压电式加速度传感器
振动试验中加速度传感器的选择
振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。
图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。
传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。
所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。
Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。
在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。
使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。
压电式传感器测加速度的原理
压电式传感器测加速度的原理说起来压电式传感器测加速度的原理,这还真是个有意思的话题。
你别看它听起来挺高深,其实啊,咱要是细究起来,也是能品出几分趣味来的。
话说这压电式传感器啊,它可是个机灵的家伙,工作原理也不复杂,说白了就是利用了某些材料的压电效应。
啥是压电效应呢?就好比说你有个宝贝石头,你拿手一碰它,它就能“哎哟”一声叫出来,还给你变出点电来,虽然这比喻不太贴切,但意思就是这么个意思。
实际上呢,这压电效应说的是某些介质材料,你给它施加压力,它就能产生电荷,这就是压电效应。
咱们这压电式传感器里头啊,装了个压电晶体材料,还压了个质量块上去。
你想啊,这质量块可沉了,压在那晶体上,晶体就得受着。
然后呢,这传感器要是跟着啥振动的东西一起振,那质量块也跟着振,它的加速度和振动体的加速度是一样的。
这时候,质量块受到的压力就等于它的质量乘以加速度,这压力就传递到压电晶体上了。
晶体受到压力,就产生电荷,这电荷的多少,还就和那压力成正比呢。
所以啊,这电荷的多少就能表示加速度的大小了。
我这人啊,就喜欢琢磨这些个东西,有时候琢磨得深了,还真能琢磨出点门道来。
就比如说这压电式传感器吧,它不光是测加速度,还能测振动呢。
你想啊,机械设备振动的时候,它也有加速度啊,所以这压电式传感器就能派上用场了。
不光如此,这压电式传感器还有个小优点,就是它体积小、重量轻、抗力强,还不容易受电磁干扰、温度变化的影响。
你说这多好,简直就是个小能手啊。
我记得有一次,我和几个朋友聊起这压电式传感器来,他们也是一脸的好奇。
有个哥们儿还问我:“你说这压电式传感器测加速度,它准不准啊?”我一听这话,就笑了:“准不准?你试试就知道了。
人家可是利用压电效应,那可是物理原理,能不准吗?”说完这话,我自己也忍不住乐了。
所以啊,这压电式传感器测加速度的原理,说起来就是这么个事儿。
它也不神秘,也不复杂,就是利用了压电效应,把加速度转换成电荷,然后再通过电路转换成咱们能读懂的信号。
压电式加速度传感器
压电式加速度传感器(1) 压电式加速度计的结构和安装压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些 物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也 随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加 速度成正比。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故 输岀能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到 高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路 将信号输给指示仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与 前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
常用的压电式加速度计的结构形式如图13. 18所示。
S 是弹簧,M 是质块,B 是基座,P 是压电元件,R 是 夹持环。
图13. 18a 是中央安装压缩型,压电元件一质量块一弹簧系统装在圆形中心支柱上,支柱与基座连接。
这种结构有高的共振频率。
然而基座B 与测试对象连接时,如果基座 B 有变形则将直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电 元件,并使预紧力发生变化,易引起温度漂移。
图13.18c 为三角剪切形,压电 元件由夹持环将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件 承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,有较髙的共 振频率和良好的线性。
图13. 18b 为环形剪切型,结构简单,能做成极小型、髙 共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于 粘结剂会随温度增高而变软,因此最髙工作温度受到限制。
(a)中心安装压缩型(b)环形剪切型(c)三角剪切型 图13. 18压电式加速度计n j| li加速度计的使用上限频 率取决于幅频曲线中的 共振频率图(图13. 19)。
一般小阻尼(z<=0. 1)的 加速度计,上限频率若取 为共振频率的1/3,便可 1/5,则可保证幅值误差小于0. 5dB (即6%),相移小于3°。
压电式加速度传感器的信号输出形式
电荷输出型传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。
实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。
由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。
由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。
北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。
低阻抗电压输出型(IEPE)IEPE型压电加速度计即通常所称的ICP型压电加速度计。
压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。
IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。
通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。
IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。
在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。
传感器的灵敏度,量程和频率范围的选择压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。
压电式加速度传感器
摘要现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。
所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,也就是被测量为变量的连续测量过程。
它以动态信号为特征,研究了测试系统的动态特性问题。
而动态测试中振动和冲击的精确测量又显得尤其重要。
振动与冲击测量的核心是传感器,对于冲击和振动信号的获取,最常见的是用压电加速度传感器。
世界各国作为量值传递标准的高频和中频振动基准的标准加速度传感器就是压电式加速度传感器。
由此可见,质量优良的压电加速度传感器在精度、长时间稳定性等方面都是有独到之处的。
压电加速度传感器可以看作是一个能产生电荷的高内阻发电元件。
但是此电荷量很小,不能用一般的测量电路来进行测量,因为一般的测量电路的输入阻抗总是较小的,压电片上的电荷通过测量电路时会被输入电阻迅速泄漏引入测量误差,影响测量效果。
如果压电加速度传感器没有与之配套的测量电路一起配合使用,那么压电加速度传感器的广泛应用就会受到非常大的限制。
因此,与之配套的测量电路的研究及其硬件实现就显得非常重要。
目前最常用的压电加速度传感器的测量电路就是电荷放大器,它能得到与输入电荷成比例的电压输出。
它的特点之一就是使传感器的灵敏度和电缆长度无关,电缆可长达几千米,而在被测对象附近只有一个小的传感器。
这对使用者来说非常方便。
但是现在的电荷放大器电路都比较复杂,机器价格都比较高,性价比不是很理想,这些因素都严重影响了压电加速度传感器的广泛使用,所以研制一种性价比较高的、实用的电荷放大器就非常的有必要。
本文针对上述情况,对传感器的测量电路做了深入的研究工作,分析了各种测量电路的特点,提出采用一种集成芯片来取代大量分离元件实现电荷转换电路的设想,通过实验验证本设计的可行性和可靠性,对存在的干扰信号做了细致的理论分析,并采取相关办法进行解决,最后和标准电荷放大器的性能进行对比。
实验结果表明本设计是可行的。
关键词:压电加速度传感器测量电路电荷放大器 TLO8AbstractModern industrial and automation of the production process, non-electric physical measurement and control technology will involve a large number of Dynamic test. The so-called dynamic testing means to determine the amount of the instantaneous value and its value varies with time is measured for the continuous measurement of the process variable. It is characterized by dynamic signal, the test system Dynamic characteristics. Dynamic test accurate measurement of vibration and shock is particularly important. Vibration and Chong Chance measured core is a sensor for shock and vibration signal acquisition, the most common is to use a piezoelectric accelerometer Sensors. The world as a value transfer standards high and medium frequency reference standard acceleration sensor Piezoelectric acceleration sensor. Thus, the excellent quality of the piezoelectric acceleration sensor accuracy, long Time stability is something unique to offer. The piezoelectric acceleration sensor can be regarded as a generating High internal resistance of the charge generating components. However, this very small amount of electric charge, and not use the measuring circuit to be measured, Usually the input impedance of the measuring circuit are always smaller, when the charge on the piezoelectric sheet by the measurement circuit Is input resistor leak rapidly introduce measurement errors affecting the measurement results. If the piezoelectric acceleration sensor is not The ancillary measurement circuit used in conjunction with a wide range of applications of piezoelectric accelerometer would be Very large limitations. Therefore, the the accompanying measurement circuit and its hardware implementation is very important.Currently, the most commonly used piezoelectric acceleration sensor measuring circuit is a charge amplifier can be obtained input power Charge proportional to the voltage output. One of its features is to makethe sensitivity of the sensor and cable regardless of the length of the electrical The cable can be up to several kilometers, while in the vicinity of the object to be measured, only a small sensor. This user is very Convenient. But now the charge amplifier circuit is more complex, higher than the price of the machine, the price is not very satisfactory, these factors have a serious impact on the widespread use of the piezoelectric acceleration sensor, and so develop a higher bid, practical charge amplifier is very necessary. For the above, the sensor The measuring circuit to do a thorough research work, the analysis of the characteristics of the various measurement circuit is proposed to adopt a set Into the chip to replace a large number of separate components to achieve the charge conversion circuit is envisaged that the present design can be verified by experiment Feasibility and reliability, a detailed theoretical analysis of the existence of the interference signal, and take approach solutionSummary, the final performance of the amplifier and the standard charge of contrast. The experimental results indicate that the present design is feasible.Key words:Piezoelectric acceleration sensor measuring circuit charge amplifier TLO8图表清单图1-1 测试系统的组成------------------------- 图1-2 压电加速度传感器动态测量系统----------- 图2-1 电桥电路-------------------------------- 图2-2 四个桥臂同时工作的直流电桥------------- 图2-3 两个相邻臂工作的电桥---------------图2-4 两个相对臂工作的电桥------------------ 图2-5 变压器式电桥电路图2-6 紧祸合电感臂电桥图2-7 紧祸合电感臂四端网络和T型网路图2-8 紧祸合电感臂等效电路图2-9 电容式传感器的等效电路图2-10 双T二极管交流电桥图2-11 双T二极管电桥等效电路图2-12 运算放大器式电路图2-13 调频一鉴频电路原理图图3-1 晶体的压电效应图3-2 压电加速度传感器原理图图3-3 作用于压电元件两边的力图3-4 压电加速度传感器的等效电路图3-5 压电加速度传感器测试系统等效电路图3-6 压电加速度传感器简化电路图3-7 简化后的压电加速度传感器电压等效电路图3-8 电荷放大器示意图图4-1 传感器与电荷放大器连接的等效电路图图4-2 电荷放大器电压源实际等效测量电路图4-3 电荷放大器等效电路图图4-4 输入电缆影响的等效电路图4-5 电荷放大器框图图4-6 电荷转换部分电路图4-7 干扰源等效电路图图4-8 适调放大电路原理图4-9 电荷转换电路及适调放大电路图4-10 有源滤波电路原理图图4-11 无源滤波器原理图图4-12 有源滤波器电流回路图图4-13 高通滤波和同相放大电路原理图图4-14 过载指示电路原理图图4-15 过载电路输出特性图4-16 稳压电源电路图4-17 本电荷放大器的主要电路图4-18 ICL7135和ICM7212的接口电路图图5-1 实验装置框图图5-2 实验波形和标准电荷放大器输出波形图5-3 有工频干扰下的信号频谱图5-4 标准电荷放大器TS5865的信号频谱图5-5 屏蔽工频干扰后的信号频谱图5-6 未加低通滤波时本设计的信号频谱图5-7 标准电荷放大器低通上限截止频率为lOK Hz时的信号频谱图5-8 加了1K Hz有源低通滤波器后本设计的信号频谱图5-9 标准电荷放大器低通上限截止频率为1KHz时的信号频谱图5-10 都有1KHz低通滤波的两路信号波形图5-11 标准电荷放大器的直流分量分析图5-12 本设计未加高通滤波器时信号图5-13 本设计加高通滤波器后的信号表1 在不同加速度下本设计和TS5865的电压值比较表2 在不同频率下本设计和标准电荷放大器的灵敏度比值1 前言1. 1 压电加速度传感器在动态测试中的意义随着现代科学技术的迅猛发展,非电物理量的测量与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。
压电型加速度传感器的频率特性
压电加速度传感器的频率特性1、固有共振频率压电型加速度传感器基本上由质量块m、弹性常数k的压电体、空气阻抗等的阻尼器D 以及基座构成的。
图1压电型加速度传感器的弹性质量系现在我们假设没有阻尼器D和外力的情况,如图1(a)此时的共振频率为:m b:基座的质量上式中f n 是弹性质量系(质量块m)的共振频率,用以下公式表示。
图1(b)中,当基座固定在质量无限大的物体上时,mb远大于m,f0约等于fn。
我们将fn 称为不衰减固有共振频率。
接下来我们假设有衰减的情况,实际上自由振动不可能一直进行,一定会受到某些衰减并随时间变弱。
衰减状态由衰减比h的大小决定,分为3种状态。
另外衰减比h 是衰减系数 D比上临界衰减系数Dc,即D/Dc 得出。
图2 衰减自由振动h<1 时,后续振幅比如下式所示。
由此我们可以得知,包络线会随时间以指数函数减少。
此时将fd 作为共振频率的话,可用以下公式表示。
fd 就称作衰减固有共振频率。
h≥1 时,则fd=0。
变为失去振动性的无周期运动。
从振动测量精度上来看,自由衰减振动需要尽可能快得使其衰减,但衰减比h并不是越大越好。
这一点可从图上记公式中得知。
衰减比h 的大小也受到谐振锐度即Qm 值的影响。
h 越小Qm 就越大,形成尖锐的共振。
其关系由下记公式来表示。
在设计压电型加速度传感器时,会尽可能使h 值小,Qm 值大,形成尖锐共振后,扩大平坦的频率范围。
2、 电荷增幅中的低频截止频率上述已经提到,电荷放大器中传感器产生的电荷全部储存在反馈电容 Cf 中。
因此低频特性与输入电路中的时间常数(电缆电容 Cc 、传感器电容 Cd 等)没有关系, 而是由反馈电路的时间常数 Cf ・Rf 决定。
即低频截止频率 fc 为:由于一般情况下Rf 会选定10MΩ 以上的高阻抗值,比 Cf 的电感器大很多,因此实际上 fc 的值主要由 Cf 的值来决定。
Cf 值越大 fc 就越小,适合低频的振动测量。
传感器 简答题
1.简述压电式加速度传感器和压电式力传感器在基本结构上的不同点。
答:压电式加速度传感器有一惯性质量块,并通过弹簧压在压电元件上,感受了被测振动的质量块产生的惯性力,使得压电元件受力变形。
压电式力传感器,被测力通过传力元件实现测量,不需要惯性质量块。
2.涡流式位移传感器的涡流大小与哪些参数有关?答:(1)线圈激励电源的频率与幅值。
(2)线圈的几何参数,如匝数、半径等。
(3)金属导体的电阻率、磁导率、厚度等。
(4)线圈与金属导体的距离。
3.图示为电感式压力传感器原理图,图中p为被测压力试说明其工作原理。
答:(1)压力p作用时,膜片变形产生位移,且位移与压力成正比。
(2)膜片与铁芯的距离变化,导致线圈的电感发生变化,电感变化量与输入压力成正比。
4.简述金属热电阻的测温机理。
答:金属导体通过自由电子导电,而导电的实质是电子的定向运动过程。
当温度升高时,金属导体中的自由电子获得了更多的能量,因此使自由电子进行定向运动所需要的电能将增大,导电率减弱,电阻率增大。
反之当温度降低时,导电率增强,电阻率减小。
5.人工视觉系统图像输出装置大致分为哪两类?(1)一类是软拷贝。
(2)另一类是硬拷贝。
6.试回答与干扰有关的下列问题(1)什么是噪声?(2)形成干扰的条件是什么?答:(1)噪声定义为:在一有用频带内任何不希望的干扰或任何不希望的信号。
(2)形成干扰的三个条件为:干扰源、干扰的耦合通道、干扰的接收通道。
7.用框图表示传感器的组成原理,并简要说明各部分的作用。
答:框图如下所示:敏感元件感受被测物理量,且以确定关系输出另一个物理量;转换元件是将敏感元件输出的非电量转换为电路参数及电流或电压信号;基本转换电路将电信号转换为便于传输、处理的电量。
8.在光栅式位移传感器中,光路系统选择的依据是什么?有哪几种光路系统?答:光路系统应根据传感器中所采用的光栅的形式来选择。
光路系统有透射式光路和反射式光路。
9.说明人工视觉系统中图像处理部分的作用。
EN060压电式加速度传感器使用说明书
力变形时,其极化面会产生与应力相应的电荷。 则有: Q= d F
其中 Q 为电荷量,d 为压电晶体的压电常数,F 为作用力 我们一般在晶体上加一惯性质量,则根据牛顿第二定律
F=ma 其中 m 为质量,a 为加速度 将此公式带入上式,在晶体的两端即可得到与加速度成正比的电荷 量,这就实现了加速度的测量。 为提高环境性能,国际上大都使用先进的剪切敏感原理,该产品也 使用了剪切原理。 压电敏感件在承受外力时就产生电荷,当压电元件电极表面聚集电荷 时,它又相当于一个以压电材料为电介质的电容器 C1——敏感件电容 C2——放大器反馈电容 R——放大器反馈电阻 A——运放的开环增益 为防止传感器在实际现场测量时地回路干扰,我们在其内部对敏感 件及电路进行了隔离悬浮处理,这样,传感器的外壳仅是一个屏蔽外壳 直接接地回路,从结构设计上保证减少地回路影响。 由于二线制负恒电流电压源供电,其输出是一带负直流偏置的交流 动态信号,其直流偏置电压为-10 ~ -12VDC,这样在不感受振动加速度 时传感器亦应有-10 ~ -12VDC 的直流电压(零点输出),以此为参考点,其 交流输出幅度为±5Vp,频响低端实测可至 0.3Hz,对应灵敏度 500mv/g。
2、 电缆 (一头 5/8-24 两芯屏蔽线 L=3 米,密封整体线、线质、
长度另外特定,可定制铠装接线)。
3、 安装钢螺栓 1/4-28×10 1 只
4、 产品出厂检验合格证
1份
5、 使用说明书
1份
9
10
检查 安装 紧固 接线 模拟、敲击、观察 使用 9、该加速度传感器为计测产品,年灵敏度变化<1%,在需精确测量时, 应一年检定一次,可选择计量部门或生产厂用比较法进行检定。 10、用户不得自行随意拆卸、更换产品的电气元件。 11,接线示意图
压电式加速度传感器检定规程
压电式加速度传感器检定规程如下:
外观检查:检查传感器的外观是否完好,无破损、裂纹等缺陷。
灵敏度检定:通过施加一定的加速度,测量传感器的输出电压,计算其灵敏度,判断是否符合要求。
频率响应检定:在不同频率下施加加速度,测量传感器的输出电压,绘制频率响应曲线,判断其是否符合要求。
横向灵敏度检定:在传感器敏感轴以外的方向上施加加速度,测量传感器的输出电压,判断其横向灵敏度是否符合要求。
温度影响检定:在不同温度下施加加速度,测量传感器的输出电压,判断其温度影响是否符合要求。
以上是压电式加速度传感器的基本检定规程,具体检定步骤和方法可能因不同的传感器型号和应用场景而有所不同。
压电式加速度传感器工作原理
压电式加速度传感器工作原理
压电式加速度传感器是一种常见的传感器类型,用于测量物体的加速度或振动。
其工作原理基于压电效应,以下是其基本原理:
1. 压电效应:压电效应是指某些晶体材料在受到力或压力作用时,会产生电荷分离或极化现象。
这些晶体材料被称为压电材料,如石英、陶瓷等。
2. 传感器结构:压电式加速度传感器通常由一个压电材料构成,该材料具有压电效应。
在传感器的结构中,压电材料通常位于一个或多个质量块上。
3. 加速度作用:当传感器受到加速度作用时,质量块会受到惯性力的作用,导致压电材料被压缩或拉伸。
4. 电荷分离:由于压电效应,压电材料的分子结构会发生变化,正负电荷分离。
当压缩或拉伸作用结束时,电荷分离的状态将保持稳定。
5. 测量电荷:传感器上安装有电极,用于测量产生的电荷。
当压电
材料产生电荷分离时,电极将收集这些电荷并将其转化为电信号。
6. 信号处理:传感器输出的电信号可以通过电路进行放大、滤波和转换,转化为与加速度相关的电压或数字信号。
通过测量电荷变化,压电式加速度传感器能够检测并量化物体的加速度或振动状态。
这些传感器在许多应用领域中得到广泛使用,例如工业领域的振动监测、汽车领域的车辆悬挂和碰撞检测、航空航天领域的结构健康监测等。
加速度传感器
•输出偏压: 8-12VDC
•恒定电流: 2-20mA, 典型值:4mA
•输出阻抗: <150Ω
•激励电压: 18-30VDC 典型值:24VDC
•温度范围: - 40~+120℃
•放电时间常数:≥0.2秒
•壳绝缘电阻: > Ω
•安装力矩: 约20-30Kgf.cm(M5螺纹)
•几何尺寸: 六方17mm、高度24.5或31mm
电 荷 灵 敏 度 p C / g
率 范 围 ( ± 1 0 % ) H z
安 装 谐 振 点 k H z
横 向 灵 敏 度
%
值 线 性 ( ± 1 0 % )
g
质 量 g m
使 用 温 度 范 围 ℃
安
装内
螺 部 用频
纹 m m
型 号
结 构电 荷 灵 敏 度 p C / g
途率 范 围 ( ± 1 0 % ) H
加速度传感器
完整版
综述
加速度传感器在工业生产、科研、航空航天 等领域中有着重要的应用。其中按照被测量 可以被分为角加速度传感器和 线加速度传感 器。根据敏感元件分有应变式 加速度传感器、 压阻式加速度传感器及压电式加速度传感器。 而随着科学技术的发展,智能化加速度传感 器也已经走进了我们的视野。
一 压电式加速度传感器
频率响应特性
►低频响应特性:下限频率一般为-10%左右频 响。主要由压电芯片和传感器的基座应变和 热释电效应等环境特性决定。应变加速度传 感器具有响应静态信号的特性。
►高频响应特性:上限频率一般为10%左右频 响。大约为安装谐振频率的1/3。如果要求上 限频率误差为+5%,大约为安装频率的1/5。 如果采用适当的校正系数,在更高的频率范 围也能够得到可靠的测试数据。
加速度传感器及压电式传感器应用
加速度传感器及压电式传感器应用摘要:加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。
通过加速度的测量,本文简单介绍了加速度传感器的种类、原理及相关应用并着重介绍了压电式加速度传感器。
关键词:加速度,传感器,应用一加速度传感器概况加速度检测是基于测试仪器检测质量敏感加速度产生惯性力的测量,是一种全自主的惯性测量,加速度检测广泛应用于航天、航空和航海的惯性导航系统及运载武器的制导系统中,在振动试验、地震监测、爆破工程、地基测量、地矿勘测等领域也有广泛的应用。
测量加速度,目前主要是通过加速度传感器(俗称加速度计),并配以适当的检测电路进行的,在(1~64)Hz的设备频率下典型的加速度测量范围为(0.1~10)g。
加速度传感器的种类繁多,依据对加速度计内检测质量所产生的惯性力的检测方式来分,加速度计可分为压电式、压阻式、应变式、电容式、振梁式、磁电感应式、隧道电流式、热电式等;按检测质量的支承方式来分,则可分为悬臂梁式、摆式、折叠梁式、简支承梁式等。
多数加速度传感器是根据压电效应的原理来工作的,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,压电材料产生的变形和由此产生的电荷与加速度成正比,输出电量经放大后就可检测出加速度大小。
下表为部分加速度计的检测方法及其主要性能特点。
(~(~(~(~(~~((~部分加速度计的检测方法及其主要性能特点从测量维数上来看,单维的加速度传感器技术比较成熟,绝大多数加速度传感器为一维型(单轴),而微惯性系统以及其他~些应用场合常常需要双轴或者三轴的加速度传感器来检测加速度矢量,目前市场上有越来越多的产品应用了双轴以及三轴加速度传感器。
如美国美新半导体有限公司(MEMSIC)开发出了用于车身控制的双轴加速度传感器,该产品的特点是没有机械可动部分,而且产品供货后的故障发生率一直控制在一位数多的ppm值。
加速度传感器的原理
加速度传感器的原理1. 引言加速度传感器是一种用于测量物体线性或非线性加速度的装置。
它在很多领域中广泛应用,例如汽车安全、智能手机和游戏控制器。
本文将深入探讨加速度传感器的原理及其应用。
2. 加速度传感器的原理加速度传感器的原理基于惯性定律,即质量上物体的速度或方向发生变化时,它会受到一个力,并产生一个加速度。
加速度传感器利用这个原理来测量物体的加速度。
下面介绍两种常见的加速度传感器原理:2.1 压电式加速度传感器压电式加速度传感器是一种基于压电效应的传感器。
它由一个压电器件和一个测量电路组成。
当物体受到加速度时,压电器件会产生压电荷,并将其转换为电信号。
测量电路可以将电信号转换为关于加速度的数值。
2.2 电容式加速度传感器电容式加速度传感器是一种基于电容变化的传感器。
它由两个固定的电容板和一个可移动的质量块组成。
当物体受到加速度时,质量块会发生位移,导致电容值发生变化。
通过测量电容值的变化,可以得到物体的加速度。
3. 加速度传感器的应用加速度传感器在许多领域中都有广泛的应用。
以下是几个常见的应用领域:3.1 汽车安全系统加速度传感器在汽车安全系统中起到关键作用。
它可以检测到汽车的碰撞或突然的加速/减速,从而触发安全气囊的部署。
此外,加速度传感器还可以用于检测车辆的倾斜和翻滚,以提供更准确的稳定性控制。
3.2 移动设备加速度传感器在智能手机和平板电脑等移动设备中广泛使用。
它可以检测设备的方向和运动,从而实现自动旋转屏幕和游戏控制等功能。
例如,通过检测手机的倾斜角度,可以控制游戏中角色的移动。
3.3 结构健康监测在工程领域中,加速度传感器可以用于监测建筑物、桥梁和机械设备的结构健康状况。
通过检测物体的振动和动态加速度,可以及时发现潜在的结构问题,从而采取相应的维护和修复措施。
3.4 运动追踪加速度传感器在运动追踪领域也有广泛应用。
例如,它可以用于记录运动员的加速度、速度和步频等参数,从而进行运动分析和训练优化。
压电式加速度传感器及其应用
微型化与集成化发展趋势
微型化设计
随着微电子技术和微纳加工技术的不断进步,压电式加速 度传感器的体积不断缩小,实现了更高的集成度。
集成化技术
将传感器与信号调理电路、微处理器等集成于一体,形成 具有自检测、自校准、自诊断等功能的智能传感器模块。
MEMS技术
基于MEMS(微机电系统)技术的压电式加速度传感器具 有体积小、重量轻、功耗低等优点,广泛应用于消费电子 和汽车电子等领域。
04 压电式加速度传感器性能 指标评价方法
灵敏度与分辨率评价
灵敏度
压电式加速度传感器的灵敏度反映了其输出信号与被测加速度之间的比例关系。 高灵敏度意味着传感器能够检测到更微小的加速度变化,提高测量精度。
分辨率
分辨率是指传感器能够区分的最小加速度变化量。高分辨率的传感器能够提供更 详细的加速度信息,有助于更准确地分析和诊断振动问题。
多功能化与复合测量
可靠性与耐久性提升
开发具有多功能特性的压电式加速度传感 器,实现复合物理量的同时测量,如温度 、压力等,提高传感器的综合性能。
针对恶劣环境和特殊应用需求,加强压电 式加速度传感器的可靠性和耐久性研究, 确保长期稳定运行。
THANKS FOR WATCHING
感谢您的观看
06 总结与展望
压电式加速度传感器研究总结
01
压电效应与传感器设计
压电材料在受到外力作用时会产生电荷,利用这一特性可设计出高灵敏
度的加速度传感器。通过优化压电材料选择和结构设计,可提高传感器
的性能。
02
信号处理与数据分析
压电式加速度传感器输出的信号需要经过放大、滤波等处理,以提取有
用的加速度信息。借助现代信号处理技术,可实现高精度、高稳定性的
压电式加速度传感器
压电式加速度传感器振动传感器加速度非接触型速度位移压电式(几Hz –几10kHz )电动式(DC –300Hz )应变式(DC –几kHz )半导体式(DC –1kHz )电动式(几Hz –几kHz )应变式(DC –几10Hz )耐压:6kg/cm2(0.59MPa)外形尺寸(mm)9HEXx10.5Hφ10.0x5.5Hφ6.5x4.2Hφ3.6x3.3Hφ3.5x2.5H尺寸(mm)(不含接头)2.7g2.3g0.8g0.2g0.2g重量(大约)钛钛钛钛钛外壳材料微小型接头(M3 螺纹)微小型接头(M3 螺纹)微小型接头(M3 螺纹)小型接头(10-32 UNF螺纹)小型接头(10-32 UNF螺纹)接头选件选件选件3m3m电缆外壳接地外壳接地外壳接地外壳接地外壳接地接地200,000100,000100,00050,000100,000抗冲击能力(峰值)(m/s2 )±100,000±10,000±10,000±10,000±100,000使用峰值(m/s2 )60kHz35kHz40kHz60kHz60kHz共振频率(大约)fc~30,000Hzfc~15,000Hzfc~18,000Hzfc~20,000Hzfc~20,000Hz频率响应(+/-3dB)-20 ~ 80℃-50 ~ 160℃-50 ~ 160℃-50 ~ 160℃-50 ~ 160℃使用温度1,000±20%700±20%640±20%580±20%580±20%电容(pF)5%5%5%5%5%横向灵敏度(最大值)0.3±20%0.35±20%0.17±20%0.0459±15%0.035±20%灵敏度(pC/m/s2)601613612611W611608T:上部接头外形尺寸(mm)8Wx5.5Hx7D17Wx7Hx9D14HEXx32H14HEXx25H14HEXx30H(608)14HEXx25H(608T)尺寸(mm )(不含接头)1.2g 3.2g 43g 23g 29g (608)25g (608T)重量(大约)钛钛不锈钢SUS303不锈钢SUS303不锈钢SUS303外壳材料小型接头(10-32 UNF 螺纹)微小型接头(M3 螺纹)小型接头(10-32 UNF 螺纹)小型接头(10-32 UNF 螺纹)小型接头(10-32 UNF 螺纹)接头3m 选件选件选件选件电缆容器接地容器接地容器接地容器接地容器接地接地50,00020,00020,00010,00032,000抗冲击能力(峰值)(m/s 2 )±25,000±10,000±10,000±5,000±16,000使用峰值(m/s 2 )60kHz 40kHz 20kHz 25kHz 30kHz 共振频率(大约)fc ~20,000Hz fc ~20,000Hz fc ~8,000Hz fc ~11,000Hz fc ~12,000Hz 频率响应(+/-3dB )-50 ~ 160℃-20 ~ 160℃-20 ~ 140℃-20 ~ 120℃-20 ~ 140℃使用温度560±20%700±20%1,000±20%1,000±20%1,000±20%电容(pF )5%5%5%5%5%横向灵敏度(最大值)0.04±20%0.16±20%10±10%5±20%5±10%灵敏度(pC/m/s 2)611ZS 612ZS 607608LF 608/608T三轴三轴1k Ω1kΩ300Ω300Ω100Ω或小于输出抗阻(大约)外形尺寸(mm )14.2Wx14.2Hx14.2D14.2Wx14.2Hx14.2D17HEXx34H14HEXx28Hφ7.9x11.9H尺寸(mm )(不含接头)11.1g 11.1g 46g 21g 2g 重量(大约)钛钛不锈钢SUS303不锈钢SUS303钛外壳材料DR-4S-4DR-4S-4小型接头(10-32 UNF 螺纹)小型接头(10-32 UNF 螺纹)小型接头(10-32 UNF 螺纹)接头选件选件选件选件φ1.0低噪声电缆60cm 电缆外壳接地外壳接地外壳接地外壳接地外壳接地接地30,00030,00010,00010,000100,000抗冲击能力(峰值)(m/s 2 )±4,000±400±150±1,500±3,600使用峰值(m/s 2 )35kHz 35kHz 30kHz 40kHz 60kHz 共振频率(大约) 1 ~8,000Hz 1 ~8,000Hz 3 ~14,000Hz 3 ~23,000Hz 2 ~20,000Hz 频率响应(+/-3dB )-50 ~ 110℃-50 ~ 110℃-40 ~ 110℃-40 ~ 110℃-50 ~ 105℃使用温度40μVrms 40μVrms 20μVrms 20μVrms 20μVrms 本底噪声(最大值)5%5%5%5%5%横向灵敏度(最大值)1±10%10±10%10±15%1.0±15%1.0±10%灵敏度(pC/m/s 2)7240Z/7240ZT 724Z/724ZT 707708702FB/ST三轴724ZT: TEDS 功能FB: 平底型ST: 螺栓型三轴7240ZT: TEDS 功能fc~20,0000.0425,000611ZSfc~20,0000.1610,000切变612ZS小型,三轴fc~8,0001010,000压缩607高灵敏度fc~11,00055,000608LF低频率fc~12,000516,000608/608T通用型fc~30,0000.3100,000601小型fc~15,0000.3510,000613小型fc~18,0000.1710,000612小型fc~20,0000.045910,000611W防水型fc~20,0000.035100,000切变611小型频率响应(Hz)(+/-3dB)灵敏度(pC/m/s2)使用峰值+/-(m/s2)传感构造型号特性1 ~8,00013,6007240ZT三轴,TEDS1 ~8,00014,0007240Z三轴1 ~8,00010360724ZT三轴,TEDS21 ~24V1 ~8,00010400切变724Z三轴3 ~14,00010150707高灵敏度3 ~23,00011,500708通用型15 ~25V0.5 ~5mA2 ~20,00013,600压缩702FB/ST小型电压恒定电流频率响应(Hz)(+/-3dB)灵敏度(pC/m/s2)使用峰值+/-(m/s2)传感构造型号特性插头转换器(10-32UNF )-BNCCA-034延长电缆连接器(延长电缆用)CA-033小型插头(10-32UNF 螺纹)CN-032小型插座(10-32UNF 螺纹)CN-031外形说明型号A=φ24, B=14,C=M6(P=1)x4磁铁MG-707A=4, B=M6绝缘双头螺栓(260℃)IS-707HA=φ17, B=M6(P=1), C=21绝缘双头螺栓(120℃)IS-707A=φ11, B=M6(P=1), C=14绝缘双头螺栓(120℃)IS-708外形外形尺寸(mm )说明型号3.3m3.3m 3m 1.5m 订货指定长度3m 3m 1.5m 1.5m 订货指定长度订货指定长度长度两端小型接头CL-207两端小型接头CL-206一端小型接头,一端BNC 接头CL-206B 一端小型接头,一端BNC 接头CL-207B 601, 612, 613, 612ZS,611ZS 一端小型接头,一端微小型接头CL-600一端小型接头,一端微小型接头CL-601一端小型接头,一端微小型接头CL-602一端DP-4S-1(4针), 一端3个BNC 接头CL-714B724Z/7240Z 系列一端DP-4S-1(4针), 一端3个小型接头CL-714M 一端小型接头,一端BNC 接头CL-200B 608, 608T, 608LF, 708,707两端小型接头CL-200对应压电加速传感器型号连接器型号电荷输出电压输出LX-10/20SA-611600系列低噪声电缆同轴电缆电荷输出型加速度传感器电荷放大器数据记录仪电荷输出电压输出LX-10/20 600系列低噪声电缆同轴电缆电荷输出型加速度传感器转换器数据记录仪带AR-LXPAx型电压输出式加速度传感器用输入放大器CC-10电压输出LX-10/20700系列可使用同轴电缆传感器数据记录仪带AR-LXPAx型约440g (不含干电池)重量约48W x 110H x 110D (mm) (不包含突起部)外形尺寸干电池(LR6碱性干电池4个),电荷输入时供电时间约40小时外部电源5V~15V DC, 消费电流约45mA (6V DC, 电荷输入,CAL OFF 时)100V AC (使用选件AC-DC )电源温度:0~+40℃湿度:20~80%RH (非结露)使用环境矩形波200Hz ±20Hz, 2Vp-p ±5% (范围“H”, “M”) 矩形波200Hz ±20Hz, 20Vp-p ±5% (范围“L”) 校准信号输入换算0.02pC (mV)rms 以下,输入容量1000pF,灵敏度设定1pC/m/ s 2 (mV/m/s 2),输出范围定1m/ s 2/ FS, LPF Pass 噪声LPF (-3dB): 1kHz, 10kHz-12dB/oct HPF (-3dB): 5Hz -6dB/oct 滤波器0.2Hz ~30kHz, +0.5dB/-3dB (范围“H”, “M”) 0.2Hz ~10kHz, +0.5dB/-3dB (范围“L”)频率特性±1.5%以内(条件200Hz,输出负荷10kΩ以上)灵敏度精度±10V/10mA负荷阻抗2kΩ以上最大输出±1V 输出阻抗1Ω以下输出额定值BNC输出接头0.03 ~ 999pC/m/s 2 (mV/m/s 2)灵敏度设定范围1,10,100倍3段切换灵敏度切换3位数字开关灵敏度设定0.5mA, 4mA (±20%),电压24VDC 恒定电流电荷:10000pC电压:±10V最大输入值电荷,电压输入开关切换式输入切换压电式加速度传感器(电荷输出型及电压输出型)连接传感器BNC (电荷输入,电压输入兼用)输入接头。
压电式加速度传感器解读
华东交通大学理工学院论文题目:压电式加速度传感器课程:传感器原理及其应用姓名;吕进专业:通信工程班级: 12 通信2班学号:20120210420243压电式加速度传感器前言目前,国内研制的高冲击压电加速度传感器的性能受材料、结构、工艺和安装等因素的影响,量程和上限频率难以得到提高,从而导致在高冲击下测量的线性度较差。
现在国内研制的压电传感器样机可测量的最大冲击加速度为 1 OO,OOOg,安装谐振频率约为9.5kHz,线性度为10%,还不能完全满足工程使用的要求。
因此,为了满足高速碰撞测试和常规触发引信用压电加速度传感器的要求,本文研究提高压电加速度传感器的量程和频响的设计技术,这项技术可应用在钻地武器试验和深层钻地弹引信中。
在核武器飞行试验中,均要进行触地测试,了解核弹头碰地的状况,测量其触地加速度,为其触发引信的设计和验证提供依据。
在常规钻地弹、侵彻弹等武器研究中,均需要大量程高频响的加速度传感器进行测量。
目前国内的传感器难以满足要求,现采用国外的传感器(如7270A),但价格昂贵且对华禁运。
综上所述,本文研究提高压电传感器的量程和频响的设计技术,为改进压电加速度传感器的性能奠定基础,为高速触地用测试传感器和深侵彻引信传感器的研究提供技术参考。
目录前言 (1)摘要 (3)关键词 (3)国内外现状 (3)压电式加速度传感器原理 (4)灵敏度 (8)误差形成因素分析 (9)提高传感器频响的措施 (9)实际应用 (11)总结 (12)参考文献 (12)摘要二十一世纪的高效发展中,信息时代已然来临,掌握信息的重要性日益重要,在人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。
5-4 压电式传感器的应用
当膜片 5 受到压力 P 作用后,则在压电晶片上产生电荷。在一个压电片
上所产生的电荷 q 为
q=d11F=d11SP
式中 F——作用于压电片上的力;
(5-42)
d11——压电系数; P ——压强,P=F/S;
S ——膜片的有效面积。
测压传感器的输入量为压力 P,如果传感器只由一个压电晶片组成,则 根据灵敏度的定义有:
第五章习题
5.7 .分析压电式加速度计的频率响应特性。若测量电路的总电容 C= 1 000 pF,总电阻 R= 500 MΩ,传感器机械系统固有频率 f0=30 kHz,相对阻尼 系数ξ=0.5,求幅值误差小于 2 %时,其使用的频率范围 。
5.8.用石英晶体加速度计测量机器的振动,已知加速度计的灵敏度为 5 pC/g (g为重力加速度,g=9.8 m/s2),电荷放大器灵敏度为 50 mV/pC,当机 器达到最大加速度时,相应输出幅值电压为2V。试计算机器的振动加速 度。
1
0
1
0
2 2
2
0
2
(5-35) (5-36)
§5-4 压电式传感器的应用
相频特性
arctan
2
0
压电式加速度传感器(最新整理)
压电式加速度传感器摘要:本文介绍了压电式加速度传感器的结构和工作原理,推导了传感器的数学模型,并分析了测量电路,压电传感器的产生零漂现象的各种原因,并针对这些原因提出相应的解决措施。
关键词:压电式;加速度传感器;零漂1 引言现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。
所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。
它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。
振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。
压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。
压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、体育、制造业、军事、航空航天等领域都得到了非常广泛的应用。
加速度传感器作为测量物体运动状态的一种重要的传感器,加速度传感器主要分为压阻式、电容式、应变式、压电式、振弦式、挠性摆式、液浮摆式等类型。
压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。
2工作原理压电式加速度传感器又称为压电加速度计,它也属于惯性式传感器。
它是典型的有源传感器。
利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。
压电加速度传感器的原理框图如图1所示,原理如图2所示。
图1 加速度传感器的组成框图支座图2 压电加速度传感器原理图实际测量时,将图中的支座与待测物刚性地固定在一起。
当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电式加速度传感器
(1)压电式加速度计的结构和安装
压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些 物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也 随之变化。
当被测振动频率远低于加速度计的固有频率时, 则力的变化与被测加 速度成正比。
由于压电式传感器的输出电信号是微弱的电荷, 而且传感器本身有很大内阻,故 输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到
高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路 将信号输给指示 仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与 前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
常用的压电式加速度计的结 构形式如图13.18所示。
S 是弹簧,M 是质块,B 是基座,
P 是压电元件,R 是夹持环。
图13.18a 是中央安 装压缩 型,压电元件一质量块一弹 簧系统装在圆形中心支柱振频率。
然而基座 B 与测试对 象连接时,如果基座B 有变形则将 直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电元件,
并使预
紧力发生变化,易引起温度漂移。
图13.18c 为三角剪切形,压电元件由夹持环 将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,
有较高的共振频率和良好的
线性。
图13.18b 为环形剪切型,结构简单,能做成极小型、高共振频率的加速 度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度 增高而变 软,因此最高工作温度受到限制。
图13.18压电式加速度计
(a)中心安装压缩型(b)环形剪切型(c)三角剪切型
保证幅值误差低于1dB (即卩12% ;若取为共振频率的1/5,则可保证幅值误差 小于
0.5dB (即6%,相移小于3°。
但共振频率与加速度计的固定状况有关,加 速度计出
厂时给出的幅频曲线是在刚性连接的固定情况下得到的。
实际使用的固
定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。
加
速度计与试件的各种固定方法见图13.20。
其中图13.20a 采用钢螺栓 固定,是使共振频率能达到 出厂共振频率的最好方法。
螺栓不得全部拧入基座螺 孔,以免引起基座变形, 影响加速度计的输出。
在安 装面上涂一层硅脂可增加 不平整安装表面的连接可 靠性。
需要绝缘时可用绝缘螺栓和云母垫片来
固定加速度计(图13.20b ),但
垫圈应尽量簿。
用一层簿蜡把加速度计粘在试件平整表面上(图
13.20c ),也
可用于低温(40C 以下)的场合。
手持探针测振方法(图 13.20d )在多点测试 时使用特别方便,但测量误差较大,重复性差,使用上限频率一般不高于1000Hz 。
用专用永久磁铁固定加速度计(图13.20e ),使用方便,多在低频测量中使用。
此法也可使加速度计与试件绝缘。
用硬性粘接螺栓(图
13.20f )或粘接剂(图
加速度计,上限频率若取
图13.19压电式加速度计的幅频特性曲线
为共振频率的1/3,便可
加速度计的使用上限频 率取决于幅频曲线中的 般小阻尼(z<=0.1)的 0.0
10 100 1000 1000 10000
共振频率图(图
13.20图13.20加速度计的固定方法
13.20g )的固定方法也长使用。
某种典型的加速度计采用上述各种固定方法的共振频率分别约为:钢螺栓固定法31kHz,云母垫片28kHz,涂簿蜡层29kHz,手持法2kHz,永久磁铁固定法7kHz。
(2)压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。
前者是加速度计输出电压(mV与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。
加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。
这是一种已为大家所接受的表示方式,几乎所有测振仪
器都用g 作为加速度单位并在仪器的板面上和说明书中标出。
对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。
一般来说,加速度计尺寸越大,其固有频率越低。
因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。
压电晶体加速度计的横向灵敏度表示它对横向(垂直于加速度计轴线)振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。
一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3%。
因此,压电式加速度计在测试时具有明显的方向性。
(3)压电加速度计的前置放大器压电元件受力后产生的电荷量极其微弱,这电
荷使压电元件边界和接在边界上的导体充电到电压U=q/Ca (这里Ca是加速度
计的内电容)。
要测定这样微弱的电荷(或电压)的关键是防止导线、测量电路和加速度计本身的电荷泄漏。
换句话讲,压电加速度计所用的前置放大器应具有极高的输入阻抗,把泄漏减少到测量准确度所要求的限度以内。
压电式传感器的前置放大器有:电压放大器和电荷放大器。
所用电压放大器就是高输入阻抗的比例放大器。
其电路比较简单,但输出受连接电缆对地电容的影响,适用于一般振动测量。
电荷放大器以电容作负反馈,使用中基本不受电缆电容的影响。
在电荷放大器中,通常用高质量的元、器件,输入阻抗高,但价格
也比较贵。
从压电式传感器的力学模型看,它具有“低通”特性,原可测量极低频的振动。
但实际上由于低频尤其小振幅振动时,加速度值小,传感器的灵敏度有限,因此输出的信号将很微弱,信噪比很低;另外电荷的泄漏,积分电路的漂移(用于测振动速度和位移)、器件的噪声都是不可避免的,所以实际低频端也出现“截止频率”,约为0.1〜1Hz左右。
随着电子技术的发展,目前大部分压电式加速度计在壳体内都集成放大器,由它
来完成阻抗变换的功能。
这类内装集成放大器的加速度计可使用长电缆而无衰
减,并可直接与大多数通用的仪表、计算机等连接。
一般采用2线制,即用2
根电缆给传感器供给2〜10mA勺恒流电源,而输出信号也由这2根电缆输出,大大方便了现
场的接线。
表13.1为某厂家生产的压电式加速度计的参数表。
(4)压电式速度传感器
由于上述磁电式速度传感器存在响应频率范围小,机械运动部件容易损坏,传感器质量大造成附加质量大等缺点,近年发展了压电式速度传感器,即在压电式加速度传感器的基础上,增加了积分电路,实现了速度输出。
同样,这种传感器也全部实现了内置,具有替换磁电式速度传感器的趋向。
㈡GPS。