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2 000元购进A品牌服装数量是用750元购进B品牌服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元.(2)该A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1 200元,则最少购进A品牌服装多少套?答案一、1.B 2.D 3.B 4.D 5.C 6.C 7.B 8.D 9.A 10.B 11.D 12.C 二、13. x ≠3 14.2 15. x -1 16.1 17.20 18. ()217501;1.n n n a a++- 三、19. 解:(x +1)(x -2)=x -1+(x -1)(x -2)x 2-x -2=x -1+x 2-3x +2x =3.检验:当x =3时(x -1)(x -2)≠0,所以原分式方程的解是x =3.20.解:去分母,得1+2x -2=2-x ,移项、合并同类项,得3x =3,解得x =1,检验:当x =1时,x -1=0,∴原分式方程无解.21.解:原式=211222x x x x ---÷++ =()()11221x x x x x +-+⋅+-- =-(x -1)=1-x .当x =13时,原式=23.22.解:原式=()()()22222a a a a a a+-+÷- =222a a a a +⨯+=a .∵a (a -2)≠0,a +2≠0,∴a ≠0且a ≠2且a ≠-2.∴取a =1代入,原式=1.23.解:原式=()()()22222m m m m m m m +-+⋅+-=()()2222m m m m m +⋅+- =2m m -, 由m 2-4m =0,得到m (m -4)=0,解得m =0(舍去)或m =4, 当m =4时,原式=2.24.解:设原计划平均每小时行驶x 千米,则加速后平均每小时行驶1.5x 千米, 根据题意,得180180401.560x x -=, 解得x =90,经检验x =90是原分式方程的解.答:原计划平均每小时行驶90千米.25.解:(1)设原计划每天修x 米,由题意得2 000x - 2 000x (1+25%)=5,解得x =80,检验:当x =80时,x (1+25%)≠0,故x =80是原分式方程的解,则2 000x =25.答:修这段路计划用25天.(2)设甲工程队要修路a天,则乙工程队要修路(25-5-a)天,根据题意得120a+80(25-5-a)≥2 000,解得a≥10.所以a最小等于10.答:甲工程队至少要修路10天.26.解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,由题意得2 000 x=750x-25×2,解得x=100,检验:当x=100时,x(x-25)≠0,故x=100是原分式方程的解,x-25=100-25=75.答:A、B两种品牌服装每套进价分别为100元、75元.(2)设购进A品牌服装a套,则购进B品牌服装(2a+4)套,由题意得(130-100)a+(95-75)(2a+4)>1 200,解得a>16.答:最少购进A品牌服装17套.期末质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下面有四个图案,其中不是轴对称图形的是()A. B. C. D.2.(3分)若代数式23x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =3 C .x ≠0 D .x ≠33.(3分)下列计算正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 24.(3分)下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm5.(3分)在平面直角坐标系中,点M(7,-1)关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)下列因式分解正确的是( )A .x 2-4=(x +4)(x -4)B .x 2+x +1=(x +1)2C .x 2-2x -3=(x -1)2-4D .2x +4=2(x +2)7.(3分)从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2 013个三角形,则这个多边形的边数为( )A .2 011B .2 015C .2 014D .20168.(3分)化简:211x x x x---=( ) A .1 B .-x C .x D. 1x x - 9.(3分)不能用尺规作出唯一三角形的是( )A .已知两角和夹边B .已知两边和夹角C .已知两角和其中一角的对边D .已知两边和其中一边的对角10.(3分)如果x 2-(m -1)x +1是一个完全平方式,则m 的值为( )A .-1B .1C .-1或3D .1或311.(3分)如图,在△ABC 中,边BC 的垂直平分线l 与AC 相交于点D ,垂足为E ,如果△ABD 的周长为10cm ,BE =3cm ,则△ABC 的周长为( )(第11题)A .9 cmB .15 cmC .16 cmD .18 cm12.(3分)若分式方程244x a x x =+--无解,则a 的值为( ) A .4 B .2 C .1 D .0二、填空题(共6小题,总分18分)13.(3分)当x _______时,分式11x x --有意义. 14.(3分)用科学记数法表示0.000 010 2=___________.15.(3分)计算:()()4352a a -⋅-=________.16.(3分)已知x +y =-5,xy =3,则x 2+y 2的值为_______.17.(3分)在△ABC 中,AC =5 cm ,AD 是△ABC 的中线,把△ABC 的周长分为两部分,若其差为3 cm ,则BA =______________________.(第18题)18.(3分)如图,已知△ABC 中,∠BAC =140°,现将△ABC 进行折叠,使顶点B 、C 均与顶点A 重合,则∠DAE 的度数为___________.三、解答题(共8小题,总分66分)19.(8分)计算:(1)⎝ ⎛⎭⎪⎫-12-2+(π-2018)0-|1-2|+(-2)3;(2) 323x y y y x x ⎛⎫⎛⎫⋅÷- ⎪ ⎪⎝⎭⎝⎭.20.(8分)分解因式:(1)3x 3-27x ; (2)(p -4)(p +1)+3p .21.(6分)先化简,再求值:21122244a a a a a ⎛⎫+÷ ⎪-+-+⎝⎭,其中a =-4.22.(6分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(第22题)(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.23.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.(第23题)24.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC的长.(第24题)25.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?26.(10分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边三角形ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②③,点D在线段BC的延长线或反向延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.(第26题)答案一、1.A 2.D 3.C 4.D 5.A 6.D 7.C 8.B 9.D 10.C 11.C 12.A 二、13. ≠1 14. 1.02×10-5 15. -a 2616. 19 17. 8cm 或2cm 18. 100°三、19. (1) 解:原式=4+1-1-8=-4.(2)解:原式=3233x y x y x y ⎛⎫⋅⋅- ⎪⎝⎭ =2x y-. 20. (1)解:原式=3x (x 2-9)=3x (x +3)(x -3).(2) 解:原式=p 2-3p -4+3p=p 2-4=(p +2)(p -2).21.解:原式=()()()()()222222222a a a a a a a a ⎡⎤-+-+⋅⎢⎥-+-+⎣⎦ =()()()222222a a a a a -⋅+- =22a a -+. 当a =-4时,原式=-4-2-4+2=3. 22. 解:(1)S △ABC =12×5×3=152;(2)略;(3)A 1(1,5),B 1(1,0),C 1(4,3).23.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS ).24.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC , ∴AB =AE =EC ,∴∠C =∠CAE ,∠B =∠AED .∵∠BAE =40°,∴∠AED =180°-40°2=70°, ∴∠C = 12∠AED =35°.(2)∵△ABC 的周长为14cm ,AC =6cm , ∴AB +BE +EC =8cm ,即2DE +2EC =8cm ,∴DE +EC =DC =4cm.25.解:设这项工程的规定时间为x 天,根据题意得 4545233x x++=1 解得x =83,检验:当x =83时,3x ≠0.∴x =83是原分式方程的解.。

人教版八年级数学上册全册单元测试卷(含答案)

人教版八年级数学上册全册单元测试卷(含答案)

人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。

首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。

根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。

其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。

全等三角形有很多应用,比如在证明几何定理时经常会用到。

第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。

轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。

轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。

第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。

整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。

第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。

分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。

分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。

第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。

本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。

测试时间为90分钟,满分为100分。

通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。

二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)

人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)
选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;
选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.
故选C.
考点:全等三角形的判定.
4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()
A 8B. 9C. 10D. 11
【答案】C
人教版数学八年级上学期
《全等三角形》单元测试
时间:90分钟总分:100
一.选择题(本大题共8小题,共24.0分)
1.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为( )
A.1个B.2个C.3个D.4个
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据周角 定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【详解】根据题意, ,
∴∠A=∠2,故B正确;
∴∠A+∠D=90°,故A正确;
在△ABC和△CED中,

∴△ABC≌△CED(AAS),故C正确;
故选D.
【点睛】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( )

人教版八年级数学上册单元测试题全套(含答案)

人教版八年级数学上册单元测试题全套(含答案)

人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共8套)第十一章三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列图形为正多边形的是(D)2.下列各组数中,能构成一个三角形的边长的是(D)A.1,3,5 B.2,2,6C.6,8,14 D.a+2,a+3,a+5(a>0)3.如图,图中∠1的大小等于(D)A.40°B.50°C.60°D.70°第3题图第5题图第6题图第8题图第10题图4.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是(D)A.60°B.90°C.108°D.120°5.如图,BD平分∠ABC,CD⊥BD,垂足为D,∠C=55°,则∠ABC的度数是(D) A.35°B.55°C.60°D.70°6.如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为(C)A.25°B.40°C.50°D.80°7.等腰三角形的一边长等于4,另一边长等于10,则它的周长是(B)A.18 B.24 C.18或24 D.148.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于点D,BE⊥AC 于点E,AD与BE交于点F,则∠AFB的度数是(A)A.126°B.120°C.116°D.110°9.上午9时,一艘船从A处出发以每小时20海里的速度向正北方向航行,11时到达B处.若在A处测得灯塔C在北偏西34°方向上,且∠ACB=32∠BAC,则在B处测得灯塔C应在(C)A.北偏西68°方向上B.南偏西85°方向上C.北偏西85°方向上D.南偏西68°方向上10.已知△ABC的面积为1,延长AB至点D,使BD=AB,延长BC至点E,使CE =2BC,延长CA至点F使AF=3AC,则三角形DEF的面积为(D)A.9 B.15 C.17 D.18点拨:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S △FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.二、填空题(每小题3分,共24分)11.空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用的数学知识是三角形的稳定性.第11题图第12题图第14题图12.如图,∠D=30°,∠O=50°,∠C=35°,则∠AEC等于__65°__.13.如果将长度为3a,4a,14的三条线段首尾顺次相接可以得到一个三角形,则a的取值范围是__2<a<14__.14.(枣庄中考)用一条宽度相等的足够长的纸条打一个结(如图①所示),然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,那么图中的∠BAC=36度.15.如图,在四边形ABCD中,AD⊥AB于点A,∠C=110°,它的一个外角∠ADE =60°,则∠B的大小是__40°__.第15题图第16题图第17题图第18题图16.(江西中考)如图,在△ABC 中,点D 是BC 上的点,∠BAD =∠ABC =40°,将△ABD 沿着AD 翻折得到△AED ,则∠CDE =20°.17.如图,在△ABC 中,∠A =70°,∠B =50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为__110°或50°__.18.如图,在△ABC 中,∠ABC 的平分线与△ABC 的外角∠ACN 的平分线交于点E ,EC 的延长线交△ABC 的另一外角∠MBC 的平分线于点D ,若∠D 比∠E 大10°,则∠A 的度数是__80°__.三、解答题(共66分)19.(6分)如图,在△ABC 中,AD ,AE 分别是边BC 上的中线和高,AE =3 cm ,S △ABC =12 cm 2.求BC 和DC 的长.解:∵AE ⊥BC ,S △ABC =12 cm 2,AE =3 cm ,∴S △ABC =12 BC·AE ,即12=12 ×3BC ,∴BC =8 cm.又∵AD 为BC 边上的中线,∴DC =12 BC =4 cm20.(7分)如图,在△ABC 中,BE ⊥AC ,BC =5 cm ,AC =8 cm ,BE =3 cm.(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.解:(1)∵ BE ⊥AC ,∴ S △ABC =12 ×AC ×BE =12 ×8×3=12(cm 2) (2)如图所示,线段AD 就是所求作的高,∵S △ABC =12 ×BC ×AD =12(cm 2),∴12 ×5×AD =12,∴AD =245 (cm)21.(8分)根据条件求多边形的边数:(1)一个多边形每个内角都相等,且都等于135°,则这个多边形的边数为__8__;(2)一个多边形的内角和与某一个外角的度数总和为1 350°,求这个多边形的边数. 解:(2)设这个多边形的边数为n ,这个外角的度数为x °,则0<x <180.依题意,有(n -2)·180+x =1 350.∴n =1 350-x 180 +2=9+90-x 180. ∵n 为正整数,∴90-x 必为180的倍数.又∵0<x <180,∴90-x =0,即x =90.∴n =9.故这个多边形的边数为922.(9分)如图,在△ABC 中(AB >BC ),AC =2BC ,BC 边上的中线AD 把△ABC 的周长分成60和40两部分,求AC 和AB 的长.解:∵AD 是BC 边上的中线,AC =2BC ,∴BD =CD ,设BD =CD =x ,AB =y ,则AC =4x.分为两种情况:①AC +CD =60,AB +BD =40,则4x +x =60,x +y =40,解得x =12,y =28,即AC =4x =48,AB =28;②AC +CD =40,AB +BD =60,则4x +x =40,x +y =60,解得x =8,y =52,即AC =4x =32,AB =52,BC =2x =16,此时不符合三角形三边关系定理.综上所述,AC =48,AB =2823.(10分)如图,在△ABC 中,∠A =∠ABC ,直线EF 分别交△ABC 的边AB ,AC 和CB 的延长线于点D ,E ,F .(1)求证:∠F +∠FEC =2∠A ;(2)过点B 作BM ∥AC 交FD 于点M ,试探究∠MBC 与∠F +∠FEC 的数量关系,并证明你的结论.解:(1)证明:∵∠A +∠ABC +∠C =180°,∠A =∠ABC ,∴∠C =180°-2∠A.∵∠F +∠FEC +∠C =180°,∴∠F +∠FEC =2∠A(2)∠MBC =∠F +∠FEC.证明:∵BM ∥AC ,∴∠FMB =∠FEC.又∵∠MBC =∠F +∠FMB ,∴∠MBC =∠F +∠FEC24.(12分)取一副三角尺按如图①拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示,设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化?若变化,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∠BAC′=45°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°.又∵∠ACD=30°,∴∠BAC=∠ACD.∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.连接CC′,则∠DBC′+∠BDC=∠DCC′+∠BC′C,∵∠CAC′+∠AC′C+∠ACC′=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°.∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=∠DCC′+∠CAC′+∠BC′C=180°-45°-30°=105°25.(14分)已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是__20°__;②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__;(2)如图②,若AB⊥OM,是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.解:(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=35°,∴x=125.综上可知,当x=20,35,50或125时,△ADB中有两个相等的角第十二章全等三角形得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列四个图形是全等图形的是(C)A.①和③B.②和③C.②和④D.③和④2.如图,已知△ABE≌△ACD,下列等式不正确的是(D)A.AB=AC B.∠BAE=∠CAD C.BE=CD D.AD=BE第2题图第3题图第4题图第5题图3.如图,AC是△ABC和△ADC的公共边,下列条件不能判定△ABC≌△ADC的是(A) A.AB=AD,∠2=∠1 B.AB=AD,∠3=∠4C.∠2=∠1,∠3=∠4 D.∠2=∠1,∠B=∠D4.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC的长是(B)A.3 B.4 C.6 D.55.如图,∠A=∠D=90°,AC=DB,AC,DB相交于点O,∠ACB=30°,则∠BCD 的度数为(C)A.40°B.50°C.60°D.75°6.如图,已知△ABC,用尺规作图如下:①以点B为圆心,AB的长为半径画弧,交BC于点P;②以点P为圆心,AP的长为半径画弧,交已画弧于点D;③连接BD,CD,则△ABC≌△DBC的依据是(D)A.SSS B.ASA C.AAS D.SAS第6题图第7题图第8题图第9题图7.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为(C)A.2 B.3 C.4 D.58.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为(C)A.44°B.66°C.96°D.92°9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S =S△PCD,则满足此条件的点P(D)△PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中:①BD=CE;②∠ACE+∠DBC =45°;③BD⊥CE;④∠BAE+∠DAC=180°.正确的个数是(D)A.1个B.2个C.3个D.4个第10题图第11题图第12题图第13题图二、填空题(每小题3分,共24分)11.如图,△ABC≌△BAD,若AB=6,AC=4,BC=5,则△BAD的周长为__15__.12.(襄阳中考)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是②(只填序号).13.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中共有__3__对全等三角形.14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=__135°__.第14题图第15题图第16题图第18题图15.如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A ,B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .若AC =10,BD =6,则CD =4.16.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D .已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是__15__.17.在△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 的长为m ,则m 的取值范围是__1<m <4__.18.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB ,BC 上沿A →B →C 运动,当OP =CD 时,点P 的坐标为__(2,4)或(4,2)__.三、解答题(共66分)19.(6分)如图,△ABC ≌△ADE ,其中点B 与点D ,点C 与点E 对应.(1)写出对应边和对应角;(2)∠BAD 与∠CAE 相等吗?说明理由.解:(1)对应边:AB 与AD ,BC 与DE ,AC 与AE ;对应角:∠BAC 与∠DAE ,∠B 与∠D ,∠C 与∠E(2)∠BAD =∠CAE .理由如下:∵∠BAC =∠DAE ,∴∠BAC -∠CAD =∠DAE -∠CAD ,即∠BAD =∠CAE20.(7分)(陕西中考)如图,点A ,E ,F ,B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD ,求证:CF =DE .证明:∵AE =BF ,∴AE +EF =BF +EF ,即AF =BE ,∵AC ∥BD ,∴∠CAF =∠DBE ,在△ACF 和△BDE 中,⎩⎪⎨⎪⎧AC =BD ,∠CAF =∠DBE ,AF =BE ,∴△ACF ≌△BDE (SAS),∴CF =DE21.(8分)王强同学用10块高度都是2 cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和点B 分别与木墙的顶端重合,求两堵木墙之间的距离.解:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC .在△ADC 和△CEB中,⎩⎪⎨⎪⎧∠ADC =∠CEB ,∠DAC =∠BCE ,AC =BC ,∴△ADC ≌△CEB (AAS),∴EC =AD =6 cm ,DC =BE =14 cm ,∴DE =DC +CE =20(cm),答:两堵木墙之间的距离为20 cm22.(9分)在数学实践课上,老师在黑板上画出如图的图形(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB =DE ,②∠1=∠2,③BF =EC ,④∠B =∠E .交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)请你写出所有的真命题;(2)选一个给予证明.你选择的题设:__①③④__;结论:__②(答案不唯一)__.(均填写序号)解:(1)情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:① (2)选择的题设:①③④,结论:②(答案不唯一).理由:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF .在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS),∴∠1=∠223.(10分)如图,在△ABC 中,BE ,CF 分别是AC ,AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD ,AG .(1)图中有一组三角形全等,试将其找出来并证明;(2)连接DG ,猜想△ADG 的形状,并说明理由.解:(1)△ABD ≌△GCA ,证明:∵BE ,CF 分别是AC ,AB 两边上的高,∴∠AFC =∠BFC =∠BEC =∠BEA =90°,∴∠BAC +∠ACF =90°,∠BAC +∠ABE =90°,∠CGA +∠GAF =90°,∴∠ABE =∠ACF .在△ABD 和△GCA 中,⎩⎪⎨⎪⎧BD =AC ,∠ABE =∠ACF ,AB =CG ,∴△ABD ≌△GCA (SAS)(2)△ADG 是等腰直角三角形,理由如下:∵△ABD ≌△GCA ,∴AD =AG ,∠BAD =∠CGA .又∵∠CGA +∠GAF =90°,∴∠BAD +∠GAF =90°,即∠GAD =90°,∴△ADG 是等腰直角三角形24.(12分)如图,在△ABC 中,AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,点F 在AC 上,BD =DF .(1)求证:CF =EB ;(2)若AB =12,AF =8,求CF 的长.解:(1)证明:∵AD 平分∠BAC ,∠C =90°,DE ⊥AB 于点E ,∴DE =DC .在Rt △CDF 与Rt △EDB 中,∵⎩⎪⎨⎪⎧DF =DB ,DC =DE , ∴Rt △CDF ≌Rt △EDB (HL),∴CF =EB (2)设CF =x ,则AE =12-x ,AC =AF +CF =8+x .在Rt △ACD 与Rt △AED 中,∵⎩⎪⎨⎪⎧AD =AD ,CD =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AC =AE ,即8+x =12-x ,解得x =2,即CF =225.(14分)如图①,AM ∥BN ,AE 平分∠BAM ,BE 平分∠ABN .(1)求∠AEB 的度数;(2)如图②,过点E 的直线交射线AM 于点C ,交射线BN 于点D .求证:AC +BD =AB ;(3)如图③,过点E 的直线交射线AM 的反向延长线于点C ,交射线BN 于点D ,AB =5,AC =3,S △ABE -S △ACE =2,求△BDE 的面积.解:(1)∵AM ∥BN ,∴∠BAM +∠ABN =180°.∵AE 平分∠BAM ,BE 平分∠ABN ,∴∠BAE =12 ∠BAM ,∠ABE =12 ∠ABN.∴∠BAE +∠ABE =12 (∠BAM +∠ABN)=90°.∴∠AEB =90°(2)证明:如图甲,在线段AB 上截取AF =AC ,连接EF .在△ACE 与△AFE 中,⎩⎨⎧AC =AF ,∠CAE =∠FAE ,AE =AE , ∴△ACE ≌△AFE(SAS).∴∠AEC =∠AEF .∵∠AEB =90°,∴∠AEF +∠BEF =∠AEC +∠BED =90°,∴∠FEB =∠DEB.在△BFE 与△BDE 中,⎩⎨⎧∠FBE =∠DBE ,BE =BE ,∠FEB =∠DEB ,∴△BFE ≌△BDE(ASA),∴BF =BD.∵AF +BF =AB ,∴AC +BD =AB(3)如图乙,延长AE 交射线BN 于点F .∵∠AEB =90°,∴BE ⊥AF .∵BE 平分∠ABN ,∴∠ABE =∠FBE.又∵∠AEB =∠FEB =90°,BE =BE ,∴△ABE ≌△FBE(ASA),∴BF=AB =5,AE =EF .∵AM ∥BN.∴∠C =∠EDF .在△ACE 与△FDE 中,⎩⎨⎧∠C =∠EDF ,∠AEC =∠FED ,AE =EF ,∴△ACE ≌△FDE(AAS),∴DF =AC =3.设S △BEF =S △ABE =5x ,S △DEF =S △ACE =3x.∵S △ABE -S △ACE =2,∴5x -3x =2,∴x =1.∴△BDE 的面积为8第十三章 轴对称得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(北京中考)下列倡导节约的图案中,是轴对称图形的是(C )2.下列图形对称轴条数最多的是(A )A .正方形B .等边三角形C .等腰三角形D .线段3.若点P (a ,1)关于y 轴的对称点为Q (2,b ),则a +b 的值是(A )A .-1B .0C .1D .24.如图,AC =BC ,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形的个数为(D )A .2B .3C .4D .5第4题图 第5题图 第6题图5.如图,在△ABC 中,D 点在BC 上,将D 点分别以AB ,AC 为对称轴,画出对称点E ,F ,并连接AE ,AF .根据图中标示的角度,则∠EAF 的度数为(D )A .113°B .124°C .129°D .134°6.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠A =50°,则∠ACB 的度数为(D )A .90°B .95°C .100°D .105°7.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,已知AB =3,AD =1,则△AED 的周长为(C )A .2B .3C .4D .5第7题图 第8题图 第9题图8.如图,直线l 1,l 2相交于点A ,点B 是直线外一点,在直线l 1,l 2上找一点C ,使△ABC 为一个等腰三角形,则满足条件的点C 有(D )A .2个B .4个C .6个D .8个9.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,P 是AD 边上的动点,E 是AC 边上一点.若AE =2,当EP +CP 的值最小时,∠ECP 的度数为(C )A .15°B .22.5°C .30°D .45°10.已知点P (-2,3),作点P 关于x 轴的对称点P 1,再作点P 1关于y 轴的对称点P 2,接着作P 2关于x 轴的对称点P 3,继续作点P 3关于y 轴的对称点P 4,按此方法一直作下去,则P 2 021的坐标为(B )A .(2,-3)B .(-2,-3)C .(-2,3)D .(2,3)二、填空题(每小题3分,共24分)11.如图,AB ∥CE ,BF 交CE 于点D ,DE =DF ,∠F =20°,则∠B 的度数为__40°__.第11题图 第12题图 第13题图第14题图12.如图,将一个有45°角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的直角边的长为6cm.13.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(-2,1).14.如图是一个风筝的图案,它是轴对称图形,EF是对称轴.若∠A=90°,∠AED =130°,∠C=45°,则∠BFC的度数为__140°__.15.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19 cm,△ABD 的周长为13 cm,则AE的长为__3__cm.第15题图第16题图第18题图16.如图,已知在等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′,EB′分别交边AC于点F,G.若∠ADF=80°,则∠EGC的度数为80°.17.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为__130°或90°__.18.如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有__①②③⑤__.三、解答题(共66分)19.(6分)如图所示.(1)写出A,B,C三点的坐标;(2)若△ABC各顶点的横坐标不变,纵坐标都乘-1,请你在同一坐标系中描出对应的点A′,B′,C′,并依次连接这三个点,所得的△A′B′C′与原来的△ABC有怎样的位置关系?解:(1)A,B,C三点的坐标分别是(3,4),(1,2),(5,1)(2)画图略,△A′B′C′与原来的△ABC的位置关系是关于x轴对称20.(6分)如图,在△ABC中,∠B=∠C,AD是底边BC上的高,DE∥AB交AC于点E.试说明△ADE是等腰三角形.解:∵在△ABC中,∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.∵AD⊥BC,∴∠BAD=∠DAC.∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠DAC,∴AE=ED,∴△ADE是等腰三角形21.(8分)如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A处测得灯塔C 在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.请问当轮船到达灯塔C的正东方向D处时,又航行了多少海里?解:∵CD⊥DB,∠CBD=60°,∴∠DCB=30°,∴DB=12BC,∴BC=2DB.又∵∠BCA=60°-30°=30°,∴BC=BA,∴BC=2×40=80(海里),∴DB=40海里.答:当轮船到达灯塔C的正东方向D处时,又航行了40海里22.(9分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线AF交CD于点E,交BC于点F,CM⊥AF于点M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.证明:(1)∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°.又∵∠BAC的平分线AF交CD于点E,∴∠DAE=∠CAE,∴∠AED=∠CFE.又∵∠AED=∠CEF,∴∠CEF=∠CFE.∴△CEF为等腰三角形.又∵CM⊥AF,∴EM=FM(2)∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMC和△AMN中,⎩⎨⎧∠AMC =∠AMN ,AM =AM ,∠CAM =∠NAM ,∴△AMC ≌△AMN(ASA),∴AC =AN23.(10分)如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15 cm ,求AB 的长;(2)若∠MFN =70°,求∠MCN 的度数.解:(1)∵DM ,EN 分别垂直平分AC 和BC ,∴AM =CM ,BN =CN.∴△CMN 的周长=CM +MN +CN =AM +MN +BN =AB.∵△CMN 的周长为15 cm ,∴AB =15 cm (2)∵∠MFN =70°,∴∠MNF +∠NMF =180°-70°=110°.∵∠AMD =∠NMF ,∠BNE =∠MNF ,∴∠BNE +∠AMD =∠MNF +∠NMF =110°,∴∠A +∠B =90°-∠AMD +90°-∠BNE =180°-110°=70°.∵AM =CM ,BN =CN ,∴∠A =∠ACM ,∠B =∠BCN ,∴∠MCN =180°-2(∠A +∠B)=180°-2×70°=40°24.(12分)(安顺中考)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断. 因此,AB ,AD ,DC 之间的等量关系是AD =AB +DC ;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.解:(1)AD =AB +DC .理由如下:∵AB ∥CD ,∴∠F =∠BAE .∵∠DAE =∠BAE ,∴∠DAF =∠F ,∴AD =DF ,∵CE =BE ,且∠F =∠BAE ,∠AEB =∠CEF ,∴△CEF ≌△BEA (AAS),∴AB =CF ,∴AD =DC +CF =AB +DC(2)AB =AF +CF .理由如下:如图,延长AE 交DF 的延长线于点G ,∵AB ∥DC ,∴∠BAE =∠G ,又∵BE =CE ,∠AEB =∠GEC ,∴△AEB ≌△GEC (AAS),∴AB =GC .∵AE 是∠BAF 的平分线,∴∠BAG =∠FAG ,∵∠BAG =∠G ,∴∠FAG =∠G ,∴FA =FG .∵CG =CF +FG ,∴AB =AF +CF25.(15分)如图所示,已知△ABC 中,AB =AC =BC =10厘米,M ,N 分别从点A ,B 同时出发,沿三角形的边顺时针运动,已知点M 的速度是1厘米/秒,点N 的速度是2厘米/秒,当点N 第一次到达B 点时,M ,N 同时停止运动.(1)M ,N 同时运动几秒后,M ,N 两点重合?(2)M ,N 同时运动几秒后,可得等边三角形AMN?(3)M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ,如果存在,请求出此时M ,N 运动的时间?解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x +10=2x ,解得x =10,∴M ,N 同时运动10秒后,M ,N 两点重合(2)设点M ,N 运动t 秒后,可得到等边三角形AMN ,如图①,AM =t ×1=t ,AN =AB -BN =10-2t.∵△AMN 是等边三角形,∴t =10-2t ,解得t =103 .∴点M ,N 运动103 秒后,可得到等边三角形AMN(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形,由(1)知,10秒时M ,N 两点重合,恰好在C 处.如图②,假设△AMN 是等腰三角形,∴AN =AM ,∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形,∴∠C =∠B.在△ACM 和△ABN 中,∵⎩⎨⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB ,∴△ACM ≌△ABN(AAS).∴CM =BN ,设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形,∴CM =y -10,NB =30-2y ,CM =NB ,y -10=30-2y ,解得y =403 .故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰△AMN ,此时M ,N 运动的时间为403秒期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(毕节中考)在下列长度的三条线段中,不能组成三角形的是(C )A .2 cm ,3 cm ,4 cmB .3 cm ,6 cm ,6 cmC .2 cm ,2 cm ,6 cmD .5 cm ,6 cm ,7 cm2.如图,在△ABC 中,AB =AC ,∠B =50°,P 是边AB 上的一个动点(不与顶点A 重合),则∠BPC 的值可能是(B )A .135°B .85°C .50°D .40° 第2题图 第3题图 第5题图第6题图3.如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的是(D )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD4.(贵港中考)若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是(D )A .-5B .-3C .3D .15.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E ,D 分别落在E ′,D ′点.已知∠AFC =76°,则∠CFD ′等于(C )A .15°B .25°C .28°D .31°6.如图,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD 和CE 交于点O ,AO 的延长线交BC 于点F ,则图中全等的直角三角形有(D )A .4对B .5对C .6对D .7对7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是(A )A .1B .2C .3D .4第7题图 第8题图 第10题图8.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ACF =48°,则∠ABC 的度数为(A )A .48°B .36°C .30°D .24°9.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于(C )A .45°B .120°C .45°或135°D .45°或120°10.如图,在等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC ,AD 于E ,F 两点, M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE =AF ;②AM ⊥EF ;③△AEF 是等边三角形,④DF =DN ,⑤AD ∥NE .其中正确的结论有(D )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =__36°__.第11题图 第12题图 第14题图12.如图,BC ⊥ED ,垂足为M ,∠A =35°,∠D =25°,则∠ABC =__30°__.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作K .若K =12,则该等腰三角形的顶角度数为__36°__. 14.(镇江中考)如图,直线a ∥b ,△ABC 的顶点C 在直线b 上,边AB 与直线b 相交于点D .若△BCD 是等边三角形,∠A =20°,则∠1=40°.15.(永州中考)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过点D 作直线DE ⊥OA ,垂足为E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =4.第15题图 第16题图 第17题图 第18题图16.如图,在△ABC 中,点D 为BC 边的中点,点E 为AC 上一点,将∠C 沿DE 翻折,使点C 落在AB 上的点F 处,若∠AEF =50°,则∠A 的度数为__65°__.17.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E ,若AB =18,AC =12,△ABC的面积等于36,则DE =__125 __. 18.如图,在△ABC 中,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFD S △CED=BF CE;④EF 一定平行于BC .其中正确的有①②③(填序号). 三、解答题(共66分)19.(6分)(宜昌中考)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.解:(1)∵∠ACB =90°,∠A =40°,∴∠ABC =90°-∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65° (2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°-65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°20.(6分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(-3,-1).(1)将△ABC 沿y 轴正方向平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1的坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.解:(1)点B 1的坐标为(-2,-1),图略(2)点C 2的坐标为(1,1),图略21.(8分)(温州中考)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.解:(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F , ∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS) (2)∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3, ∵AD ⊥BC ,BD =CD ,∴AC =AB =322.(10分)如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E ,AD =AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G .求证:(1)DF ∥BC ;(2)FG =FE .证明:(1)∵AF 平分∠CAB , ∴∠CAF =∠DAF .在△ACF 和△ADF 中,∵⎩⎨⎧AC =AD ,∠CAF =∠DAF ,AF =AF ,∴△ACF ≌△ADF(SAS).∴∠ACF =∠ADF .∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠CAE =90°,∠CAE +∠B =90°. ∴∠ACF =∠B ,∴∠ADF =∠B.∴DF ∥BC (2)∵DF ∥BC ,BC ⊥AC ,∴FG ⊥AC.∵FE ⊥AB ,又AF 平分∠CAB ,∴FG =FE23.(10分)如图,在四边形ABCD 中,AD ∥BC ,点E 是AB 的中点,连接DE 并延长,交CB 的延长线于点F ,点G 在边BC 上,且∠GDF =∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系并说明理由.解:(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE.∵点E 为AB 的中点,∴AE =BE.在△ADE和△BFE 中,⎩⎨⎧∠ADE =∠BFE ,∠AED =∠BEF ,AE =BE ,∴△ADE ≌△BFE(AAS)(2)EG 与DF 的位置关系是EG 垂直平分DF .理由:∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE.∴FG =DG .∴△FGD 为等腰三角形.由(1)中△ADE ≌△BFE 得DE =FE ,即GE 为DF 上的中线,∴GE 垂直平分DF24.(12分)如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α.以OC 为一边作等边三角形OCD ,连接AD .(1)当α=150°时,试判断△AOD 的形状,并说明理由; (2)探究:当α为多少度时,△AOD 是等腰三角形?解:(1)∵△OCD 是等边三角形,∴OC =CD .∵△ABC 是等边三角形,∴BC =AC .∵∠ACB =∠OCD =60°,∴∠BCO =∠ACD ,在△BOC 与△ADC 中,∵⎩⎪⎨⎪⎧OC =CD ,∠BCO =∠ACD ,BC =AC ,∴△BOC ≌△ADC ,∴∠BOC =∠ADC ,而∠BOC =α=150°,∠ODC =60°,∴∠ADO =150°-60°=90°,∴△ADO 是直角三角形(2)∠AOD =360°-∠AOB -∠α-∠COD =360°-100°-∠α-60°=200°-∠α,∠ADO =∠ADC -∠CDO =∠α-60°,∠OAD =180°-∠ADO -∠AOD =180°-(∠α-60°)-(200°-∠α)=40°. 若∠ADO =∠AOD ,即∠α-60°=200°-∠α,解得∠α=130°; 若∠ADO =∠OAD ,则∠α-60°=40°,解得∠α=100°; 若∠OAD =∠AOD ,即40°=200°-∠α,解得∠α=160°. 即当α为130°或100°或160°时,△AOD 是等腰三角形25.(14分)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED =EC .(1)【特殊情况,探索结论】 如图①,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”);(2)【特例启发,解答题目】如图②,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __=__DB (填“>”“<”或“=”),并给出证明;(3)【拓展结论,设计新题】 在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED =EC ,若△ABC 的边长为1,AE =2,求CD 的长.解:(2)AE =DB .证明:过点E 作EF ∥BC ,交AC 于点F ,∵△ABC 为等边三角形,∴△AEF 为等边三角形,∴AE =EF ,BE =CF . ∵ED =EC ,∴∠D =∠ECD .∵∠DEB =60°-∠D ,∠ECF =60°-∠ECD ,∴∠DEB =∠ECF ,在△DBE 和△EFC 中,⎩⎪⎨⎪⎧DE =CE ,∠DEB =∠ECF ,BE =FC , ∴△DBE ≌△EFC (SAS),∴DB =EF ,∴AE =DB(3)如图所示,点E 在AB 延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F ,同(2)仍可证得△DBE ≌△EFC ,∴DB =EF =2,BC =1,则CD =BC +DB =3第十四章 整式的乘法与因式分解得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.(盐城中考)计算(-x 2y )2的结果是(A )A .x 4y 2B .-x 4y 2C .x 2y 2D .-x 2y 2 2.(葫芦岛中考)下列运算正确的是(D ) A .x 2·x 2=x 6 B .x 4+x 4=2x 8C .-2(x 3)2=4x 6D .xy 4÷(-xy )=-y 3 3.(泰安中考)计算(-2)0+9÷(-3)的结果是(B ) A .-1 B .-2 C .-3 D .-44.多项式mx 2-m 与多项式x 2-2x +1的公因式是(A ) A .x -1 B .x +1 C .x 2-1 D .(x -1)25.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼形成新的图形,嘉嘉(图①)和琪琪(图②)分别给出了各自的割拼方法,其中能够验证平方差公式的是(C )A.嘉嘉 B .琪琪 C .都能 D .都不能6.若a >0且a x =2,a y =3,则a x -2y 的值为(D ) A .13 B .-13 C .23 D .297.已知(x -2 019)2+(x -2 021)2=34,则(x -2 020)2的值是(D ) A .4 B .8 C .12 D .168.已知2a -b =3,那么12a 2-8ab +b 2-12a +3的值为(B ) A .9 B .12 C .15 D .189.分解因式x 2+ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果是(x -2)(x +1),那么x 2+ax +b 分解因式的正确结果为(B )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)10.图①是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示方式拼成一个正方形,则中间空的部分的面积是(C )A.abB .(a +b )2C .(a -b )2D .a 2-b 2二、填空题(每小题3分,共24分) 11.计算(-2x 3y 2)3·4xy 2=-32x 10y 8.12.一个长方形的面积是xy 2-x 2y ,且长为xy ,则这个长方形的宽为y -x . 13.(东营中考)因式分解:x (x -3)-x +3=(x -1)(x -3).14.多项式x 2+mx +5分解因式是(x +5)(x +n ),则m =6,n =1.15.如图, 在正方形ABCD 和EFGC 中,左、右两个正方形的边长分别为a ,b ,用代数式表示阴影部分三角形AEG 的面积为12b 2.第15题图第17题图 第18题图16.观察下列等式:12-02=1,22-12=3,32-22=5,42-32=7,……用含n(n≥1且n为正整数)的等式表示这种规律为__n2-(n-1)2=2n-1__.17.如图,长方形ABCD的周长为8,分别以长方形的一条长和一条宽向外作两个正方形,且这两个正方形的面积和为10,则长方形ABCD的面积是3.18.如图所示是一块正方形铁皮,边长为a,如果一边截去6,另一边截去5,则下面式子中正确地表示所剩长方形(阴影部分)铁皮的面积的有①③④.(填序号)①(a-5)(a-6);②a2-5a+6(a-5);③a2-6a-5(a-6);④a2-11a+30.三、解答题(共66分)19.(8分)计算:(1)(-3a2bc)2·(-2ab2)3;解:原式=9a4b2c2·(-8a3b6)=-72a7b8c2(2)(无锡中考)(a-b)2-a(a-2b).解:原式=a2-2ab+b2-a2+2ab=b220.(12分)分解因式:(1)2x2y-8xy+8y;(2)(2x+y)2-(x+2y)2;解:原式=2y(x-2)2解:原式=3(x+y)(x-y)(3)(y2-1)2+6(1-y2)+9.解:原式=(y+2)2(y-2)221.(8分)化简求值:(1)(宜昌中考)x(x+1)+(2+x)(2-x),其中x=6-4;解:原式=x2+x+4-x2=x+4,当x= 6 -4时,原式= 6 -4+4= 6(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m(m+1)=2.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m 2+m -1), ∵m(m +1)=2, ∴m 2+m =2,则原式=2×(2-1)=222.(8分)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=12a +8b -52,且△ABC 是等腰三角形,求c 的值.解:∵a 2+b 2=12a +8b -52,∴a 2+b 2-12a -8b +52=0, ∴(a 2-12a +36)+(b 2-8b +16)=0,∴(a -6)2+(b -4)2=0,∴a =6,b =4.∵△ABC 是等腰三角形,∴c =4或c =6,且符合三角形的三边关系23.(8分)如图是某环保工程所需要的一种圆柱形空心混凝土管道,它的内径长为d ,外径长为D ,长为l .设它的实体部分体积为V 立方米.(1)用含D ,d 的式子表示V ;(2)当它的内径d =45 cm ,外径D =75 cm ,长l =3 m 时,利用分解因式的知识求浇制一节这样的管道大约需要多少立方米的混凝土?(其中π取3)解:(1)V =l ·[π·⎝⎛⎭⎫D 2 2-π·⎝⎛⎭⎫d 2 2]=πl 4 ()D 2-d 2 (2)当d =45 cm ,D =75 cm ,l =3 m 时, V =πl 4 ()D 2-d 2 =πl4(D +d )·(D -d ) =3×34×(75+45)×(75-45)×10-4 =0.81(立方米)答:浇制一节这样的管道大约需要0.81立方米的混凝土24.(10分)如图①,是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于__m -n __;(2)请用两种不同的方法求图②中阴影部分的面积: ①__(m -n)2__,②__(m +n)2-4mn __;(3)观察图②,请你写出代数式(m +n )2,(m -n )2,mn 之间的等量关系.根据(3)题中的等量关系,解决下列问题:若a +b =7,ab =5,求(a -b )2的值.解:(3)(m -n)2=(m +n)2-4mn ,∵a +b =7,ab =5,∴(a -b)2=(a +b)2-4ab =72-4×5=2925.(12分)(枣庄中考)我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F (t )的最大值.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数), ∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=nn=1(2)设交换t 的个位上的数与十位上的数所得到的新数为t ′,则t ′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=36,∴y =x +4.∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的有15,26,37,48,59 (3)F (15)=35 ,F (26)=213 ,F (37)=137 ,F (48)=68 =34 ,F (59)=159 ,∵34 >35 >213 >137 >159, ∴所有“吉祥数”中,F (t )的最大值为34第十五章 分式得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分) 1.若分式x 2-4x 的值为0,则x 的值是(A )A .2或-2B .2C .-2D .0。

八年级数学上人教版单元试卷及答案

八年级数学上人教版单元试卷及答案

OEABDC 八年级数学上人教版单元试卷及答案(内容:全等三角形)一、选择题(每题3分,共30分)1、 在下列条件中,能判断两个直角三角形全等的是 ( )A.一个锐角对应等B.两锐角对应相等C.一条边对应相等D.两条边对应相等 2、如右图1,OA =OB,OC =OD,∠D =35°,则∠C 等于( ) A .60° B .50° C .35° D .30°3、在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在 下面判断中错误的是( )A. 若添加条件AC=A ˊC ˊ,则△ABC ≌△A ′B ′C ′B. 若添加条件BC=B ′C ′,则△ABC ≌△A ′B ′C ′C. 若添加条件∠B=∠B ′,则△ABC ≌△A ′B ′C ′D. 若添加条件 ∠C=∠C ′,则△ABC ≌△A ′B ′C ′4、以下三对元素对应相等的两个三角形,不能判定它们全等是( )A. 一边两角B. 两边和夹角C. 三个角D. 三条边 5、如图,将两根钢条AA ′、BB ′的中点 O 连在一起,使AA ′、BB ′能绕着点 O 自由转动,就做成了一个测量工具, 则A ′B ′的长等于内槽宽 AB,那么判定△OAB ≌△OA ′B ′ 的理由是( )A .SASB .ASAC .SSSD .HL 6、如图2:在Rt △ABC 中, ∠C=90º,D 是AB 上一点,AD=AC,DE ⊥AB 交BC 于E,若CE=3,则DE 是( ) A 、2 B 、3 C 、4 D 、57、已知如图3:AC=AD,BC=BD,CE=DE,则图中全等三角形共有( )A 、1 对B 、2 对C 、3 对D 、4 对8、如图4:△ABC ≌△BAD,点A 和点B,点C 和点D是对应点,如果AB=6cm,AD=4cm,那么BC 的长是( )A 、4 cmB 、5 cmC 、6cmD 、无法确定 9、在△ABC 中,D 是BC 边中点,AD BC 于D,则下列结论不正确的是( ) A 、△ABD ≌△ACD B 、∠B=∠C C 、AD 平分∠BAC D 、AB=BC=AC 10、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 二、填空题(每空2分,共30分)11、全等三角形能够完全重合的两个三角形叫做全等三角形,把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角,全等的三角形有这样的性质:1、全等三角形的对应边相等2、全等三角形的对应角相等。

最新人教版八年级数学上册单元测试题附答案全套

最新人教版八年级数学上册单元测试题附答案全套

八年级数学上册单元测试题附答案全套第十一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3C.2、6、3 D.11、4、62.如图所示,∠1的度数是()A.40° B.50°C.60° D.70°3.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图所示,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9 B.14C.16 D.不能确定5.如图所示,在△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠BDC的度数是()A.76°B.81°C.92° D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC 为直角三角形的条件有()A.1个B.2个C.3个D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角的度数是()A.108° B.90° C.72° D.60°8.若a、b、c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是()A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c9.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n的值为()A.11 B.12 C.13 D.1410.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20° B.∠ADE=30°C .∠ADE =12∠ADCD .∠ADE =13∠ADC二、填空题(每小题3分,共24分)11.如图,以∠E 为内角的三角形共有________个.12.若n 边形的内角和为900°,则边数n 的值为________.13.一个三角形的两边长分别是3和8,若周长是偶数,则第三边的长是________. 14.将一副三角板按如图所示的方式叠放,则∠α的度数是________.15.如图,在△ABC 中,CD 是AB 边上的中线,E 是AC 的中点,已知△DEC 的面积是4cm 2,则△ABC 的面积是________.16.如图,把三角形纸片ABC 沿DE 折叠,使点A 落在四边形BCDE 的内部.已知∠1+∠2=80°,则∠A 的度数是________.17.如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2的度数是________.18.如图,已知在△ABC 中,∠A =155°.第一步:在△ABC 的上方确定点A 1,使∠A 1BA =∠ABC ,∠A 1CA =∠ACB ;第二步:在△A 1BC 的上方确定点A 2,使∠A 2BA 1=∠A 1BA ,∠A 2CA 1=∠A 1CA ……则∠A 1的度数是________,照此继续,最多能进行________步.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E 在AC 上,点F 在AB 上,BE ,CF 交于点O ,且∠C =2∠B ,∠BFC -∠BEC =20°,求∠C 的度数.23.(10分)如果多边形的每个内角都比与它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分成12cm 和15cm 两部分,求△ABC 各边的长.25.(12分)如图①,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB . (1)求证:∠OAC =∠OCA ;(2)如图②,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P ,即满足∠POC =13∠AOC ,∠PCE =13∠ACE ,求∠P 的大小;(3)如图③,若射线OP 、CP 满足∠POC =1n ∠AOC ,∠PCE =1n ∠ACE ,猜想∠P 的大小,并证明你的结论(用含n 的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n 边形的内角和为(n -2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n =13.故选C.10.D 解析:如图,在△AED 中,∠AED =60°,∴∠ADE =180°-∠A -∠AED =120°-∠A .在四边形ABCD 中,∵∠A =∠B =∠C ,∴∠ADC =360°-∠A -∠B -∠C =360°-3∠A =3(120°-∠A ),∴∠ADC =3∠ADE .∴∠ADE =13∠ADC .故选D.11.3 12.7 13.7或9 14.75° 15.16cm 2 16.40° 17.28° 18.130° 6 解析:∵在△ABC 中,∠A =155°,∴∠ABC +∠ACB =25°.又∵∠A 1BA =∠ABC ,∠A 1CA =∠ACB ,∴∠A 1BC +∠A 1CB =50°,∴在△A 1BC 中,∠A 1=180°-50°=130°.∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,∴最多能进行6步.19.解:(1)AB (1分) (2)CD (2分)(3)∵AE =3cm ,CD =2cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).(5分)∵S △AEC =12CE ·AB =3cm 2,AB=2cm ,∴CE =3cm.(8分)20.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<CD <9.(4分)(2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =180°-∠BDE =55°.又∵∠A =55°,∴∠C =180°-∠A -∠AEC =70°.(8分)21.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2)×180°=720°,∴∠B =∠A =∠BCD =720°÷6=120°.(1分)∵CF ∥AB ,∴∠B +∠BCF =180°,∴∠BCF =60°,∴∠FCD =∠BCD -∠BCF =60°.(4分)(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°,∴∠AFC =180°-120°=60°,∴∠AFC =∠FCD ,∴AF ∥CD .(8分)22.解:由三角形外角的性质,得∠BFC =∠A +∠C ,∠BEC =∠A +∠B .(2分)∵∠BFC -∠BEC =20°,∴(∠A +∠C )-(∠A +∠B )=20°,即∠C -∠B =20°.(5分)∵∠C =2∠B ,∴∠B =20°,∠C =40°.(10分)23.解:设这个多边形的一个外角为x °.依题意有x +4x +30=180,解得x =30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm ,则AD =CD =12x cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎨⎧x +12x =12,y +12x =15,解得⎩⎪⎨⎪⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎨⎧x +12x =15,y +12x =12,解得⎩⎪⎨⎪⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE =13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分)(3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ·90°=90°n .∵∠PCE =1n∠ACE ,∴∠PCE =1n (180°-45°)=135°n .(10分)∴∠P =∠PCE -∠POC =45°n .(12分)第十二章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在下列每组图形中,是全等形的是( )2.如图所示,△AOC ≌△BOD ,点A 与点B 是对应点,则下列结论中错误的是( ) A .∠A =∠B B .AO =BO C .AB =CD D .AC =BD3.如图所示,已知AB =AC ,BD =CD ,则可推出( ) A .△ABD ≌△BCD B .△ABD ≌△ACD C .△ACD ≌△BCD D .△ACE ≌△BDE4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若要证△ABC≌△A′B′C′,则还需从下列条件中补选一个,错误的选法是()A.∠B=∠B′ B.∠C=∠C′C.BC=B′C′ D.AC=A′C′5.已知∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤56.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD 的长为()A.5.5 B.4 C.4.5 D.37.如图所示,MP⊥NP,MQ为∠PMN的平分线,MT=MP,连接TQ,则下列结论中不正确的是() A.TQ=PQ B.∠MQT=∠MQPC.∠QTN=90° D.∠NQT=∠MQT8.如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=54°,则∠E的度数为()A.25° B.27° C.30° D.45°9.如图,已知AB∥CD,AD∥BC,AD=BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,则图中的全等三角形有()A.5对B.6对C.7对D.8对10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN恒成立;②OM+ON 的值不变;③四边形PMON的面积不变;④MN的长不变.其中正确的个数为() A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是__________.12.如图,在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.14.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________cm.16.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是________.17.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是__________时,它们也会全等;当这两个三角形中的一个是锐角三角形,另一个是__________时,它们一定不全等.18.如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD.求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C.请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并证明你的猜想.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.23.(10分)如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=40°,求∠BCD的度数.24.(10分)如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)若AB=8,AC=6,求AE,BE的长.25.(12分)在解决线段数量关系的问题时,如果条件中有角平分线,经常采用下面构造全等三角形的解题思路,如:在图①中,若C 是∠MON 的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB =OA ,连接BC ,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC ,参考上面的方法,解答下列问题:如图②,在非等边△ABC 中,∠B =60°,AD ,CE 分别是∠BAC ,∠BCA 的平分线,且AD ,CE 交于点F .求证:AC =AE +CD .参考答案与解析1.C 2.C 3.B 4.C 5.B 6.B 7.D 8.B 9.C10.B 解析:如图,作PE ⊥OA 于E ,PF ⊥OB 于F ,则∠PEO =∠PFO =90°,∴∠EPF +∠AOB =180°.∵∠MPN +∠AOB =180°,∴∠EPF =∠MPN ,∴∠EPM =∠FPN .∵OP 平分∠AOB ,∴∠POE =∠POF .在△POE 和△POF 中, ⎩⎪⎨⎪⎧∠POE =∠POF ,∠PEO =∠PFO ,PO =PO ,∴△POE ≌△POF ,∴PE =PF ,OE =OF .在△PEM 和△PFN 中, ⎩⎪⎨⎪⎧∠MPE =∠NPF ,PE =PF ,∠PEM =∠PFN ,∴△PEM ≌△PFN ,∴EM =NF ,PM =PN ,故①正确.∴S △PEM =S △PFN ,∴S 四边形PMON =S 四边形PEOF =定值,故③正确.∵OM +ON =OE +ME +OF -NF =2OE =定值,故②正确.MN的长度是变化的,故④错误.故选B.11.DC =BC (或∠DAC =∠BAC ) 12.4 13.82° 14.3 15.9 16.20°17.钝角三角形或直角三角形 钝角三角形18.(6,6) 解析:如图,过点C 作CE ⊥OA ,CF ⊥OB ,垂足分别为E ,F .则∠OEC =∠OFC =90°.∵∠AOB =90°,∴∠ECF =90°.∵∠ACB =90°,∴∠ACE =∠BCF .在△ACE 和△BCF 中,⎩⎪⎨⎪⎧∠AEC =∠BFC ,∠ACE =∠BCF ,AC =BC ,∴△ACE ≌△BCF (AAS),∴AE =BF ,CE =CF ,∴点C 的横、纵坐标相等,∴OE =OF .∵AE =OE -OA=OE -3,BF =OB -OF =9-OF ,∴OE =OF =6,∴点C 的坐标为(6,6).19.证明:∵点C 是AE 的中点,∴AC =CE .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧AC =CE ,∠A =∠ECD ,AB =CD ,∴△ABC ≌△CDE (SAS),(7分)∴∠B =∠D .(8分)20.解:选②BC =DE .(1分)如图,∵∠1=∠2,∠3=∠4,∴∠E =∠C .(3分)在△ADE 和△ABC 中,⎩⎪⎨⎪⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(8分)21.解:猜想BF ⊥AE .(2分)理由如下:∵∠ACB =90°,∴∠ACE =∠BCD =90°.又BC =AC ,BD =AE ,∴Rt △BDC ≌Rt △AEC (HL).∴∠CBD =∠CAE .(5分)又∵∠CAE +∠E =90°,∴∠EBF +∠E =90°.∴∠BFE =90°,即BF ⊥AE .(8分)22.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 的平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE+12BC ·OD +12AC ·OF =12×2·(AB +BC +AC )=12×2×12=12.(10分) 23.(1)证明:∵AC ∥DE ,∴∠ACB =∠E ,∠ACD =∠D .∵∠ACD =∠B .∴∠D =∠B .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧∠ACB =∠E ,∠B =∠D ,AC =CE ,∴△ABC ≌△CDE (AAS),∴BC =DE .(5分)(2)解:由(1)知△ABC ≌△CDE ,∴∠DCE =∠A =40°,∴∠BCD =180°-40°=140°.(10分)24.(1)证明:如图,连接DB ,DC .∵DG ⊥BC 且平分BC ,∴∠DGB =∠DGC =90°,BG =CG .又DG =DG ,∴△DGB ≌△DGC ,∴DB =DC .∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DAE=∠DAF ,∠BED =∠AED =∠DFC =90°.(3分)在Rt △DBE 和Rt △DCF 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DBE ≌Rt △DCF (HL),∴BE =CF .(5分)(2)解:在△ADE 和△ADF 中,⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF .(7分)∵AC +CF =AF ,AE =AB -BE ,∴AC +CF =AB -BE ,即6+BE =8-BE ,∴BE =1,∴AE =8-1=7.(10分)25.证明:如图,在AC 上截取AG =AE ,连接FG .(1分)∵AD 是∠BAC 的平分线,CE 是∠BCA 的平分线,∴∠1=∠2,∠3=∠4.(2分)在△AEF 和△AGF 中, ⎩⎪⎨⎪⎧AE =AG ,∠1=∠2,AF =AF ,∴△AEF ≌△AGF (SAS),∴∠AFE=∠AFG .(6分)∵∠B =60°,∴∠BAC +∠ACB =120°,∴∠2+∠3=12(∠BAC +∠ACB )=60°.∵∠AFE =∠2+∠3,∴∠AFE =∠CFD =∠AFG =60°,∴∠CFG =180°-∠CFD -∠AFG =60°,∴∠CFD =∠CFG .(9分)在△CFG 和△CFD 中,⎩⎪⎨⎪⎧ ∠CFG =∠CFD ,FC =FC ,∠3=∠4,∴△CFG ≌△CFD (ASA),∴CG =CD .∴AC =AG+CG=AE+CD.(12分)第十三章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是()2.已知等腰三角形的一边长为6,一个内角为60°,则它的周长是()A.12 B.15 C.18 D.203.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为() A.40海里B.60海里C.70海里D.80海里4.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.DE=DC B.AD=DBC.AD=BC D.BC=AE5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30° B.36°C.54° D.72°6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( )A .(-2,1)B .(-1,1)C .(1,-2)D .(-1,-2)7.如图,△ABC 是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE 的长为( )A .7B .8C .9D .108.如图,∠A =80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是( ) A .40° B .30° C .20° D .10°9.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4……若∠A =70°,则∠A n -1A n B n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +210.已知△ABC 中,AB =6,AC =8,BC =11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有________条.12.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.14.如图,树AB垂直于地面,为测树高,小明在C处测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,则计算出树的高度是________米.15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE 的周长为________.16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是__________.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为________.18.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P.若∠BAC =84°,则∠BDC的度数为________.三、解答题(共66分)19.(7分)如图,已知AB=AC,AE平分∠BAC的外角,那么AE∥BC吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC于点E,D为AB上一点,△BDE是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边向下侧作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边向下侧作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.A 2.C 3.D 4.C 5.B 6.B 7.C8.D 解析:如图所示,连接OA ,OB .∵∠BAC =80°,∴∠ABC +∠ACB =100°.∵O 是AB ,AC 垂直平分线的交点,∴OA =OB ,OA =OC ,∴OB =OC ,∠OAB =∠OBA ,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∴∠BCO =∠CBO =10°,故选D.9.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C.10.C 解析:分别以AB ,AC 分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.5 12.3 13.-10 14.10 15.13 16.10:45 17.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°.18.96° 解析:如图,过点D 作DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DEB ≌Rt △DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DF A =90°,∠BAC=84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分) 21.解:(1)依题意,S △ABC =12×5×3=152.(3分) (2)△A 1B 1C 1如图.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎪⎨⎪⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD ⊥BE ,BD =DE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =180°-∠BAE 2=70°,(3分)∴∠C =12∠AED =35°.(5分) (2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分)24.解:(1)∠BAD =∠CAE .(2分)(2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE .(6分)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD 中,⎩⎪⎨⎪⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=分)∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,(9分)∴AC=AE=2,∴OC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.(12分)第十四章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.(-2)0的值为()A.-2 B.0 C.1 D.22.计算(-x2y)2的结果是()A.x4y2B.-x4y2C.x2y2D.-x2y23.下列运算正确的是()A.a-(b+c)=a-b+c B.2a2·3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+14.下列四个多项式中,能因式分解的是()A.a2+b2B.a2-a+2C.a2+3b D.(x+y)2-45.若关于x的代数式x2-(m-1)x+1是一个完全平方式,则m的值为()A.-1 B.1C.-1或3 D.1或36.若(x+4)(x-2)=x2+mx+n,则常数m,n的值分别是()A.2,8 B.-2,-8C.-2,8 D.2,-87.若m=2100,n=375,则m、n的大小关系是()A.m>n B.m<nC.m=n D.大小关系无法确定8.若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值()A.一定为正数B.一定为负数C.可能是正数,也可能是负数D.可能为09.如图①所示是一个长为2a、宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按如图②所示方式拼成一个正方形,则中间空的部分的面积是()A.abB.(a+b)2C.(a-b)210.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2016的值?你的答案是( )A.a 2016-1a -1B.a 2017-1a -1C.a 2016-1a D .a 2016-1 二、填空题(每小题3分,共24分)11.计算:-x 2·x 3=________;⎝⎛⎭⎫12a 2b 3=________; ⎝⎛⎭⎫-122017×22016=________.12.已知a +b =3,a -b =5,则代数式a 2-b 2的值是________.13.若关于x 的代数式x +m 与x -4的乘积中一次项是5x ,则常数项为________.14.因式分解:(1)xy 2-9x =____________;(2)4x 2-24x +36=____________.15.计算2016×512-2016×492的结果是________.16.已知2a 2+2b 2=10,a +b =3,则ab 的值为________.17.若3m =2,3n =5,则32m +3n -1的值为________.18.请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b )6=______________________.三、解答题(共66分)19.(8分)计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).20.(8分)化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.21.(7分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)-(x+1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.22.(8分)因式分解:(1)6xy2-9x2y-y3;(2)(p-4)(p+1)+3p.23.(8分)先化简,再求值:(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.24.(9分)(1)已知a -b =1,ab =-2,求(a +1)(b -1)的值;(2)已知(a +b )2=11,(a -b )2=7,求ab ;(3)已知x -y =2,y -z =2,x +z =5,求x 2-z 2的值.25.(8分)小红家有一块L 形菜地,要把L 形菜地按如图所示方式分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a =10,b =30时,面积是多少平方米?材料:因式分解:(x +y )2+2(x +y )+1.解:将“x +y ”看成整体,令x +y =A ,则原式=A 2+2A +1=(A +1)2.再将“A ”还原,得原式=(x +y +1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x -y )+(x -y )2=____________;(2)因式分解:(a +b )(a +b -4)+4;(3)求证:若n 为正整数,则式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.参考答案与解析1.C 2.A 3.B 4.D 5.C 6.D7.B 解析:m =2100=(24)25=1625,n =375=(33)25=2725.∵16<27,∴1625<2725,即m <n .故选B.8.B9.C 解析:依题意可知每个小长方形的长是a ,宽是b ,则拼成的正方形的边长为a +b ,中间空的部分的面积为(a +b )2-4ab =(a -b )2.故选C.10.B 解析:设S =1+a +a 2+a 3+a 4+…+a 2016①,在①式的两边都乘以a ,得aS =a +a 2+a 3+a 4+a 5+…+a 2017②,②-①得aS -S =a 2017-1,即(a -1)S =a 2017-1,所以S =a 2017-1a -1.故选B. 11.-x 5 18a 6b 3 -1212.15 13.-36 14.(1)x (y +3)(y -3) (2)4(x -3)215.403200 16.2 17.500318.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 619.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分)(3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分) 20.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)21.解:(1)一(3分) 解析:括号前面是负号,去掉括号应变号,故第一步出错,故答案为一.(2)x (x +2y )-(x +1)2+2x =x 2+2xy -x 2-2x -1+2x =2xy -1.(7分)22.解:(1)原式=-y (y 2-6xy +9x 2)=-y (3x -y )2.(4分)(2)原式=p 2+p -4p -4+3p =p 2-4=(p +2)(p -2).(8分)23.解:(1)原式=-3x 2+4y 2-y -4y 2+x 2=-2x 2-y .当x =1,y =-2时,原式=-2+2=0.(3分) (2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,由①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.故方程组的解是⎩⎪⎨⎪⎧m =3,n =-1.(5分)(m -n )(m +n )+(m +n )2-2m 2=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(8分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(3分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,由①-②得4ab =4,∴ab =1.(6分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(9分)25.解:(1)依题意,小红家的菜地面积共有2×12(a +b )(b -a )=(b 2-a 2)(平方米).(4分) (2)当a =10,b =30时,面积为900-100=800(平方米).(8分)26.(1)(x -y +1)2(2分)(2)解:令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,再将“A ”还原,得原式=(a +b -2)2.(6分)(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1.令n 2+3n =A ,则原式=A (A +2)+1=A 2+2A +1=(A +1)2,∴原式=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(10分)第十五章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在a -b 2,x (x +3)x ,5+x π,a +b a -b,a +1m 中,是分式的有( ) A .1个 B .2个C .3个D .4个2.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1C .-1D .±13.下列计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 4.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-75.化简x 2x -1+x 1-x的结果是( ) A .x +1 B .x -16.如果把分式2n m -n中的m 和n 都扩大到原来的2倍,那么分式的值( ) A .不变 B .扩大到原来的2倍C .缩小为原来的12D .扩大到原来的4倍 7.化简⎝⎛⎭⎫1a +1b ÷⎝⎛⎭⎫1a 2-1b 2·ab 的结果是( )A.a 2b 2a -bB.a 2b 2b -aC.1a -bD.1b -a8.若1x -1=1,则3x -1-1+x 的值为( ) A .0 B .2 C .3 D .49.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月份的水费是30元.已知小丽家今年5月份的用水量比去年12月份的用水量多5m 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/m 3,根据题意列方程,正确的是( )A.30⎝⎛⎭⎫1+13x -15x =5B.30⎝⎛⎭⎫1-13x -15x=5 C.30x -15⎝⎛⎭⎫1+13x =5 D.30x -15⎝⎛⎭⎫1-13x=5 10.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题(每小题3分,共24分)11.当x ________时,分式5x -2有意义. 12.方程12x =1x +1的解是________. 13.若3x -1=127,则x 的值为______. 14.计算⎝⎛⎭⎫a -2ab -b 2a ÷a -b a 的结果是________. 15.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.16.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,则甲每天铺设管道________米.17.若关于x 的方程2a x -1=a -1无解,则a 的值是________.18.若1(2n -1)(2n +1)=a 2n -1+b 2n +1(a ,b 为常数),对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、解答题(共66分)19.(9分)计算或化简:(1)(-2016)0-2-2-⎝⎛⎭⎫-12-3-(-3)2;(2)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(3)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.20.(8分)解方程:(1)2x +1-1x =0;(2)x -2x +2-16x 2-4=1.21.(10分)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1+x 2-4x 2-4x +4÷x 2x -2,其中x =1;(2)⎝⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的值代入x 求值.22.(8分)以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第______步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.23.(10分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程的时间.24.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家的时间的2倍,那么小明家与图书馆之间的路程最多是多少米?25.(11分)观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程为____________,其解为____________;(2)根据这类方程的特征,写出第n 个方程为________________,其解为____________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(n 为正整数)的解.参考答案与解析1.C 2.C 3.A 4.C 5.D 6.A 7.B 8.D 9.A10.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.由x ≠3得-2m +92≠3,解得m ≠32,故m 的取值范围是m <92且m ≠32.故选B. 11.≠2 12.x =1 13.-2 14.a -b 15.2316.20 17.1或0 解析:方程两边乘(x -1),得2a =(a -1)(x -1),即(a -1)x =3a -1.当a -1=0且3a -1≠0时,方程无解,此时a =1;当a -1≠0时,x =3a -1a -1,若x =1,则方程无解,此时3a -1a -1=1,解得a =0.综上所述,若关于x 的方程2a x -1=a -1无解,则a 的值是1或0. 18.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1).∵等式对于任意自然数n 都成立,∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1) =122n -1+-122n +1=12⎝⎛⎫12n -1-12n +1,∴m =1×3+13×5+15×7+…+119×21=12×⎝⎛1-13+13-15+15-17+…⎭⎫+119-121=12×⎝⎛19.解:(1)原式=1-14+8-9=-14.(3(2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(6分) (3)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(9分) 20.解:(1)方程两边同乘x (x +1),得2x -(x +1)=0,解得x =1.(3分)检验:当x =1时,x (x +1)≠0.所以原分式方程的解为x =1.(4分)(2)方程两边同乘(x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.(7分)检验:当x =-2时,(x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.(8分)21.解:(1)原式=⎝ ⎛⎭⎪⎫1+x +2x -2·x -2x 2=2x x -2·x -2x 2=2x.(3分)当x =1时,原式=2.(5分) (2)原式=⎝⎛⎭⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1.(8分)∵x 从不大于4的正整数中选取,∴x =1,2,3,4.∵要使原式有意义,则x ≠±1,3,∴可取x =4,则原式=23.(10分) 22.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以原分式方程的解为x =4.(8分)23.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2.由题意得3000x +50=3000x ·34,解得x =150.(5分)经检验,x =150是原分式方程的解.(6分)3000x =20(天),20×34=15(天).(9分) 答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(10分)24.解:(1)设小明步行的速度是x 米/分.由题意得900x =9003x+10,解得x =60.(4分)经检验,x =60是原分式方程的解.(5分)答:小明步行的速度是60米/分.(6分)(2)设小明家与图书馆之间路程是y 米.由(1)知小明骑自行车的速度为3×60=180(米/分),根据题意可得y 60≤900180×2,解得y ≤600.(9分) 答:小明家与图书馆之间路程最多是600米.(10分)25.解:(1)答案不唯一,如x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)∵x +n 2+n x +3=-2(n +2),∴x +3+n 2+n x +3=-2(n +2)+3,∴(x +3)+n 2+n x +3=-(2n +1),∴x +3=-n 或x +3=-n -1,即x 1=-n -3,x 2=-n -4.(10分)检验:当x =-n -3时,x +3=-n ≠0,当x =-n -4时,x +3=-n -1≠0,∴原分式方程的解是x 1=-n -3,x 2=-n -4.(11分)。

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)

最新人教版初二(八年级)数学上册各单元及期末测试题(含答案)八年级数学上册第一单元测试一、选择题(24分)1.用尺规作已知角的平分线的理论依据是()A.SASB.AASC.SSSD.ASA2.三角形中到三边距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于()A.5B.6C.7D.84.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°AEMCADFENBCBDF4题图5题图6题图5.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△CAN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,有下面四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B,C两点的距离相等;④到AE,AF的距离相等的点到DE,DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个7.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离是()A.2cmB.3cmC.4cmD.6cm8.下列说法:①角的内部任意一点到角的两边的距离相等;②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离相等,其中正确的()A.1个B.2个C.3个D.4个二、填空题(30分)29.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm,AB=20cm,AC=8cm,则DE的长为_________cm.10.已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.11.如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.12.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.AEFCBD9题图11题图12题图13.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.13题图14题图15题图14.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).16.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为.17.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.18.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3cm,BD=5cm,则BC=_____cm.17题图18题图三、解答题19.(6分)已知:如图,∠1=∠2,∠C=∠D,求证:AC=AD.2CA12BD20.(8分)如图,四边形ABCD的对角线AC与BD相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)BO=DO.B31AC2O4D21.(8分)如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.(1)求证:AC=BE;(2)求∠B的度数。

人教版八年级数学上册单元测试题全套(含答案)

人教版八年级数学上册单元测试题全套(含答案)

最新人教版八年级数学上册单元测试题全套(含答案)(含期中期末试题,共7套)第十一章检测卷(满分:120分时间90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个 B.2个 C.3个 D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有( ) A.1个 B.2个 C.3个 D.4个3.图中能表示△ABC的BC边上的高的是( )A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为( )A.40° B.60° C.80° D.100°(第4题图) (第7题图) (第9题图) (第10题图)5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为( )A.180° B.360° C.1 080° D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是( )A.60° B.65° C.70° D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,则∠AFB 的度数是( )A.126° B.120° C.116° D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为( )A.30° B.36° C.38° D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角的度数之比为4:3:2,则这个三角形的最大内角为________°.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_______性.(第12题图) (第14题图) (第15题图)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______°.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题图) (第18题图) (第20题图)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题图)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题图)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题图)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题图)26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图(1),若AB∥ON,则①∠ABO的度数是________;②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图(2),若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第27题图)参考答案一、1.B 2.C 3.D4.C 分析:∵∠CBD是△ABC的外角,∴∠CBD=∠C+∠A.又∵∠A=40°,∠CBD=120°,∴∠C=∠CBD-∠A=120°-40°=80°. 5.B6.C 分析:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 分析:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 分析:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 分析:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B. 二、11. 80 12. 稳定 13. 3,4,5,6,714.6013 分析:由题意可知AB ·BC =BD ·AC ,所以BD =AB ·BC AC =12×513=6013(cm). 15.60 分析:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°. 16.7 17. 10518.360° 分析:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题答图)19.120°20.2 分析:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵AG ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC=∠BCD =35°.22.解:(1)AB ;(2)CD ;(3)∵AE =3 cm , CD =2 cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).∵S △AEC =12CE ·AB =3 cm 2,AB =2 cm ,∴CE =3 cm.23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°. 24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎪⎨⎪⎧32a =18,12a +b =15,或⎩⎪⎨⎪⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠BAC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形的三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形的三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形的三边关系,不能构成三角形. 所以这个等腰三角形的周长为2. 27.解:(1)①20° ②120;60(2)①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20.若∠BAD =∠BDA ,则x =35.若∠ADB =∠ABD ,则x =50. ②当点D 在射线BE 上时,因为∠ABE =110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时x =125,综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x =20,35,50或125.第十二章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列判断不正确的是( )A.形状相同的图形是全等图形 B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同 D.全等三角形的对应角相等2.如图,△ABC≌△CDA,∠BAC=85°,∠B=65°,则∠CAD度数为()A.85°B.65°C.40°D.30°(第2题图) (第3题图) (第4题图) (第5题图)3.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB=10 cm,AC=6 cm,则BE 的长度为( )A.10 cm B.6 cm C.4 cm D.2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )A.5对 B.4对 C.3对 D.2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE(第8题图) (第9题图) (第10题图)9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.两处 C.三处 D.四处10.已知:如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接CD,C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)11.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是:________.(填上你认为适当的一个条件即可) 12.如图,点O在△ABC内,且到三边的距离相等.若∠A=60°,则∠BOC=________°.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是________.(第11题图) (第12题图) (第15题图) (第16题图)14.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC≌△A′B′C′,则△A′B′C′的腰长等于________.15.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.16.如图,△ABC≌△DCB,AC与BD相交于点E,若∠A=∠D=80°,∠ABC=60°,则∠BEC等于________.17.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中共有________对全等三角形.18.如图,已知P(3,3),点B,A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=________.(第17题图) (第18题图) (第19题图) (第20题图)19.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是________.20.如图,已知点P到BE,BD,AC的距离恰好相等,则点P的位置:①在∠DBC的平分线上;②在∠DAC的平分线上;③在∠ECA的平分线上;④恰是∠DBC,∠DAC,∠ECA的平分线的交点,上述结论中,正确的有________.(填序号)三、解答题(21,22题每题7分,23,24题每题8分,25~27题每题10分,共60分)21.如图,按下列要求作图:(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高AF.(不写作法)(第21题图)22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出所有相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.(第22题图) 23.如图,AD⊥AE,AB⊥AC,AD=AE,AB=AC.求证:△ABD≌△ACE.(第23题图)24.如图,AC∥BE,点D在BC上,AB=DE,∠ABE=∠CDE.求证:DC=BE-AC.(第24题图)25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF =EB;(2)AB=AF+2EB.(第25题图)26.如图,A,B两建筑物位于河的两岸,要测得它们之间的距离,可以从点B出发在河岸上画一条射线BF,在BF 上截取BC=CD,过D作DE∥AB,使E,C,A在同一直线上,则DE的长就是点A,B之间的距离,请你说明道理.(第26题图)27.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,连接CF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图(2),线段CF,BD所在直线的位置关系为______,线段CF,BD的数量关系为________;②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.(第27题图)参考答案一、1.A 2.D 3.D 4.C 5.C 6.B7.A 8.D9.D 分析:如图,在△ABC内部,找一点到三边距离相等,根据到角的两边距离相等的点在角的平分线上,可知,此点在各内角的平分线上,作∠ABC,∠BCA的平分线,交于点O1,由角平分线的性质可知,O1到AB,BC,AC的距离相等.同理,作∠ACD,∠CAE的平分线,交于点O2,则O2到AC,BC,AB的距离相等,同样作法得到点O3,O4.故可供选择的地址有四处.故选D.(第9题答图)10.D二、11.∠B=∠C(答案不唯一)12.120 13. 4∶3 14. 8 cm或5 cm15.27 16. 100°17.3 分析:因为△OPE≌△OPF,△OPA≌△OPB,△AEP≌△BFP,所以共有3对全等三角形.18.6 分析:过点P作PC⊥OB于C,PD⊥OA于D,则PD=PC=DO=OC=3,可证△APD≌△BPC,∴DA=CB,∴OA +OB=OA+OC+CB=OA+OC+DA=OC+OD=6.19.50 分析:由题意易知,△AFE≌△BGA,△BGC≌△CHD.∴FA=BG=3,AG=EF=6,CG=HD=4,CH=BG=3.∴S =S 梯形EFHD -S △EFA -S △AGB -S △BGC -S △CHD =12(4+6)×(3+6+4+3)-12×3×6×2-12×3×4×2=80-18-12=50. 20.①②③④三、21.解:(1)角平分线CD 如图①.(2)中线BE 如图②.(3)高AF 如图③.(第21题答图)22.解:(1)EF =MN ,EG =HN ,FG =MH ,FH =GM ,∠F =∠M ,∠E =∠N ,∠EGF =∠MHN , ∠FHN =∠EGM.(2)∵△EFG ≌△NMH ,∴MN =EF =2.1 cm ,GF =HM =3.3 cm , ∵FH =1.1 cm ,∴HG =GF -FH =3.3-1.1=2.2 (cm). 23.证明:∵AD ⊥AE ,AB ⊥AC ,∴∠CAB =∠DAE =90°. ∴∠CAB +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE. 在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE , ∴△ABD ≌△ACE.24.证明:∵AC ∥BE ,∴∠DBE =∠C.∵∠CDE =∠DBE +∠E ,∠ABE =∠ABC +∠DBE , ∠ABE =∠CDE ,∴∠E =∠ABC.在△ABC 与△DEB 中,⎩⎪⎨⎪⎧∠C =∠DBE ,∠ABC =∠E ,AB =DE ,∴△ABC ≌△DEB(AAS).∴BC =BE ,AC =BD.∴DC =BC -BD =BE -AC. 25.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴DE =DC. 又∵BD =DF ,∴Rt △CDF ≌Rt △EDB(HL). ∴CF =EB.(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE. ∴AC =AE.∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB.点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD =DE.再根据Rt △CDF ≌Rt △EDB ,得CF =EB.(2)利用角平分线的性质证明Rt △ADC ≌Rt △ADE ,∴AC =AE ,再将线段AB 进行转化. 26.解:∵DE ∥AB ,∴∠A =∠E.∵E ,C ,A 在同一直线上,B ,C ,D 在同一直线上,∴∠ACB =∠ECD. 在△ABC 与△EDC 中,⎩⎪⎨⎪⎧∠A =∠E ,∠ACB =∠ECD ,BC =CD ,∴△ABC ≌△EDC(AAS). ∴AB =DE.27.解:(1)①CF ⊥BD ;CF =BD②当点D 在线段BC 的延长线上时,①中的结论仍然成立.理由:由正方形ADEF 得AD =AF ,∠DAF =90°. ∵∠BAC =90°,∴∠DAF =∠BAC. ∴∠DAB =∠FAC.又∵AB =AC ,∴△DAB ≌△FAC. ∴CF =BD ,∠ACF =∠ABD. ∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形.∴∠ABC =∠ACB =45°. ∴∠ACF =45°.∴∠BCF =∠ACB +∠ACF =90°.即CF ⊥BD.(第27题答图)(2)当∠ACB =45°时,CF ⊥BC(如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°.∵∠ACB =45°,∠AGC =90°-∠ACB ,∴∠AGC =90°-45°=45°,∴∠ACB =∠AGC =45°,∴△AGC 是等腰直角三角形,∴AC =AG.又∵∠DAG =∠FAC(同角的余角相等),AD =AF ,∴△GAD ≌△CAF ,∴∠ACF =∠AGC =45°,∴∠BCF =∠ACB +∠ACF =45°+45°=90°,即CF ⊥BC.第十三章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列图标是轴对称图形的是( )(第1题图)A.(1)(4) B.(2)(4) C.(2)(3) D.(1)(2)2.下列图形的对称轴最多的是( )A.正方形 B.等边三角形 C.等腰三角形 D.线段3.和点P(-3,2)关于y轴对称的点是( )A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)4.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )(第4题图)A.50° B.60° C.70° D.80°5.在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A.1个 B.2个 C.3个 D.4个6.已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P关于OA对称,则以点P1,O,P2为顶点的三角形是( )A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形(第7题图) (第8题图) (第10题图)7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD =24°,则∠ACF的度数为( )A.48° B.36° C.30° D.24°8.如图,先将正方形纸片对折然后展开,折痕为MN,再把点B折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下得到△ADH,则下列选项正确的是( )A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD9.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为( )A.30°或60° B.75° C.30° D.75°或15°10.如图,△ABC是等腰三角形(AB=AC≠BC),在△ABC所在平面内有一点P,且使得△ABP,△ACP,△BCP均为等腰三角形,则符合条件的点P共有( )A.1个 B.4个 C.5个 D.6个二、填空题(每题3分,共30分)11.已知点A(a,-2)和B(3,2),当满足条件________时,点A和点B关于x轴对称.12.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是________.13.已知等腰三角形的一个内角是80°,则它的底角是________.14.如图,在△ABC中,若BC=6 cm,AC=4 cm,AB边的垂直平分线交AB于点E,交BC于点D,则△ADC的周长是________.(第12题图) (第14题图) (第15题图) (第16题图)15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=________.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有________个.17.如图,点E是正方形ABCD的边DC上一点,在AC上找一点P,使PD+PE的值最小,则这个最小值就是线段________的长度.18.如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC,其中正确的有________(填序号即可).(第17题图) (第18题图) (第19题图) (第20题图)19.如图,两块相同的三角尺完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=________.20.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…;这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.三、解答题(21,22,23题每题6分,24题8分,25题10分,26,27题每题12分,共60分)21.如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.(第21题图)22.如图,校园内有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P,并说明理由.(第22题图)23.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第23题图)24.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第24题图)25.如图,过等边△ABC的顶点A,B,C依次作AB,BC,CA的垂线MG,MN,NG,三条垂线围成△MNG.求证:△MNG 是等边三角形.(第25题图)26.如图,在△ABC中,∠ACB=90°,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,延长DF交AB于点E,连接CE.(1)求证:AE=CE=BE;(2)若AB=15 cm,P是直线DE上的一点.则当P在何处时,PB+PC最小?并求出此时PB+PC的值.(第26题图)27.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点. (1)直线BF 垂直于CE 交CE 于点F ,交CD 于点G(如图①),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M(如图②),找出图中与BE 相等的线段,并说明理由.(第27题图)参考答案一、1.D 2.A 3.A 4.D5.D 分析:本题利用分类讨论思想.当OA 为等腰三角形的腰时,以O 为圆心,OA 长为半径的圆弧与y 轴有两个交点,以A 为圆心,OA 长为半径的圆弧与y 轴除点O 外还有一个交点;当OA 为等腰三角形的底时,作线段OA 的垂直平分线,与y 轴有一个交点. ∴符合条件的点一共有4个.故选D. 6.D 7.A 8.B 9.D 10.D 二、11.a =3 12.2013.50°或80° 14. 10 cm 15. 2 16. 5 17.BE 18.①②③19.52 分析:∵∠A =30°,AC =10,∠ABC =90°,∴∠C =60°,BC ′=BC =12AC =5.∴△BCC ′是等边三角形,∴CC ′=5,∴AC ′=5.∵∠A ′C ′B =∠C ′BC =60°,∴C ′D ∥BC.∴∠ABC =∠ADC ′=90°,∴C ′D =12AC ′=52.20. 9 分析:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A ,….∵∠BOC =9°,∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°(n +1)≤90°,解得n ≤9.故答案为9.三、21.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED ≌△ACD(SAS).∴∠E =∠C.又∵∠E =∠B ,∴∠B =∠C.∴AB =AC.22.解:如图,连接CD ,灯柱的位置P 在∠AOB 的平分线OE 和线段CD 的垂直平分线的交点处. 理由如下:∵点P 在∠AOB 的平分线上,∴点P 到∠AOB 的两边OA ,OB 的距离一样远. ∵点P 在线段CD 的垂直平分线上,∴点P 到点C 和点D 的距离相等.∴点P 符合题意.(第22题答图)23.解:(1)如图.(第23题答图)(2)A1(0,-4),B1(-2,-2),C1(3,0).(3)724.解:(1)∵DE垂直平分AC,∴AE=CE,∴∠ECD=∠A=36°.(2)∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵∠BEC=∠A+∠ACE=72°,∴∠B=∠BEC,∴BC=CE=5.25.证明:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠BCA=60°.又∵AB⊥MG,∴∠BAG=90°.∴∠CAG=30°.∵AC⊥NG,∴∠ACG=90°.∴∠G=60°.同理,∠M=60°,∠N=60°.∴△MNG是等边三角形.26.(1)证明:∵△ACD为等边三角形,DE垂直于AC,∴DE垂直平分AC,∴AE=CE.∴∠AEF=∠FEC.∵∠ACB=∠AFE=90°,∴DE∥BC.∴∠AEF=∠EBC,∠FEC=∠ECB.∴∠ECB=∠EBC.∴CE=BE.∴AE=CE=BE.(2)解:连接PA,PC.∵DE垂直平分AC,点P在DE上,∴PC=PA.∵两点之间线段最短,∴当P与E重合时PA+PB 最小,为15 cm,即PB+PC最小为15 cm.27.(1)证明:∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,∴△AEC≌△CGB,∴AE=CG.(2)解:BE=CM.理由:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.又∵CA=BC,∠ACM=∠CBE=45°,∴△BCE≌△CAM,∴BE=CM.期中检测卷时间:120分钟满分:120分题号一二三总分得分一、选择题(每小题3分,共30分)1.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm2.下列图形中不是轴对称图形的是()3.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M,N是边AD上的两点,连接MO,NO,并分别延长交边BC于两点M′,N′,则图中的全等三角形共有()(第3题图)A.2对 B.3对 C.4对 D.5对4.正n边形的每个内角的大小都为108°,则n的值为()A.5 B.6 C.7 D.85.在△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40° B.50° C.65° D.80°6.如图,AD是△ABC的角平分线,且AB∶AC=3∶2,则△ABD与△ACD的面积之比为()A.3∶2 B.9∶4 C.2∶3 D.4∶9(第6题图)(第7题图)7.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm(第8题图)(第9题图)(第10题图)9.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90° B.120° C.150° D.180°10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE =2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.点A(3,-2)关于x轴对称的点的坐标是________.12.已知三角形两边长分别是3cm,5cm,设第三边的长为x cm,则x的取值范围是________.13.如图是某零件的平面图,其中∠B=∠C=30°,∠A=40°,则∠ADC的度数为________.(第13题图)(第14题图)(第15题图)14.如图,△ABC≌△DFE,CE=6,FC=2,则BC=________.15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________.16.如图,已知正方形ABCD中,CM=CD,MN⊥AC,连接CN,则∠MNC=________.(第16题图)(第17题图)(第18题图)17.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕点M转动△ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是________.18.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=________.三、解答题(共66分)19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.(第19题图)20.(8分)解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.21.(8分)图①、图②是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,A、B、C三点均在小正方形的顶点上.(第21题图)(1)在图①中画出凸四边形ABCD,点D在小正方形的顶点上,且使四边形ABCD是只有一条对称轴的轴对称图形;(2)在图②中画出凸四边形ABCE,点E在小正方形的顶点上,且使四边形ABCE是有四条对称轴的轴对称图形.22.(10分)如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(第22题图)23.(10分)已知等腰三角形一腰上的中线将三角形的周长分为9 cm和15 cm两部分,求这个等腰三角形的底边长和腰长.24.(10分)如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.(第24题图)25.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积.(2)求证:CE=2AF.(第25题图)参考答案1.C 2.C 3.C 4.A 5.D 6.A 7.A 8.C9.D 解析:∵图中有三个等边三角形,∴∠1=180°-60°-∠ABC=120°-∠ABC,∠2=180°-60°-∠ACB =120°-∠ACB,∠3=180°-60°-∠BAC=120°-∠BAC.∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°-180°=180°.故选D.(第9题答图)10.A 解析:∵BF ∥AC ,∴∠C =∠CBF.∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC.∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确;在△CDE 与△BDF 中,⎩⎪⎨⎪⎧∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF(ASA),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A. 11.(3,2) 12. 2<x <8 13. 100° 14.8 15. 108° 16. 67.5°17.5 解析:如图,连接CC 1.∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =12AC =5,∴∠A 1CM =∠A 1=30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5.(第17题答图)18.1.5 解析:如图,连接CD ,BD.∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEA =∠DEB =90°.又∵AD =AD ,∴Rt △ADF ≌Rt △ADE(HL),∴AE =AF.∵DG 是BC 的垂直平分线,∴CD =BD.在Rt △CDF 和Rt △BDE 中,⎩⎪⎨⎪⎧CD =BD ,DF =DE ,∴Rt △CDF ≌Rt △BDE(HL),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE.∵AB =6,AC =3,∴BE =1.5.(第18题答图)19.证明:∵AB ∥CD ,∴∠B =∠C.(2分)在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,AE =DF ,∴△ABE ≌△DCF(AAS),(6分)∴AB =CD.(8分)20.解:(1)设等腰三角形的顶角为x °,则底角为2x °.由题意得x +2x +2x =180,解得x =36,∴这个三角形三个内角的度数分别为36°、72°、72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5,3.5,3.5可以构成三角形;(6分)当5为腰长时,其他两边长为5和2,5,5,2可以构成三角形.(7分)∴另外两边长是3.5,3.5或5,2.(8分)21.解:(1)图①中两个图形画出一个即可.(4分) (2)如图②所示.(8分)(第21题答图)22.解:∵∠A =40°,∠B =72°,∴∠ACB =180°-40°-72°=68°.(2分)∵CE 是∠ACB 的平分线,∴∠BCE =12∠ACB =12×68°=34°.(4分)∵CD ⊥AB ,∴∠CDB =90°,∴∠BCD =180°-90°-72°=18°,∴∠DCE =∠BCE -∠BCD =34°-18°=16°.(8分)∵DF ⊥CE ,∴∠DFC =90°,∴∠CDF =180°-90°-16°=74°.(10分) 23.解:如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线,则有AB +AD =9(cm )或AB +AD =15(cm ).(2分)设△ABC 的腰长为x cm ,分下面两种情况:(1)x +12x =9,∴x =6.∵三角形的周长为9+15=24(cm),∴三边长分别为6 cm ,6 cm ,12 cm.6+6=12,不符合三角形的三边关系,舍去.(6分)(第23题答图)(2)x +12x =15,∴x =10.∵三角形的周长为24 cm ,∴三边长分别为10 cm ,10 cm ,4 cm ,符合三边关系.(9分)综上所述,这个等腰三角形的底边长为4 cm ,腰长为10 cm.(10分)24.(1)证明:∵AE ∥BC ,∴∠B =∠DAE ,∠C =∠CAE.(2分)∵AE 平分∠DAC ,∴∠DAE =∠CAE.(3分)∴∠B =∠C.∴△ABC 是等腰三角形.(4分)(2)解:∵点F 是AC 的中点,∴AF =CF.(5分)在△AEF 和△CGF 中,⎩⎪⎨⎪⎧∠FAE =∠C ,AF =FC ,∠AFE =∠CFG ,∴△AEF ≌△CGF(ASA).∴AE=GC =8.∵GC =2BG ,∴BG =4,∴BC =12.(9分)∴△ABC 的周长为AB +AC +BC =10+10+12=32.(10分)25.(1)解:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAC =∠EAD.(2分)在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).∴S △ABC =S △ADE ,∴S四边形ABCD=S △ABC +S △ACD =S △ADE +S △ACD =S △ACE =12×102=50.(6分)(2)证明:∵△ACE 是等腰直角三角形,∴∠ACE =∠AEC =45°.由△ABC ≌△ADE 得∠ACB =∠AEC =45°,∴∠ACB =∠ACE ,∴AC 平分∠ECF.(8分)过点A 作AG ⊥CG ,垂足为点G ,∵AC 平分∠ECF ,AF ⊥CB ,∴AF =AG.又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC ,∴CG =AG =GE ,(11分)∴CE =2AG =2AF.(12分)(第25题答图)第十四章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5B .-a 5C .a 6D .-a 62.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 63.下列从左边到右边的变形,是因式分解的是( ) A .(3-x)(3+x)=9-x 2B .(y +1)(y -3)=-(3-y)(y +1)C .4yz -2y 2z +z =2y(2z -yz)+z D .-8x 2+8x -2=-2(2x -1)24.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( ) A .x -1 B .x +1 C .x 2+1 D .x 25.下列计算正确的是( )A .-6x 2y 3÷2xy 3=3x B .(-xy 2)2÷(-x 2y)=-y 3C .(-2x 2y 2)3÷(-xy)3=-2x 3y 3D .-(-a 3b 2)÷(-a 2b 2)=a 46.计算⎝ ⎛⎭⎪⎫232 017×⎝ ⎛⎭⎪⎫322 018×(-1)2 019的结果是( ) A.23 B.32 C .-23 D .-32 7.若a m=2,a n=3,a p=5,则a 2m +n -p的值是( )A .2.4B .2C .1D .08.若9x 2+kxy +16y 2是完全平方式,则k 的值为( ) A .12 B .24 C .±12 D .±249.把多项式-3x 2n-6x n分解因式,结果为( )A .-3x n(x n+2) B .-3(x 2n+2x n) C .-3x n(x 2+2) D .3(-x 2n-2x n)10.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )(第10题图)A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2 C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________; (2)若a m=2,a n=3,则am +n=__________,am -n=__________.12.已知x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.若(a 2-1)0=1,则a 的取值范围是________. 14.计算:2 017×2 019-2 0182=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.分解因式:m 3n -4mn =__________.18.计算:(1+a)(1-2a)+a(a -2)=________.19.将4个数a ,b , c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________.20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,可以得出22 018+22 017+22 016+…+23+22+2+1的末位数字是________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10分,共60分) 21.计算.(1)5a 2b ÷⎝ ⎛⎭⎪⎫-13ab ·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)已知x =-2,求(x +5)(x -1)+(x -2)2的值. (2)已知x(x -1)-(x 2-y)=-3,求x 2+y 2-2xy 的值.23.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x); (4)4m2n2-(m2+n2)2.24.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.25.老师在黑板上布置了一道题:已知x=-2,求式子(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值.小亮和小新展开了下面的讨论:小亮:只知道x的值,没有告诉y的值,这道题不能做;小新:这道题与y的值无关,可以求解;根据上述说法,你认为谁说的正确?为什么?26.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC的形状吗?请说明理由.27.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分的面积,并求出当a+b=16,ab=60时阴影部分的面积.(第27题图)28.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)根据以上式子计算:①(1-2)×(1+2+22+23+24+25);②2+22+23+…+2n(n为正整数);③(x-1)(x99+x98+x97+…+x2+x+1).(2)通过以上计算,请你进行下面的探索:①(a-b)(a+b)=____________;②(a-b)(a2+ab+b2)=____________;③(a-b)(a3+a2b+ab2+b3)=____________.参考答案一、1.C 2.C 3.D 4.A 5.B 6.D 7.A 8.D 9.A 10.A二、11.(1)-24a 5(2)6;23 12. 5 13.a ≠±1 14.-1 15.-2;-116.|4a +2| 17.mn(m +2) (m -2) 18.-a 2-3a +1 19. 2 20.7 分析:由题意可知22 018+22 017+…+22+2+1=(2-1)×(22 018+22 017+…+22+2+1)=22 019-1,而21=2,22=4, 23=8,24=16,25=32,26=64,…,可知2n(n 为正整数)的末位数字按2,4,8,6的顺序循环,而2 019÷4=504……3,所以22 019的末位数字是8,则22 019-1的末位数字是7.三、21.解:(1)原式=5a 2b ÷⎝ ⎛⎭⎪⎫-13ab ·4a 2b 4=-60a 3b 4.(2)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)∵x(x -1)-(x 2-y)=-3,∴x 2-x -x 2+y =-3.∴x -y =3.∴x 2+y 2-2xy =(x -y)2=32=9. 23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=(x 2-4)2=(x -2)2(x +2)2.(3)原式=(x +y)(a 2-b 2)=(x +y)(a +b)(a -b). (4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2. 24.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0, 解得p =3,q =1.25.解:小新的说法正确.∵(2x -y)(2x +y)+(2x -y)(y -4x)+2y(y -3x)=4x 2-y 2-8x 2+6xy -y 2+2y 2-6xy =-4x 2,∴小新的说法正确.26.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.27.解:S 阴影=a 2+b 2-12a(a +b)-12b 2=12a 2-12ab +12b 2,当a +b =16,ab =60时,原式=12[(a +b)2-3ab]=12(162-180)=38. 28.解:(1)①原式=-63; ②原式=2n +1-2;③原式=x 100-1.(2)①a 2-b 2;②a 3-b 3;③a 4-b 4.第十五章检测卷 (120分,90分钟)题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分) 1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3x D .1+x2.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=19C .(a -12)2=a 14D .(-a -1b -3)-2=-a 2b 63.当x =1时,下列分式中值为0的是( ) A.1x -1 B.2x -2x -2 C.x -3x +1 D.|x|-1x -14.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( ) A .1个 B .2个 C .3个 D .4个 5.下列各式正确的是( ) A .--3x 5y =3x -5y B .-a +b c =-a +bcC.-a -b c =a -b c D .-a b -a =a a -b6.化简⎝ ⎛⎭⎪⎫1+a 21+2a ÷1+a 1+2a 的结果为( ) A .1+a B.11+2a C.11+aD .1-a7.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,这个数用科学记数法表示正确的是( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-118.方程2x +1x -1=3的解是 ( )A .-45 B.45 C .-4 D .49.若xy =x -y ≠0,则1y -1x =( )A.1xyB .y -xC .1D .-1kg 所用时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为( ) A.5 000x -600=8 000x B.5 000x =8 000x +600 C.5 000x +600=8 000x D.5 000x =8 000x -600二、填空题(每题3分,共30分) 11.计算:3m 2n ·⎝ ⎛⎭⎪⎫p 3n -2÷mnp 2=________.12.若|a|-2=(a -3)0,则a =________.13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________.14.禽流感病毒的形状一般为球形,直径大约为0.000 000 102 m ,该直径用科学记数法表示为________m. 15.若分式|y|-55-y的值为0,则y =________.16.如果实数x 满足x 2+2x -3=0,那么式子⎝ ⎛⎭⎪⎫x 2x +1+2÷1x +1的值为________.17.若分式方程2+1-kx x -2=12-x有增根,则k =________.18.一列数:13,26,311,418,527,638,…,它们按一定的规律排列,则第n 个数(n 为正整数)为________.19.小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为____________________.20.数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________. 三、解答题(22题6分,21题,26题每题12分,其余每题10分,共60分)21.(1)计算:(-3)2-⎝ ⎛⎭⎪⎫15-1+(-2)0; (2)计算:1x -4-2x x 2-16;(3)化简:x2x -2-x -2;(4)化简:⎝ ⎛⎭⎪⎫a a -b -2b a -b ·ab a -2b ÷⎝ ⎛⎭⎪⎫1a +1b .。

最新人教版八年级数学上册单元测试题全套带答案

最新人教版八年级数学上册单元测试题全套带答案

最新人教版八年级数学上册单元测试题全套带答案第十一章创优检测卷一、选择题.(每小题3分,共30分)1已知三角形两边长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.162若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.93.在△ABC中,∠B=67°,∠C=33°,AD是△ABC角平分线,则∠CAD的度数为()A.40°B.45°C.59°D.55°4如果一个三角形的三条高的交点恰是三角形一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定5一个三角形的两个内角分别是55°和65°,这个三角形的外角不可能是()A.115°B.120°C.125°D.130°6.如图,在△ABC中,D、E分别是BC上两点,且BD=DE=EC,则图中面积相等三角形有()A.4对B.5对C.6对D.7对第6题图第7题图第8题图7如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,且CD、BE交于一点P,若∠A=50°,则∠BPC的度数是()A.150°B.130°C.120°D.100°8如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°9.如图所示是D,E,F,G四点在△ABC边上的位置图.根据图中符号和数据,则x+y的值为()A.110B.120C.160D.165第9题图第10题图10.如图,∠A,∠B,∠C,∠D,∠E的和等于()A.90°B.180°C.360°D.540°二、填空题.(每小题3分,共24分)11.如图所示,AB∥CD,CE平分∠ACD,并且交AB于E,∠A=118°,则∠AEC等于.第11题图第12题图12.如图,三条直线两两相交,交点分别为A、B、C,若∠CAB=50°,∠CBA=60°,则∠1+∠2=度.13.五边形的5个内角的度数之比为2∶3∶4∶5∶6,则最大内角的外角度数是.14.一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是.15.如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE的度数为.第15题图第16题图16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.17如果一个多边形的每一个外角都是30°,则这个多边形对角线的条数是,它的内角和是,它的外角和是.18.如图,正三角形的三个内角平分线交于O点,则∠2-∠1= .三、解答题.(共66分)19(8分)如图,在四边形ABCD内找一点O,使OA+OB+OC+OD之和最小,并说出你的理由.20(8分)如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.21.(10分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示同一高度定出了两个开挖点P 和Q,然后在左边定出开挖方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?22(10分)在△ABC中,AC=5,BC=2,且AB的长为奇数.(1)求△ABC的周长.(2)判定△ABC的形状.23.(10分)在△ABC中,∠A∶∠ABC∶∠ACB=4∶5∶6,BD、CE分别是AC、AB 上的高,BD、CE交于H(如图),求∠BHC的度数.24.(10分)如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,求证:2∠EAD=∠C-∠B.25.(10分)如图,在△ABC中,BD、CD是内角平分线,BP、CP是∠ABC、∠ACB 的外角平分线.(1)若∠A=30°,求∠D、∠P的度数.(2)不论∠A为多少时,探索∠D+∠P的值是变化还是不变化.为什么?第十二章创优检测卷一、选择题.(每小题3分,共30分)1.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AB=CDC.AM=CND.AM∥CN第1题图第2题图第3题图2.如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知∠CAB=∠DBA,AC=BD,则下列结论中不正确的是()A.BC=ADB.CO=ODC.∠C=∠DD.∠AOB=∠C+∠D4.如图所示,下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠A=∠D,∠B=∠E,∠C=∠FD.AB=DE,BC=EF,△ABC的周长=△DEF的周长第4题图第5题图第6题图5.如图,△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,图中(包括实线、虚线在内)全等的三角形共有()A.2对B.3C.4对D.5对6.如图,已知AD∥BC,AP平分∠DAB,BP平分∠ABC,点P恰好在CD上,则PD 与PC的大小关系是()A.PD>PCB.PD=PCC.PD<PCD.无法判断7.如图,MP⊥NP,MQ为∠NMP的平分线,MT=MP,连接TQ,则下列结论不正确的是()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT第7题图第8题图第9题图8.如图,已知AB,CD相交于E,AE=CE,BE=DE,则下列结论错误的是()A.AD=BCB.AD∥BCC.∠EAD=∠ECBD.AC∥DB9.用直尺和圆规作一个角等于已知角的示意图如图,则说明∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成图形的面积S是()A.50B.62C.65D.68二、填空题.(每小题3分,共30分)11.把一块周长为20cm的三角形铁片裁成四块形状大小完全相同的小三角形铁片(如图),则每块小三角形铁片的周长是.第11题图第12题图第13题图第15题图12.如图所示,线段AC和BD交于O点,且OA=OC,AE∥FC,BE=FD,则图中共有对全等三角形.13.如图,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD,CE交于点H,请你添加一个适当的条件,使△AEH≌△CEB.14.△ABC中,∠C=90°,BC=16,AD是∠BAC的平分线,交BC于点D,且DC∶DB=3∶5,则D点到AB的距离是.15.如图,△ABC与△DEF是全等三角形,则在此题中,有组线段相等.16.已知Rt△ABC≌Rt△DEF,若∠A=90°,∠B=25°,则∠F= ,∠E= .17.如图,△ABC中,AB=6,BC=5,AC=4,∠BAC的平分线交BC于点D,在AB上截取AE=AC,则△BDE的周长是.第17题图第18题图第19题图第20题图18.如图,AB⊥BC,CD⊥BC,垂足分别为B,C,AB=BC,E为BC的中点,且AE⊥BD 于F,若CD=4cm,则AB的长度为.19.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为.20.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE= .三、解答题.(共60分)21.(10分)如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E,求证:DE+CD=AB.22.(12分)如图,AC⊥BC,AD⊥BD,AD=BC,AD,BC交于O.求证:OC=OD.23.(12分)如图,已知∠AOB,C是射线OD上一点,E、F分别在OA、OB上,且CE=CF,DE=DF,求证:OE=OF.24.(12分)如图,在△ABC中,BD、CE是△ABC的高,在BD上取一点P,使BP=AC,在CE延长线上取一点Q,使CQ=AB,试猜想AQ、AP有怎样的位置和大小关系,并证明你结论.25.(14分)(1)如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC ,CD 上的点,且∠EAF=60°.探究图中线段BE,EF,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G ,使DG=BE.连接AG,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF,可得出结论,他的结论应是;(2)如图②,若在四边形ABCD 中,AB=AD,∠B+∠D=180°.E,F 分别是BC,CD 上的点,且∠EAF=21∠BAD,上述结论是否仍然成立?并说明理由.第十三章创优检测卷一、选择题.(每小题3分,共30分)1.在由,甲,申,田,电这5个汉字中,不是轴对称图形的共有()A.1个B.2个C.3个D.4个2等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°3.下列说法中,错误的是()A.若AB=CD,则线段AB与线段CD关于某直线对称B.不重合的A,B两点一定关于某条直线对称C.若线段AB与线段CD关于某条直线对称,则AB=CDD.轴对称是两个图形之间的关系4如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里第4题图第5题图第6题图5如图,点B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使∠APB=30°,则满足条件的点有()A.3个B.2个C.1个D.不存在6.如图,BO平分∠ABC,CO平分∠ACB,BO=CO,若∠BOC=100°,那么∠BAO=()A.10°B.20°C.30°D.40°7.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°8.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm第8题图第9题图第10题图9.如图,在△ABC中,IB,IC分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是()A.①②③B.②③④C.①③④D.①②④10.如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()二、填空题.(每小题3分,共24分)11.如图所示,图形的边界是由四段相同的圆弧拼成,这个图形的对称轴有条.第11题图第14题图第15题图12.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为.13.在△ABC中,∠A=90°,BD为角平分线,DE⊥BC于E,且E恰为BC中点,则∠ABC= .14.如图所示,∠1=∠2,CF⊥AD,CE⊥AB,CD=CB,则∠ADC+∠CBA=°.15.如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为.16.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是角平分线,AC=6cm,则AD的长为.第16题图第17题图第18题图17.如图,两个三角形关于某条直线成轴对称,其中已知某些边的长度和某些角的度数.问α=.18.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′的位置,则BC′与CC′之间的关系是.三、解答题.(共66分)19.(10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,5),B (-4,3),C(-1,1).(1)作出△ABC向右平移5个单位的△A1B1C1;(2)作出△ABC关于x轴对称的△A2B2C2,并写出点C2的坐标.20.(10分)已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于D点,交AC于点E,AC=8cm,△ABE的周长是14cm,求AB的长.21.(10分)如图,△ABC是等边三角形,∠1=∠2=∠3,问△DEF是否是等边三角形?说明理由.22.(10分)如图,在△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.23.(12分)如图,P为等边三角形ABC内一点,BP=CP,∠DCP=∠ACP,且DC=BC. 求证:∠D=12∠A.24.(14分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A,B,C的距离关系(不要求证明);(2)如果点M、N分别在线段AB,AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.第十四章创优检测卷一、选择题.(每小题3分,共30分) 1.计算3a·2b 的结果是( ) A.3ab B.6a C.6ab D.5ab 2.下列运算正确的是( ) A.3a+2a=a 5 B.a 2·a 3=a 6 C.(a+b)(a-b)=a 2-b 2 D.(a+b)2=a 2+b 23.在①-a 5·(-a )2;②(-a 6)÷(-a 3);③(-a 2)3·(a 3)2;④[-(-a)2]5中计算结果为-a 10的有( )A.①②B.③④C.②④D.④4.计算[(x+y )2-(x-y)2]÷4xy 的结果为( ) A.4y x + B.4yx - C.1 D.2xy 5.已知100x 2+kx+49是完全平方式,则常数k 可以取( ) A.±70 B.±140 C.±14 D.±49006.下列各式中不能用完全平方公式分解因式的是( ) A.-x 2+2xy-y 2 B.x 4-2x 3y+x 2y 2 C.(x 2-3)2-2(3-x 2)+1 D.x 2-xy+12y 27.若3x =4,9y =7,则3x-2y 的值为( )A.74B.47C.-3D.72 8.若(x+m )(x 2-3x+n )的展开式中不含x 2和x 项,则m ,n 的值分别为( ) A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=99.若a 、b 、c 为一个三角形的三边长,则式子(a-c )2-b 2的值( ) A.一定为正数 B.一定为负数C.可能为正数,也可能为负数D.可能为010.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a-1)cm 的正方形(a >1)剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A.2cm 2B.2acm 2C.4acm 2D.(a 2-1)cm 2二、填空题.(每小题3分,共24分) 11.若(x-4)0=1,则x 的取值范围是 . 12.计算:(135)2016×(532)2015= . 13.分解因式:x 2-6x 2y+9x 2y 2= . 14.已知x 2+y 2=10,xy=3,则x+y= . 15.已知10m=5,10n=7,则102m+n = .16.若x+x 1=2,则x 2+21x= .17.已知长方形面积为4a 2-4b 2,如它的一边长为a+b ,则它的周长为 . 18.观察下列等式:①9-1=8,②16-4=12,③25-9=16,④36-16=20,…写出第10个等式 :,第n(n≥1)个式子是 .三、解答题.(共66分) 19.(12分)计算:20.(12分)分解因式:(1)m 3n-9mn; (2)(x 2+4)2-16x 2;(3)x 2-4y 2-x+2y; (4)4x 3y+4x 2y 2+xy 3.21.(8分)先化简后求值:(1)(x 2-4xy+4y 2)÷(x-2y )-(4x 2-9y 2)÷(2x-3y ),其中x=-4,y=51;(2)若2x-y=10,求代数式[(x 2+y 2)-(x-y )2+2y (x-y )]÷4y 的值.22.(8分)解方程:x(x+1)2-x(x 2-3)-2(x+1)(x-1)=20.23.(8分)已知a(a-1)-(a2-b)=-5,求222ba-ab的值.24.(8分)如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.25.(10分)如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?第十五章创优检测卷一、选择题.(每小题3分,共30分)1.下列式子 中,分式共有( ) A.2个 B.3个 C.4个 D.5个2.下列各式与yx yx -+相等的是( ) 3.下列计算中,错误的是( )A.(-2)0=1B.2x -2=22xC.3.2×10-3=0.0032D.(x 2y-2)÷(x -1y 3)=xy 4.已知b a 11-=21,则ba ab-的值是( ) A.21 B.-21C.2D.-2 5.把分式方程12+-x x x =1化为整式方程正确的是( )A.2(x+1)-x 2=1B.2(x+1)+x 2=1C.2(x+1)-x 2=x(x+1)D.2x-(x+1)=x(x+1) 6.分式方程v +20100=v-2060的解是( ) A.v=20 B.v=25 C.v=-5 D.v=5A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( )A.m <-6B.m >-6C.m >-6且m≠-4D.m≠-410.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.若设一片国槐树叶一年的平均滞尘量为x 毫克,下列方程中正确的是( )二、填空题.(每小题3分,共24分)11.若代数式(x+2)0-123+x 有意义,则x 的取值范围是 . 12.用科学记数法表示0.00000345是 ,用科学记数法表示的数-2.01×10-5的原数是 .13.已知ab≠0,则(a 0+b -2)-1= .14.如果分式)2)(1(1||---x x x 的值为零,那么x= . 15.若分式方程xm x x -=--223无解,则m= . 16.当x= 时,分式12-x x 的值比分式x x 1-的值大1. 17.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.则文学书的单价是 元.18.观察分析下列方程及其解:①x+x 2=3,②x+x 6=5,③x+x 12=7;(由①x+x21⨯=1+2得x=1或x=2,②x+x 32⨯=2+3得x=2或x=3,③x+x43⨯=3+4得x=3或x=4.)找出其中的规律,求关于x 的方程x+n2+nx-3=2n+4(n 为正整数)的解是: .三、解答题.(共66分)19.(12分)计算:20.(6分)解下列分式方程:(2)在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子的计算结果”.请你说出其中的道理.22.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作.甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路时,每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间;(用含x,y的代数式表示)(2)问甲、乙两队哪队先完成任务?23.(10分)当a为何值时,关于x的方程的解为负数?24.(10分)(2015·江苏苏州)甲、乙两位同学同时为校文化艺术节制作彩旗,已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?25.(12分)(2015·浙江宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)求A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?期中综合检测卷一、选择题.(每小题3分,共30分)1.下列图形中,是轴对称图形是()2.若∠A的补角为n°,则∠A余角的补角为()A.(90-n)°B.(180-n)°C.(270-n)°D.(90+n)°3.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45°B.60°C.75°D.90°第3题图第4题图第5题图4.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD 于F,图中全等三角形有()A.3对B.5对C.6对D.7对5.如图是三角形钢架示意图,点D是AB的中点,BC,DE垂直AC于点C、E,AB=8m,∠A=30°,则DE等于()A.1mB.2mC.3mD.4m6.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是()三角形.A.等腰B.直角C.等边D.等腰直角7.如图所示,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连接BF、CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE,其中正确的有()A.1个B.2个C.3个D.4个第7题图第8题图第9题图8.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,且AE=3cm,△ADC 的周长为9cm,则△ABC的周长为()A.10cmB.12cmC.15cmD.17cm9.如图,将△EAB绕正方形ABCD的顶点A逆时针旋转90°,得到△DAF,连接EF,则下列结论错误的是()A.△EAB≌△FADB.AE⊥AFC.∠AEF=45°D.四边形AECF的周长等于ABCD的周长10.下列结论正确的是()A.三角形的高总在三角形的内部B.△ABC的角平分线AD是自A出发的一条射线C.三角形中最大的内角不能小于60°D.三角形的三个外角中,最多只有一个钝角二、填空题.(每小题3分,共24分)11.如图,∠A+∠B+∠C+∠D+∠E= .12.在直角坐标系中,点(-22,1)关于x轴对称点的坐标是.13.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为.第14题图第16题图第17题图第18题图14.如图,已知∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“SAS”为依据,则应添加的条件是.15.已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC= cm.16.如图,要测量河岸相对的两点A、B之间的距离,先从B处出发与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,使A、C与E在同一直线上,那么测得A、B的距离为米.17.如图,在直角坐标系中,已知点A(-3,4)、B(5,4),在x轴上找一点P,使PA+PB 最小,则P点坐标为.18.如图所示,在△ABC中,点A的坐标为(0,1),点C的坐标(4,3),如果要使△ABD 和△ABC全等,那么点D的坐标是.三、解答题.(共66分)19.(10分)△ABC的周长为24cm,三条边满足a∶b=3∶4,c=2b-a,求△ABC的三边长.20.(10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).作出与△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1的坐标.21.(10分)如图,在△ABC中,D、E分别是AB、AC上的点,且AD=AE,DE∥BC,求证:△ABC是等腰三角形.22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,PC=4cm,求PB的长.23.(12分)如图,AD,A′D′分别是锐角三角形ABC和三角形A′B′C′中边BC,B′C′上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充条件(只需补充一个你认为合适的条件),并证明.24.(14分)如图,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E 为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.期末综合检测卷一、选择题.(每小题3分,共30分)1.下列计算正确的是()A.(-p2q)3=-p5q3B.12a2b3c÷6ab2=2abC.3m2÷(3m-1)=m-3m2D.(x2-4x)·x-1=x-42.无论x取什么数,总有意义的分式是()3.生物学家发现一种病毒的长度约为0.000072mm,用科学记数法表示0.000072的结果为()A.7.2×105B.-7.2×105C.7.2×10-5D.-7.2×10-54.下图中,有且只有三条对称轴的是()5.能把一个三角形分成两个面积相等的三角形的是这个三角形的()A.中线B.高线C.外角平分线D.角平分线6.下列长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.6cm,2cm,3cmC.4cm,6cm,8cmD.5cm,12cm,6cm7.一个三角形的两个内角分别是55°和65°,则下列角度不可能是这个三角形外角的是()A.135°B.125°C.120°D.115°8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,则FC的长为()A.4cmB.2cmC.6cmD.4.5cm第8题图第9题图9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,EF∥BD交CD于点F,则图中等腰三角形的个数为()A.5个B.6个C.7个D.8个10.张老师和赵老师同时从学校出发,步行15千米去县城购买书籍,张老师比赵老师每小时多走1千米,结果比赵老师早到半小时,两位老师每小时各走多少千米?设赵老师每小时走x千米,依题意得到的方程是()二、填空题.(每小题3分,共24分)11.分解因式:a3b-9ab3= ,x2-2xy+y2-25= .12.若a2+a-1=0,则2a2+2a+2014的值是.14.△ABC 的三边分别为a,b,c ,其中a 和b 满足|a-1|+b 2-4b+4=0,则边长c 的取值范围是 .15.已知△ABC ≌△DEF ,BC=EF=6cm ,△ABC 的面积为18,则EF 边上的高为 . 16.若点A (21a+1,3b-2)和点B (b-1,-2b )关于x 轴对称,则a+b= . 17.一个多边形的每个内角都等于150°,则这个多边形是 边形.18.如图所示,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于D 点,DE ⊥AB 于E 点,且AB=60cm,则△BED 的周长为 .三、解答题.(共66分) 19.(12分)计算:20.(8分)先化简,再求值:21.(8分)如图是一个8×10正方形格纸,△ABC中A点坐标为(-2,1).(1)△ABC和△A′B′C′满足什么几何变换(直接写答案)?(2)作△A′B′C′关于x轴的轴对称图形△A″B″C″,并求A″、B″、C″三点坐标(直接写答案).22.(8分)如图,AB⊥AC,AD⊥AE,AB=AD,BC=DE.(1)求证:AM=AN;(2)连接EC,AO,求证:AO垂直平分EC.23.(10分)如图,已知∠ABC=60°,∠1=∠2.(1)求∠3的度数;(2)若AD⊥BC,求证:△ABF是等腰三角形;(3)在(2)的条件下,若AF=8,求DF的长.24.(10分)今年5月,某市出现了严重的旱情,5月15日至21日,甲、乙两所中学均告断水,上级立即组织送水活动,每次送往甲中学7600升、乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.(1)这两所中学师生分别有多少人?(2)若送瓶装水,价格为1元/升;若用消防车送饮用泉水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个,其他费用忽略不计.请你计算第一次给乙中学全部送瓶装水或全部用消防车送饮用泉水的费用各是多少?25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.。

人教版数学八年级上册《分式》单元检测题含答案

人教版数学八年级上册《分式》单元检测题含答案
6.化简 的结果是( )
A x+1B. C.x-1D.
【答案】A
【解析】
【分析】
根据同分母分式相减,分母不变,将分子相减,再将分子利用平方差公式分解因式,然后约分即可化简.
【详解】解:原式= .
故答案为A
【点睛】此题考查分式的加减法,解题关键在于掌握运算法则.
7.下列计算错误的是()
A. B. C. D.
详解:原式= = =1.
故答案为1.
点睛:本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
15.若3x-1= ,则x=_______.
【答案】-2
【解析】
3x-1= ,
x-1=-3,x=-2.
22.以下是小明同学解方程 的过程.
【解析】方程两边同时乘 ,得 .
第一步解得
第二步检验:当 时, .第三步
所以,原分式方程的解为 .第四步
(1)小明 解法从第________步开始出现错误;
(2)写出解方程 的正确过程.
23.先化简,再求值: ,其中x是不等式组 的整数解.
24.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》单元同步检测试题(含答案)

第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-a3)2的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a6 3.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1) C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( ) A.x-1 B.x+1 C.x2+1 D.x25.下列计算正确的是( )A.-6x2y3÷2xy3=3x B.(-xy2)2÷(-x2y)=-y3C.(-2x2y2)3÷(-xy)3=-2x3y3D.-(-a3b2)÷(-a2b2)=a46.若a>0且a x=2,a y=3,则a x-2y的值为()A.13B.-13C.23D.297.若a+b=3,a-b=7,则ab的值为()A.-10 B.-40 C.10 D.408.(2020·宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是() A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌9.分解因式x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果是(x-2)·(x+1),那么x2+ax+b分解因式的正确结果为() A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)10.已知n是整数,则式子18[1-(-1)n](n2-1)的计算结果( )A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二、填空题(共8小题,每小题3分,满分24分)11.已知a+b=3,a-b=5,则代数式a2-b2的值是________.12.分解因式:(1)x2y-4y=____________;(2)a2b-2ab+b=__________.13.多项式x2+mx+25恰好是另一个多项式的平方,则常数m=________. 14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x 时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.(12分)计算:(1)a2·a4+(a3)2; (2)(-a3b)2÷(-3a5b2);(3)(a+b-c)(a+b+c).20.(10分)分解因式:(1)-x4+1 (2)y2-4-2xy+x2.21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y +8的最小值为4.仿照上面的解答过程,求x 2-2x +3的最小值.22.已知2a =3,2b =6,2c =12,x =355,y =444,z =533.(1)求证:a +c =2b ;(2)判断x ,y ,z 的大小关系,并说明理由.23.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎨⎧m +2n =1,3m -2n =11.七、(本题满分12分)24.(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab的值;(3)已知x-y=2,y-z=2,x+z=5,求x2-z2的值.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.C.2.C.3. D.4.A.5. B.6.D7.A.8. D.9.B.10.C.二、填空题(共8小题,每小题3分,满分24分)11.1512.y(x+2)(x-2) b(a-1)213.±1014.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x 时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a 2+2+=9, ∴a 2+=9﹣2=7.故答案为:7.三、解答题(共5小题,满分46分)19.解:(1)原式=a 6+a 6=2a 6.(4分) (2)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)(3)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(12分) 20.解:(1)原式=-(x 2+4)(x +2)(x -2).(5分) (2)原式=(x -y )2-4=(x -y +2)(x -y -2).(10分)21.解:x 2-2x +3=x 2-2x +1+3-1=(x -1)2+2.(6分)∵(x -1)2≥0,∴(x -1)2+2≥2,(8分)∴x 2-2x +3的最小值为2.(10分)22.(1)证明:∵2a =3,2b =6,2c =12,∴2a ·2c =3×12=36=(2b )2,(2分)∴2a +c=22b ,∴a +c =2b .(4分)(2)解:y >x >z .(5分)理由如下:x =355=(35)11,y =444=(44)11,z =533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y >x >z .(9分)23.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎨⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。

人教版八年级数学上册第一单元试题及答案

人教版八年级数学上册第一单元试题及答案

八年级数学(上)第一单元自主学习达标检测B 卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(每题2分,共32分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______. 3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =____. 4.如图,已知AE ∥BF , ∠E =∠F ,要使△ADE ≌△BCF ,可添加的条件是__________. 5.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”. 6.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.7.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个. 8.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 9.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 的边AD ECBADE C BADOCBFE第2题图 第4题图 第5题图 第6题图ADOCBDE第7题图 第8题图中必有一条边等于______.10.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.11.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.12.如图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为 cm .13.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____ __.14.如图,沿AM 折叠,使D 点落在BC 上,如果AD =7cm ,DM =5cm ,∠DAM =30°,则AN =_________cm ,∠NAM =_________. .15.在△ABC 中,∠C =90°,BC =4cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.16.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE平分∠ADC ,∠CED =350,如图,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是___ ___.二、解答题(共68分)ADC BADCBEE 第10题图 第11题图 第12题图B图4ABC MN第14题图 第16题图17.(5分)如图,已知AB与CD相交于O,∠A=∠D,CO=BO,求证:△AOC≌△DOB.18.(5分)如图,∠C=∠D,CE=DE.求证:∠BAD=∠ABC.19.(5分)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.20.(5分)如图,公园有一条“Z”字形道路ABCD,EABDFC其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.21.(5分)已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .22.(6分)如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE =④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知:求证:证明:ABCDE23.(5分)如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C .24.(5分)如图,以等腰直角三角形ABC 的斜边AB 与边面内作等边△ABD ,连结DC ,以DC 当边作等边△DCE ,B 、E 在C 、D 的同侧,若AB=2,求BE 的长.25.(6分)阅读下题及证明过程:已知:如图,D 是△ABC 中BC 边上一点,E 是AD上一点,EB =EC ,∠ABE =∠ACE ,求证:∠BAE =∠CAE . 证明:在△AEB 和△AEC 中, ∵EB =EC ,∠ABE =∠ACE ,AE =AE , ∴△AEB ≌△AEC ……第一步CABE∴∠BAE =∠CAE ……第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.26.(6分)如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .27.(7分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.ABC DE F28.(8分)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,(1)试判断ABC △与AEG △面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?AGFC BDE(图1)八年级数学(上)第一单元自主学习达标检B 卷一、填空题1.一定,一定不 2.50度 3.40度 4.AD=BC 5.HL 6.∠A=∠C 7.4 8.∠A=∠D ,∠B=∠C 9.9.5或4 10.5 11.8 12.15 13.正确 14.5,30度 15.1.5cm 16.35度 二、解答题17.略 18.略 19.略 20.在同一直线上 21.略 22.情况一:已知:AD BC AC BD ==,求证:CE DE =(或D C ∠=∠或DAB CBA ∠=∠)情况二:已知:D C DAB CBA ∠=∠∠=∠,求证:AD BC =(或AC BD =或CE DE =)23略 24.BF= 1 25.上面证明过程不正确; 错在第一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二数学上册《全等三角形》单元检测试题A 卷班级________座位号_________姓名_______________一、填空题(每题2分,共20分)1,命题“垂直于同一条直线的两直线平行”的题设是___________________________,结论是_______________________________________.2,定理“如果直角三角形两直角边分别是a 、b ,斜边是c ,那么a 2+b 2=c 2.即直角三角形的两直角平方和等于斜边的平方”的逆定理是_________________________________________________________________________..3,如图1,根据SAS ,如果AB =AC , = ,即可判定ΔABD ≌ΔACE .4,如图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是_____________.5,如图3,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.6,如图4,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .7,如图5,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌ ,理由是 .8,如图6,AD ⊥BC ,DE ⊥AB ,DF ⊥AC ,D 、E 、F 是垂足,BD =CD ,那么图中的全等三角形有_______对.二、选择题(每题2分,共20分) 1,下列命题中,真命题是( ) A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线图2 E C D P AB 图3 E DC B A ED A B C 1 2 图5图1 E D C B A B A E D C图4 图6 AF (8)C E B D 图7F E CB A 图8A B C D 图10 2,如图7所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( )A.2B.3C.5D.2.53,如图8所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )A.AB =DEB.∠ACE =∠DFBC.BF =ECD.∠ABC =∠DEF4,如图9,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点画位置不同的三角形,使所画的三角形与△ABC 全等,这样的三角形最多可画出( )A.2个B.4个C.6个D.8个5,如图10,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACD B.∠B =∠CC.AD 是∠BAC 的平分线D.△ABC 是等边三角形6,如图11,∠1=∠2,∠C =∠D ,AC 、BD 交于E 点,下列结论中不正确的是( )A.∠DAE =∠CBEB.CE =DEC.△DEA 不全等于△CBED.△EAB 是等腰三角形7,如图12,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E ,AB =10,△BCD 的周长为18,则BC 的长为( )A.8B.6C.4D.2 三、解答题(共40分)1,如图13,已知线段a 、b ,求作:Rt △ABC ,使∠ACB =90º,BC =a ,AC =b (不写作法,保留作图痕迹).图9B图11 2(12)C BA 1E D A 图12 图13b a图14APB C2,如图14,BP 、CP 是△ABC 的外角平分线,则点P 必在∠BAC 的平分线上,你能说出其中的道理吗?3,如图15,已知∠1=∠2,∠3=∠4,EC =AD ,求证:AB =BE .4,如图16,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)G 点一定是AB 的中点吗?说明理由; (2)钉这两块木条的作用是什么?5,如图17,已知点A 、E 、F 、D 在同一条直线上,AE =DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF =CE ,试说明AB 与CD 的位置关系.图19 G F E D CB A 图16 A O BB 'A '图18 图17 A F C E BD四、综合题(共20分)6,如图18,已知当物体AB 距凸透镜为2倍焦距,即AO =2f 时,成倒立的等大的像A ′B ′.求像距OA ′与f 的关系.7如图20,在四边形ABCD 中,AD ∥BC ,∠ABC =∠DCB ,AB =DC ,AE =DF . (1)试说明BF =CE 的理由. (2)当E 、F 相向运动,形成如图21时,BF 和CE 还相等吗?请说明你的结论和理由.9,已知:如图22,AB =AC ,DB =DC , (1)若E 、F 、G 、H 分别是各边的中点,求证:EF =FG .(2)若连结AD 、BC 交于点P ,问AD 、BC 有何关系?证明你的结论.10,如图23,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上,有下面四个论断:(A )AD =CB ,(B )AE =CF ,(C )∠B =∠D ,(D )AD ∥BC .请用其中三个作为条件,余下一个作为结论,遍一道数学题,并写出解答过程.参考答案:一、1,两条直线垂直于同一条直线、两直线平行;2,如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形;3,AD =AE ;4,3cm ;5,10;6,∠DBE 、CA ;7,△ACE 、SAS 、8,3二、1,D ;2,B ;3,D ;4,B ;5,D ;6,C ;7,A .三、1,略;2,可过点P 向三角形的三边引垂线,利用角平分线的性质即得;3,用AAS 说明△ABD ≌△EBC ;4,(1)是.由HL 知,AG =GB ;(2)利用三角形的稳定性,使窗架稳定;5,AB ∥CD .因为∠DBC =∠ACB ,∠ABO =∠DCO ,所以∠DBC +∠ABO =∠ACB +∠DCO ,即∠ABC =∠DCB ,又∠ACB =∠DBC ,BC =CB ,所以△ACB ≌△DBC ,所以AB =DC .因为∠ABO =∠DCO ,∠AOB =∠DOC ,所以△ABO ≌△DCO ,所以OA =OD .6,在△AOB 和△A ′OB ′中,因为AB =A ′B ′,∠BAO =∠B ′A ′O ,∠BOA =∠B ′OA ′,所以△AOB ≌△A ′OB′,所以 OA ′=OA ,因为OA =2f ,所以OA ′=2f ;7,不正确,第一步就错.正确应该由EB =EC 得到∠EBC =∠ECB ,再由∠ABE =∠ACE ,得∠ABC =∠ACB ,即AB =AC ,最后在△ABE 和△ACE 中,利用SAS 得到△ABE ≌△ACE图23 A B C D E F 图22B CD E F H G即可说明∠BAE与∠CAE相等;8,(1)利用SAS说明△ABF≌△DCE,(2)相等.说明方法同(1).9,(1)在△ABD和△ACD中,AB=AC,BD=CD,AD是公共边,所以△ABD≌△ACD(SSS),所以∠ABD=∠ACD,又BE,CF,所以BE=CF,同理BH=CG,所以△BEH≌△CFG(SAS=FG2)因为△ABD≌△ACD,所以∠BAD=∠CAD,因为AB=AC,所以AB垂直平分BC,即AD垂直平分BC;10,答案不惟一.如:已知:AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.等等;B卷(一)填空1.在下面证明中,填写需补充的条件或理由,使结论成立.证明:如图3-30,在△ABC和△CDA中,∵AB=CD(已知),∠1=∠2(已知),______ = ______ ,∴△ABC≌△CDA().∴______ = ______ .∴AD∥BC.2.如图3-31,已知B′C′过A且平行于BC,C′A′过B且平行于AC,A′B′过C且平行于AB.则△ABC,△BAC′,△A′CB,△CB′A必定______ .3.如图3-32,AO平分∠BAC,AB=AC.图中有______ 对三角形全等.(二)选择4.在△ABC和△A′B′C′中,甲:AB=A′B′;乙:BC=B′C′;丙:AC=A′C′;丁:∠A=∠A′;戊:∠B=∠B′;己:∠C=∠C′.则不能保证△ABC≌△A′B′C′成立的条件为[].A.甲、乙、丙;B.甲、乙、戊;C.甲、丙、戊;D.乙、戊、己.5.如图3-33,已知△ABD和△ACE均为等边三角形,那么△ADC≌△AEB 的根据是[].A.边边边;B.边角边;C.角边角;D.角角边.6.如图3-34,已知等边△AEB和等边△BDC在线段AC同侧,则下列式子中错误的是[].A.△ABD≌△EBC;B.△NBC≌△MBD;C.△ABD=△EBC;D.△ABE≌△BCD.(三)证明7.已知:如图3-35,∠1=∠2,∠ABC=∠DCB.求证:AB=DC.8.已知:如图3-36,在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC于F.求证:BF是△ABC的AC边上的高.9.已知:如图3-37,AB=CD,BE=DF,AE=CF.求证:AO=CO,EO =OF.10.已知:如图3-38,AD,EF,BC相交于O点,且AO=OD,BO=OC,EO=OF.求证:△AEB≌△DFC.11.已知:如图3-39,∠D=∠E,DN=CN=EM=AM.求证:点B是线段AC的中点.12.已知:如图3-40,AB=CD,∠A=∠D.求证:∠B=∠C.13.已知:如图3-41,AC,BD相交于O点,且AC=BD,AB=CD.求证:OA=OD.14.在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD⊥EF.15.已知:如图3-42,AB=DC,AD=BC,O是DB的中点,过O点的直线分别交DA和BC的延长线于E,F.求证:∠E=∠F.16.已知:如图3-43,∠1=∠2,AD=AE.求证:OB=OC.17.已知:如图3-44,AB=DC,∠ABC=∠DCB.求证:∠BAD=∠CDA.18.已知:如图3-45,E在AC上,∠1=∠2,∠3=∠4.求证:BE=DE.19.已知:如图3-46,AB=CD,AD=BC,AO=OC,EF过O点.求证:OE=OF.20.已知:如图3-47,A,F,C,D在一条直线上,AB=DE,BC=EF,AF=CD.求证:BF=CE.21.已知:如图3-48,D是△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:AC=2AE.22.已知:如图3-49,AD∥BC,∠1=∠2,∠3=∠4,直线DC过E点交AD于D,交BC于C.求证:AD+BC=AB.23.求证:三角形一边的两个端点到这边上的中线的距离相等.24.已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD于F.求证:CF=CD.C卷一、选择题1.下列三角形不一定全等的是()A.有两个角和一条边对应相等的三角形B.有两条边和一个角对应相等的三角形C.斜边和一个锐角对应相等的两个直角三角形D.三条边对应相等的两个三角形2.下列说法:①所有的等边三角形都全等②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等④有两个锐角相等的直角三角形全等其中正确的个数是()A.1个B.2个C.3个D.4个3.如图,AB平分∠CAD,E为AB上一点,若AC=AD,则下列结论错误的是()A.BC=BDB.CE=DEC.BA平分∠CBDD.图中有两对全等三角形4.AD是△ABC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是 ( )A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是130°,那么△ABC中与这个角对应的角是().A.∠A B.∠B C.∠C D.∠B或∠C6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=().A.25° B.27° C.30° D.45°7.如右图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,且AB=10 cm,则△BED的周长为 ( ) A.5 cm B.10 cm; C.15 cm D.20 cm8.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,则①△ABE≌△ACF;②△BOF≌△COE;③点O在∠BAC的角平分线上,其中正确的结论有()EDCBA DAC EBAEFOAA .3个B .2个C .1个D .0个9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( )A 、AF=2BF;B 、AF=BF;C 、AF>BF;D 、AF<BF10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图11),若运动方向相反,则称它们是镜面合同三角形(如图),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图13),下列各组合同三角形中,是镜面合同三角形的是( )二、填空题1.如果△ABC≌△A’B’C’,若AB =A’B’,∠B=50°,∠C=70°,则∠A’= °2.如图,若BD ⊥AE 于B ,DC ⊥AF 于C ,且DC=DC ,∠BAC=40°,∠ADG=130°,则∠DGF=________。

相关文档
最新文档