函数单调性的习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性(一)

一、选择题:

1.在区间(0,+∞)上不是增函数的函数是

( )

A .y =2x +1

B .y =3x 2

+1

C .y =

x

2

D .y =2x 2

+x +1

2.函数f (x )=4x 2

-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函

数,则f (1)等于 ( ) A .-7 B .1 C .17 D .25 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是

( )

A .]1,(],0,(-∞-∞

B .),1[],0,(+∞-∞

C .]1,(),,0[-∞+∞

D ),1[),,0[+∞+∞

10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )

A .a ≤3

B .a ≥-3

C .a ≤5

D .a ≥3

10.已知函数()()2212f x x a x =+-+的单调递减区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3

二、填空题:

13.函数y =(x -1)-2

的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y f

x =-的单调递减区间为 .

16、函数f (x ) = ax 2

+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:

17.f (x )是定义在( 0,+∞)上的增函数,且f (y

x

) = f (x )-f (y ) (1)求f (1)的值.

(2)若f (6)= 1,解不等式 f ( x +3 )-f (x

1

) <2 .

18.函数f (x )=-x 3

+1在R 上是否具有单调性如果具有单调性,它在R 上是增函数还是减

函数试证明你的结论.

19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.

20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.

21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取

值范围.

22.已知函数f (x )=x

a

x x ++22,x ∈[1,+∞]

(1)当a =2

1

时,求函数f (x )的最小值;

(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.

参考答案

一、选择题: CDBBD ADCCA BA

二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦

⎤ ⎝

⎛-∞-2

1,

三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.

②在等式中令x=36,y=6则.2)6(2)36(),6()36()6

36

(

==∴-=f f f f f 故原不等式为:),36()1()3(f x

f x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,

故不等式等价于:.23153036

)3(00103-<<⇒⎪⎪⎩⎪

⎪⎨⎧<+<>>+x x x x x

18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:

设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23

+1.

f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+

2

2x )2+43x 22

].

∵x 1<x 2,∴x 2-x 1>0而(x 1+

2

2x )2+43x 22

>0,∴f (x 1)>f (x 2).

∴函数f (x )=-x 3

+1在(-∞,+∞)上是减函数.

19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.

f (x 1)-f (x 2)=211x --2

21x -=

2

2

2

12

22111)1()1(x x x x -+----=

2

2

2

1121211))((x x x x x x -+-+-

∵x 2-x 1>0,2

22

111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>

f (x 2).

当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).

故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.

20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则

f (x 1)-f (x 2)=121+x -12

2+x -a (x 1-x 2)=

1

12

22

122

21+++-x x x x -a (x 1-x 2)

=(x 1-x 2)(1

12

22

12

1++++x x x x -a )

(1)当a ≥1时,∵

1

12

22

12

1++++x x x x <1,

又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=2

12a

a

-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中

1

12

22

12

1++++x x x x <1利用了121+x >|x 1|≥x 1;12

2+x >x 2;

③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.

21.解析: ∵f (x )在(-2,2)上是减函数

∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )

相关文档
最新文档