高一数学培优专题一答案解析

合集下载

高中数学培优讲义练习(人教A版2019必修一)综合测试卷:必修一全册(提高篇) 含答案解析

高中数学培优讲义练习(人教A版2019必修一)综合测试卷:必修一全册(提高篇) 含答案解析

高中数学培优讲义练习(人教A 版2019必修一)综合测试卷:必修一全册(提高篇)一.选择题(共8小题,满分40分,每小题5分)1.(5分)已知全集U =R ,集合A ={x |x >1 },B ={x |−2≤x <2 },则如图中阴影部分表示的集合为()A .{x |x ≥−2 }B .{x |x <−2 }C .{x |1<x <2 }D .{x |x ≤1 }【解题思路】用集合表示出韦恩图中的阴影部分,再利用并集、补集运算求解作答。

【解答过程】由韦恩图知,图中阴影部分的集合表示为∁U (A ∪B)。

因集合A ={x |x >1 },B ={x |−2≤x <2 },则A ∪B ={x|x ≥−2},又全集U =R 。

所以∁U (A ∪B)={x|x <−2}。

故选:B 。

2.(5分)(2022·辽宁·高一期中)已知p:|1−2x |≤5,q:x 2−4x +4−9m 2≤0(m >0)若q 是p 的充分不必要条件,则实数m 的取值范围是() A .(0,13)B .(0,13]C .(13,43)D .[13,43]【解题思路】解不等式,求出俩命题的解,然后根据充分不必要条件,得出不等关系,从而求出实数m 的范围。

【解答过程】解:由题意在p:|1−2x |≤5中。

解得:−2≤x ≤3。

在q:x 2−4x +4−9m 2≤0(m >0)中。

解得:−3m +2≤x ≤3m +2。

∵q 是p 的充分不必要条件∴{−3m +2≥−23m +2≤3m >0 ,等号不同时成立。

∴0<m ≤13。

故选:B 。

3.(5分)(2022·山东·高一期中)已知x >0,y >0,且x +y +xy =3,若不等式x +y ≥m 2−m 恒成立,则实数m 的取值范围为() A .−2≤m ≤1 B .−1≤m ≤2 C .m ≤−2或m ≥1D .m ≤−1或m ≥2【解题思路】首先根据基本不等式得到(x +y )min =2,结合题意得到m 2−m ≤(x +y )min ,即m 2−m ≤2,再解不等式即可。

【解析版】数学高一上期末知识点(培优)(1)

【解析版】数学高一上期末知识点(培优)(1)

一、选择题1.(0分)[ID :12118]已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b <<B .b c a <<C .c a b <<D .c b a <<2.(0分)[ID :12109]已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( ) A .4B .3C .2D .13.(0分)[ID :12103]已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .a c b <<D .c a b <<4.(0分)[ID :12084]对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-15.(0分)[ID :12082]设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]6.(0分)[ID :12081]设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦7.(0分)[ID :12080]函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞8.(0分)[ID :12078]把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( )A .()3log 2,1B .[)3log 2,1 C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦9.(0分)[ID :12076]若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 10.(0分)[ID :12073]下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>11.(0分)[ID :12057]设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a取值范围是( ) A .()()1,00,1-⋃ B .()(),11,-∞-⋃+∞ C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃12.(0分)[ID :12053]函数ln x y x=的图象大致是( )A .B .C .D .13.(0分)[ID :12049]已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >14.(0分)[ID :12069]已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( )A .1sin x +B .1sin x -C .1sin x --D .1sin x -+15.(0分)[ID :12065]已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .1二、填空题16.(0分)[ID :12222]已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.17.(0分)[ID :12208]已知()y f x =是定义在R 上的奇函数,且当0x 时,11()42x xf x =-+,则此函数的值域为__________. 18.(0分)[ID :12202]已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______. 19.(0分)[ID :12200]已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.20.(0分)[ID :12197]函数22log (56)y x x =--单调递减区间是 .21.(0分)[ID :12195]已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑ni n i x x x x ,则1ni i x ==∑__________.22.(0分)[ID :12189]函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.23.(0分)[ID :12187]求值:2312100log lg = ________ 24.(0分)[ID :12179]已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________. 25.(0分)[ID :12129]已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 三、解答题26.(0分)[ID :12311]已知函数()f x 对任意实数x ,y 都满足()()()f xy f x f y =,且()11f -=-,()1279f =,当1x >时,()()0,1f x ∈. (1)判断函数()f x 的奇偶性;(2)判断函数()f x 在(),0-∞上的单调性,并给出证明;(3)若()1f a +≤,求实数a 的取值范围. 27.(0分)[ID :12297]某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。

【解析版】数学高一下期中经典测试卷(培优)(1)

【解析版】数学高一下期中经典测试卷(培优)(1)

一、选择题1.(0分)[ID :12407]下列命题正确的是( ) A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面2.(0分)[ID :12382]已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为,则球O 的半径为( ) A .3B .1C .2D .43.(0分)[ID :12372]已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个 B .有有限多个C .有无限多个D .不存在4.(0分)[ID :12355]已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-=5.(0分)[ID :12352]已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a =)A .1B .1-C .2-或1D .2或16.(0分)[ID :12342]从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A.B .5C D .47.(0分)[ID :12336]在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .23πB .43π C .53πD .2π8.(0分)[ID :12391]已知点()1,2-和,03⎛⎫⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( ) A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫⎪⎝⎭C .25,36ππ⎛⎫⎪⎝⎭D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9.(0分)[ID :12388]一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+410.(0分)[ID :12367]如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2a C .2aD .22a 11.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,312.(0分)[ID :12335]已知平面αβ⊥且l αβ=,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ).A .若//m α且//m β,则//m lB .若m α⊥且n β⊥,则m n ⊥C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥13.(0分)[ID :12385]一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .√33B .√17C .√41D .√4214.(0分)[ID :12368]α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( )A .m ,n 是平面α内两条直线,且//m β,//n βB .α内不共线的三点到β的距离相等C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α15.(0分)[ID :12361]如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4B .3C .2D .1二、填空题16.(0分)[ID :12488]经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.17.(0分)[ID :12479]光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.18.(0分)[ID :12475]如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线.其中正确的结论的序号为________.19.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .20.(0分)[ID :12519]已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.21.(0分)[ID :12509]已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的表面积为_______.22.(0分)[ID :12471]若圆1C :220x y ax by c 与圆2C :224x y +=关于直线21y x =-对称,则c =______.23.(0分)[ID :12464]如图,在△ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .24.(0分)[ID :12455]已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.25.(0分)[ID :12472]已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________.三、解答题26.(0分)[ID :12586]如图,在三棱锥A BCD -中,,E F 分别为棱,BC CD 上的中点.(1)求证:EF 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD . 27.(0分)[ID :12564]四棱锥P -ABCD 中,底面ABCD 是直角梯形,//AB CD ,90BCD ∠=︒,22AB AD DC ===.PAD △ 为正三角形,二面角P -AD -C 的大小为23π.(1)线段AD 的中点为M.求证:平面PMB ⊥平面ABCD ; (2)求直线BA 与平面P AD 所成角的正弦值.28.(0分)[ID :12561]在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AA AC AC AB BC =====,且点O 为AC 中点.(1)证明:1A O ⊥平面ABC ; (2)求三棱锥1C ABC -的体积.29.(0分)[ID :12547]已知直线1:20l ax y a +--=,22:0l x ay ++=,点(5,0)P - (1)当12//l l 时,求a 的值;(2)求直线1l 所过的定点Q ,并求当点P 到直线1l 的距离最大时直线1l 的方程. 30.(0分)[ID :12529]设直线l 的方程为()()1520a x y a a R ++--=∈. (1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y ,当AOB ∆而积最小时,求AOB ∆的周长;(3)当直线l 在两坐标轴上的截距均为整数时,求直线l 的方程.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.A4.B5.D6.A7.C8.D9.D10.D11.B12.D13.C14.D15.B二、填空题16.【解析】【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题17.4x-5y+1=0【解析】【分析】先求P点关于直线x+y+1=0对称点M再根据两点式求MQ方程即得结果【详解】因为P点关于直线x+y+1=0对称点为所以反射光线方程为【点睛】本题考查点关于直线对称问18.③④【解析】【分析】【详解】试题分析:因为四边不共面所以直线与是异面直线所以①错误的;同理直线与也是异面直线直线与是异面直线直线与是异面直线所以②是错误的;③是正确的④是正确的故填③④考点:空间中直19.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积20.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C(2a)当∠MFN最大时过点MNF的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<90 21.【解析】【分析】如图所示根据外接球的球心O恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O的半径为R球心O到平面的距离为d 由O是的中点得解得作平面ABC垂足为的外心22.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为23.【解析】中因为所以由余弦定理可得所以设则在中由余弦定理可得故在中由余弦定理可得所以过作直线的垂线垂足为设则即解得而的面积设与平面所成角为则点到平面的距离故四面体的体积设因为所以则(1)当时有故此时因24.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角25.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C 【解析】 【分析】根据确定一个平面的公理及推论即可选出. 【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C. 【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.2.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 234312343S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.3.A解析:A 【解析】 【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P . 【详解】在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个. 故选:A 【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.4.B解析:B 【解析】 【分析】 【详解】因为线段AB 的垂直平分线上的点(),x y 到点A ,B 的距离相等, 22(1)(2)x y -+-22(3)(1)x y =-+-.即:221244x x y y +-++-229612x x y y =+-++-,化简得:425x y -=. 故选B .5.D解析:D【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min d ∴= 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.7.C解析:C 【解析】 【分析】 【详解】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积. 8.D解析:D【解析】设直线l 的倾斜角为θ∈[0,π).点A (1,−2),B 3 直线l :ax −y −1=0(a ≠0)经过定点P (0,−1). ()121, 3.0130PA PB k k ---==-==-- ∵点(1,−2)和3在直线l :ax −y −1=0(a ≠0)的两侧, ∴k P A <a <k PB ,∴−1<tanθ3tanθ≠0. 解得30,34ππθθπ<<<<.本题选择D 选项. 9.D解析:D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为π×12+12×2π×1×2+2×2=3π+4 ,选D. 10.D解析:D【解析】【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.11.B解析:B【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.12.D解析:D【解析】【分析】根据已知条件和线面位置关系一一进行判断即可.【详解】选项A :一条直线平行于两个相交平面,必平行于两个面交线,故A 正确;选项B :垂直于两垂直面的两条直线相互垂直,故B 正确;选项C :M m ∈且//m l 得m α⊂且//m β,故C 正确;选项D :M m ∈且m l ⊥不一定得到m α⊂,所以,m l 可以异面,不一定得到m β⊥. 故选:D .【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.13.C解析:C【解析】试题分析:该几何体为一个侧面与底面垂直,底面为正方形的四棱锥(如图所示),其中底面ABCD 边长为4,侧面PAD ⊥平面ABCD ,点P 在底面的射影为E ,所以PE ⊥AD,DE =1,AE =4,PE =4,所以PA =√PE 2+AE 2=5,PB =√PE 2+BE 2=√41,PC =√PE 2+CE 2=√33,PD =√PE 2+DE 2=√17,底面边长为4,所以最长的棱长为√41,故选C.考点:简单几何体的三视图.14.D解析:D【解析】【分析】A 中,根据面面平行的判定定理可得:α∥β或者α与β相交.B 中,根据面面得位置关系可得:α∥β或者α与β相交.C 中,则根据面面得位置关系可得:α∥β或者α与β相交.D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m ′,所以m ′与n 是两条相交直线,m ′⊂β,n ⊂β,且m ′∥β,n ∥α,根据面面平行的判定定理可得α∥β,即可得到答案.【详解】由题意,对于A 中,若m ,n 是平面α内两条直线,且m∥β,n∥β,则根据面面平行的判定定理可得:α∥β或者α与β相交.所以A 错误.对于B 中,若α内不共线的三点到β的距离相等,则根据面面得位置关系可得:α∥β或者α与β相交.所以B 错误.对于C 中,若α,β都垂直于平面γ,则根据面面得位置关系可得:α∥β或者α与β相交.所以C 错误.对于D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m′,所以m′与n 是两条相交直线,m′⊂β,n ⊂β,且m′∥β,n∥α,根据面面平行的判定定理可得α∥β,所以D 正确.故选D .【点睛】本题主要考查了平面与平面平行的判定与性质的应用,其中解答中灵活运用平面与平面平行额判定与性质进行判定是解答的关键,着重考查学生严密的思维能力和空间想象能力,属于基础题.15.B解析:B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质二、填空题16.【解析】【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题 解析:1934011x y ++= 【解析】【分析】 先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程.【详解】联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=, 则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】 本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.17.4x -5y+1=0【解析】【分析】先求P 点关于直线x+y+1=0对称点M 再根据两点式求MQ 方程即得结果【详解】因为P 点关于直线x+y+1=0对称点为所以反射光线方程为【点睛】本题考查点关于直线对称问解析:4x -5y +1=0【解析】【分析】先求P 点关于直线x+y+1=0对称点M ,再根据两点式求 MQ 方程,即得结果.【详解】因为P 点关于直线x+y+1=0对称点为(4,3)M --, 所以反射光线方程为13:1(1),451014MQ y x x y +-=--+=+. 【点睛】本题考查点关于直线对称问题,考查基本分析求解能力,属基本题. 18.③④【解析】【分析】【详解】试题分析:因为四边不共面所以直线与是异面直线所以①错误的;同理直线与也是异面直线直线与是异面直线直线与是异面直线所以②是错误的;③是正确的④是正确的故填③④考点:空间中直解析:③④【解析】【分析】【详解】试题分析:因为1,,,A M C C 四边不共面,所以直线AM 与1CC 是异面直线,所以①错误的;同理,直线AM 与BN 也是异面直线,直线BN 与1MB 是异面直线,直线AM 与1DD 是异面直线,所以②是错误的;③是正确的,④是正确的,故填③④.考点:空间中直线与直线的位置关系的判定.19.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积20.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN <90解析:22(2)(1)2x y -+-=【解析】【分析】【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切.=,∴a=1或9,a=1时,,∠MCN=90°,∠MFN=45°,a=9时,r=MCN <90°,∠MFN <45°,则所求圆的方程为22(2)(1)2x y -+-=考点:圆的标准方程 21.【解析】【分析】如图所示根据外接球的球心O 恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O 的半径为R 球心O 到平面的距离为d 由O 是的中点得解得作平面ABC 垂足为的外心解析:523π 【解析】【分析】 如图所示,根据外接球的球心O 恰好是CD 的中点,将棱锥的高,转化为点到面的距离,再利用勾股定理求解.【详解】如图所示:设球O 的半径为R ,球心O 到平面ABC 的距离为d ,由O 是CD 的中点得221322232D ABC O ABC V V --==⨯⨯=, 解得3d =作1OO ⊥平面ABC ,垂足1O 为ABC ∆的外心, 所以123CO =, 所以22223133)33R ⎛⎫=+= ⎪ ⎪⎝⎭,所以球O 的表面积为25243R ππ=. 故答案为:523π 【点睛】本题主要考查三棱锥的外接球的体积,还考查了转化化归的思想和运算求解的能力,属于中档题. 22.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为 解析:165-【解析】【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值.【详解】解:因为圆1C :220x y ax by c ,即22224224a b a b c x y , 圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径r = 由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称, 则112,122112221,22b a b a ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C 的半径22r ==, 解得165c =-. 故答案为:165- 【点睛】 本题考查圆关于直线对称求参数的值,属于中档题.23.【解析】中因为所以由余弦定理可得所以设则在中由余弦定理可得故在中由余弦定理可得所以过作直线的垂线垂足为设则即解得而的面积设与平面所成角为则点到平面的距离故四面体的体积设因为所以则(1)当时有故此时因 解析:12【解析】 ABC ∆中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠==.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0t <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅, 所以30BPD ∠=.过P 作直线BD 的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 2112342sin 3022x x d x -+=⋅, 解得2234d x x =-+. 而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=⋅=. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-+ 21(23)6234x x x x -=-+ 设22234(3)1t x x x =-+=-+023x ≤≤12t ≤≤. 则231x t -=-(1)当03x ≤≤时,有2331x x t ==- 故231x t =- 此时,221(31)[23(31)]t t V -----= 21414()66t t t t-=⋅=-. 214()(1)6V t t=--',因为12t ≤≤, 所以()0V t '<,函数()V t 在[1,2]上单调递减,故141()(1)(1)612V t V ≤=-=.(2x <≤x x =-=故x =此时,V = 21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 24.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角【解析】【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离.【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,11,,2AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 25.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力解析:28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可.【详解】由棱台的体积公式可得棱台的体积:(()121211416832833V S S S S h =⨯++⨯=⨯++⨯=. 故答案为:28.【点睛】 本题主要考查棱台的体积公式及其应用,意在考查学生的转化能力和计算求解能力.三、解答题26.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据线面平行的判定定理,在平面ABD 中找EF 的平行线,转化为线线平行的证明;(2)根据面面垂直的判定定理,转化为CD ⊥平面AEF .【详解】(1)E ,F 分别是BC ,CD 的中点,EF ∴BD ; 又EF ⊄平面ABD ,BD ⊂平面ABD ,EF ∴平面ABD .(2)BD CD ⊥,EF BD ,EF CD ∴⊥; AE 平面BCD ,AE CD ∴⊥;又EF ⊂平面AEF ,AE ⊂平面AEF , CD平面AEF ,又CD ⊂平面ACD , ∴平面AEF ⊥平面ACD .【点睛】本题考查了面面垂直的证明,难点在于转化为线面垂直,方法:结合已知条件,选定其中一个面为垂面,在另外一个面中找垂线,不行再换另外一个面.27.(1)证明见解析;(2)34. 【解析】【分析】(1)直角梯形ABCD 中,过D 作DF ⊥AB 于F ,求解三角形可得ABD △为正三角形,又PAD △为正三角形,M 为线段AD 的中点,可得PM ⊥AD ,BM ⊥AD ,再由线面垂直的判定可得AD ⊥平面PBM ,从而得到平面PMB ⊥平面ABCD ;(2)在平面PMB 中,过B 作BO ⊥PM ,垂足为O ,则BO ⊥平面P AD ,连接AO ,则∠BAO 为直线BA 与平面P AD 所成角,然后求解三角形得答案.【详解】(1)证明:过D 作DF ⊥AB 于F在Rt ADE ∆中,2,1AD AE ==,3BAD π∴∠=∴BAD 和PAD △是正三角形,∵M 是AD 的中点,∴AD MB ⊥,AD MP ⊥,又∵MB MP M ⋂=,∴AD ⊥平面PMB ,又∵AD ⊂平面ABCD∴平面PMB ⊥平面ABCD.(2)由(1)知PMB ∠是二面角P -AD -B 的平面角 ∴23PMB π∠=. 由(1)知AD ⊥平面PMB∵AD ⊂平面P AD∴平面PAD ⊥平面PBM∴过B 作平面P AD 的垂线,则垂足E 在PM 延长线上, ∴3BME π∠=. 连结AE ,则BAE ∠是AB 与平面P AD 所成的角,∴3BM =,∴32BE =, ∴3sin 4BAE BE AB ∠== 【点睛】本题主要考查平面与平面垂直的判定,线面角的求法,二面角,考查空间想象能力与思维能力,属于中档题. 28.(1)证明见解析;(2)1.【解析】试题分析:(1)利用等腰三角形的性质可得1A O AC ⊥,利用面面垂直的性质可得1A O ⊥平面ABC ,根据线面垂直的性质可得结论;(2)先证明11||A C 平面ABC ,可得1C 到平面ABC 的距离等于1A 到平面ABC 的距离,利用等积变换及棱锥的体积公式可得11113C ABC A ABC ABC V V S AO --∆==⋅= 11233132⨯⨯=. 试题解析:(1)∵11AA A C =,且O 为AC 的中点.∴1A O AC ⊥.又∵平面11AA C C ⊥平面ABC ,平面11AA C C ⋂平面ABC AC =,且1AO ⊂平面11AAC C ,∴1A O ⊥平面ABC .∵BC ⊂平面ABC ,∴1A O BC ⊥.(2)∵11||A C AC ,11A C ⊄平面ABC ,AC ⊂平面ABC ,∴11||A C 平面ABC .即1C 到平面ABC 的距离等于1A 到平面ABC 的距离.由(1)知1A O ⊥平面ABC 且1AO ==∴三棱锥1C ABC -的体积:11113C ABC A ABC ABC V V S AO --∆==⋅= 112132⨯⨯=. 29.(1)1a =±;(2)(1,2)Q ;350x y +-=.【解析】【分析】(1)由平行可知系数的关系为21a =,进而可求a 的值;(2)整理直线1l 方程可知()120a x y -+-=,由1020x y -=⎧⎨-=⎩可求得定点坐标. 由分析知,当当(5,0)P -在直线上的射影为(1,2)Q 时,点P 到直线1l 距离最大,由1PQ l ⊥可求出1l 的斜率,结合已知的1l 的方程,可求出此时a 的值,进而可求出直线1l 的方程.【详解】解:(1)12//l l ,21a ∴=,解得1a =±检验:当1a =时12:30:20l x y l x y +-=++=,符合12//l l当1a =-时12:10:20l x y l x y -+=-+=,符合12//l l综上:1a =±.(2)解:1:20l ax y a +--=整理可得()120a x y -+-= ,由1020x y -=⎧⎨-=⎩, 解得12x y =⎧⎨=⎩,所以定点(1,2)Q .则当(5,0)P -在直线上的射影为(1,2)Q 时,距离最大. 此时1PQ l ⊥ ,直线PQ 的斜率为201153PQk -==+,则1l 的斜率113PQ k k =-=- ,即3a -=-,解得3a =,此时直线1l 的方程为350x y +-=.【点睛】本题考查了两点斜率的求解,考查了直线平行、垂直.本题的难点是分析何时点P 到直线1l 的距离最大.易错点是做第一问时,求出1a =± 后未检验.对于已知直线平行,根据系数关系求出参数值后,应带回直线方程进行验证.30.(1)证明见解析;(2)10+(3) 330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=【解析】【分析】(1)将原式变形为()250a x x y -++-=,由2050x x y -=⎧⎨+-=⎩可得直线l 必过一定点()2,3P ;(2)由题可得52B y a =+,521A a x a +=+,则()1252521AOB a S a a ++⋅=⋅+,求出最值,并找到最值的条件,进而可得AOB ∆的周长;(3) 52a +,521a a ++均为整数,变形得523211a a a +=+++,只要31a +是整数即可,另外不要漏掉截距为零的情况,求出a ,进而可得直线l 的方程.【详解】解:(1)由()1520a x y a ++--=得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P ;(2)由()1520a x y a ++--=得,当0x =时,52B y a =+,当0y =时,521A a x a +=+, 又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()119141+121212221252521AOB a a a S a a ⎡⎤⎡⎤∴=⋅++++⋅=≥=⎢⎥⎢⎥+⎣⎦⎣⎦+, 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB ∴∆的周长为4610OA OB AB ++=+=+(3) 直线l 在两坐标轴上的截距均为整数,即52a +,521a a ++均为整数, 523211a a a +=+++,4,2,0,2a ∴=--, 又当52a =-时,直线l 在两坐标轴上的截距均为零,也符合题意, 所以直线l 的方程为330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=.【点睛】本题考查直线恒过定点问题,考查直线与坐标轴围成的三角形的面积的最值,是中档题.。

【解析版】徐州市数学高一下期末经典习题(专题培优)(1)

【解析版】徐州市数学高一下期末经典习题(专题培优)(1)

一、选择题1.(0分)[ID :12721]已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或42.(0分)[ID :12707]某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?3.(0分)[ID :12706]已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B 12± C 110± D 322± 4.(0分)[ID :12702]已知D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,则xy 的取值范围是( )A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦5.(0分)[ID :12698]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π6.(0分)[ID :12673]在ABC 中,已知,2,60a x b B ===,如果ABC 有两组解,则x 的取值范围是( ) A .4323⎛⎫⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭,D .432,3⎛⎤⎥ ⎝⎦7.(0分)[ID :12633]阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .48.(0分)[ID :12666]已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.(0分)[ID :12663]设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增10.(0分)[ID :12659]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭11.(0分)[ID :12655]如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2πB .C .D .3π 12.(0分)[ID :12650]下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④13.(0分)[ID :12645]如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线14.(0分)[ID :12700]如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .15.(0分)[ID :12634]某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .60二、填空题16.(0分)[ID :12827]在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 17.(0分)[ID :12826]在平面直角坐标系xOy 中, 已知圆C 1 : x 2 + y 2=8与圆C 2 : x 2+y2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为______.18.(0分)[ID :12825]在ABC △ 中,若223a b bc -= ,sin 23C B = ,则A 等于__________.19.(0分)[ID :12814]已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.20.(0分)[ID :12796]直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .21.(0分)[ID :12789]对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422xx g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)22.(0分)[ID :12778]设向量(12)(23)a b ==,,,,若向量a b λ+与向量(47)c =--,共线,则λ=23.(0分)[ID :12768]设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.24.(0分)[ID :12752]已知复数z x yi =+,且23z -=,则yx的最大值为__________.25.(0分)[ID :12760]△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________. 三、解答题26.(0分)[ID :12927]某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?27.(0分)[ID :12897]如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;28.(0分)[ID :12896]某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?29.(0分)[ID :12865]已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.30.(0分)[ID :12855]在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知10cos 10A =-,2b =5c = (1)求a ;(2)求cos()B A -的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.A4.D5.C6.A7.B8.C9.A10.C11.A12.C13.B14.B15.B二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决17.【解析】【分析】先求得直线为:再分别讨论或和的情况根据几何性质求解即可【详解】由题则直线为:当或时设到的距离为因为等腰直角三角形所以即所以所以解得当时经过圆心则即故答案为:【点睛】本题考查圆与圆的位18.【解析】由得所以即则又所以故答案为19.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值20.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直21.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点22.2【解析】【分析】由题意首先求得向量然后结合向量平行的充分必要条件可得的值【详解】=由向量共线的充分必要条件有:故答案为2【点睛】本题主要考查平面向量的坐标运算向量平行的充分必要条件等知识意在考查学23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立24.【解析】【分析】根据复数z的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为:25.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .2.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.3.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=. 故选:A. 4.D解析:D【解析】【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值.【详解】解:D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦, 则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下, 对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D .【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力. 5.C解析:C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积. 6.A解析:A【解析】【分析】已知,,a b B ,若ABC 有两组解,则sin a B b a <<,可解得x 的取值范围.【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得432x <<故选A.本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若ABC 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解.7.B解析:B【解析】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =.本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.8.C解析:C【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立,故a ⩽1,而1+a +1⩾1,即a ⩾−1,综上,a ∈[−1,1],本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.A解析:A【分析】将f(x)化简,求得ωφ,,再进行判断即可.【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=, 又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--= ⎪⎝⎭, 当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A.【点睛】 本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.10.C解析:C【解析】【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果.【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题. 11.A解析:A【解析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解.【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角,在△A 2BM 中,22252()22a A B a BM a a ==+=,, 222313()22a A M a a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A .【点睛】 本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.12.C解析:C【解析】【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性.【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④.故选:C【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题. 13.B解析:B【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF ,平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,35,,722MF BF BM ==∴=.BM EN ∴≠,故选B . 【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.14.B 解析:B【解析】【分析】计算函数()y f x =的表达式,对比图像得到答案.【详解】根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x =1()cos sin sin 22f x x x x ==对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力. 15.B解析:B【解析】【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果.【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯= 本题正确选项:B【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12n m【解析】【分析】【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12n m. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.17.【解析】【分析】先求得直线为:再分别讨论或和的情况根据几何性质求解即可【详解】由题则直线为:当或时设到的距离为因为等腰直角三角形所以即所以所以解得当时经过圆心则即故答案为:【点睛】本题考查圆与圆的位解析:{8,8-+【解析】【分析】先求得直线AB 为:280x y a ++-=,再分别讨论90PAB ∠=︒或90PBA ∠=︒和90APB ∠=︒的情况,根据几何性质求解即可【详解】由题,则直线AB 为:280x y a ++-=,当90PAB ∠=︒或90PBA ∠=︒时,设1C 到AB 的距离为d ,因为ABP △等腰直角三角形, 所以12d AB =,即d =,所以2d =,2d ==,解得8a =±当90APB ∠=︒时,AB 经过圆心1C ,则80a -=,即8a =,故答案为:{8,8-+【点睛】本题考查圆与圆的位置关系的应用,考查点到直线距离公式的应用,考查分类讨论思想和数形结合思想 18.【解析】由得所以即则又所以故答案为 解析:6π【解析】由sinC =得c =,所以222a b -==,即227a b =,则22222222b c a cosA bc +-=== ,又0A π∈(,), 所以6A π=. 故答案为6π. 19.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值 解析:3π【解析】【分析】先利用周期公式求出ω,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出m 的表达式,即可求出m 的最小值.【详解】 由2T ππω==得2ω=,所以sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移()0m m >个单位后,得到sin[2()]sin(22)33y x m x m ππ=++=++,因为其图像关于原点对称,所以函数为奇函数,有2,3m k k Z ππ+=∈,则62k m ππ=-+,故m 的最小值为3π. 【点睛】本题主要考查三角函数的性质以及图像变换,以及sin()y A x ωϕ=+ 型的函数奇偶性判断条件.一般地sin()y A x ωϕ=+为奇函数,则k ϕπ=;为偶函数,则2k πϕπ=+;cos()y A x ωϕ=+为奇函数,则2k πϕπ=+;为偶函数,则k ϕπ=.20.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直 解析:2y x =【解析】试题分析:设与直线20x y +=垂直的直线方程:20x y b -+=,圆22240x y x y +--=化为()()22125x y -+-=,圆心坐标()12,.因为直线平分圆,圆心在直线20x y b -+=上,所以21120b ⨯-⨯+=,解得0b =,故所求直线方程为2y x =.考点:1.直线与圆的位置关系;2.直线的一般式方程与直线的垂直关系.【思路点睛】本题是基础题,考查直线与圆的位置关系,直线与直线垂直的方程的设法,据此设出与已知直线垂直的直线方程,利用直线平分圆的方程,求出结果即可. 21.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点 解析:10,2⎛⎤ ⎥⎝⎦. 【解析】【分析】先求出()0f x =的根,利用等价转换的思想,得到()0g x =在1m n -<有解,并且使用分离参数方法,可得结果【详解】由()()13log 2e x f x x -=+-,令()0f x =所以1x =,又已知函数()()13log 2ex f x x -=+- 与()1422x x g x a +=⋅-+互为“近邻函数”据题意可知:()0g x =在11x -<有解,则()0g x =在02x <<有解 即1224x x a +-=在02x <<有解, 令()1224x x h x +-=, 又令2x t =,()1,4t ∈,11,14t ⎛⎫∈ ⎪⎝⎭所以2222111222t y t t -⎛⎫==--+ ⎪⎝⎭ 当112t =时max 12y = 当11t =时0y = 所以10,2y ⎛⎤∈ ⎥⎝⎦所以()10,2h x ⎛⎤∈ ⎥⎝⎦,则10,2a ⎛⎤∈ ⎥⎝⎦故答案为:10,2⎛⎤ ⎥⎝⎦【点睛】本题考查对新定义的理解,以及分离参数方法的应用,属中档题.22.2【解析】【分析】由题意首先求得向量然后结合向量平行的充分必要条件可得的值【详解】=由向量共线的充分必要条件有:故答案为2【点睛】本题主要考查平面向量的坐标运算向量平行的充分必要条件等知识意在考查学 解析:2【解析】【分析】由题意首先求得向量a b λ+,然后结合向量平行的充分必要条件可得λ的值.【详解】a b λ+=(,2(2,3)(2,23λλλλ+=++)), 由向量共线的充分必要条件有:()()(2)7(23)42λλλ+⋅-=+⋅-⇒=.故答案为2.【点睛】本题主要考查平面向量的坐标运算,向量平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立 解析:92. 【解析】 【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=, 等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立. 24.【解析】【分析】根据复数z 的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z 的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为: 解析:【解析】【分析】根据复数z 的几何意义以及y x 的几何意义,由图象得出最大值. 【详解】复数z x yi =+且23z -=z 的几何意义是复平面内以点(2,0)3为半径的圆22(2)3x y -+=.y x的几何意义是圆上的点与坐标原点连线的斜率由图可知:max 331y x ⎛⎫==⎪⎝⎭ 即y x 3 3【点睛】本题主要考查了复数的几何意义的应用,属于中档题.25.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可 解析:33. 【解析】 【分析】首先利用正弦定理将题中的式子化为sin sin sin sin 4sin sin sin B C C B A B C +=,化简求得1sin 2A =,利用余弦定理,结合题中的条件,可以得到2cos 8bc A =,可以断定A 为锐角,从而求得3cos 2A =,进一步求得833bc =,利用三角形面积公式求得结果. 【详解】因为sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=, 可得1sin 2A =,因为2228b c a +-=, 结合余弦定理2222a b c bccosA =+-,可得2cos 8bc A =,所以A 为锐角,且3cos 2A =,从而求得833bc =, 所以ABC ∆的面积为1183123sin 22323S bc A ==⋅⋅=,故答案是233. 【点睛】 本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc +-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30、45、60等特殊角的三角函数值,以便在解题中直接应用.三、解答题26.(1)()3800,19,y 5005700,19,x x N x x ≤⎧=∈⎨->⎩;(2)19;(3) 购买1台机器的同时应购买19个易损零件.【解析】试题分析:(Ⅰ)分x ≤19及x >19,分别求解析式;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=19,n=20时所需费用的平均数来确定.试题解析:(Ⅰ)当时,3800y =;当时,3800500(19)5005700y x x =+-=-,所以与的函数解析式为3800,19,{()5005700,19,x y x N x x ≤=∈->. (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(380070430020480010)4000100⨯⨯+⨯+⨯=. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯⨯+⨯=. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【考点】函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.27.(1)见解析;(2)见解析;【解析】【分析】(1)要证BD⊥平面PAC ,只需在平面PAC 上找到两条直线跟BD 垂直即证,显然AC BD ⊥,从PA ⊥平面ABCD 中可证PA BD ⊥,即证.(2)要证明平面PAB⊥平面PAE,可证 A E ⊥平面PAB 即可.【详解】(1)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥;因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A ⋂=,,PA AC ⊂平面PAC ,所以BD ⊥平面PAC .(2)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥;因为PA AB A ⋂=所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.28.(1)()1,()0)8f x x g x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【解析】【分析】 (1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解.【详解】(1)依题意设()1,()f x k x g x k ==,1211(1),(1)82f kg k ====, ()1,()0)8f x x g x x ==≥; (2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,1(20)()(20)8y f x g x x =-+=-212)3,0208x =-+≤≤,2,4x ==万元时,收益最大max 3y =万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.29.(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n ++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用n n a b n=,从而求得11b =,22b =,34b =; (2)利用条件可以得到121n n a a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n n a n -=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n ++=.将1n =代入得,214a a =,而11a =,所以,24a =.将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n n a a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n n n a b n --==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.30.(1) 3a =.(2) cos()10B A -=. 【解析】【分析】分析:(1)在ABC ∆中,由余弦定理可得3a =.(2)由cosA =得sinA =sinB =cosB =,故得()cos B A cosBcosA sinBsinA -=+=【详解】(1)在ABC ∆中,由余弦定理得22222529a b c bccosA ⎛=+-=+-= ⎝⎭,∴3a =.(2)在ABC ∆中,由cosA =得,2A ππ⎛⎫∈ ⎪⎝⎭,∴sinA ===,在ABC ∆中,由正弦定理得a b sinA sinB ==,∴sinB =,。

高一数学专题测试:数列(培优卷)解析

高一数学专题测试:数列(培优卷)解析

对任意的 n N
, Tn
1
1 an1
1 2
,1 ,
因此,当整数 k 1 时, Tn k 最小.
故选:B. 【点睛】 本题考查裂项求和法,考查符合条件的整数的值的求解,考查计算能力,属于中等题.
4.设数列{an},{bn}均为等差数列,它们的前 n 项和分别为 Sn , Tn ,若
Sn Tn
2n 3 3n 4
令 bn a4n a4n1 a4n2 a4n3
则 bn1 bn 16 ,又 b1 10 ,故 bn 16n 6
故 S20 b1 b2 b5 5 b1 10 16 210 .
故选:A.
试卷第 4 页,总 21 页
【点睛】 本题考查由递推公式,找到通项之间的关系,属数列困难题,对计算能力要求较高.
1 an1

所以,
Tn
1 1 a1
1 1 a2
1 1 an
1 a1
1 a2
1 a2
1 a3
1 an
1 an1
1 a1
1 an1
1 1 , an1
a1 1 , an1 an2 an ,可得 a2 2 , a3 6 ,以此类推可得 an 0 n N ,
且 an1 an an2 0 ,所以,数列 an 单调递增,
()
A. S2020 是定值, a1 a2020 是定值
B. S2020 不是定值, a1 a2020 是定值
C. S2020 是定值, a1 a2020 不是定值
D. S2020 不是定值, a1 a2020 不是定值
【答案】A 【解析】
【分析】
按照 n 的奇偶分类讨论,可得 a2k1 a2k 6k 1以及 a2k4 a2k 12 ,再根据等差数

第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

专题01 集合中的典型题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 42.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 153.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<324.设M,P是两个非空集合,规定M−P={x|x∈M,且x∉P},根据这一规定,M−(M−P)等于()A. MB. PC. M∪PD. M∩P5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23二、多选题7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集∈A,则称集合8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.13.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.16.已知全集,集合M={x|−2≤x≤5},N={x|a+1≤x≤2a+1}.(Ⅰ)若a=2,求;(Ⅱ)若M∪N=M,求实数a的取值范围.17.已知集合A={x|a−12<x<a2},B={x|0<x<1}(Ⅰ)若a=12,求A⋃(∁R B).(Ⅱ)若A⋂B=⌀,求实数a的取值范围.一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题主要考查元素与集合、集合与集合之间的基本关系,特别要注意空集这一概念在题中的特殊性,根据集合中的相关概念,对每个命题进行一一判断.【解答】解:对①,集合与集合之间不能用∈符号,故①不正确;对②,由于两个集合相等,任何集合都是本身的子集,故②正确;对③,空集是任何集合的子集,故③正确;对④,空集是不含任何元素的集合,而{0}是含有1个元素的集合,故④不正确;对⑤,集合{0,1}是数集,含有2个元素,集合{(0,1)}是点集,只含1个元素,故⑤不正确;对⑥,元素与集合只能用∈或∉符号,故⑥不正确.故选B.2.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 15【答案】A【解析】【分析】本题考查交集、并集及其运算,考查了学生理解问题的能力.分别讨论集合A,B元素个数,即可得到结论.根据元素关系分别进行讨论是解决本题的关键.【解答】解:若集合A 中只有1个元素,则集合B 中有5个元素,则A 可以为{1},{2},{3},{4},{5},有5种; 若集合A 中只有2个元素,则集合B 中有4个元素,则A 可以为{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},有6种;若集合A 中只有3个元素,则集合B 中有3个元素,则A 只能是{1,3,5},只有1种,则共有有序集合对(A,B)12个,故选A .3. 已知集合A =(1,3),集合B ={x|2m <x <1−m}.若A ∩B =⌀,则实数m 的取值范围是( )A. 13⩽m <32B. m ⩾0C. m ⩾32D. 13<m <32【答案】B【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围.【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意;②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3,解得0≤m <13,综合可得m ≥0,∴实数m 的取值范围是m ≥0.故选B .4. 设M ,P 是两个非空集合,规定M −P ={x|x ∈M ,且x ∉P},根据这一规定,M −(M −P)等于() A. M B. P C. M ∪P D. M ∩P【答案】D【解析】【分析】本题考查了集合新定义问题,属于较难题.分M ∩P =⌀与M ∩P ≠⌀讨论,可证明M −(M −P)=M ∩P .解:当M∩P=⌀时,∵任意x∈M都有x∉P,∴M−P=M,∴M−(M−P)=⌀=M∩P;当M∩P≠⌀时,M−P表示了在M中但不在P中的元素,M−(M−P)表示了在M中但不在M−P中的元素,∵M−P中的元素都不在P中,所以M−(M−P)中的元素都在P中,∴M−(M−P)中的元素都在M∩P中,∴M−(M−P)=M∩P.故选D.5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M【答案】A【解析】【分析】本题考查元素与集合的关系及集合与集合的关系,由a=2√2<6即可求解.【解答】解:因为集合M={x|x≤6},a=2√2<6,所以{a}⫋M.故选A.6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23【解析】【分析】本题考查集合的应用,描述法的定义,交集及其运算,元素与集合的关系.先从四个选择中最小的数开始进行检验是否满足x∈A∩B∩C,即x属于A,B,C中每一个集合,找出最小的一个即可.【解答】解:∵23=3×7+2=5×4+3=7×3+2,∴23∈A,23∈B,23∈C,∴23∈A∩B∩C,所以23是四个答案中最小的一个,故选:D.二、多选题∈P(除数b≠0)则7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab 称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集【答案】AD【解析】【分析】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的四个命题代入进行检验,要满足对四种运算的封闭,只有一个个来检验.本题考查的主要知识点是新定义概念的理解能力.我们可根据已知中对数域的定义:设P是一个数集,且至少含有两个数,若对∈P(除数b≠0)则称P是一个数域,对四个命题逐一进行判断即任意a、b∈P,都有a+b、a−b、ab、ab可等到正确的结果.解:当a=b时,a−b=0、ab=1∈P,故可知A正确.当a=1,b=2,12∉Z不满足条件,故可知B不正确.当M中多一个元素复数i则会出现1+i∉M,所以它也不是一个数域,故可知C不正确.根据数据的性质易得数域有无限多个元素,必为无限集,故可知D正确.故选AD.8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x∈A,则称集合A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;【答案】BCD【解析】【分析】本题主要考查新定义,利用条件进行推理,考查学生的推理能力,根据“完美集”的定义,分别进行判断即可.【解答】解:A.∵1,−1∈B,1−(−1)=2∉B,不满足性质(2),∴A不正确;B.∵0∈Q,1∈Q,x、y∈Q,∴0−y=−y∈Q,∴x+y=x−(−y)∈Q,且x≠0时,1x∈Q,∴B正确;C.∵0∈A,x、y∈A,∴0−y=−y∈A,∴x+y=x−(−y)∈A,故C正确;D.x,y∈A时,①若x=0,或1,则x2∈A;②若x≠0,且x≠1,则x−1,1x−1,1x∈A,∴1x−1−1x=1x2−x∈A;∴x2−x∈A,x2−x+x=x2∈A;∴x∈A得到x2∈A;∴同理可得y2∈A,x2+y2∈A,(x+y)2∈A;∴2xy=(x+y)2−(x2+y2)∈A;若x,y有一个为0,则xy∈A,若x,y都不为0,则:1 xy =12xy+12xy∈A,∴xy∈A;∴x∈A,y∈A,能得到xy∈A,故D正确.故选BCD.9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)【答案】ABD【解析】【分析】本题主要考查新定义,属于较难题.根据新定义,逐一判断即可.【解答】解:由题意可得:,故正确;,所以正确;若A,B⊆R,且A⊕B⊆A,则B⊆A,故不正确;存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B,)如A=B,故正确.故答案为ABD.三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.【答案】16【解析】解:∵M={a2,0},N={1,a,2},且M∩N={1},∴a=−1,∴M∪N={−1,0,1,2},故M∪N的子集有24=16个.故答案为:16.由题意先确定集合M,N,再求M∪N={−1,0,1,2},从而求子集的个数.本题考查了集合的运算及集合的化简,同时考查了集合的子集个数问题,11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.【答案】{0,−1,2}【解析】【分析】本题考查集合关系中参数取值问题,根据集合M={x|x2+x−8=0}写出集合M最简单的形式,然后再根据N⊆M,求出a的值,【解答】解:∵集合M={x|x2−2x−8=0}={−2,4},∵N⊆M,N={x|ax+4=0},∴N=⌀,或N={−2}或N={4}三种情况,当N=⌀时,可得a=0,此时N=⌀;当N={−2}时,−2a+4=0,可得a=2;当N={4}时,4a+4=0,可得a=−1.∴a的可能值组成的集合为{0,−1,2}.故答案为{0,−1,2}.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.【答案】{−1,0,−12}.【解析】【分析】本题考查集合的包含关系及应用.根据A⊆B,利用分类讨论思想求解即可,特别要注意A=⌀不可忽略.【解答】解:当a=0时,A=⌀,满足A⊆B;当a≠0时,A={−1a }⊆B,−1a=1或−1a=2,解得a=−12或−1,}.综上实数a的所有可能取值的集合为{−1,0,−12}.故答案为{−1,0,−1213.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.【答案】−1【解析】【分析】本题考查了并集及其运算,熟练掌握交集的定义是解本题的关键.由A,B,以及A与B的交集恰有3个元素,确定出a的值即可.【解答】解:因为a2−3≥−3>−4,所以由题意得a2−3=a−1或a−1=1,解得a=2或a=−1.当a=2时,集合A中的两个元素重合,舍去,所以a=−1.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.【答案】解:(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,且△=4−4m<0,所以m>1;(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,,满足题意;讨论:①当m=0时,x=12②当m≠0时,△=4−4m,所以m=1.综上所述,m=0或m=1;,2)≠⌀,(3)若A∩(12,2)内有解,则关于x的方程mx2=2x−1在区间(12这等价于当x∈(12,2)时,求m=2x−1x2=1−(1x−1)2的值域,∴m∈(0,1].【解析】本题考查空集的概念、子集的个数问题以及含参数的集合运算问题,综合性较强,属于拔高题.(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,由此能求出实数m的取值范围.(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,分类讨论能求出实数m的取值范围.(3)若A∩(12,2)≠⌀,则关于x的方程mx2=2x−1在区间(12,2)内有解,这等价于求m=2x−1x2,x∈(12,2)时的值域.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】解:(1)由题意得A={x|x2−3x+2=0}={1,2}∵A∩B={2},∴2∈B∴22+(a−1)×2+a2−5=0,即4+2a−2+a2−5=0化简得:a2+2a−3=0,所以(a+3)(a−1)=0,解得:a=−3或a=1.检验:当a=−3时,B={x|x2−4x+4=0}={2},满足A∩B={2},当a=1时,B={x|x2−4=0}={−2,2},满足A∩B={2},∴a=−3或a=1;(2)∵A∪B=A,故B⊆A,①当B=⌀,则(a−1)2−4(a2−5)<0,即a2−2a+1−4a2+20<0,即−3a2−2a+21<0,即3a2+2a−21>0,即(3a−7)(a+3)>0,解得:a>73或a<−3,②当B为单元素集,则,即(a−1)2−4(a2−5)=0,得a=73或a=−3当a =73时,B ={−23}⊄A ,舍当a =−3时, B ={2}⊆A 符合,③当B 为双元素集,则B =A ={1,2}则有{1+2=1−a 1×2=a 2−5无解, 综上:a >73或a ≤−3【解析】本题主要查了交集、并集以及一元二次方程的解法,考查了学生分类讨论的思想,培养了学生的综合能力.(1)由A ∩B ={2},知2∈B ,将2代入求出a ,进而进行检验,得出集合B ,得出结论.(2)由A ∪B =A ,知B ⊆A ,再根据一元二次方程根的情况讨论B 的情况,得出a 的取值范围.16. 已知全集,集合M ={x|−2≤x ≤5},N ={x|a +1≤x ≤2a +1}. (Ⅰ)若a =2,求;(Ⅱ)若M ∪N =M ,求实数a 的取值范围.【答案】解:(Ⅰ)若a =2,则N ={x|3≤x ≤5},则或x <3}; 则;(Ⅱ)若M ∪N =M ,则N ⊆M ,①若N =⌀,即a +1>2a +1,得a <0,此时满足条件;②当N ≠⌀,则满足{a +1≤2a +12a +1≤5a +1≥−2,得0≤a ≤2,综上a ≤2,故a 的取值范围是(−∞,2].【解析】本题主要考查集合的基本运算,根据集合的基本关系以及基本运算是解决本题的关键,属于拔高题.(Ⅰ)根据集合的基本运算进行求解即可;(Ⅱ)根据M ∪N =M ,得N ⊆M ,讨论N 是否是空集,根据集合的关系进行转化求解即可.17. 已知集合A ={x |a −12<x <a 2},B ={x |0<x <1}(Ⅰ)若a =12,求A⋃(∁R B ).(Ⅱ)若A⋂B =⌀,求实数a 的取值范围.【答案】(Ⅰ)当a =12时A ={x|0<x <14},C R B ={x|x ≤0或x ≥1},∴A ∪(∁R B)={x|x <14或x ≥1};(Ⅱ)当A =ϕ时,即a −12⩾a 2解得a ⩾1,当A ≠ϕ时,需满足{a <1a −12⩾1或{a <1a 2⩽0,解得a ⩽0,综上a ⩽0或a ⩾1 .【解析】本题考查集合的运算以及集合的关系(1)当a =12时,得到集合A ,C R B 利用并集概念即可求出A ∪(∁R B); (2)分A =Φ和A ≠Φ两种情况即可求解,然后再求并集.。

培优专题01 二次函数含参数最值问题(解析版)高一数学同步教学题型(人教A版2019必修第一册)

培优专题01 二次函数含参数最值问题(解析版)高一数学同步教学题型(人教A版2019必修第一册)

培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x=-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c =,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).(3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是()1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t tg t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t + 时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.。

高中数学培优训练一(含详细解析及答案)

高中数学培优训练一(含详细解析及答案)

高中数学培优训练一高等数学一直以来被莘莘学子认为是不可逾越的大山,其实不然,只要掌握适当的方法与技巧,多进行一些培优训练,多对思维做一些培优性的练习,就一定能克服困难,成为“学霸”,轻松解决试卷中的培优题!!!1.已知椭圆C,12,F F 是椭圆的两个焦点,P 是椭圆上任意一点,且21F PF ∆(1)求椭圆C 的方程;(2)设圆TT 的两条切线交椭圆于F E ,两点,当圆心在x 轴上移动且()1,3t ∈时,求EF 的斜率的取值范围. 2.若函数()f x 是定义域D 内的某个区间I 上的增函数,且在I 上是减函数,则称()y f x =是I 上的“单反减函数”(1)判断()f x 在(]0,1上是否是“单反减函数”;(2)若()g x 是[)1,+∞上的“单反减函数”,求实数a 的取值范围.3.如图,在四棱锥ABCD P -中,⊥PA 底面ABCD ,底面ABCD 是梯形,其中 BC AD //,AD BA ⊥,AC 与BD 交于点O ,M 是AB 边上的点,且BM AM 2=,已知4==AD PA ,3=AB ,2=BC .(1)求平面PMC 与平面PAD 所成锐二面角的正切;(2)已知N 是PM 上一点,且//ON 平面PCD ,求 4.已知等差数列{}n a 满足121, a a =、73a -、8a 成等比数列,数列{}n b 的前n 项和1n n T a =-(其中a 为正常A PDB C OMN数)(1)求{}n a 的前项和n S ;(2)已知*2a N ∈,1122n n n I a b a b a b =++⋅⋅⋅+,求n I5.设(),R f x a b λ∈=⋅r r ,其中,已知()f x 满足(1)求函数()f x 的单调递增区间;(26.(本题满分14分)各项为正的数列{}n a 满足(1)取1n a λ+=,求证:数列(2)取2λ=时令,记数列{}n b 的前n 项和为n S ,数列{}n b 的前n 项之积为n T ,求证:对任意正整数n ,12n n n T S ++为定值7.(本题满分15分)函数2()22(,,0)f x ax bx a b a b a =--+∈>R ,()22g x ax b =-(1时,求(sin )f θ的最大值; (2)设0a >时,若对任意θ∈R ,都有|(sin )|1f θ≤恒成立,且(sin )g θ的最大值为2,求()f x 的表达式. 8.(本题满分15(1)求椭圆方程;(2)Rt ABC ∆以(0,)A b 为直角顶点,边,AB BC 与椭圆交于,B C 两点,求ABC ∆ 面积的最大值.9.(本题满分14分)已知函数R a x a x a x x f ∈++-=,ln )12()(2 (1)当,1=a 求)(x f 的单调区间; (2)a >1时,求)(x f 在区间[]e ,1上的最小值;(3),)1()(x a x g -=若⎥⎦⎤⎢⎣⎡∈∃e e x ,10使得))(00x g x f (≥成立,求a 的范围. 10.(本小题满分13分)已知抛物线21:2(0)C y px p =>的焦点F 以及椭圆22222:1(0)y x C a b a b +=>>的上、下焦点及左、右顶点均在圆22:1O x y +=上. (1)求抛物线1C 和椭圆2C 的标准方程;(2)过点F 的直线交抛物线1C 于A 、B 两不同点,交y 轴于点N ,已知1212,,:NA AF NB BF λλλλ==+u u u r u u u r u u u r u u u r 求证为定值.11.(本小题满分12分)已知数列{}n a 的前项n 和为n S ,点))(,(*∈N n S n n 均在函数x x x f 23)(2-=的图象上。

最新高一数学圆与方程难题练习(含解析)培优专题

最新高一数学圆与方程难题练习(含解析)培优专题

最新高一数学圆与方程难题练习(含解析)培优专题培优专题:高一数学圆与方程难题练习第Ⅰ卷(选择题)一.选择题(共2小题)1.已知圆,考虑下列命题:①圆C上的点到(4,0)的距离的最小值为;②圆C上存在点P到点的距离与到直线的距离相等;③已知点,在圆C上存在一点P,使得以AP为直径的圆与直线相切,其中真命题的个数为()A.0 B.1 C.2 D.32.已知点A(,0)和P(,t)(t∈R).若曲线x=上存在点B 使∠APB=60°,则t的取值范围是()A.(0,1+]B.[0,1+]C.[﹣1﹣,1+]D.[﹣1﹣,0)∪(0,1+]第Ⅱ卷(非选择题)二.填空题(共17小题)3.正方体ABCD﹣A1B1C1D1的外接球的表面积为12π,E为球心,F为C1D1的中点.点M在该正方体的表面上运动,则使ME⊥CF 的点M所构成的轨迹的周长等于.4.圆心为两直线x+y﹣2=0和﹣x+3y+10=0的交点,且与直线x+y﹣4=0相切的圆的标准方程是.5.已知扇形内切圆半径与扇形半径之比为1:3,则内切圆面积与扇形面积之比为.6.由直线y=x﹣1上的一点向圆x2+(y﹣2)2=1引切线,则切线长(此点到切点的线段长)的最小值为.7.在平面直角坐标系xoy中,已知圆C1:(x+2)2+(y﹣3)2=9和圆C2:(x ﹣4)2+(y﹣3)2=9.(1)若直线l过点A(﹣5,1),且被圆C1截得的弦长为,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P 的坐标.8.已知圆C:x2+y2﹣6x+8=0,则圆心C的坐标为;若直线y=kx与圆C相切,且切点在第四象限,则k=.9.已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆C的方程;(2)设直线ax﹣y+5=0与圆C相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得过点P(﹣2,4)的直线l 垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.10.如图所示的三棱锥A﹣BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为.11.函数y=log a(x﹣1)+3(a>0,a≠1)的图象恒过定点A,过点A的直线l与圆(x﹣1)2+y2=1相切,则直线l的方程是.12.已知定点A(0,1),B(0,﹣1),C(1,0),动点P满足:?=k||2,(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当k=2,求|2+|的最大,最小值.13.已知点A(4,0)、B(2,1),点M在圆x2+y2=4上运动,则的最小值为.14.如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=,|CD|=2﹣,AC⊥BD,M为CD的中点.(1)求点M的轨迹方程;(2)过M作AB的垂线,垂足为N,若存在正常数λ0,使,且P 点到A、B 的距离和为定值,求点P的轨迹E的方程;(3)过的直线与轨迹E交于P、Q两点,求△OPQ面积的最大值.15.过椭圆2x2+y2﹣10=0在第一象限内的点P作圆x2+y2=4的两条切线,当这两条切线垂直时,点P的坐标是.16.已知平面区域恰好被面积最小的⊙C:(x﹣a)2+(y﹣b)2=r2及其内部所覆盖.(1)试求⊙C的方程.(2)若斜率为1的直线l与⊙C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.17.已知(x0,y0)是直线x+y=2k﹣1与圆x2+y2=k2+2k﹣3的交点,则x0y0的取值范围为[,].18.在平面直角坐标系xoy中,已知点A(﹣1,1),P是动点,且△POA的三边所在直线的斜率满足k OP+k OA=k PA(1)求点P的轨迹C的方程(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA 交于点M.=2S△PAM?若存在,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA求出点P的坐标;若不存在,说明理由.19.已知两点M(﹣1,0),N(1,0)且点P使成等差数列.(1)若P点的轨迹曲线为C,求曲线C的方程;(2)从定点A(2,4)出发向曲线C引两条切线,求两切线方程和切点连线的直线方程.三.解答题(共20小题)20.已知点F1(﹣,0),圆F2:(x﹣)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△PAB′面积的最大值.21.已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足?=0,=2.(Ⅰ)当点P在圆上运动时,判断Q点的轨迹是什么?并求出其方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,且≤?≤(其中O是坐标原点)求k的取值范围.22.已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).①设W(x0,y0),证明:;②求四边形QRST的面积的最小值23.已知圆心在x轴上的圆C与直线l:4x+3y﹣6=0切于点E (,n).圆P:x2+(a+3)x+y2﹣ay+2a+2=0(1)求圆C的标准方程;(2)已知a>1,圆P与x轴相交于两点M,N(点M在点N的右侧).过点M任作一条倾斜角不为0的直线与圆C相交于A,B两点.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a 的值,若不存在,请说明理由.24.已知圆C过坐标原点O,且与x轴,y轴分别交于点A,B,圆心坐标C (t,)(t∈R,t≠0)(1)求证:△AOB的面积为定值;(2)直线2x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.25.求圆心在直线l1:x﹣y﹣1=0上,与直线l2:4x+3y+14=0相切,截直线l3:3x+4y+10=0所得的弦长为6的圆的方程.26.在平面直角坐标系xOy中,已知圆C的方程为x2+y2=4,点M(2,﹣3).(1)求过点M且与圆C相切的直线方程;(2)过点M任作一条直线与圆C交于A,B两点,圆C与x轴正半轴的交点为P,求证:直线PA与PB的斜率之和为定值.27.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM?AN是否为定值,若是,则求出定值;若不是,请说明理由.28.已知圆C:(x﹣3)2+(y﹣4)2=4和直线l:x+2y+2=0,直线m,n都经过圆C外定点A(1,0).(Ⅰ)若直线m与圆C相切,求直线m的方程;(Ⅱ)若直线n与圆C相交于P,Q两点,与l交于N点,且线段PQ的中点为M,求证:|AM|?|AN|为定值.29.在平面直角坐标系xOy中,圆C的半径为1,其圆心在射线y=x(x≥0)上,且.(Ⅰ)求圆C的方程;(Ⅱ)若直线l过点P(1,0),且与圆C相切,求直线l的方程.30.已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y ﹣15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P (2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.31.已知平面内一动点P在x轴的上方,点P到F(0.1)的距离与它到y轴的距离的差等于1.(1)求动点P轨迹C的方程;(2)设A,B为曲线C上两点,A与B的横坐标之和为4.①求直线AB的斜率;②设M为曲线C上一点,C在M处的切线与直线AB 平行,且AM⊥BM,求直线AB的方程.32.已知圆M:x2+(y﹣2)2=1,Q是x轴上的点,QA,QB 分别切圆M与A,B两点.(1)若|AB|=,求|MQ|的长度及直线MQ的方程;(2)求证:直线AB恒过定点.33.已知圆O:x2+y2=2,直线l过点,且OM⊥l,P(x0,y0)是直线l上的动点,线段OM与圆O的交点为点N,N'是N关于x轴的对称点.(1)求直线l的方程;(2)若在圆O上存在点Q,使得∠OPQ=30°,求x0的取值范围;(3)已知A,B是圆O上不同的两点,且∠ANN'=∠BNN',试证明直线AB 的斜率为定值.34.已知圆C:x2+y2+2x+8y﹣8=0.(1)判断圆C与圆D:x2+y2﹣4x﹣4y﹣1=0的位置关系,并说明理由;(2)若圆C关于过点P(6,8)的直线l对称,求直线l 的方程.35.已知点M(x,y)是平面直角坐标系中的动点,若A(﹣4,0),B(﹣1,0),且△ABM中|MA|=2|MB|.(Ⅰ)求点M的轨迹C的方程及求△ABM的周长的取值范围;(Ⅱ)直线MB与轨迹C的另一交点为M',求的取值范围.36.在平面直角坐标系xOy中,已知E:(x+)2+y2=16,点F (,0),点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于点Q.记动点Q的轨迹为C,另有动点M(x,y)(x≥0)到点N(2,0)的距离比它到直线x=﹣1的距离多1,记点M的轨迹为C1,轨迹C2的方程为x2=y(1)求轨迹C和C1的方程(2)已知点T(﹣1,0),设轨迹C1与C2异于原点O的交点为R,若懂直线l与直线OR垂直,且与轨迹C交于不同的两点A、B,求的最小值(3)在满足(2)中的条件下,当取得最小值时,求△TAB 的面积.37.平面内一个点与一条曲线上的任意点的距离的最小值,称为这个点到这条曲线的距离.例如椭圆的右焦点(4,0)到椭圆的距离为1.(I)写出点A(3,5),点B(1,2)到圆x2+y2+2x﹣4y﹣4=0的距离;(II)如图,已知直线l与圆C相离,圆C的半径是2,圆心C到直线l的距离为4.请你建立适当的平面直角坐标系,求与直线l和圆C的距离相等的动点P的轨迹方程.38.已知△ABC中,点A(﹣1,0),B(1,0),动点C满足|CA|+|CB|=λ|AB|(常数λ>1),C点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当λ=时,过定点B(1,0)的直线与曲线Γ相交于P,Q 两点,N 是曲线Γ上不同于P,Q的动点,试求△NPQ面积的最大值.39.如图,在x轴上方有一段曲线弧C,其端点A、B在x轴上(但不属于C),对C上任一点P及点F 1(﹣1,0),F2(1,0),满足:.直线AP,BP分别交直线l:x=a(a>)于R,T两点.(Ⅰ)求曲线弧C的方程;(Ⅱ)求|RT|的最小值(用a表示).。

【解析版】数学高一上期末经典题(课后培优)(1)

【解析版】数学高一上期末经典题(课后培优)(1)

一、选择题1.(0分)[ID :12114]已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.(0分)[ID :12113]已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.(0分)[ID :12106]若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.(0分)[ID :12082]设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]6.(0分)[ID :12075]已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20227.(0分)[ID :12049]已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且RA B ⊆,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >8.(0分)[ID :12031]设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,29.(0分)[ID :12065]已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .110.(0分)[ID :12064]下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =11.(0分)[ID :12045]点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .12.(0分)[ID :12123]函数y =11x -在[2,3]上的最小值为( ) A .2B .12C .13D .-1213.(0分)[ID :12099]设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 14.(0分)[ID :12035]已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1115.(0分)[ID :12029]对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值2,最小值1 C .有最大值1,无最小值D .有最大值2,无最小值二、填空题16.(0分)[ID :12209]对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.17.(0分)[ID :12204]已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____. 18.(0分)[ID :12196]已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.19.(0分)[ID :12194]若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;20.(0分)[ID :12193]定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________21.(0分)[ID :12191]已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.22.(0分)[ID :12182]已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.23.(0分)[ID :12180]设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________.24.(0分)[ID :12157]已知35m n k ==,且112m n+=,则k =__________ 25.(0分)[ID :12147]若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.三、解答题26.(0分)[ID :12304]已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 27.(0分)[ID :12273]已知函数()22xxf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82x tf x ≥+对x ∈R 恒成立,求t 的取值范围. 28.(0分)[ID :12240]药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 29.(0分)[ID :12232]已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围;(2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.30.(0分)[ID :12256]某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.C 3.D 4.C 5.D 6.C 7.C 8.D 9.B 10.A 11.C 12.B13.D14.B15.D二、填空题16.【解析】【分析】不动点实际上就是方程f(x0)=x0的实数根二次函数f(x)=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可17.(﹣∞1)(+∞)【解析】【分析】因为先根据f(x)是定义域在R上的偶函数将f(m ﹣2)>f(2m﹣3)转化为再利用f(x)在区间0+∞)上是减函数求解【详解】因为f(x)是定义域在R上的偶函数且f18.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本19.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为:20.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式21.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题22.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题23.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题24.【解析】因为所以所以故填25.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a的值再将1代入即可求解【详解】∵函数为奇函数∴f(﹣x)=﹣f(x)即f(﹣x)∴(2x﹣1)(x+a)=(2x+1)(x﹣a)即2x2+(226. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果.由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.4.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.5.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.6.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.7.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.8.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解9.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 10.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A11.C解析:C【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.12.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 13.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.14.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.15.D解析:D 【解析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题16.【解析】【分析】不动点实际上就是方程f (x0)=x0的实数根二次函数f (x )=x2+ax+4有不动点是指方程x=x2+ax+4有实根即方程x=x2+ax+4有两个不同实根然后根据根列出不等式解答即可解析:10,33⎡⎫--⎪⎢⎣⎭【解析】 【分析】不动点实际上就是方程f (x 0)=x 0的实数根,二次函数f (x )=x 2+ax +4有不动点,是指方程x =x 2+ax +4有实根,即方程x =x 2+ax +4有两个不同实根,然后根据根列出不等式解答即可. 【详解】解:根据题意,f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,得x =x 2+ax +4在[1,3]有两个实数根,即x 2+(a ﹣1)x +4=0在[1,3]有两个不同实数根,令g (x )=x 2+(a ﹣1)x +4在[1,3]有两个不同交点,∴2(1)0(3)01132(1)160g g a a ≥⎧⎪≥⎪⎪⎨-<<⎪⎪-->⎪⎩,即24031001132(1)160a a a a +≥⎧⎪+≥⎪⎪⎨-<<⎪⎪-->⎪⎩, 解得:a ∈10,33⎡⎫--⎪⎢⎣⎭; 故答案为:10,33⎡⎫--⎪⎢⎣⎭. 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.17.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)(53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223fm f m ->- ,又因为f (x )在区间[0,+∞)上是减函数, 所以|m ﹣2|<|2m ﹣3|, 所以3m 2﹣8m +5>0, 所以(m ﹣1)(3m ﹣5)>0, 解得m <1或m 53>, 故答案为:(﹣∞,1)(53,+∞).【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.18.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本 解析:[0,1]【解析】分析:对于多元变量任意存在的问题,可转化为求值域问题,首先求函数()(),f x g x 的值域,然后利用函数()f x 的值域是函数()g x 值域的子集,列出不等式,求得结果. 详解:由条件可知函数()f x 的值域是函数()g x 值域的子集,当11,24x ⎡⎤∈⎢⎥⎣⎦时,()[]1,2f x a a ∈-++,当[]21,2x ∈-时,()[]1,3g x ∈- ,所以1123a a -+≥-⎧⎨+≤⎩ ,解得01a ≤≤,故填:[]0,1. 点睛:本题考查函数中多元变量任意存在的问题,一般来说都转化为子集问题,若是任意1x D ∈,存在2x E ∈,满足()()12f x g x >,即转化为()()min min f x g x >,若是任意1x D ∈,任意2x E ∈,满足()()12f x g x >,即转化为()()min max f x g x >,本题意在考查转化与化归的能力.19.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可. 【详解】当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+,且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞ 故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.20.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.21.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤ 【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.22.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题4 ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.4⎥⎝⎦【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.23.【解析】【分析】令将用表示转化为求关于函数的最值【详解】令则当且仅当时等号成立故答案为:【点睛】本题考查指对数间的关系以及对数换底公式注意基本不等式的应用属于中档题解析:【解析】 【分析】令236x y z t ===,将,,x y z 用t 表示,转化为求关于t 函数的最值. 【详解】,,x y z R +∈,令1236x y z t ==>=,则236log ,log ,log ,x t y t z t ===11log 3,log 6t t y z==,21122log log 2t x t z y+-=+≥当且仅当x =.故答案为: 【点睛】本题考查指对数间的关系,以及对数换底公式,注意基本不等式的应用,属于中档题.24.【解析】因为所以所以故填【解析】因为35m n k ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =25.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f(﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】 【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解 【详解】 ∵函数()()()21xf x x x a =+-为奇函数,∴f (﹣x )=﹣f (x ), 即f (﹣x )()()()()2121x xx x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ), 即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a , ∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.三、解答题 26.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112121212122(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++,12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为 ()2(1)(1)f t kt f t f t -≤--=-恒成立,()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立,可得2(1)40k +-≥,解得13k k ≥≤-或,故k 的取值范围为:13k k ≥≤-或.【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题. 27.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞-【解析】【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可.(3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可.【详解】(1)因为()22x x f x k -=+⋅且(0)4f =,故:14k +=, 解得3k =.(2)因为()()log ()2x a g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=,则log (32?)0x a ->,等价于:当1a >时,321x ->,解得()2,log 3x ∈-∞当01a <<时,321x -<,解得()2log 3,x ∈+∞.(3)()82x t f x ≥+在R 上恒成立,等价于: ()()228230x x t --+≥恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故: 2(83)m m -+的最小值为:-13,故:只需13t ≤-即可.综上所述,(],13t ∈-∞-.【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题. 28. (1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克 【解析】【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =;当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+, 故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩. (2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩, 当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=;当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克.【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题.29.(1)(,5)-∞;(2)()0,1.【解析】【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围.【详解】(1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.30.(1)87万元;(2)甲合作社投入16万元,乙合作社投入56万元【解析】【分析】(1)先求出36x =,再求总收益;(2)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元,再对x 分类讨论利用函数求出如何安排甲、乙两个合作社的投入,才能使总收益最大.【详解】(1)两个合作社的投入相等,则36x =,1(36)253620872f =++⨯+=(万元) (2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元.当1536x ≤≤时,11()25(72)208122f x x x =+-+=-+,令t =6t ≤≤,则总收益2211()481(4)8922g t t t t =-++=--+, 当4t =即16x =时,总收益取最大值为89;当3657x <≤时,11()49(72)2010522f x x x =+-+=-+, ()f x 在(36,57]上单调递减,所以()(36)87f x f <=.因为8987>,所以在甲合作社投入16万元,乙合作社投入56万元时,总收益最大,最大总收益为89万元.【点睛】本题主要考查函数的应用和最值的求法,意在考查学生对这些知识的理解掌握水平和应用能力.。

高一下期数学期末培优题组(含答案)

高一下期数学期末培优题组(含答案)

高一下期数学期末培优题组一(含答案)(必修4:三角恒等变换,必修5:解三角形,数列,不等式;必修2:直线方程,圆的方程)1.已知向量,令u(x)=.(1)求函数u(x)的对称轴方程;(2)设,当时,求函数f(x)=4u(x)﹣2λv(x)+6λ+5(λ∈R)的最小值g(λ);(3)在(2)的条件下,若对任意的实数a,b且a>b>0,不等式对任意的λ∈[0,5]恒成立,求实数t的取值范围.【解答】解:(1)向量,由u(x)==cos5x•2cos(x﹣)+2sin5x•sin(x﹣)=2cos(5x﹣x+)∴.由4x+=kπ,k∈Z.可得x=∴函数u(x)对称轴方程为.(2)函数f(x)=4u(x)﹣2λv(x)+6λ+5(λ∈R),∵u(x)=2cos(4x+)=2[2cos2(2x+)﹣1]=4cos2(2x+)﹣2∴令,∵,2x+∈[,]∴则f(x)=h(t)=16t2﹣8λt+6λ﹣3.对称轴t=λ.当时,可得t=,函数h(t)取得小值为2λ+1.当时,可得t=,函数h(t)取得小值为﹣λ2+6λ﹣3当时,可得t=1,函数h(t)取得小值为﹣2λ+13.∴…(7分)(3)当λ∈[0,5]时,由(2)g(λ)解析式可得:g(λ)max=6,g(λ)min=1.∴而∴解得:1≤t≤5.故得实数t的取值范围是[1,5].2.已知函数f(x)=.(1)求f(x)的值域和最小正周期;(2)方程m[f(x)+]+2=0在内有解,求实数m的取值范围.【解答】解:(1)f(x)=2sin(2x+)﹣.∵﹣1≤sin(2x+)≤1.∴﹣2﹣≤2sin(2x+)﹣≤2﹣,T==π,即f(x)的值域为[﹣2﹣,2﹣],最小正周期为π.…(7分)(2)当x∈[0,]时,2x+∈[],故sin(2x+)∈[],此时f(x)+=2sin(2x+)∈[,2].由m[f(x)+]+2=0知,m≠0,∴f(x)+=﹣,即≤﹣≤2,即,解得﹣≤m≤﹣1.即实数m的取值范围是[﹣].3.已知a,b,c分别为△ABC三个内角A,B,C的对边,S为△ABC的面积,sin(B+C)=.(Ⅰ)证明:A=2C;(Ⅱ)若b=2,且△ABC为锐角三角形,求S的取值范围.【解答】(Ⅰ)证明:由,即,∴,sinA≠0,∴a2﹣c2=bc,∵a2=b2+c2﹣2bccosA,∴a2﹣c2=b2﹣2bccosA,∴b2﹣2bccosA=bc,∴b﹣2ccosA=c,∴sinB﹣2sinCcosA=sinC,∴sin(A+C)﹣2sinCcosA=sinC,∴sinAcosC﹣cosAsinC=sinC,∴sin(A﹣C)=sinC,∵A,B,C∈(0,π),∴A=2C.(Ⅱ)解:∵A=2C,∴B=π﹣3C,∴sinB=sin3C.∵且b=2,∴,∴==,∵△ABC为锐角三角形,∴,∴,∴,∵为增函数,∴.4.(1)已知sin(2α+β)=5sinβ,求证:2tan(α+β)=3tanα.【解答】证明:∵2α+β=α+(α+β),β=(α+β)﹣α,∴sin(2α+β)=sin[(α+β)+α]=sin(α+β)cosα+cos(α+β)sinα,而5sinβ=5sin[(α+β)﹣α]=5sin(α+β)cosα﹣5cos(α+β)sinα.由已知得sin(α+β)cosα+cos(α+β)sinα=5sin(α+β)cosα﹣5cos(α+β)sinα.∴2sin(α+β)cosα=3cos(α+β)sinα,等式两边都除以cos(α+β)cosα,得2tan(α+β)=3tanα.4.(2)若tan(α+β)=2tanα,求证:3sinβ=sin(2α+β).【解答】证明:由tan(α+β)=2tanα,得,即sin(α+β)cosα=2sinαcos (α+β)(*)另一方面,要证3sinβ=sin(2α+β),即证3sin[(α+β)﹣α]=sin[(α+β)+α],即证3sin(α+β)cosα﹣3cos(α+β)sinα=sin((α+β)cosα+cos(α+β)sinα,化简,得sin(α+β)cosα=2sinαcos(α+β)∵上式与(*)式相同.所以,命题成立.(3)求证:=tan2θ【解答】证明:左边====tan2θ=右边.(4)已知,a,b,c分别是△ABC中角A,B,C的对边,若a,b,c成等比数列,求证:+=.【解答】证明:因为a,b,c成等比数列,所以b2=ac由正弦定理得sin2B=sinAsinC,所以+===.5.若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.【解答】解:(Ⅰ)∵0,∴,又sin()=,∴cos()=,∴sinα=sin[﹣()]=sin cos()﹣cos sin()=;(Ⅱ)∵0,∴,又cos()=,∴sin()=.∴cos()=cos[()+()]=cos()cos()﹣sin()sin()=.6.已知数列{a n}中,a1=a,a2=2,数列{a n}的前n项和为S n,且2S n=n(3a1+a n),n∈N*.(Ⅰ)求a的值;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)若T n是数列{b n}的前n项和,且对一切n∈N*都成立,求实数m取值范围.【解答】解:(Ⅰ)∵2S n=n(3a1+a n),S1=a1=a,∴2a=4a,所以a=0.…..(3分)(Ⅱ)由(Ⅰ)知,∴.∴.=na n.∴(n﹣1)a n+1∴当n≥2时,.∴,…,,∴.∴a n=2(n﹣1),n≥2.∵a1=a=0满足上式,∴a n=2(n﹣1),n∈N*.…..(6分)(Ⅲ)当n≥2时,.…..(7分)又b1=2,∴T n=b1+b2+…+b n=…..(9分)==所以.…..(10分)因为对一切n∈N*都成立,即对一切n∈N*都成立.∴.…..(12分)∵,当且仅当,即n=1时等号成立.∴.∴∴.…..(14分)7.已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=2,当n≥2时,a n=S n﹣S n﹣1=n(n+1)﹣(n﹣1)n=2n,知a1=2满足该式,∴数列{a n}的通项公式为a n=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,b n+1=2(3n+1+1),故b n=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴T n=c1+c2+c3+…+c n=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令H n=1×3+2×32+3×33+…+n×3n,①则3H n=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2H n=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{c n}的前n项和…(12分)8.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同.(Ⅰ)求m﹣n;(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.【解答】解:(Ⅰ)当2x﹣3≥0,即x≥时,不等式|2x﹣3|<x可化为2x﹣3<x,解得x<3,∴≤x<3;当2x﹣3<0,即x<时,不等式|2x﹣3|<x可化为3﹣2x<x,解得x>1,∴1<x<;综上,不等式的解集为{x|1<x<3};∴不等式x2﹣mx+n<0的解集为{x|1<x<3},∴方程x2﹣mx+n=0的两实数根为1和3,∴,∴m﹣n=4﹣3=1;(Ⅱ)a、b、c∈(0,1),且ab+bc+ac=m﹣n=1,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)≥(2ab+2bc+2ac)+2(ab+bc+ac)=3(ab+bc+ca)=3;∴a+b+c的最小值是.9.关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.【解答】解:(1)∵关于x的不等式ax2+(a﹣2)x﹣2≥0可变形为(ax﹣2)(x+1)≥0,且该不等式的解集为(﹣∞,﹣1]∪[2,+∞),∴a>0;又不等式对应方程的两个实数根为﹣1和2;∴=2,解得a=1;(2)①a=0时,不等式可化为﹣2x﹣2≥0,它的解集为{x|x≤﹣1};②a≠0时,不等式可化为(ax﹣2)(x+1)≥0,当a>0时,原不等式化为(x﹣)(x+1)≥0,它对应的方程的两个实数根为和﹣1,且>﹣1,∴不等式的解集为{x|x≥或x≤﹣1};当a<0时,不等式化为(x﹣)(x+1)≤0,不等式对应方程的两个实数根为和﹣1,在﹣2<a<0时,<﹣1,∴不等式的解集为{x|≤x≤﹣1};在a=﹣2时,=﹣1,不等式的解集为{x|x=﹣1};在a<﹣2时,>﹣1,不等式的解集为{x|﹣1≤x≤}.综上,a=0时,不等式的解集为{x|x≤﹣1},a>0时,不等式的解集为{x|x≥或x≤﹣1},﹣2<a<0时,不等式的解集为{x|≤x≤﹣1},a=﹣2时,不等式的解集为{x|x=﹣1},a<﹣2时,不等式的解集为{x|﹣1≤x≤}.10.如图,在△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求:(Ⅰ)点A和点C的坐标;(Ⅱ)△ABC的面积.【解答】解:(Ⅰ)由得顶点A(﹣1,0).﹣﹣﹣﹣﹣﹣﹣(1分)又AB的斜率k AB==1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵x轴是∠A的平分线,故AC的斜率为﹣1,AC所在直线的方程为y=﹣(x+1)①﹣﹣﹣﹣﹣﹣(4分)已知BC上的高所在直线的方程为x﹣2y+1=0,故BC的斜率为﹣2,BC所在的直线方程为y﹣2=﹣2(x﹣1)②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解①,②得顶点C的坐标为(5,﹣6).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又直线BC的方程是2x+y﹣4=0A到直线的距离﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)所以△ABC 的面积=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)高一下期数学期末培优题组二(含答案)(必修4:三角恒等变换,必修5:解三角形,数列,不等式;必修2:直线方程,圆的方程)1.在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.(I)求角C的大小;(Ⅱ)若c=,求△ABC周长的取值范围.【解答】解:(I)∵cos2A=sin2B+cos2C+sinAsinB,∴1﹣sin2A=sin2B+1﹣sin2C+sinAsinB,∴sin2A+sin2B﹣sin2C=﹣sinAsinB,∴a2+b2﹣c2=﹣ab,∴=,又0<C<π,∴.(2)∵,∴a=2sinA,b=2sinB,则△ABC的周长L=a+b+c=2(sinA+sinB)+=2(sinA+)+=,∵,,∴,即,∴△ABC周长的取值范围是.2.已知函数,其中(1)若x∈[0,π],求函数f(x)的单调递增区间和最小值;(2)在△ABC中,a、b、c分别是角A.B.C的对边,旦f(A)=﹣1,求的值;(3)在第二问的条件下,若,求△ABC面积的最大值.【解答】解:(1)f(x)=====,由解得,又x∈[0,π],因此函数f(x)的单调递增区间为.其最小值为==﹣2+1=﹣1.(2)由f(A)=﹣1,可得,化为,∵A∈(0,π),∴,∴,解得.即A=60°.由正弦定理可得=== =2.(3)由(2)可知:A=60°.∴3=a2=b2+c2﹣2bccos60°≥2bc﹣bc=bc,当且仅当b=c=时取等号.∴△ABC面积==,即最大值为.3.设S n是正项数列{a n}的前n项和,且S n=a+a n﹣(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在等比数列{b n},使a1b1+a2b2+…+a n b n=(2n﹣1)•2n+1+2对一切正整数n都成立?并证明你的结论.(Ⅲ)设=(n∈N*),且数列{C n}的前n项和为T n,试比较T n与的大小.【解答】解:(1)由S n=+a n﹣得S n+1=,相减并整理得(a n+1+a n)(a n+1﹣a n﹣2)=0又由于a n+1+a n>0,则a n+1=a n+2,故{a n}是等差数列.∵+a12﹣,所以a1=3故a n=2n+1 …4分(2)当n=1,2时,a1b1=22(2×1﹣1)+2=6,a1b1+a2b2=23(2×2﹣1)+2=26,可解得b1=2,b2=4,猜想b n=2n,使a1b1+a2b2+…+a n b n=2n+1(2n﹣1)+2成立.证明:3•2+5•22+7•23+…+(2n+1)2n=2n+1(2n﹣1)+2恒成立.令S=3•2+5•22+7•23+…+(2n+1)2n①2S=3•22+5•23+7•24+…+(2n+1)2n+1②②﹣①得:S=(2n+1)2n+1﹣2•2n+1+2=(2n﹣1)2n+1+2,故存在等比数列{b n}符合题意…8分(3)C n=<=()则T n=c1+c2+…+c n(+…+)=(﹣)<故…12分4.已知数列{a n}中,a2=2,前n项和为.(I)证明数列{a n+1﹣a n}是等差数列,并求出数列{a n}的通项公式;(II)设,数列{b n}的前n项和为T n,求使不等式对一切n∈N*都成立的最大正整数k的值.【解答】解:(I)由题意,当.a2=2,则a2﹣a1=1.当,,则,则(n﹣1)a n+1﹣2(n﹣1)a n+(n﹣1)a n﹣1=0,即a n+1﹣2a n+a n﹣1=0,即a n+1﹣a n=a n﹣a n﹣1.则数列{a n+1﹣a n}是首项为1,公差为0的等差数列.…(6分)从而a n﹣a n﹣1=1,则数列{a n}是首项为1,公差为1的等差数列.所以,a n=n(n∈N*)…(8分)(II)…(10分)所以,=.…(12分)由于.因此T n单调递增,故T n的最小值为…(14分)令,所以k的最大值为18.…(16分)5.已知数列{a n}的前n项和,数列{b n}的前n项和为B n.(1)求数列{a n}的通项公式;(2)设,求数列{c n}的前n项和C n;(3)证明:.【解答】(本小题满分13分)解:(I)当n≥2时,,,两式相减:a n=A n﹣A n﹣1=2n﹣1;当n=1时,a1=A1=1,也适合a n=2n﹣1,故数列{a n}的通项公式为a n=2n﹣1;.…(3分)(II)由题意知:,C n=c1+c2+…+c n,,,两式相减可得:,…(4分)即,,.…(7分)(III),显然,即b n>2,B n=b1+b2+…+b n>2n;…(9分)另一方面,,即,,…,,,即:2n<B n<2n+2.…(13分)6.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x有两个相等的实数根.(1)求f(x)的解析式;(2)求函数在区间[﹣3,3]上的最大值和最小值;(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,请说明理由.【解答】解:(1)∵f(2)=0∴4a+2b=0 ①又方程f(x)=x有等根,即ax2+bx﹣x=0的判别式为零∴(b﹣1)2=0∴b=1代入①a=﹣∴f(x)=(2)∴函数的对称轴为x=1∴当x=1时,函数取得最大值为;当x=﹣3时,函数取得最小值为;(3)∵,f(x)的定义域和值域分别为[m,n]和[2m,2n],∴∴而f(x)=的对称轴为x=1,∴当n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则即∴∵m<n≤.∴m=﹣2,n=0,这时,定义域为[﹣2,0],值域为[﹣4,0].由以上知满足条件的m,n存在,m=﹣2,n=0.7.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似地表示为:y=,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(Ⅰ)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【解答】解:(Ⅰ)当x∈[200,300)时,该项目获利为S,则S=200x﹣(x2﹣200x+80000)=﹣(x﹣400)2,∴当x∈[200,300)时,S<0,因此,该项目不会获利当x=300时,S取得最大值﹣5000,所以政府每月至少需要补贴5000元才能使该项目不亏损;(Ⅱ)由题意可知,生活垃圾每吨的平均处理成本为:=.当x∈[120,144)时,=(x﹣120)2+240所以当x=120时,取得最小值240;当x∈[144,500)时,=x+﹣200≥2﹣200=300当且仅当x=,即x=400时,取得最小值300因为240<300,所以当每月处理量为120吨时,才能使每吨的平均处理成本最低.8.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.(1)求AC边所在直线方程;(2)求顶点C的坐标;(3)求直线BC的方程.【解答】解:(1)由AC边上的高BH所在直线方程为x﹣2y﹣5=0可知k AC=﹣2,又A(5,1),AC边所在直线方程为y﹣1=﹣2(x﹣5),即AC边所在直线方程为2x+y﹣11=0.(2)由AC边所在直线方程为2x+y﹣11=0,AB边上的中线CM所在直线方程为2x﹣y﹣5=0,由,解得x=4,y=3,所以顶点C的坐标为(4,3).(3)设点B的坐标为(x0,y0),且点B与点A关于直线2x﹣y﹣5=0对称,∴2•﹣﹣5=0,又点B在直线BH上,∴x0﹣2y0﹣5=0,∴x0=﹣1,y0=﹣3,所以,由两点式,得直线BC的方程为6x﹣5y﹣9=0.9.设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+5S n=8S n+1+S n﹣1.+2﹣a n}为等比数列;(3)求数列{a n}的通项公式.(1)求a4的值;(2)证明:{a n+1【分析】(1)直接在数列递推式中取n=2,求得;+5S n=8S n+1+S n﹣1(n≥2),变形得到4a n+2+a n=4a n+1(n≥2),进一步得到(2)由4S n+2,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n}的通项公式.10.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍,横坐标不变,再将所得到的图象向右平移个单位长度.(1)求函数f(x)的解析式,并求其图象的对称轴方程;(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β(i)求实数m的取值范围;(ii)证明:cos(α﹣β)=﹣1.【分析】(1)由函数y=Asin(ωx+φ)的图象变换规律可得:f(x)=2sinx,从而可求对称轴方程.(2)(i)由三角函数中的恒等变换应用化简解析式可得f(x)+g(x)=sin(x+φ)(其中sinφ=,cosφ=),从而可求||<1,即可得解.(ii)由题意可得sin(α+φ)=,sin(β+φ)=.当1≤m<时,可求α﹣β=π﹣2(β+φ),当﹣<m<0时,可求α﹣β=3π﹣2(β+φ),由cos(α﹣β)=2sin2(β+φ)﹣1,从而得证.高一下期数学期末培优题组三(含答案)(必修4:三角恒等变换,必修5:解三角形,数列,不等式;必修2:直线方程,圆的方程)1.在△ABC中,角A,B,C对边分别是a,b,c,满足.(1)求角A的大小;(2)求sinA•sinB•sinC的最大值,并求取得最大值时角B,C的大小.【解答】解:(1)∵=cbcosA,.∴2bccosA=a2﹣(b+c)2,展开为:2bccosA=a2﹣b2﹣c2﹣2bc,∴2bccosA=﹣2bccosA﹣2bc,化为cosA=﹣,∵A∈(0,π).∴.(2)∵,∴,.∴sinA•sinB•sinC===﹣==﹣=﹣,∵.∴,当=时,即时,sinA•sinB•sinC取得最大值,此时B=C=.2.在△ABC中,角A、B、C所对的边分别是a、b、c,已知a+b=m c(m>0).(1)当m=3时,①若A=B,求sinC;②若B=,求sin(A﹣C)的值.(2)当m=2时,若c=2,求△ABC面积的最大值.【解答】解:(1)①△ABC中,m=3时,a+b=c,∴sinA+sinB=sinC;又A=B,∴A+B=2A=2B=π﹣C,∴A=B=﹣,∴sin(﹣)+sin(﹣)=sinC,∴2cos=2sin cos,∴sin=,∴cos=,∴sinC=2sin cos=2××=;②∵B=,∴A+C=π﹣B=;又∵sinA+sinB=sinC,∴sinA+=sinC,∴sinA=sinC﹣;又sinA=sin(﹣C)=sin cosC﹣cos sinC=cosC+sinC,∴cosC+sinC=sinC﹣,∴cosC﹣sinC=﹣,∴sinC﹣cosC=,即sin(C﹣)=;∴C=,A=﹣=,∴sin(A﹣C)=sin(﹣)=sin=;(2)当m=c=2时,a+b=c=2,∴a2+2ab+b2=8;∴4ab≤a2+b2+2ab=8,∴ab≤2,此时a=b=;△ABC是等腰直角三角形,其面积最大值为S=ab=××=1.3.已知数列{a n}的前n项和S n=﹣a n﹣()n﹣1+2(n为正整数).(1)令b n=2n a n,求证数列{b n}是等差数列;(2)求数列{a n}的通项公式;(3)令c n=a n,T n=c1+c2+…+c n.是否存在最小的正整数m,使得对于n∈N×都有T n<2m ﹣4恒成立,若存在,求出m的值;不存在,请说明理由.【解答】(1)证明:∵S n=﹣a n﹣()n﹣1+2,∴S n=﹣a n+1﹣()n+2,+1S n+1﹣S n=a n+1=﹣a n+1+a n+()n,2a n+1=a n+()n,2n+1a n+1=2n a n+1,∵b n=2n a n,∴b n+1=b n+1,∴数列{b n}是等差数列.(2)解:∵S n=﹣a n﹣()n﹣1+2,∴a1=S1=﹣a1﹣()0+2,解得,又b n=2n a n,b n+1=b n+1,∴b1=2×=1,∴b n=2n a n=n,∴.(3)解:∵c n=a n=,∴T n=c1+c2+…+c n=,①2T n=2+,②②﹣①,得:T n=2++…+﹣=2+﹣=3﹣﹣=3﹣.假设存在最小的正整数m,使得对于n∈N×都有T n<3≤2m﹣4恒成立,则2m﹣4≥3,解得m≥,∴最小的正整数m=4.4.已知正项数列{a n}的前n项和为S n,数列{a n}满足,2S n=a n(a n+1).(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为A n,求证:对任意正整数n,都有A n<成立;(3)数列{b n}满足b n=()n a n,它的前n项和为T n,若存在正整数n,使得不等式(﹣2)n﹣1λ<Tn+﹣2n﹣1成立,求实数λ的取值范围.【解答】解:(1),当n≥2时,,两式相减得:,所以(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0.因为数列{a n}为正项数列,故a n+a n﹣1≠0,也即a n﹣a n﹣1=1,所以数列{a n}为以1为首项1为公差的等差数列,故通项公式为a n=n,n∈N*.(2)=,所以对任意正整数n,都有成立.(3)易知,则,①,,②①﹣②可得:.故,所以不等式成立,若n为偶数,则,所以.设,则y=﹣2t+t2+1=(t﹣1)2在单调递减,故当时,,所以;若n为奇数,则,所以.设,则y=2t﹣t2﹣1=﹣(t﹣1)2在(0,1]单调递增,故当t=1时,y max=0,所以λ<0.综上所述,λ的取值范围λ<0或.5.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[﹣1,4]上的最大值是12.(1)求f(x)的解析式;(2)设函数f(x)在x∈[t,t+1]上的最小值为g(t),求g(t)的表达式.【解答】解:(1)f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x﹣5)(a>0),可得在区间f(x)在区间[﹣1,]上函数是减函数,区间[,4]上函数是增函数∵f(﹣1)=6a,f(4)=﹣4a,f(﹣1)>f(4)∴f(x)在区间[﹣1,4]上的最大值是f(﹣1)=6a=12,得a=2.因此,函数的表达式为f(x)=2x(x﹣5)=2x2﹣10x(x∈R).(2)由(1)得f(x)=2(x﹣)2﹣,函数图象的开口向上,对称轴为x=①当t+1时,即t时,f(x)在[t,t+1]上单调递减,此时f(x)的最小值g(t)=f(t+1)=2(t+1)2﹣10(t+1)=2t2﹣6t﹣8;②当t时,f(x)在[t,t+1]上单调递增,此时f(x)的最小值g(t)=f(t)=2t2﹣10t;③当<t<时,函数y=f(x)在对称轴处取得最小值此时,g(t)=f()=﹣综上所述,得g(t)的表达式为:g(t)=6.阅读:已知a、b∈(0,+∞),a+b=1,求y=+的最小值.解法如下:y=+=(+)(a+b)=++3≥3+2,当且仅当=,即a=﹣1,b=2﹣时取到等号,则y=+的最小值为3+2.应用上述解法,求解下列问题:(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=++的最小值;(2)已知x∈(0,),求函数y=+的最小值;(3)已知正数a1、a2、a3,…,a n,a1+a2+a3+…+a n=1,求证:S=+++…+≥.【解答】解(1)∵a+b+c=1,∴y=++=(a+b+c)=3+++2=9,当且仅当a=b=c=时取等号.即的最小值为9.(2)==10+2,而,∴=8,当且仅当,即∈时取到等号,则y≥18,∴函数y=的最小值为18.(3)∵a1+a2+a3+…+a n=1,∴2S=(+++…+)[(a1+a2)+(a2+a3)+…+(a n+a1)]=+++…+++(2a1a2+2a2a3+…+2a n a1)==1.当且仅当a1=a2=…=a n=时取到等号,则.7.已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.(1)求证:b+c=﹣1;(2)求证:c≥3;(3)若函数f(sinα)的最大值为8,求b、c的值.【解答】解:(1)证明:∵|sinα|≤1且f(sinα)≥0恒成立,可得f(1)≥0.又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0,∴f(1)=0,∴1+b+c=0,∴b+c=﹣1.(2)证明:∵b+c=﹣1,∴b=﹣1﹣c,∴f(x)=x2﹣(1+c)x+c=(x﹣1)(x﹣c).又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立∴x﹣c≤0,即c≥x恒成立.∴c≥3.(3)∵f(sinα)=sin2α﹣(1+c)sinα+c=(sinα﹣)2+c﹣()2,∵∴当sinα=﹣1时,f(sinα)的最大值为1﹣b+c.由1﹣b+c=8与b+c=﹣1联立,可得b=﹣4,c=3.即b=﹣4,c=3.8.已知直线l:kx﹣y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.【分析】(1)直线l的方程可化为y=k(x+2)+1,直线l过定点(﹣2,1).(2)要使直线l不经过第四象限,则直线的斜率和直线在y轴上的截距都是非负数,解出k 的取值范围.(3)先求出直线在两个坐标轴上的截距,代入三角形的面积公式,再使用基本不等式可求得面积的最小值.9.已知直线l过点P(4,1),且与x,y的正半轴交于点A,B,其中O为坐标原点.(1)求直线l的方程,使△OAB的面积最小;(2)求直线l的方程,是直线在两坐标上的截距之和最小;(3)求|PA|•|PB|最小时,直线l的方程.【分析】(1)设A(a,0),B(0,b),a,b>0.则直线l的方程为:,由于直线l 过点P(4,1),可得=1.利用基本不等式的性质即可得出.(2)由(1)可得:=1,a,b>0.a+b==5+,再利用基本不等式的性质即可得出.(3)由=1,a,b>0.可得b=>0,(a>4).设t=|PA|•|PB|,则t2=[(a﹣4)2+1]•[16+(b﹣1)2]=[(a﹣4)2+1]•,设(a﹣4)2=m>0,则t2==32+,利用基本不等式的性质即可得出.。

人教A版2019必修第一册高一数学尖子生培优综合测试一(含详细解析)

人教A版2019必修第一册高一数学尖子生培优综合测试一(含详细解析)

人教A 版2019必修第一册高一数学尖子生培优综合测试一(原卷版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(2020·内蒙古自治区高三二模(文))设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =()A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-2.(2020·绥德中学高二期末(文))设,a b ∈R ,则“2()0a b a -<”是“a b <”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(2020·遵义市南白中学高三其他(理))已知3cos 45x π⎛⎫-= ⎪⎝⎭,则sin 2x =()A .2425B .2425-C .725D .725-4.(2020·高青一中高一月考)已知,αβ是一元二次方程2430x x --=的两实根,则代数式(3)(3)a β--的值是()A .7B .1C .5D .6-5.(2020·四川省宜宾市第四中学校高二月考(理))某单位在国家科研部门的支持下,进行技术攻关,采用新工艺把二氧化碳转化为一种可利用的化工产品已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,为使每吨的平均处理成本最低,该单位每月处理量应为().A .200吨B .300吨C .400吨D .600吨6.(2020·江苏省高一期中)定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为()A .1B .2C .3D .127.(2020·河北省衡水中学高三月考(理))直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是()A .(0,]4πB .(0,]2πC .3(0,]4πD .3(0,]2π8.(2020闽侯县第六中学高三月考(文))直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 的图像上;(2)点A ,B 关于原点对称,则称点对(,)A B 是函数()f x 的一个“姊妹对点”,(,)A B 与(,)B A 可看作一个“姊妹对点”,已知函数22(0)(){2(0)xx x x f x x e +<=≥,则()f x 的“姊妹对点”有()A .1个B .2个C .3个D .4个二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为()A .12B .1C .0D .以上选项都不对10.(2020·湖南省衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是()A .11b b a a +>+B .11a b a b+>+C .11a b b a+>+D .22a b aa b b+>+11.(2020·福建省宁化第一中学高一月考)已知函数1()cos cos 632f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是()A .()f x 的最小正周期为πB .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心D .当0,6x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为234+12.(2020·山东省高三一模)已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有()()()42f x f x f +=+成立,当[)0,2x ∈时,()21x f x =-,给出下列结论,其中正确的是()A .()20f =B .点()4,0是函数()y f x =的图象的一个对称中心C .函数()y f x =在[]6,2--上单调递增D .函数()y f x =在[]6,6-上有3个零点三、填空题:本题共4小题,每小题5分,共20分.13.(2020·辽宁省沈阳铁路实验中学高一期中)已知函数25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩则[(2)]f f -的值是________.14.(2020·高唐县第一中学高一月考)已知210a +<,则关于x 的不等式22450x ax a --<的解集是________.15.(2020·广东省高一期末)已知π3π24βα<<<,()12cos 13αβ-=,()3sin 5αβ+=-,则cos 2=α______.16.(2020·四川省宜宾市第四中学校高一期中)关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;②函数()f x 的图象关于直线1x =对称;③函数()f x 的定义域为()1,+∞;④函数()f x 的值域为R .其中所有正确命题的序号是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)17.(2020·黄冈市黄州区第一中学高二月考)已知集合{}22|(22)20A x x a x a a =--+-≤,{}2|540B x x x =-+≤.(1)若AB =∅,求a 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求a 的取值范围.18.(2020·江西省南昌二中高二月考(理))函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =.(1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并用定义证明;(3)解关于t 的不等式(1)()0f t f t -+<.19.(2020·北京高二期末)已知函数()()log 1a f x x =+,()()log 1a g x x =-(0a >,且1a ≠).(1)当2a =时,若()0f x >,求x 的取值范围;(2)设函数()()()F x f x g x =-,试判断()F x 的奇偶性,并说明理由.20.(2020·浙江省高三其他)已知函数()()2523sin 2cos 0cos 32f x x x x ωωωωπ⎛⎫=+-+> ⎪⎝⎭,且()f x 图像上相邻两个最低点的距离为π.(1)求ω的值以及()f x 的单调递减区间;(2)若()513f α=且0,2απ⎡∈⎤⎢⎥⎣⎦,求cos 2α的值.21.(12分)(2020·武功县普集高级中学高一月考)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π56π43π116π73π176πy1-1311-13(1)根据表格提供的数据求函数()f x 的一个解析式;(2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m =恰有两个不同的解,求实数m 的取值范围.22.(12分)(2020·安徽省六安一中高一月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?人教A 版2019必修第一册高一数学尖子生培优综合测试一(解析版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(2020·内蒙古自治区高三二模(文))设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =()A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-【答案】B【解析】由21x <得:11x -<<,所以{}0A =,因此{}1,1,2U A =-ð,故答案为B 2.(2020·绥德中学高二期末(文))设,a b ∈R ,则“2()0a b a -<”是“a b <”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由2()0a b a -<一定可得出a b <;但反过来,由a b <不一定得出2()0a b a -<,如0a =,故选A.3.(2020·遵义市南白中学高三其他(理))已知3cos 45x π⎛⎫-= ⎪⎝⎭,则sin 2x =()A .2425B .2425-C .725D .725-【答案】D 【解析】由3cos 45x π⎛⎫-= ⎪⎝⎭得223cos sin 225x x +=,∴()2219sin sin 2cos 225x x x ++=,即181sin 225x +=,∴7sin 225x =-,故选:D.4.(2020·高青一中高一月考)已知,αβ是一元二次方程2430x x --=的两实根,则代数式(3)(3)a β--的值是()A .7B .1C .5D .6-【答案】D【解析】∵,a β是一元二次方程2430x x --=的两实根,∴4,3αβαβ+==-,∴(3)(3)3()933496a βαβαβ--=-++=--⨯+=-.故选:D5.(2020·四川省宜宾市第四中学校高二月考(理))某单位在国家科研部门的支持下,进行技术攻关,采用新工艺把二氧化碳转化为一种可利用的化工产品已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,为使每吨的平均处理成本最低,该单位每月处理量应为().A .200吨B .300吨C .400吨D .600吨【答案】C【解析】由题意可知,二氧化碳每吨的平均处理成本为180000180000200220020022y x x x x x=+-⋅-= ,当且仅当1800002x x =,即400x =时,等号成立,故该单位每月处理量为400吨时,可使每旽的平均处理成本最低.故选;C6.(2020·江苏省高一期中)定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为()A .1B .2C .3D .12【答案】A【解析】若函数2x y =单调,则[],a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,则1,0a b =-=,此时区间长度是1,所以区间[],a b 的长度的最小值是1,若函数在区间[],a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=,此时区间长度是()112--=,则区间[],a b 的长度的最大值和最小值的差是211-=.故选:A7.(2020·河北省衡水中学高三月考(理))直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是()A .(0,]4πB .(0,]2πC .3(0,]4πD .3(0,]2π【答案】B【解析】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12ω=,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫-⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆- ⎪⎝⎭,解得02m π<≤.故选:B8.(2020闽侯县第六中学高三月考(文))直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 的图像上;(2)点A ,B 关于原点对称,则称点对(,)A B 是函数()f x 的一个“姊妹对点”,(,)A B 与(,)B A 可看作一个“姊妹对点”,已知函数22(0)(){2(0)xx x x f x x e +<=≥,则()f x 的“姊妹对点”有()A .1个B .2个C .3个D .4个【答案】B【解析】根据题意可知,“姊妹对点”满足两点:都有函数图象上,且关于坐标原点对称,可作出函数22(0)y x x x =+<的图象关于原点对称的图象,看它与函数2(0)x y x e=≥交点个数即可,如图所示,当1x =时,201x e<<,观察图象可得:它们由两个交点,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为()A .12B .1C .0D .以上选项都不对【答案】ABC 【解析】集合{|1}A x ax ==,{0B =,1,2},A B ⊆,A ∴=∅或{1}A =或{2}A =,∴1a不存在,11a =,12a=,解得1a =,或1a =,或12a =.故选:ABC .10.(2020·湖南省衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是()A .11b b a a +>+B .11a b a b+>+C .11a b b a+>+D .22a b aa b b+>+【答案】AD 【解析】0a b >>,则()()()()1110111b a a b b b b a a a a a a a +-++--==<+++,11b b a a +∴>+一定不成立;()1111a b a b a b ab ⎛⎫+--=-- ⎪⎝⎭,当1ab >时,110a b a b +-->,故11a b a b +>+可能成立;()11110a b a b b a ab ⎛⎫+--=-+> ⎪⎝⎭,故11a b b a +>+恒成立;()222022a b a b a a b b b a b +--=<++,故22a b aa b b+>+一定不成立.故选AD.11.(2020·福建省宁化第一中学高一月考)已知函数1()cos cos 632f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭,则以下说法中正确的是()A .()f x 的最小正周期为πB .()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C .51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心D .当0,6x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为234+【答案】ABC【解析】依题意()11cos sin sin cos 6232662f x x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--+=+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111sin 2sin 2232232x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为22ππ=,A 选项正确.由32232x πππ≤+≤,解得71212x ππ≤≤,所以()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确.51511sin 623322f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,所以51,62π⎛⎫ ⎪⎝⎭是()f x 的一个对称中心,C 选项正确.由于1123sin 11226324f πππ+⎛⎫⎛⎫=++=>⎪ ⎪⎝⎭⎝⎭,所以D 选项错误.故选:ABC 12.(2020·山东省高三一模)已知函数()y f x =是R 上的奇函数,对于任意x ∈R ,都有()()()42f x f x f +=+成立,当[)0,2x ∈时,()21x f x =-,给出下列结论,其中正确的是()A .()20f =B .点()4,0是函数()y f x =的图象的一个对称中心C .函数()y f x =在[]6,2--上单调递增D .函数()y f x =在[]6,6-上有3个零点【答案】AB【解析】在()()()42f x f x f +=+中,令2x =-,得()20f -=,又函数()y f x =是R 上的奇函数,所以()0(2)2f f =-=-,()()4f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以()4,0也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[]6,2--上不具单调性,故C 不正确;函数()y f x =在[]6,6-上有7个零点,故D 不正确.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13.(2020·辽宁省沈阳铁路实验中学高一期中)已知函数25(0),()8(0).x x f x x x ⎧+≤⎪=⎨+>⎪⎩则[(2)]f f -的值是________.【答案】11【解析】由25(0)()8(0)x x f x x x ⎧+≤⎪=⎨+>⎪⎩,所以()[(2)]99811f f f -==+=.故答案为:1114.(2020·高唐县第一中学高一月考)已知210a +<,则关于x 的不等式22450x ax a --<的解集是________.【答案】()5,a a -【解析】关于x 的不等式22450x ax a --<等价于()()50x a x a -+<,由210a +<,得5a a <-,所以不等式的解集为(5,)a a -.故答案为:(5,)a a -..15.(2020·广东省高一期末)已知π3π24βα<<<,()12cos 13αβ-=,()3sin 5αβ+=-,则cos 2=α______.【答案】3365-【解析】因为3,24ππβα<<<所以3,2ππαβ<+<0,4παβ<-<又因为123cos()sin()135αβαβ-=+=-,,所以54sin()cos()135αβαβ-=+=-,,所以cos 2cos[()()]cos()cos()sin()sin()ααβαβαβαβαβαβ=-++=-+--+=124533313513565⎛⎫⎛⎫⨯--⨯-=- ⎪ ⎪⎝⎭⎝⎭故答案为:3365-16.(2020·四川省宜宾市第四中学校高一期中)关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;②函数()f x 的图象关于直线1x =对称;③函数()f x 的定义域为()1,+∞;④函数()f x 的值域为R .其中所有正确命题的序号是________.【答案】①②④【解析】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以②正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以③不正确;函数()12log 1f x x =-,函数的值域是实数集,所以④正确.故答案为:①②④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)17.(2020·黄冈市黄州区第一中学高二月考)已知集合{}22|(22)20A x x a x a a =--+-≤,{}2|540B x x x =-+≤.(1)若AB =∅,求a 的取值范围;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求a 的取值范围.【解析】{}22|(22)20{|2}A x x a x a a x a x a =--+-≤=-≤≤{}2|540{|14}B x x x x x =-+≤=≤≤(3分)(1)因为AB =∅,所以24a ->或1a <,即6a >或1a <.所以a 的取值范围是(,1)(6,)-∞+∞;(6分)(2)因为“x A ∈”是“x B ∈”的充分不必要条件,所以A B Ü,则214a a -≥⎧⎨≤⎩,解得34a ≤≤.所以a 的取值范围是[]3,4.(9分)18.(2020·江西省南昌二中高二月考(理))函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =.(1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并用定义证明;(3)解关于t 的不等式(1)()0f t f t -+<.【解析】(1)由函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数知(0)04b f -==所以解得0b =,经检验,0b =时2()4axf x x=-是(2,2)-上的奇函数,满足题意(3分)又21(1)413a f ==-解得1a =故2()4xf x x =-,(2,2)x ∈-.(4分)(2)()f x 在(2,2)-上为增函数.证明如下:在(2,2)-任取12,x x 且12x x <则()()()()()()211221212222212144444x x x x x x f x f x x x x x -+-=-=----,(6分)因为210x x ->,1240x x +>,2140x ->,2240x ->,所以()()()()()()2112212122222121404444x x x x x x f x f x x x x x -+-=-=>----即()()21f x f x >,所以()f x 在(2,2)-上为增函数.(8分)(3)因为()f x 为奇函数所以()()f x f x -=-不等式(1)()0f t f t -+<可化为(1)()f t f t -<-,即(1)()f t f t -<-又()f x 在()2,2-上是增函数,所以121222t tt t -<-⎧⎪-<-<⎨⎪-<-<⎩,解得112t -<<所以关于t 的不等式解集为11,2⎛⎫- ⎪⎝⎭(12分)19.(2020·北京高二期末)已知函数()()log 1a f x x =+,()()log 1a g x x =-(0a >,且1a ≠).(1)当2a =时,若()0f x >,求x 的取值范围;(2)设函数()()()F x f x g x =-,试判断()F x 的奇偶性,并说明理由.【解析】(1)2a =时,()()2log 1f x x =+,若()0f x >,即()2log 10x +>,则110x x +>⇒>.(6分)(2)由题101110x x x +>⎧∴-<<⎨->⎩,关于原点对称又()()()()()()1log 1log 1log 111a a ax F x f x g x x x x x+=-=+--=-<<-,()()()111log log log 111aa a x x xF x F x x x x-+-+-===-=---+-,∴()F x 为奇函数.(12)20.(2020·浙江省高三其他)已知函数()()2523sin 2cos 0cos 32f x x x x ωωωωπ⎛⎫=+-+> ⎪⎝⎭,且()f x 图像上相邻两个最低点的距离为π.(1)求ω的值以及()f x 的单调递减区间;(2)若()513f α=且0,2απ⎡∈⎤⎢⎥⎣⎦,求cos 2α的值.【解析】(1)()()523sin cos cossin sin 1cos 2332f x x x x x ππωωωω⎛⎫=--++ ⎪⎝⎭233sin 23sin cos 222x x x ωωω=--+31cos 23sin 23cos 2222x x x ωωω-=-⨯-+31sin 2cos 2sin 2226x x x πωωω⎛⎫=+=+ ⎪⎝⎭.由于()f x 图像上相邻两个最低点的距离为π,(3分)所以22122T ππππωωωω====⇒=.所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.由3222262k x k πππππ+≤+≤+,解得263k x k ππππ+≤≤+,所以()f x 的单调减区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦(k Z ∈).(6分)(2)由(1)得()sin 26f x x π⎛⎫+⎝=⎪⎭.依题意,0,2απ⎡∈⎤⎢⎥⎣⎦,72,666πππα⎡⎤+∈⎢⎥⎣⎦,而()51sin 20,6132f παα⎛⎫⎛⎫=+=∈ ⎪ ⎪⎝⎭⎝⎭,所以52,66ππαπ⎛⎫+∈ ⎪⎝⎭,所以212cos 21sin 26613ππαα⎛⎫⎛⎫+=--+=- ⎪ ⎪⎝⎭⎝⎭.所以cos 2cos 2cos 2cos sin 2sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦12351512313213226-⎛⎫=-⨯+⨯=⎪⎝⎭.(12分)21.(12分)(2020·武功县普集高级中学高一月考)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π56π43π116π73π176πy1-1311-13(1)根据表格提供的数据求函数()f x 的一个解析式;(2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m =恰有两个不同的解,求实数m 的取值范围.【解析】(1)绘制函数图象如图所示:设()f x 的最小正周期为T ,得11266T πππ=-=.由2T πω=得1ω=.(3分)又31B A B A +=⎧⎨-=-⎩解得21A B =⎧⎨=⎩,令5262k ππωϕπ⋅+=+,即5262k ππϕπ+=+,k Z ∈,据此可得:23k πϕπ=-,又2πϕ<,令0k =可得3πϕ=-.所以函数的解析式为()213f x sin x π⎛⎫=-+ ⎪⎝⎭.(6分)(2)因为函数()213y f kx sin kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >,所以3k =.令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦.sint s =在2,33ππ⎡⎤⎢⎥⎣⎦-上有两个不同的解,等价于函数sin y t =与y s =的图象有两个不同的交点,3,12s ⎡⎫∴∈⎪⎢⎪⎣⎭,(9分)所以方程()f kx m =在0,3x π⎡⎤∈⎢⎥⎣⎦时恰好有两个不同的解的条件是)31,3m ⎡∈+⎣,即实数m 的取值范围是)31,3⎡+⎣.(12分)22.(12分)(2020·安徽省六安一中高一月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?22.【解析】(1)依题意设()12,()f x k x g x k x ==,1211(1),(1)82f k g k ====,()11,(),(0)82f x xg x x x ==≥;(6分)(2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,11(20)()(20)82y f x g x x x=-+=-+21(2)3,0208x x =--+≤≤,当2,4x x ==万元时,收益最大max 3y =万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.(12分)。

【解析版】数学高一下期末测试卷(培优)(1)

【解析版】数学高一下期末测试卷(培优)(1)

一、选择题1.(0分)[ID :12716]已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.(0分)[ID :12708]某空间几何体的三视图如图所示,则该几何体的体积为( )A .73B .8π3- C .83D .7π3- 3.(0分)[ID :12698]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π4.(0分)[ID :12689]函数()23sin 23f x x π⎛⎫=- ⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦B .7,1212ππ⎡⎤⎢⎥⎣⎦ C .,22ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦ 5.(0分)[ID :12687]C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )A .1b =B .a b ⊥C .1a b ⋅=D .()4C a b +⊥B6.(0分)[ID :12676]已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D .11,28⎛⎫-- ⎪⎝⎭ 7.(0分)[ID :12675]要得到函数223cos sin 23y x x =+-的图象,只需将函数2sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 8.(0分)[ID :12629]设正项等差数列{a n }的前n 项和为S n ,若S 2019=6057,则1a 2+4a 2018的最小值为A .1B .23C .136D .329.(0分)[ID :12668]已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( ) A .58-B .58C .78-D .7810.(0分)[ID :12650]下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④11.(0分)[ID :12647]与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是A .()()22112x y +++=B .()()22114x y -++=C .()()22112x y -++=D .()()22114x y +++=12.(0分)[ID :12636]如图,在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .B .C .19D .13.(0分)[ID :12726]执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15814.(0分)[ID :12711]设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,515.(0分)[ID :12657]函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .0二、填空题16.(0分)[ID :12828]已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.17.(0分)[ID :12820]已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 18.(0分)[ID :12814]已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.19.(0分)[ID :12796]直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .20.(0分)[ID :12786]函数sin 22y x x =的图象可由函数sin 22y x x =的图象至少向右平移_______个长度单位得到。

高一数学培优纠偏专项训练1答案

高一数学培优纠偏专项训练1答案

高一数学培优纠偏(1)答案1.B 【分析】根据已知中,x∈R},判断a,b 的值与a,b 与集合A 的关系,可得a ∉b ∈A,故选B.【点睛】本题考查的知识点是元素与集合关系的判断,判断一个元素是否属于一个集合,关键2.C【分析】①0是元素,不是集合;②由元素无序性判断;③由元素互异性判断;④集合{}|45x x <<是无限数集【详解】①中“0”可以表示元素,不能表示集合,而“{0}”可以表示集合,故①错误;根据集合中元素的无序性可知②正确;根据集合中元素的互异性可知③错误;④中集合不能用列举法表示,原因是集合中有无数个元素,不能一一列举,故选:C【点睛】本题考查列举法表示集合,考查元素的无序性和互异性,考查描述法表示集合3.B【分析】由5∈{1,m+2,m 2+4},得m+2=5或m 2+4=5,再由集合中元素的互异性,能求出m 的取值集合.【详解】因为5∈{1,m +2,m 2+4},所以m +2=5或m 2+4=5,即m =3或m =±1.当m =3时,M ={1,5,13};当m =1时,M ={1,3,5};当m =-1时,不满足互异性.所以m 的值为3或1.【点睛】本题考查实数的取值集合的求法,是基础题,解题时要认真审题,注意集合性质的合理运用.4.∈∉∉∈∉∈【分析】N 为自然数集,Q 为有理数,Z 为整数集,R 为实数集,判断元素与集合之间的关系用相应的符号填写即可.【详解】(1)N 为自然数集,2是自然数,所以2N ∈;(2)Q 表示有理数,3为无理数,所以3Q ∉;(3)Z 为整数集,13是分数,所以13Z ∉;(4)R 表示实数集,所以3.14R ∈;(5)N 为自然数集,-3不是自然数,所以3N -∉;(6)Q 3=Q .【点睛】本题考查元素与集合之间的关系及常用数集,属于基础题.5.3或-1【分析】根据3∈A 即可得出a 2-2a =3,解方程得到a 即可.【详解】∵3∈A ,A ={1,2,a 2-2a },∴a 2-2a =3,解得a =-1或3,故答案为:-1或3.【点睛】本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.6.(3,6)-【分析】不等式左边分解因式,利用二次不等式的解法直接求解即可.【详解】原不等式等价于(6)(3)0x x -+<,故原不等式的解集为(3,6)-.【点睛】本题主要考查了一元二次不等式的解法,属于容易题,7.2,13⎛⎫- ⎪⎝⎭【分析】由题意结合一元二次不等式的解法即可得解.【详解】由2320x x -++>得()()2321320x x x x --=-+<,所以不等式2320x x -++>的解集为2,13⎛⎫- ⎪⎝⎭,故答案为:2,13⎛⎫- ⎪⎝⎭.【点睛】本题考查了一元二次不等式的求解,考查了运算求解能力,属于基础题.8.10,2⎛⎫ ⎪⎝⎭【分析】将分式不等式转化为(12)00x x x ->⎧⎨≠⎩,由一元二次不等式的解法求解即可.【详解】由11220x x x --=>,则(12)00x x x ->⎧⎨≠⎩,解得102x <<,故答案为:10,2⎛⎫ ⎪⎝⎭【点睛】本题主要考查了解分式不等式,涉及了一元二次不等式的解法,属于中档题.9.112-【解析】试题分析:因为不等式210ax bx +->的解集为{|34}x x <<,所以3,4是方程210ax bx +-=两根,故134a ⨯=-,解得112a =-【点睛】不等式与方程之间的关系.10.1,a a ⎛⎫ ⎪⎝⎭【分析】利用一元二次不等式的解集与相应的一元二次方程的实数根的关系即可得出.【详解】解:01a << ,∴1a a <,∴不等式1(0)(x a x a --<的解集是1}|{x a x a<<.故答案为:1,a a ⎛⎫ ⎪⎝⎭.【点睛】本题考查熟练掌握一元二次不等式的解集与相应的一元二次方程的实数根的关系是解题的关键.11.(Ⅰ)1{|2x x <或1}x >;(Ⅱ)详见解析【分析】把()2110ax a x -++>化简得,()()110x ax -->,然后,对a 进行分类,①0a =,②11a >,③11a <,④1=1a ,分类后逐个进行讨论并求解即可【详解】解:把()2110ax a x -++>化简得,()()110x ax -->,①当0a =时,不等式的解为}{1x x <;②11a >,即10a a-<,得01a <<,∴此时,不等式的解为1x x a ⎧>⎨⎩或}1x <;③11a <,即10a a ->,得1a >或0a <,当1a >时,不等式的解为{1x x >或1x a ⎫<⎬⎭,当0a <时,不等式的解为11x x a ⎧⎫>>⎨⎬⎭⎩,④1=1a,得1a =,此时,()210x ->,解得{x x R ∈且}1x ≠综上所述,当0a <时,不等式的解为11x x a ⎧⎫>>⎨⎬⎭⎩,当0a =时,不等式的解为}{1x x <;当01a <<时,不等式的解为1x x a ⎧>⎨⎩或}1x <,当1a =时,不等式的解为{x x R ∈且}1x ≠;当1a >时,不等式的解为{1x x >或1x a ⎫<⎬⎭【点睛】本题考查不含参数和含参数的一元二次不等式的求解问题;关键是能够根据一元二次不等式和二次函数、一元二次方程之间的关系,分别在参数不同范围的情况下讨论一元二次方程根的大小,从而得到解集;属于难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学培优专题一
---------二次函数
1.【2018豫南九校期末考】已知函数()2
23f x x ax =--在区间[]
1,2上是单调增函数,则
实数a 的取值范围为( )
A .(),1-∞
B .(],1-∞
C .()2,+∞
D .[
)2,+∞
【答案】B
【解析】函数f (x )=x 2
-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.
由图象可知,函数在[a ,+∞)上是单调增函数,因此要使函数f (x )在区间[1,2]上是单调增函数,只需a ≤1,从而a ∈(-∞,1],故选B .
2【2018安徽宣城三校联考】函数()()2
325f x kx k x =+--在[
)1+∞,上单调递增,则k
取值范围是( )
【答案】D
【名师点睛】解答本题时注意以下两点:
(1)对于函数()()2
325f x kx k x =+--,需要通过讨论k 的取值情况来判断函数的类型.
(2)对于二次函数的单调性问题,在解决过程中要依据二次函数图象的开口方向和对称轴与所给区间的位置关系进行分析讨论求解.
3【2018河北保定一模】已知函数()f x 既是二次函数又是幂函数,函数()g x 是R 上的奇函数,函数()()()11
g x h x f x =++,则
()()()()()()()()()201820172016101201620172018h h h h h h h h h +++
+++-+
+-+-+-=
( )
A .0
B .2018
C .4036
D .4037
A .
()0+∞,
B .2
,5
⎛⎤
-∞ ⎥⎝

C .23⎡⎫+∞⎪⎢⎣⎭,
D .25
⎡⎫+∞⎪⎢⎣⎭,
【答案】D
【解析】因为函数()f x 既是二次函数又是幂函数,所以()()()2
211
g x f x x h x x =∴=
++,
因此()()()()()()2
2
0112,0111
1
01
g x g x g h x h x h x x -+-=
++
+==
+=+++,因此
()()()()()()()()()2018201720161012016201720182018214037
h h h h h h h h h ++++++-+-+-+-=⨯+=,故选D .
4.设二次函数()2
2f x ax bx =+-,如果()()12f x f x = ()12x x ≠,则()
12f x x +=_________________ 【答案】-2
所以()212222b b b f x x f a b a a a ⎛⎫⎛⎫
+=-=⋅+⋅--=- ⎪ ⎪⎝⎭⎝⎭
5.(本小题满分12分)已知函数2
()(0)f x ax bx c a =++≠满足(0)1f =,对任意x R ∈,都有1()x f x -≤,且()(1)f x f x =-. 求函数()f x 的解析式;
6.【2018安徽宣城三校联考】(本小题满分10分)已知,a b 为常数,且0a ≠,
()2f x ax bx =+, ()20f =.
(1)若方程()0f x x -=有唯一实数根,求函数()f x 的解析式; (2)当1a =时,求函数()f x 在区间[]
1,2-上的最大值与最小值; 【解析】试题分析:
(1)由()20f =可得2b a =-,故()()
22f x a x x =-,根据方程有唯一实数根,可得判别式为0,求得a 后可得解析式.(2)当1a =时, ()2
2f x x x =-,结合抛物线的开口方
向和对称轴与区间的关系求最值. 试题解析:
()2420f a b =+=,∴2b a =-,∴()()2222f x ax ax a x x =-=-.
(1)∵方程()0f x x -=有唯一实数根,即方程()2
210ax a x -+=有唯一实数根,∴∆=
()
2
210a +=,
解得12a =-
,∴()21
2
f x x x =-+. (2)当1a =时, ()2
2f x x x =-, []1,2x ∈-,∴函数()f x 在[]
1,1-上单调递减,在[]1,2上单调递增.
∴()()min 11f x f ==-,又()()13,20f f -==,∴()()max 13f x f =-=. ∴函数()f x 在区间[]
1,2-上的最大值与最小值分别为3, 1-.。

相关文档
最新文档