对数函数5种题型
对数运算题型归类(学生版)
对数运算题型归类题型一:对数概念的理解:求下列各式中得x 取值范围(1))10(2log -x (2))2()1(log +-x x (3)812log =(4)=421log (5)若4log 16-=x,求x 值题型二:对数式与指数式的转化对数式与指数式的转化(1)62554= (2)3log 82= (3)16)41(2=-(3)2log 01.01.0= (4)32)32(1-=+-题型三:化简与求值求下列各式的值(1)32log 318- (2))32(2)32(2log log -++ (3)40lg 50lg 8lg 5lg 2lg --+=(4)若,3010.02lg =求5lg (5)设3643==y x ,求y x 12+的值 题型四:公式的应用(1)求32log 9log 278•的值 (2)求证z z y x y x log log log =⋅ (3)计算5log 4log 85⋅(4)已知b a ==4log ,3log 55,求:12log 25 (用a,b 表示)应用练习:1.若log x (2+1)=-1, 则x = 。
2.已知f (e x )=x ,则f (5)等于 。
3.对数式)5(log )2(a a -- 中实数a 的取值范围是4.若10≤x ≤100, 则|3-lg x |-4)x lg(x lg 42+-=5.已知集合A={y|y=log 2 x,x>1},B={y|y=(21)x ,x>1},则A ⋂B 等于 。
6.已知函数f (x )=⎪⎩⎪⎨⎧<+≥)4()1()4()21(x x f x x , 则f (log 23)=_________7.已知 log 18 9=a ,18b =5:用a , b 表示 log 36 45。
专 题 训 练1.已知2x =3y ,则x y =( ) A.lg2lg3 B.lg3lg2 C .lg 23 D .lg 322.若x ·log 32010=1,则2010x +2010-x 等于( ) A.103 B .6 C.83D.1633.已知3a =5b =M ,且1a +1b=2,则M 的值为( ) A .15 B.15 C .3 D .54.若log 32=log 23x ,则x 等于( ) A .-1 B .1 C .(log 32)2 D .(log 23)25.已知2x =3,y =log 483,则x +2y 的值为( ) A .3 B .8 C .4 D .log 486.已知m >0,且10x =lg(10m )+lg 1m,则x 等于( ) A .1 B .2 C .0 D .-1二、填空题1217lg 25)1004--÷=、计算(lg 8.计算2log 32-log 3329+log 38-52log53=________. 9.若lg2=a ,lg3=b ,则log 512=________.三、解答题10.求下列各式的值: (1)log 26-log 23;(2)lg5+lg2; (3)log 53+log 513;(4)log 35-log 315.11.已知log 23=a,3b =7,用含a 、b 的式子表示log 1256.12.已知lg a 和lg b 是关于x 的方程x 2-x +m =0的两个根,而关于x 的方程x 2-(lg a )x -(1+lg a )=0有两个相等的实数根,求实数a ,b 和m 的值.13计算: (1) log 2.56.25+lg 1001+ln e +3log 122+ (2)lg25+lg2lg50+(lg2)2(3)22259log (1log (153+计算:14.已知lg x +lg y =2lg(x -2y ),求x y的值.15.已知函数f (x )=x 2+(lg a +2)x +lg b 满足f (-1)=-2,且对一切实数x ,都有f (x )≥2x 成立,求实数a 、b 的值.。
4.3.1对数函数的概念常见题型(解析版)
4.3.1对数函数的概念常见题型题型一:对数函数的概念1.下列函数中,与y x =相等的为( )A .2x y x = B.2y = C .lg10x y = D.y =2.若函数()2()log 45a f x x a a =+--是对数函数,则=a .【答案】5【分析】根据对数函数的定义即可求解.【详解】解:根据对数函数的定义有245001a a a a ⎧--=⎪>⎨⎪≠⎩,解得5a =,故答案为:5.3.设f (x )=ln2a x x -+为奇函数,则a =_____.题型二:判断函数是否为对数函数1.下列函数是对数函数的是( )A .()log 2a y x =B .lg10x y =C .()2log a y x x =+D .ln y x = 【答案】D【分析】根据对数函数的概念即得.【详解】因为函数log a y x =(0a >且1a ≠)为对数函数,所以ABC 均为对数型复合函数,而D 是底数为自然常数的对数函数.故选:D.2.给出下列函数:(1)log y x π=;(2)log e y x =;(3)10log y x =;(4)log a y e x =⋅;(5)22log y x =;(6)()2log 1y x =+.其中是对数函数的是______.(将符合的序号全填上) 【答案】(1)(2)(3)【分析】根据对数函数的定义判断.【详解】(4)的系数不是1,(5)的真数不是x ,(6)的真数不是x .故答案为:(1)(2)(3).题型三:对数函数的解析式1.若函数()()2log a f x x =+的图象过点()2,0-,则=a ( )A .3B .1C .-1D .-3 【答案】A【分析】因为函数图象过一点,代入该点的坐标解方程即得解.【详解】解:由已知得()()22log 20f a -=-+=,所以21a -+=,解得:3a =, 故选:A .2.已知()f x 为对数函数,122f ⎛⎫=- ⎪⎝⎭,则f =______.3.若对数函数log (0a y x a =>且1a ≠)的图象经过点(4,2),则实数=a ______.【答案】2【分析】直接将点代入计算即可.【详解】将点(4,2)代入log a y x =得2log 4a =,解得2a =故答案为:2.题型四:对数函数的定义域1.函数()20225log 13y x x =+--的定义域为( ) A .()(),33,-∞+∞ B .()()1,33,⋃+∞ C .()1,+∞D .()3,+∞2.已知函数()y f x =的定义域为[1,2]-,则函数()2log y f x =的定义域是( )A .[]1,2B .[]0,4C .(]0,4D .1,42⎡⎤⎢⎥⎣⎦3.函数()()lg 2f x x =-定义域为_________. 【答案】()2,+∞【分析】根据函数定义域的求法求得正确答案.【详解】依题意21020x x -≥⎧⎨->⎩,解得2x >, 所以()f x 的定义域为()2,+∞.故答案为:()2,+∞4.已知函数()()ln 2f x x =-,则函数()()()210g x f x f x =-+-的定义域为_________ 【答案】()4,8【分析】首先根据对数函数的真数大于0求出()f x 的定义域,再根据抽象函数的定义域计算规则求出()g x 的定义域.【详解】解:因为()()ln 2f x x =-,所以20x ->,解得2x >,即()f x 的定义域为()2,+∞,对于()()()210g x f x f x =-+-,则22102x x ->⎧⎨->⎩,解得48x ,所以()()()210g x f x f x =-+-的定义域为()4,8.故答案为:()4,8 题型五:求反函数1.与函数14x y ⎛⎫= ⎪⎝⎭的图象关于直线y x =对称的函数是( ) A .4x y =B .4x y -=C .14log y x =D .4log y x =【答案】C【分析】利用函数x y a =与log a y x =(0a >且1a ≠)互为反函数可得出结果.2.函数2()log (1)f x x x =≥的反函数为______. 【答案】()()20x f x x =≥ 【分析】根据反函数的定义结合指、对数之间的转化运算求解,注意函数的定义域.【详解】对于2log (1)y x x =≥,则2,0y x y =≥,故函数2()log (1)f x x x =≥的反函数为()()20x f x x =≥.故答案为:()()20x f x x =≥. 3.函数1()1f x x =-的反函数1()f x -=___________.4.若函数y =f (x )是函数y =2x 的反函数,则f (2)=______.【答案】1【分析】根据反函数的定义即可求解.【详解】由题知y =f (x )=2log x ,∴f (2)=1.故答案为:1.题型6:反函数性质的应用1.设函数()y f x =的图象与2x a y +=的图象关于直线y x =对称,(2)(4)1f f +=,则=a ( ) A .1-B .1C .2D .4【答案】B【分析】利用反函数的知识列方程,化简求得a 的值.【详解】依题意函数()y f x =的图象与2x a y +=的图象关于直线y x =对称, 221x a x a +=⇒=-,422x a x a +=⇒=-,由于(2)(4)1f f +=,所以1211a a a -+-=⇒=.故选:B2.已知()2x f x b =+的反函数为1()f x -,若1()y f x -=的图像经过点(5,2)Q ,则b =_____________.【答案】1【分析】利用原函数与反函数的关系直接求得.【详解】因为1()y f x -=的图像经过点(5,2)Q ,所以点()2,5落在函数()2x f x b =+的图像上,代入得:2(2)25f b =+=,解得:1b =.故答案为:13.若函数2()3log ()=-+f x x a 的反函数的图象经过点(1,0),则=a __________.【答案】4【分析】由反函数所过点求得()f x 图象所过点,由此求得a 的值.【详解】依题意函数2()3log ()=-+f x x a 的反函数的图象经过点(1,0), 所以()f x 的图象经过点()0,1,所以()2203log 1,log 2,4f a a a =-===故答案为:4。
对数函数题型归纳总结
对数函数题型归纳总结题型一图像型:类型一对数函数图像的性质:1、已知三个对数函数:y =log a x ,y =log b x ,y =log c x ,它们分别对应如图中标号为①②③三个图象,则a ,b ,c 的大小关系2、当01a <<时,在同一坐标系中,函数1()xy a=与log a y x =的大致图像只可能是()A.B.C.D.变式训练:1.在同一坐标系中,函数10x y =与lg y x =的图像之间的关系是()A.关于y 轴对称B.关于x 轴对称C.关于原点对称D.关于y x =轴对称2.当1a >时,在同一平面直角坐标系中,函数x y a =与1log ay x =的图象可能为()A.B.C.D.题型二图像的变换与平移型:2、函数2log ||y x =的图像大致是()A.B.C.D.3、已知函数()a f x x =满足(2)4f =,则函数()log (1)a g x x =+的图象大致为()A.B.C.D.类型三图像的判断:1、函数ln ||()x f x x=的部分图象大致是()A.B.C.D.题型二函数过定点1、函数log (23)1a y x =-+((0a >且1)a ≠)的图象恒过定点A ,则A 点坐标为________.2、函数()()log a f x x m =+(0a >且1a ≠)的图象恒过定点()2,n ,则m n +的值为___.题型三解不等式型:1、解下列不等式:(1))103(log log 21221+>x x (2))3(log )42(log 224+>++x x x (3))2(log )4(log 2->-x x a a (4)121log >x(5)33log (21)log (4)1x x -+-<(6)03log 7)(log 221221≤++x x 变式训练:1.解下列不等式:(1)3log 14a <(2)1log 13a <(3)31log 2x <(4)2112log (23)log (56)x x +<-题型四函数的单调性型:类型一一般函数的单调性:【判断函数】1、下列函数中,在(0,)+∞上是增函数的是()A.4()log f x x=B.1()2xf x ⎛⎫= ⎪⎝⎭C.3()f x x =D.2()4f x x =-+2.下列函数中,值域为R 且在区间()0,∞+上单调递增的是()A.22y x x=+B.12x y +=C.ln y x=D.()1y x x=-。
对数函数题型
对数函数典型问题例一:1、已知的最大值和最小值以及相应的x 值.2、已知0)3(log )12(log 2<<+a a a a ,则a 的取值范围为3、不等式0.30.40.20.6x x⨯>⨯的解集是 . 例二:1、求函数)32(log )(22++=x x x f 的定义域和值域.2、已知函数f(x)=lg(ax 2+2x +1)(a ∈R ).(1)若函数f(x)的定义域为R ,求实数a 的取值范围;(2)若函数f(x)的值域为R ,求实数a 的取值范围.例三:1、求函数的的单调区间.2、),在(2-)(log 221∞+-=a ax x y 上是增函数,求a 的取值范围例四:1、 函数)1lg()(2++=x x x f 的奇偶性为 2.已知函数1()log (0,1)1a mxf x a a x -=>≠-的图象关于原点对称. (1)求m 的值; (2)判断f(x) 在(1,)+∞上的单调性,并根据定义证明.例五:1、若0<a <1,f (x )=|log a x |,则下列各式中成立的是( )A .f (2)>f (13)>f (14) B .f (14)>f (2)>f (13) C .f (13)>f (2)>f (14) D .f (14)>f (13)>f (2)2、已知 ),在∞+>2[1|log |x a 上恒成立,求a 的取值范围例六、已知f(x)=log a (a x -1)(a >0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求函数y=f(2x)与y=f -1(x)的图象交点的横坐标.对数函数典型问题练习1、3.022.02,3.0log ,3.0从小到大排列为2.(1) 求函数22(log )(log )34x xy =在区间上的最值. 3.函数f(x)的定义域为[0,1],则函数3[log (3)]f x -的定义域为 .4.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是5.若函数22x x y a -=-⋅的图象关于原点对称,则a =6.设函数19()log (0,1)(9)2,(log 2)a f x x a a f f -=>≠=满足则的值是7、函数的递增区间是( )A .(-∞,1)B .(2,+∞)C .(-∞,) D .(,+∞) 8.设函数200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则的取值范围为( ) A .(-1,1) B .(-1,+∞) C .(,9)-∞ D .(,1)(9,)-∞-+∞9.已知函数1()()2x f x =,其反函数为()g x ,则2()g x 是( ) A .奇函数且在(0,+∞)上单调递减 B .偶函数且在(0,+∞)上单调递增C .奇函数且在(-∞,0)上单调递减D .偶函数且在(-∞,0)上单调递增10、设函数f(x)=x 2-x +b ,已知log 2f(a)=2,且f(log 2a)=b(a>0且a≠1),(1)求a ,b 的值;(2)试在f(log 2x)>f(1)且log 2f(x)<f(1)的条件下,求x 的取值范围.11、已知函数f(x)=log a (x -3a)(a >0且a≠1),将函数y=f(x)图象向左平移2个单位得y=g(x) 的图象.(1)写出y=g(x)的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f(x)+g(x)|≤1,试求a 的取值范围.13、已知f (log a x )=22(1)(1)a x x a --,其中a >0,且a ≠1. (1)求f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在R 上为增函数14.已知:()lg()x x f x a b =-(a >1>b >0).(1)求)(x f 的定义域;(2)判断)(x f 在其定义域内的单调性;(3)若)(x f 在(1,+∞)内恒为正,试比较a-b 与1的大小.。
高中数学对数函数题型归纳
高中数学对数函数题型归纳一、引言高中数学中的对数函数是数学学习中的一个重要内容,它不仅在解决实际问题中有着广泛的应用,也是高考中的重要考点。
本文将针对对数函数的定义、性质、图像以及常见题型进行归纳总结,以期帮助同学们更好地理解和掌握这一知识点。
二、对数函数的定义与性质对数函数是以幂的形式进行运算的函数,其定义域为(0,正无穷),值域为(负无穷,正无穷)。
对数函数具有以下性质:1.对数函数恒过定点(1,0),即f(x)=logax,(a>0且a≠1)时,x=1。
2.对数的单调性:当a>1时,函数在定义域上为增函数;当0<a<1时,函数在定义域上为减函数。
3.对数函数的底数与真数之间具有换底公式:log·(x)=logac+logc(x)lg。
三、对数函数的图像与运用在掌握对数函数性质的基础上,通过图像能够更好地理解和掌握这一知识点。
常用的对数函数图像包括f(x)=logax,f(x)=2logax等。
图像的应用包括但不限于:通过图像观察函数的单调性、极值、最值;分析图像与坐标轴的交点;以及通过图像理解函数与其他函数的关系等。
四、题型归纳与解析1.直接求对数函数解析式:此类题型主要考察同学们对方程思想的理解和应用。
对于形如f(x)=logax(或其变形形式)的方程,可利用换元法求出对数函数的解析式。
2.对数函数的性质应用:根据对数函数的性质,可以解决一些求最值的问题。
例如,当a>1时,利用函数的单调性可以求出函数在定义域内的最大值或最小值;当0<a<1时,则需考虑在何处取值最合适。
3.对数函数的图像应用:通过对数函数的图像与坐标轴的交点,可以解决一些涉及方程的题目。
例如,已知对数函数的图像与坐标轴交于两点,求这两点的坐标。
4.对数式与代数式的转换:对数式的运算是基于底数的运算进行的,因此,熟练掌握底数的运算规则是解决此类题目的关键。
常见的题型包括:已知部分对数值求整体对数值;将部分对数式转换为代数式;以及对数的加减乘除运算等。
对数函数【八大题型】(人教A版2019必修第一册)
C. < < <
D. < < <
7
对数函数
【例 5】已知函数() = log ( + + 3) − 2.
(1)若 = 2,求函数()的值域
(2)若函数()在 1, + ∞ 上单调递增,求的取值范围
人
教
A
版
高
中
数
学
【变式 5-1】已知函数() = lg
︵
, ∈
,8 ,则()的值域为(
对
A. −3,1
B. −1,3
数
C. 0,1
D. −3,0
)
函
数
【变式 1-2】下列各组函数中,定义域相同的一组是(
︶
)
A. = 与 = log > 0, 且 ≠ 1)
B. = 2ln与 = ln
C. = lg与 = lg√
D. = 与 = lg
高
定义域
性
质
中
值域
R
数
过定点
(1,0)
学
单调性
在
函数值的
变化范围
上是减函数
在
︵
上是增函数
当 0<x<1 时,y>0
当 0<x<1 时,y<0
当 x=1 时,y=0
当 x=1 时,y=0
当 x>1 时,y<0
当 x>1 时,y>0
对
数
函
数
︶
2.底数 a 对对数函数图象的影响
(1)底数 a 与 1 的大小关系决定了对数函数图象的“升降”.
C. < <
对数函数常见题型例析(5种)
对数函数常见题型例析对数函数是重要的基本初等函数之一,在近几年的高考中渐渐走红,频频出现在高考试卷与模拟试卷中,主要考查对数函数的图象和性质,本文就对数函数的常见题型归纳如下,供大家参考. 1.求定义域 例1函数3)5lg()(--=x x x f 的定义域为_____.解:要使)(x f 有意义,则⎩⎨⎧≠->-0305x x ,解得5<x ,且3≠x ,∴)(x f 的定义域为5|{<x x ,且}3≠x .点评:求对数定义域切记真数大于零,底数大于零且不等于1,常用方法是列不等式组, 注意求出的定义域要写成集合或区间的形式. 2.比较大小例2设,,a b c 均为正数,且,log221a a=,log)21(21b b = c c2log)21(=,则( )A a b c <<B c b a <<C c a b <<D b a c << 解:由a a21log2=可知0>a 12>∴a ,210,1log21<<∴>a a ;由b b21log)21(=可知1)21(0,0<<∴>b b ,即1log021<<b ,121<<b ;由c c2log )21(=可知21,1log0,02<<∴<<∴>c c c ,从而c b a <<,故选A.点评:本题的关键就是抓住“真数大于零”这一隐含条件,利用指、对函数的性质得出结论. 3.解对数方程例3解方程:0)2(log )12(log 244=--+x x ;解:由已知得)2(log )12(log 244-=+x x ,则2122-=+x x ,即0322=--x x ,解得3=x 或1-=x ,当1-=x 时,对数真数小于零,舍去,故方程的根是3=x . 点评:解对数方程要注意验根,即保证对数的真数大于零. 4.最值问题例4设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )B 2C 22D 4解:设1a >,函数()log a f x x =在区间[,2]a a 上递增,最大值和最小值 分别为a a aalog,2log,依题意知212loglog2log==-aaaa a ,4=∴a ,故选D.点评:最值问题是高考考查对函数性质的热点题型,解决的关键是根据对数函数单调性求解. 5.求参数范围 例5已知132log<a,则a 的取值范围是( )A ),1()32,0(+∞ B ),32(+∞ C )1,32( D ),32()32,0(+∞解:当10<<a 时,,log132log a aa=<32<∴a ,即320<<a ;当1>a 时,,log132loga aa=<32>∴a ,即1>a .综上所述,a 的取值范围是320<<a 或1>a ,故选A.点评:这类问题一般是根据对数函数的单调性,分10<<a 和1>a 两种情况讨论.。
高一数学对数函数题型及解题技巧
高一数学对数函数题型及解题技巧对数函数是高一数学中的一个重要概念,它的应用非常广泛。
下面我们来了解一些对数函数的题型及解题技巧。
一、基本概念对数函数的定义是:设a>0且a≠1,那么我们称y=loga(x)为以a为底,x的对数。
其中a称为底数,x称为真数,y称为以a为底,x的对数。
以10为底的对数函数常用符号是log(x),而以e(自然对数)为底的对数函数常用符号是ln(x)。
二、题型分类1. 求解对数函数的定义域和值域。
定义域是x>0,值域是R(实数集)。
2. 计算对数函数的值。
根据定义,可以用对数的转化公式来计算对数函数的值。
例如log3(81)=4,因为3的4次方等于81。
3. 求解对数方程。
对数方程一般可以转化为指数方程来求解。
例如,求解log2(x)=3,可以将其转化为2的3次方等于x,即x=8。
4. 求解等比数列。
等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。
如果要求等比数列的第n项,则有an=a1*q^(n-1),其中q=loga(r),a是公比的底数。
5. 求解对数函数的性质。
对数函数有多种性质,如对称轴、单调性、奇偶性等。
可以根据对数函数的图像来分析求解。
三、解题技巧1. 掌握对数函数的基本概念,理解对数函数的定义、性质和应用。
2. 熟练掌握对数函数的计算方法,掌握对数的转化公式、对数方程的转化方法和等比数列的求解方法。
3. 学会对数函数的图像分析方法,掌握对数函数的对称轴、单调性、奇偶性等特点,从而更好地解决对数函数相关的问题。
以上是关于高一数学对数函数题型及解题技巧的介绍,希望能够帮助大家更好地掌握对数函数的应用。
对数函数题型归纳大全非常完整
对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。
【方法】对数函数图象及其性质知识点及例题解析
【关键字】方法对数函数的图象及性质例题解析题型一判断对数函数【例1】函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=__________.解析:由a2-a+1=1,解得a=0,1.又a+1>0,且a+1≠1,∴a=1.【例1-1】下列函数中是对数函数的为__________.(1)y=loga(a>0,且a≠1);(2)y=log2x+2;(3)y=8log2(x+1);(4)y=logx6(x>0,且x≠1);(5)y=log6x.解析:题型二【例2】如图所示的曲线是对数函数y=logax的图象.已知a从,,,中取值,则相应曲线C1,C2,C3,C4的a值依次为( )A.,,, B.,,,C.,,, D.,,,解析:由底数对对数函数图象的影响这一性质可知,C4的底数<C3的底数<C2的底数<C1的底数.故相应于曲线C1,C2,C3,C4的底数依次是,,,.答案:A点技巧作直线y=1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.题型三对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例3】求下列函数的定义域.(1)y=log5(1-x); (2)y=log(2x-1)(5x-4); (3).分析:利用对数函数y=logax(a>0,且a≠1)的定义求解.解:(1)要使函数有意义,则1-x>0,解得x<1,故函数y=log5(1-x)的定义域是{x|x <1}.(2)要使函数有意义,则解得x>且x≠1,故函数y=log(2x-1)(5x-4)的定义域是(1,+∞).(3)要使函数有意义,则解得<x≤1,故函数的定义域是.题型四对数型函数的值域的求解方法一、充分利用函数的单调性和图象是求函数值域的常用方法.方法二、对于形如y=logaf(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:①分解成y=logau,u=f(x)这两个函数;②求f(x)的定义域;③求u的取值范围;④利用y=logau的单调性求解.方法三、对于函数y=f(logax)(a>0,且a≠1),可利用换元法,设logax=t,则函数f(t)(tR)的值域就是函数f(logax)(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例4】求下列函数的值域:(1)y =log2(x2+4);(2)y =.解:(1)∵x2+4≥4,∴log2(x2+4)≥log24=2.∴函数y =log2(x2+4)的值域为[2,+∞).(2)设u =3+2x -x2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =在(0,+∞)上为减函数,∴≥-2.∴函数y =的值域为[-2,+∞).【例4-1】已知f(x)=2+log3x ,x[1,3],求y =[f(x)]2+f(x2)的最大值及相应的x 的值.分析:先确定y =[f(x)]2+f(x2)的定义域,然后转化成关于log3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f(x)=2+log3x ,x[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x [1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.题型五 对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1) ②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1) ③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例5】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例5-1】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x+1)|的图象,如图③;(第四步)将函数y=|log2(x+1)|的图象,沿y轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.题型六利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.(2)底数不同,真数相同.(3)底数不同,真数也不同.(4)对于多个对数式的大小比较注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例6】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例6-1】若a2>b>a>1,试比较loga ab,logbba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab <1.∴logaab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba <b,∴0<logbba<1.由log b a-logbba=2logbab,∵a2>b>1,∴2ab >1.∴2logbab>0,即log b a>logbba.∴log a b>log b a>logb ba>logaab.题型七利用对数函数的单调性解不等式常见的对数不等式有三种类型:①形如log a f(x)>log a g(x)的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a f(x)>b的不等式,应将b化为以a为对数的对数式的形式,再借助函数y=log a x的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例7】解下列不等式:(1)1177log log (4)x x >-; (2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.故原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23. 所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或. 【例7-1】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围. 解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<. (1)∵当a >1时,y =log a x 为增函数, ∴123a a <<.∴a >32,结合a >1,可知a >32. (2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a . ∴a <23,结合0<a <1,知0<a <23. ∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或. 题型八 对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论; 二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.【例8】求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝ ⎛⎭⎪⎫-∞,32.设u =3-2x ,x ∈⎝ ⎛⎭⎪⎫-∞,32, ∵u =3-2x 在⎝ ⎛⎭⎪⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增, ∴函数y =log 2(3-2x )在⎝ ⎛⎭⎪⎫-∞,32上是减函数. ∴函数y =log 2(3-2x )的单调减区间是⎝ ⎛⎭⎪⎫-∞,32. 【例8-1】求函数y =log a (a -a x )的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律 判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例8-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,求a 的取值范围. 解:1,2⎛⎫-∞- ⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数, ∴u (x )在1,2⎛⎫-∞- ⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12. ∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭. 题型九 对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.【例9】判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x +log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例9-1】已知函数f (x )=1log 1a x x+-(a >0,且a ≠1). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11x x+->0,得-1<x <1, 故函数f (x )的定义域为(-1,1). (2)∵f (-x )=1log 1ax x -+=1log 1a x x +--=-f (x ), 又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1ax x +->0=log a 1,得11x x+->1,解得0<x <1; 当0<a <1时, 由1log 1a x x +->0=log a 1,得0<11x x +-<1,解得-1<x <0. 故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.题型十 反函数【例10】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12xC .12log x D .2x -2 解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .【例10-1】函数f (x )=3x (0<x ≤2)的反函数的定义域为( )A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵ 0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].【例10-2】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点( )A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).【例10-3】已知f (e x )=x ,则f (5)=( )A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x ,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x . 所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.【例10-5】已知对数函数f (x )的图象经过点1,29⎛⎫ ⎪⎝⎭,试求f (3)的值. 分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫ ⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19. ∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x . ∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例10-6】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
对数函数常见题型
4.4 对数函数1.对数函数的定义一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(1)由于指数函数y=a x中的底数a满足a>0,且a≠1,则对数函数y=log a x中的底数a也必须满足a>0,且a≠1.(2)对数函数的解析式同时满足:①对数符号前面的系数是1;②对数的底数是不等于1的正实数(常数);③对数的真数仅有自变量x.2.对数函数的图象和性质一般地,对数函数y=log a x(a>0,且a≠1)的图象和性质如下表所示:a>10<a<1图象性质定义域:(0,+∞)值域:R图象过定点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数非奇非偶函数3.反函数对数函数y=log a x(a>0,且a≠1)和指数函数y=a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x 对称.4.对数型复合函数的单调性复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)与g(x)的单调性相反,则其复合函数f[g(x)]为减函数.对于对数型复合函数y=log a f(x)来说,函数y=log a f(x)可看成是y=log a u与u=f(x)两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.另外,在求复合函数的单调区间时,首先要考虑函数的定义域.5.对数型复合函数的值域对于形如y=log a f(x)(a>0,且a≠1)的复合函数,其值域的求解步骤如下:(1)分解成y=log a u,u=f(x)两个函数;(2)解f(x)>0,求出函数的定义域;(3)求u的取值范围;(4)利用y=log a u的单调性求解.题型一 对数函数的判断例1、(1)给出下列函数:①223log y x =;②3log (1)y x =-;③(1)log x y x +=;④log e y x =.其中是对数函数的有( ) A .1个B .2个C .3个D .4个(2)若函数2log 32a y x a a =+-+为对数函数,则a =( )A .1B .2C .3D .4跟踪练习1.下列函数表达式中,是对数函数的有( )①y =log x 2;②y =log a x (a ∈R );③y =log 8x ;④y =ln x ;⑤y =log x (x +2);⑥y =log 2(x +1). A .1个B .2个C .3个D .4个2.下列函数表达式中,是对数函数的有( )①log 2x y =;②()log a y x a =∈R ;③8log y x =;④ln y x =;⑤()log 2x y x =+;⑥42log y x =;⑦()2log 1y x =+. A .1个 B .2个 C .3个D .4个3.若函数()2()log 45a f x x a a =+--是对数函数,a =_________.题型二 对数函数的解析式或函数值例2(1)对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5xB .y =15log xC .y =13log xD .y =log 3x(2)设()log a f x x =(0a >且1a ≠),若1(2)2f =,则12f ⎛⎫= ⎪⎝⎭( ). A .2 B .2-C .12-D .12跟踪练习1.若某对数函数的图象过点()4,2,则该对数函数的解析式为( ) A .2log y x =B .42log y x =C .2log y x =或42log y x =D .不确定2.若函数()()lo 1g a f x x =+(0,1)a a >≠的图像过点(7,3),则a 的值为( ) A 2B .2C 2D .12题型三 对数函数的定义域例3(1)函数()4f x x=-的定义域为( )A .(]1,2B .[]1,4C .()1,4D .[]2,4(2)已知函数(2)x y f =的定义域是[]1,1-,则函数3(log )f x 的定义域是( ) A .[]1,1-B .1,33⎡⎤⎢⎥⎣⎦C .[]1,3D .[3,9](3)若函数()lg 1y ax =+的定义域为(),1-∞,则a =( ) A .1 B .-1 C .2 D .无法确定跟踪练习1.函数()00.5log 21y x =-⎡⎤⎣⎦的定义域为( )A .1,12⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()1,+∞D .()1,11,2⎛⎫+∞ ⎪⎝⎭2.函数3()log (21)1xf x x x =--的定义域是( ) A .1,12⎛⎤ ⎥⎝⎦B .1,12⎡⎤⎢⎥⎣⎦C .(1,)+∞D .1(,1)23.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],4.求下列函数的定义域 (1)2112y x x=+-- (2)函数221()x f x --=(3)20()(54)lg(43)x f x x x =+-+ 题型四 对数函数的定点例4函数()log 272=+-a y x (0a >,且1a ≠)的图象一定经过的点是( ) A .7,22⎛⎫-- ⎪⎝⎭B .()3,2--C .()3,1--D .()4,2--跟踪练习1.函数()()log 310,1a y x a a =->≠的图象过定点( ) A .2,13⎛⎫ ⎪⎝⎭B .()1,0-C .2,03⎛⎫ ⎪⎝⎭D .()0,1-2.函数()log 1a y x =-的图象必过的点是( ) A .()1,0-B .()1,0C .()0,0D .()2,03.已知函数log (3)2a y x =-+(0a >且1a ≠)的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则lg (4)lg (25)f f +=( )A .2-B .2C .1D .1-题型五 对数函数的值域(最值)例5(1)已知184x ≤≤,则函数2()log f x x =的值域是 。
对数函数专题——含参对数函数完整版题型汇总
对数函数专题——含参对数函数完整版题型汇总一、定义与性质1. 对数函数的定义对数函数是指定义域在正数集合上的函数,它的函数值是指数函数的反函数。
通常用符号 $\log$ 表示对数函数。
2. 对数函数的性质- 对数函数的图像是一条倾斜的曲线,与指数函数的图像关于直线 $y = x$ 对称。
- 对数函数具有单调递增性质,即随着自变量的增加,函数值也会增加。
- 对数函数的定义域是正数集合,值域是实数集合。
二、常见题型1. 对数运算题型例题:计算 $\log_3 27$。
解析:由于 $3^3 = 27$,所以 $\log_3 27 = 3$。
2. 对数方程题型例题:求解方程 $2^x = 8$。
解析:将 $8$ 表示成 $2$ 的幂次形式得到 $8 = 2^3$,所以$2^x = 2^3$,即 $x = 3$。
3. 对数不等式题型例题:求解不等式 $\log_2 \left( \frac{x}{3} \right) \geq 2$。
解析:根据对数定义,$\log_2 \left( \frac{x}{3} \right) \geq2$ 可转化为 $\frac{x}{3} \geq 2^2$,即 $\frac{x}{3} \geq 4$。
解得$x \geq 12$。
三、注意事项1. 在计算对数函数的值时,要注意指数与对数的关系,充分运用指数函数和对数函数的定义和性质。
2. 在解对数方程和不等式时,要注意将题目中的式子转化为指数形式,再进行相应的运算。
以上是对数函数专题中含参对数函数完整版题型汇总的简要内容。
对数函数作为数学中常见的函数之一,在应用中具有广泛的用途。
掌握对数函数的基本定义、性质和解题方法,有助于提高数学问题的解决能力。
对数函数经典题型
对数函数经典题型1. 对数函数的定义对数函数是指满足以下条件的函数:$$y = \log_{b}x$$其中,$b$ 为底数,$x$ 为真数,$y$ 为对数。
对数函数的图像表现为一条曲线,可以通过解对数方程和对数性质来求解问题。
2. 常见题型2.1 求解对数方程对数方程是一个方程,其中含有对数函数。
常见的对数方程有以下形式:$$\log_{b}x = c$$求解对数方程的步骤如下:1. 将方程转化为指数形式:$x = b^{c}$2. 按照转化得到的指数形式,求得方程的解。
2.2 使用对数性质求解问题对数函数有多种性质,可以用来求解各种问题。
常见的对数性质包括:- 对数乘法性质:$\log_{b}(xy) = \log_{b}x + \log_{b}y$- 对数除法性质:$\log_{b}(\frac{x}{y}) = \log_{b}x -\log_{b}y$- 对数幂性质:$\log_{b}(x^n) = n\log_{b}x$通过运用这些性质,可以化简对数表达式,简化求解过程。
3. 示例题目3.1 题目一已知 $\log_{2}x = 3$,求解方程 $x^2 - 4x + 3 = 0$ 的解。
解题步骤如下:1. 将 $\log_{2}x = 3$ 转化为指数形式得到 $x = 2^{3} = 8$2. 将 $x = 8$ 代入方程 $x^2 - 4x + 3 = 0$ 得到 $8^2 - 4 \times 8 + 3 = 0$3. 求解得到 $64 - 32 + 3 = 35 \neq 0$4. 由此可得方程无解。
3.2 题目二已知 $\log_{3}(x+1) = 2$,求解方程 $x^2 + x - 6 = 0$ 的解。
解题步骤如下:1. 将 $\log_{3}(x+1) = 2$ 转化为指数形式得到 $x+1 = 3^{2} = 9$2. 将 $x+1 = 9$ 化简得到 $x = 8$3. 将 $x = 8$ 代入方程 $x^2 + x - 6 = 0$ 得到 $8^2 + 8 - 6 = 70 \neq 0$4. 由此可得方程无解。
对数函数题型分类总结(学生版)
对数函数题型分类总结(学生版)对数函数题型分类总结(学生版)引言对数函数是高中数学中的一个重要内容,理解和熟练掌握对数函数的各种题型对学生研究数学有很大帮助。
本文将对常见的对数函数题型进行分类总结,并提供相关解题方法。
一、对数函数的定义对数函数是指以某个固定底数为底的指数函数。
在数学中常用的底数有10、e等。
对数函数可表示为log<sub>b</sub>(x),其中b 为底数,x为真数。
二、对数函数的性质1. 对数函数的定义域是正数集(0, +∞)。
2. 对数函数的值域是实数集(-∞, +∞)。
3. 对数函数的图像在x轴的右侧是递增的,在y轴的上方有无数个点。
4. 对数函数log<sub>b</sub>(1)等于0。
5. 对数函数log<sub>b</sub>(b)等于1。
三、对数函数的常见题型1. 求解对数函数的定义域和值域。
2. 求解对数方程。
3. 求解对数不等式。
4. 求解指数方程和指数不等式。
5. 求解对数方程与指数方程的混合问题。
6. 求解含有对数函数的复合函数问题。
四、解题方法1. 对于求解对数函数的定义域和值域的题型,需要注意底数的取值范围,以及对数函数值的限制条件。
2. 对于求解对数方程和对数不等式的题型,需要将对数转化为指数形式,并注意检查解的可行性。
3. 对于求解指数方程和指数不等式的题型,可以通过对数函数的性质将其转化为对数方程或对数不等式进行求解。
4. 对于含有对数函数的复合函数问题,可以根据复合函数的性质和对数函数的性质进行分析和求解。
五、总结对数函数题型的分类总结有助于学生更好地理解和应用对数函数,提高解题能力。
学生在解题过程中应注意对数函数的定义和性质,灵活运用解题方法,加深对对数函数的理解和掌握。
参考资料- 高中数学教材- 在线数学研究资源- 学校数学教师指导以上是对数函数题型分类总结的学生版文档。
第18讲 对数及对数式运算5大考题型总结(解析版)高一数学同步教学题型(人教A版2019必修第一册)
第18讲对数及对数式运算5大常考题型总结【考点分析】考点一:对数式的运算①对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.②常见对数的写法:1.一般对数:以(0a a >且1)a ≠为底,记为log Na,读作以a 为底N 的对数;2.常用对数:以10为底,记为lg N ;3.自然对数:以e 为底,记为ln N ;③对数的性质:1.特殊对数:1log 0a =;log 1aa =;其中0a >且1a ≠2.对数恒等式:log Na a N =(其中0a >且1a ≠,0N >)3.对数换底公式:log log log c a c b b a =如:252log 7lg7ln 7log 7=log 5lg5ln 7==.倒数原理:1log log a b b a =如:321log 2log 3=.约分法则:log log log a b a b c c⋅=④对数的运算法则:1.log ()log log a a a MN M N =+;2.log log log aa a MM N N=-;3.log log (m na a nb b m m=,)n R ∈; 4.log a b a b =和log b a a b =.【题型目录】题型一:对数的定义题型二:指数对数的互化题型三:对数的运算求值题型四:换底公式的应用题型五:对数式的应用题【典型例题】题型一:对数的定义【例1】(2021·全国高一课前预习)在()()31log 32a b a -=-中,实数a 的取值范围为______.【答案】1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【解析】由题意,要使式子()()31log 32a b a -=-有意义,则满足310311320a a a ->⎧⎪-≠⎨⎪->⎩,解得1233a <<或2332a <<,即实数a 的取值范围为1223,,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故答案为:1223,3332⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.【题型专练】1.(2022江苏省江阴市第一中学高一期中)使式子(31)log (3)x x --有意义的x 的取值范围是()A .3x >B .3x <C .133x <<D .133x <<且23x ≠()1k +有意义,则实数k 的取值范围是______.【答案】()()1,00,1-U 【分析】结合对数性质建立不等关系,即可求解.【详解】若()()1log 1k k +-有意义,则满足101110k k k +>⎧⎪+≠⎨⎪->⎩,解得()()1,00,1k ∈-⋃.故答案为:()()1,00,1-U 题型二:指数对数的互化【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log 3127=-3.【答案】(1)log 5125=3;(2)41log 216=-;(3)31327-=【解析】(1)∵53=125,∴log 5125=3.(2)∵21416-=,∴41log 216=-.(3)∵31log 327=-,∴31327-=【题型专练】1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.(1)3128-=;(2)17ab ⎛⎫= ⎪⎝⎭;(3)1lg31000=-.【答案】(1)21log 38=-;(2)17log b a =;(3)31101000-=.【解析】(1)由3128-=可得21log 38=-;(2)由17ab ⎛⎫= ⎪⎝⎭得17log b a =;(3)由1lg31000=-可得31101000-=.2.(2022全国高一课时练习)指数式和对数式互相转化:(1)4e a =⇒____________.(2)31327-=⇒____________.(3)21log 416=-⇒____________.(4)2log 83=⇒____________.【答案】ln 4a =31log 327=-41216-=328=【解析】log (0,1,0)ba a Nb N a a N =⇔=>≠>.故答案为:ln 4a =,31log 327=-,41216-=,328=.题型三:对数的运算求值【例1】(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【例2】(2022陕西·长安一中高一期中)设函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)(log 6)f f -⋅=()A .3B .6C .9D .12【答案】C【分析】根据给定分段函数直接计算即可得解【详解】函数()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则2(2)1log 43f -=+=,2log 62(log 6)223f =÷=,所以2(2)(log 6)9f f -⋅=.故选:C【例3】(2022全国高一专题练习)计算:(1)659log 25log 3log 6⋅⋅=_________.(2)()()24525log 5log 0.2log 2log 0.5++=_________.(3)235111log log log 2589⋅⋅=_________.(4)()24892log 3log 9log 27log 3log n n ++++⋅=L __________.(5)6log +=__________.【答案】11412-5212【解析】(1)原式226565365331log 5log 3log 62log 5log 3log 6log 5log 3log 62=⋅⋅=⋅⨯=⋅⋅lg5lg3lg 61lg 6lg5lg3=⋅⋅=(2)原式25log 5log log 2log log ⎛⎫⎛⎫=++=⋅ ⎪⎪ ⎪⎪⎝⎭⎝⎭25111log 5log 2224=⨯=(3)原式232235235log 5log 2log 32log 5(3)log 2(2)log 3---=⋅⋅=-⨯-⨯-23512log 5log 2log 312=-⋅⋅=-(4)原式()2322322223log 3log 3log 3log 3log n n =++++⋅L ()22522222335log 3log 3log 3log 3log 2log 35lo 2g 22nn n =++++⋅=⨯=L(5)26662log log log 61===Q 所以原式12故答案为:1,14,12-,52,12【例4】(2022·全国·高一课时练习)已知()122021log 5a x x x ⋅⋅⋅=,则222122021log log log a a a x x x ++⋅⋅⋅+=______.【答案】10【分析】由同底数对数加法公式以及log log ba a Nb N =,可得答案.。
对数函数重难点题型
对数函数重难点题型
1. 对数函数的定义:对数函数的定义是y=logₐx,其中a为底数,x为真数,y为对数。
考生需要了解对数函数的基本定义,并
能够根据给定的底数和真数求对数的值。
2. 对数函数和指数函数的关系:对数函数和指数函数是互为反
函数的关系。
要求考生根据对数函数和指数函数的特点,能够互相
转化。
例如,给定一个指数函数,要求将其转化为对数函数表达式。
3. 对数函数的性质:对数函数具有一些重要的性质,如对数函
数与指数函数的性质、对数函数的单调性、对数函数图像的特点等。
考生需要熟悉这些性质,并能够灵活运用于解决问题。
4. 对数函数的方程和不等式:对数函数的方程和不等式是对数
函数应用的常见题型,要求考生能够根据对数函数的性质,解决对
数方程和不等式。
例如,给定一个对数方程,要求解出所有满足条
件的解。
5. 对数函数与其他函数的组合:对数函数与其他函数的组合是对数函数应用的一种常见形式。
要求考生能够根据组合函数的定义和性质,对复合函数进行求导、求极限等操作。
6. 对数函数的应用:对数函数在实际问题中有广泛的应用,如在生物学、经济学、物理学等领域中。
考生需要能够将数学模型转化为对数函数,并应用对数函数解决实际问题。
以上是关于对数函数的重难点题型的简要介绍。
通过熟练掌握对数函数的概念、基本性质和应用,考生可以提升解决对数函数相关问题的能力,更好地应对考试中的各种题型。
对数函数练习题
对数与对数函数练习题题型一、对数的运算1.已知13log 82x =,则=x2.若()()2334log log log log 0x y ==,则x y +=3.设()()()8112=1log x x f x x x -≤⎧⎨>⎩,则满足()1=4f x 的x 的值为4.设2=5=a bm ,且11+=2a b,则=m5.已知lg 2=a ,lg3=b ,则lg12=lg156.计算:2lg 2+lg2lg50+lg25=⋅7.计算:()()3948log 2+log 2log 3+log 3=8.计算:235log 25log 4log 9=⋅⋅9.计算:⑴()(21lg5lg8lg100lg lg lg 0.006=6⋅++++⑵211log 522+=⑶lg1.2-=10. 已知()()()()22log 01012x x x f x x x x ⎧>⎪=-<≤⎨⎪≤--⎩,则({}2f f f ⎡⎤-=⎣⎦11.已知()5=lg f x x ,则()2f =12.设函数()1=lg 1f x f x x ⎛⎫+⎪⎝⎭,则()10=f 13.如果αβ,是关于x 的方程()()lg 3lg 50x x ⋅=的两实根,则=αβ( )A.115B. lg15C. lg3lg5⋅D.15 14.已知18log 9=a ,185b=,用,a b 表示36log 45可写成15.已知lg 2=0.3010,lg3=0.4771,则 16.设方程()2lg lg 2lg3lg lg 2lg30x x ++⋅+⋅=的两个根是12x x ,,则12=x x ⋅题型二:对数型函数的定义域、值域问题 1.求下列函数的定义域.⑴()f x ⑵()()()1=log 164x x f x +- ⑶y =⑷()2log 2y x =+⑸()()121log 21f x x =+ ⑹()f x =2.函数()21142=log log 5f x x ⎛⎫-+ ⎪⎝⎭在区间[]2,4上的最小值是3.求下列函数的值域。
对数函数中考题型大汇总
对数函数中考题型大汇总简介对数函数是高中数学中的重要内容,也是考试中经常涉及的题型之一。
本文将对常见的对数函数考题进行分类和总结,帮助学生更好地理解和应对这一考试内容。
题型一:对数函数的定义和性质这类题目主要考察对数函数的基本定义和性质的理解。
常见问题包括:- 对数函数的定义公式是什么?- 对数函数的定义域和值域有什么特点?- 对数函数的图象有什么特点?题型二:对数函数的运算这类题目主要考察对数函数的运算技巧。
常见问题包括:- 如何计算对数函数的乘积、商、幂?- 如何化简包含对数函数的复杂表达式?- 如何求解包含对数函数的方程?题型三:对数函数的应用这类题目主要考察对数函数在实际问题中的应用。
常见问题包括:- 如何利用对数函数解决指数增长和衰减问题?- 如何利用对数函数解决复利计算问题?- 如何利用对数函数解决指数函数图象的性质问题?题型四:对数函数的图象分析这类题目主要考察对数函数图象的分析能力。
常见问题包括:- 如何判断对数函数的增减性和奇偶性?- 如何求对数函数的反函数?- 如何利用对数函数的图象求解方程和不等式?题型五:对数函数与其他函数的关系这类题目主要考察对数函数与其他函数之间的关系。
常见问题包括:- 如何求对数函数和指数函数的复合函数?- 如何求对数函数和幂函数的复合函数?- 如何求对数函数和三角函数的复合函数?结论对数函数的考题主要包括对数函数的定义和性质、对数函数的运算、对数函数的应用、对数函数的图象分析以及对数函数与其他函数的关系等方面。
熟练掌握这些题型,对于学生来说非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型一:比较大小★例题: 比较下列各组数中各值的大小(1)0.3log 1.8,0.3log 2.7; (2)8.1log 5.0,4.2log 5.0; (3)3log π,2log 0.8; (4)6log 7,7log 6; (5)0.91.1, 1.1log 0.9,0.7log 0.8.★练习:1.下列大小关系正确的是( )A .0.43<30.4<log 40.3B .0.43<log 40.3<30.4C .log 40.3<0.43<30.4D .log 40.3<30.4<0.432设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a 3设log b N <log a N <0,N >1,且a +b =1,则必有( )A .1<a <bB .a <b <1C .1<b <aD .b <a <14 .若log a (π-3)<log b (π-3)<0,a 、b 是不等于1的正数,则下列不等式中正确的是( )A .b >a >1B .a <b <1C .a >b >1D .b <a <1 5.当0<x <1时 ,下列不等式成立的是( )A .(12)x +1>(12)1-xB .log (1+x )(1-x )>1C .0<1-x 2<1D .log (1-x )(1+x )>06.下列四个数中最大的是( )A .(ln 2)2B .ln(ln 2)C .ln 2D .ln 27已知实数a ,b 满足log 12a =log 13b ,给出五个关系式:①a >b >1,②0<b <a <1,③b >a >1,④0<a <b <1,⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个 8、已知c a b 212121log log log <<,则( )A .c a b 222>>B .c b a 222>>C .a b c 222>>D .b a c 222>>9、已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b << 10. 已知31log a >31log b >0,则a,b 的关系是 ( )A.1<b <aB.1<a <bC. 0<a <b <1D.0<b <a <1da :C A B A C D B 829 10 (12,1)题型二:求值1. 若x log 32=1,则4x +4-x =________.2设2a =5b =m ,且1a +1b =2,求m 的值.3.已知35a b m ==,且112a b+=,则m 之值为 ( ) A .15 B. C .D .2254.11log log aab b-之值为 ( ) A .0 B .1 C .2log a b D .2log a b -5方程2log )(log 2x x x x =-的解为6x x f 21log )(=,当],[2a a x ∈时,函数最大值比最小值大3,则a 为__________7、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩ 则1(())2g g =__________.8. 已知函数()()1,4,21,4,xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩,则()22log 3f +的值为 ( ) A .13 B .16 C .112 D .1249定义在R 上的函数f (x )满足f (x )=⎩⎨⎧log 2(4-x ),x ≤0f (x -1)-f (x -2),x >0,则f (3)的值为________.10.(1)2log log 8log 4log 4843=⋅⋅m ,求m 的值;(2)计算:421938432log )2log 2)(log 3log 3(log -++11. (1)已知18log 9a =,185b =,求36log 45(用 a ,b 表示);(2)若8log 3p =,3log 5q =,求lg 5(用 p ,q 表示).题型三:对数不等式1. 函数12log (32)y x =-的定义域是( )A.[1,)+∞B.2(,)3+∞C. 2[,1]3D. 2(,1]32. 函数)3(log 1x y x -=-的定义域是 3、函数2log 2y x =-的定义域是( )A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4、设f(x)=x x -+22lg,则)2()2(xf x f +的定义域为 A. ),(),(-4004 B.(-4,-1) (1,4) C. (-2,-1)U (1,2) D. (-4,-2) (2,4) 5、设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 (A)(1,2)⋃(3,+∞) (B)(10,+∞)(C)(1,2)⋃ (10 ,+∞)(D)(1,2) 6、若函数()12922-=+-ax x x f 的定义域为R ,则a 的取值范围为7若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是__________题型四:对数函数图象,性质1.下列函数中是对数函数的是( )A.x y 3log 2=B. x y 1log =C. x y 2log 2=D. x y 2log = 2. 如图,曲线是对数函数x y a log =的图象,已知a 的取值101,53,34,3,则相应于曲线的4321,,,C C C C 值依次为( ) A. 101,53,34,3 B.53,101,34,3 C.101,53,3,34 D. 53,101,3,34 3. 函数)53(log -=x y a 恒过点( )A.)0,1(B. )0,2(C. )2,0(D. 与a 的值有关 4.函数22lg(1)y x x x =++为 函数(奇偶性).5、函数22()log (43)f x x x =-+-的单调增区间为________.6.(1)讨论2132log (32)y x x =-+的单调性;(2)讨论)54(log 22---=x x y 的单调性和值域.7、若关于自变量x 的函数()ax y a -=2log 在[]1,0上是减函数,则a 的取值范围是_______.8、已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3 (C )11[,)73 (D )1[,1)79、已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b <<10、若函数)1,0( )2(log )(2≠>+=a a x x x f a 在区间)21,0(内恒有f (x )>0,则f (x )的单调递增区间A .)41,(--∞B .),41(+∞-C .(0,∞)D .)21,(--∞12、给出下列三个等式:()()()y f x f xy f +=,()()()y f x f y x f =+,()()()y f x f y x f +=+,下列函数中不满足其中任何一个等式的是( )A.()xx f 3= B. ()xx f 2lg = C. ()x x f 2log = D.()()0≠+=kb b kx x f13、已知函数()()1022log <<-+=a xxx f a. (1)试判断()x f 的奇偶性; (2)解不等式:()()x x f a 3log ≥ 14、求函数()⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=2log 4log 22x x x f 的最小值. 题型五:反函数1、若函数()(0,1)x f x a a a =>≠且的反函数的图像过点(2,1)-,则___a =.2、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈ B .()2ln 2ln (0)f x x x =>C .()22()xf x e x R =∈ D .()2ln ln 2(0)f x x x =+>A 1 x y OB 1 xy O C1 xyO D1 xyO。