第三章 电阻电路的一般分析

合集下载

第03章电阻电路的一般分析

第03章电阻电路的一般分析

例3 列支路电流法方程。
a
解:
I1 7
+ 70V

I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总

u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+

第3章(学1)

第3章(学1)

1 -1 0 0
0 -1 1 0
0 0 1 -1
0 1 0 -1
图的结点和支路的关联性质
3. 降阶矩阵:
把Aa的任一行划掉,余下的(n-1) b矩阵用A表示, 并称为降阶矩阵。
-1 -1 1 0 0 0 0 0 -1 -1 0 1 1 0 0 1 1 0 0 1 0 0 -1 -1
A =
二. 基本回路矩阵
3. 割集矩阵元素 设有向图的结点数为 n,支路数为 b,则该图 的独立割集数为(n-1)。对每个割集编号,并指定 一个割集方向。可得割集矩阵为一个(n-1) b的矩 阵,用Q表示。 Q 的行对应割集,列对应支路,它的任一元素定义为: 1 表示支路k与割集j关联并方向一致。
qjk=
-1 表示支路k与回路j关联并方向相反。 0 表示支路k与割集j无关
回路2:–u3 + u4 – u5 = 0
回路3: u1 + u5 + u6 = 0
(3)
4 3
+ u – S
独立回路:独立方程所对应的回路。
2
支路电流的方程如下: i1 + i2 – i6 =0 – i2 + i3 + i4 =0 – i4 – i5 + i6 =0
R2 i2 1 i3
R4 i4
支路电流法的未知数是各支路电流;网孔(回 路)电流法的待求量是网孔(回路)电流。 假设网孔(回路)中有网孔(回路)电流存在, 各支路电流用网孔(回路)电流的代数和求得。 网孔电流法仅适用于平面网络。回路电流法不 仅适用于平面网络,也适用于立体网络。网孔 电流法是回路电流法的特例。
回路电流法:以回路电流为未知量列写电路方程分析电路 的方法。

电路原理第三章 电阻电路的一般分析

电路原理第三章  电阻电路的一般分析

例3.
I1 7 + 70V –
求支路电流(电路中含有受控源)
a I2 1 I3
解 11 + U _ 2
节点a:–I1–I2+I3=0
7I1–11I2=70-2U 11I2+7I3= 2U
7
+
2U
_ b
增补方程:U=7I3
利用支路电流与受控 电源控制量的关系
得 I1=8/3A; I2=14/3A; I3=22/3A;
6 4
+ 2 + 3 + 4 =0
上述四个方程并不相互独立,可由任意三个推 出另一个,即只有三个是相互独立的。
结论
n个结点的电路, 独立的KCL方程为n-1个。
独立方程对应的节点称为独立节点。
2.KVL的独立方程数 KVL的独立方程数=基本回路数=b-(n-1)
结 论
n个结点、b条支路的电路, 独立的 KCL和KVL方程数为:

图示为电路的图,画出三种可能的树及其对应的基 本回路。 1
4
8 3
5
6 7 2
5 8 6 7
4 8 3 6
4 8 2 3
3.2 KCL和KVL的独立方程数
1.KCL的独立方程数
2 1 1 4 3 5 2 3 2 3 4 1 1
i1 i4 i6 0 i1 i2 i3 0 i 2 i5 i 6 0 i3 i4 i5 0
整理得:
(R1+R2) im1 – R2 im2 = us1- uS2 -R2im1 + (R2+R3) im2 = uS2-us3 R11=R1+R2 R22=R2+R3 R11im1+ R12 im2 = us11 R21im1 + R22im2 = uS22

第3章 电阻电路的一般分析总结

第3章 电阻电路的一般分析总结

第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。

2、熟练地运用节点法和回路法分析计算电路。

3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。

其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。

1.支路——Branch流过同一个电流的电路部分为一条支路。

2.节点——node三条或者三条以上支路的汇集称为节点。

4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。

6.回路——loop电路中的任意闭合路径,称为回路。

8.网孔——mesh一般是指内网孔。

平面图中自然的“孔”,它所限定的区域不再有支路。

例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。

树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。

一个连通图的树可能存在多种选择方法。

10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。

树一经选定,基本回路唯一地确定下来。

对于平面电路而言,其全部网孔是一组独立回路。

3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。

从而得到含2b 个变量的2b 个独立方程。

又称为“2b 法”。

2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。

3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。

第3章 电阻电路的一般分析

第3章 电阻电路的一般分析
2 3
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2

《电路》课件:第三章 电阻电路的一般分析方法

《电路》课件:第三章  电阻电路的一般分析方法
总目录 章目录 返回 上一页 下一页
一、 KCL的独立方程数: (n-1)
对此电路的图,列KCL:
node1 : i3 i1 0 node 2 : i1 i2 0
i2 i3
0
node 3 : i3 i2 0
说明:方程组不独立。 0 0
因为每条支路都与两个结点相连,支路电流必然从某结点流出,
b-n+1=3
总目录 章目录 返回 上一页 下一页
① + uS1R1
i6 R6 i2 R2 ② i4 R4
i1
R3 iS5
i3


KCL:(独立方程数n-1=3)
i5
node 1: -i1+ i2 + i6 =0 node 2: -i2- i3 + i4 =0 n-1=3
R5 node 3: -i4- i6 + i5 =0 <1>
i3
2.VCR:(独立方程数b=6)
R5 u1= i1R1- us1 u2= i2R2
u3= i3R3
u4= i4R4 b=6

u5= (i5+is5)R5 u6= i6R6
3.KVL:(独立方程数 b-n+1=3) 选自然网孔
loop1: u1+ u2 - u3 =0 loop 2: u3 + u4 + u5 =0 loop 3: u6 - u4 - u2 =0
二、 KVL的独立方程数
如何确定独立回路 连通图G
此图共有13个回路,可列出13个 KVL方程,方程独立否?
共有8条支路,u、i共16个未知数,
需要16个独立方程
KCL:4个独立方程
VCR:8个独立方程

第3章 电阻电路的一般分析方法

第3章 电阻电路的一般分析方法
R5
(2) 列KCL方程: iR出= iS入
结点 1 i1+i6=iS3 代入支路特性(用结点电压表示):
结点 2
un 2 un 2 un3 un 2 un3 un1 un 2 is 2 (2) R2 R3 R4 R6
i2 + i3 + i4 – i6= -iS2
电路物理量的关系 (电流、电压)
本课程主要研究电路分析,其基本方法: 确定变量 根据约束关系列方程 求解
特点:不改变电路结构,由根据约束关系建立方程求解。
回路电流法(网孔法)和结点电压法。
根据列方程时所选变量的不同可分为支路电流法、
章目录 上一页 下一页
3.1 支路电流法
一、支路电流法:以各支路电流为未知量列写电路, 方程分析电路的方法,称为支路电流法。 步骤:
方法2:选取独立回路时,使理想电流源支路仅仅属 于一个回路, 该回路电流即IS 。
R3 _ Ui + US1_ R1 I1=IS -R2I1+(R2+R4+R5)I2+R5I3=-US2 R1I1+R5I2+(R1+R3+R5)I3=US1
章目录 上一页 下一页
+
I3

R4 I2 R5
IS R2 I1 _ US2 +
u2=R2(iL1-iL2)
章目录 上一页 下一页
回路电流法的一般步骤: (1) 选定独立回路,并在图中标出。 (2) 对独立回路,以回路电流为未知量,列写其 KVL方程。
注意自电阻总是正,互电阻可正可负; 沿着回路绕行方向,电源压升为正,压降 为负; (3)当电路中有受控源或无伴电流源时需另行处理; (4) 求各支路电流(用回路电流表示);

第三章--电阻电路的一般分析

第三章--电阻电路的一般分析
所以网孔法只需按 KVL列电路方程。 1. 分析步骤:
i1 R1 ① R3 i3
i2
us+1
-
imu1sR2+2
im2
+ us3
-
-
(1)标出网孔电流的参考方向;

(2)以各自的网孔电流方向为绕行方向,
列KVL方程; 注意:im1和im2都流过R2!
孔1: R1 im1+R2 im1-R2im2 = us1 -us2 孔2:-R2 im1+R2 im2 +R3 im2 = us2-us3
3

4
5
④6
4个方程相加结果为0,不是相互独立的。
把任意3个方程相加起来,必得另一个方程。
相差一个符号,原因是各电流在结点① ② ③若
是流入(出),则在结点④就是流出(入) 。
2019年9月13日星期
9

上述4个方程中,任意3个是独立的。
对具有n个结点的电路,独立的KCL方程为任意 的(n-1)个 。 与独立方程对应的结点叫做独立结点。
现在介绍有关 “图论”的初步知识, 目的是研究电路的连 接性质,并讨论电路 方程的独立性问题。
因为KCL和KVL与元件的性质无关, 所以讨论电路方程的独立性问题时,可以用一
个简单的线段来表示电路元件。
2019年9月13日星期
3

用线段代替元件,称支路。 线段的端点称结点 。
这样得到的几何结构图称为 图形,或“图(Graph)”。
二、 KVL的独立方程数 与KVL的独立方程对应的回路称独立回路。
因此,要列出KVL的独立方程组,首先要找出与之 对应的独立回路组。
有时,寻找独立回路组不是一件容易的事。利用 “树”的概念会有助于寻找一个图的独立回路组。

第三章电阻电路的一般分析-文档资料

第三章电阻电路的一般分析-文档资料

1 43
3
6
5
3
i2 i5 i6 0
4
i3i4i5 0
4
1 + 2 + 3 + 4 =0
结论
n个结点的电路, 独立的KCL方程为n-1个。
返回 上页 下页
第三章 电 阻 电 路 的 一 般 分 析
2.KVL的独立方程数
2
1
2
1 43
6
5
4
对网孔列KVL方程:
1 u1u3u4 0
线性电路的一般分析方法 • 普遍性:对任何线性电路都适用。 • 系统性:计算方法有规律可循。
方法的基础
• 电路的连接关系—KCL,KVL定律。 • 元件的电压、电流关系特性。 复杂电路的一般分析法就是根据KCL、KVL及元 件电压和电流关系列方程、解方程。根据列方程时所 选变量的不同可分为支路电流法、回路电流法和结点 电压法。
u2 u3u1 0
u4u5u30
2
回路3
u1u5u6 0
R2 i2
i3
R4 应用欧姆定律消去支路电压得:
i4
R2i2R3i3R1i10
11 R1 i1
R3 2
3
R5 i5
R4i4R5i5R3i30 R 1i1R 5i5R 6i6uS
34
i6
R6 + uS –
返回 上页 下页
2. 独立方程的列写
①从电路的n个结点中任意选择n-1个结点列写
KCL方程。 ②选择基本回路列写b-(n-1)个KVL方程。
返回 上页 下页
第三章 电 阻 电 路 的 一 般 分 析

2
有6个支路电流,需列写6个方
R2 i2
i3

第三章电阻电路的一般分析

第三章电阻电路的一般分析

第三章电阻电路的一般分析本章内容:1.电路的图及KCL和KVL独立方程数 2.支路分析法3.网孔分析法4.回路电流法5.结点分析法本章重点:主要学习电阻电路的方程建立及一般分析方法(支路分析法、网孔分析法、节点分析法、回路分析法。

其中,支路分析法是最基本的方法)。

本章难点:独立回路数的确定, 回路分析法及节点分析法.§3-1 电路的图本节介绍有关图论的初步知识,学习应用图的方法选择电路方程的独立变量一、电路的图(G)数学上的图:是边(支路)和顶点(结点)的集合,每一条边都连到相应的顶点上,边是抽象的线段,当移去边时,顶点保留,当移去顶点时,应将顶点所连的支路移走。

1.电路的图(连通图G):是将支路画成的抽象线段形成的节点和支路的集合,结点相对于数学图的顶点,支路相当于数学图中的边。

支路是实体。

KVL和KCL 与元件的性质无关,故可用图讨论其方程。

2.无向图:画出的没有方向的图为无向图3.有向图:画出的有方向的图为有向图4.连通图:任意两个结点之间至少有一条支路或路径时的图为连通图。

二、电路的图的画法(有几种,其中简便的画法)1.一般将电阻和电压源串联的组合,电阻和电流源并联的组合看成一条支路, 将流过同一个电流的每一个分支看成一条支路。

如(b)2.指定电流和电压的参考方向,一般选关联参考方向。

如图(c)(a) (b) (c)§3-2 KCL和KVL的独立方程数一、KCL的独立方程数(n个结点电路,KCL的独立方程是n-1个)将电路的有向图,结点和支路加以编号,如下图,对结点①②③④列写KCL 方程有由于每条支路与两个结点相联,其电流从一个节点流出,从另一个结点流入,一正,一负(从表达式可见),将上面4个方程相加,等式两边为0,说明4个方程不是独立的;将上面3个方程相加,等式两边不为0,说明3个方程是独立的。

可见,n个结点电路,n-1个结点的KCL方程是独立的一、KVL的独立方程数(b条支路,n个结点,KVL为b-(n-1)个)KVL的独立方程数等于独立回路数独立回路数等于基本回路数,回路与支路的方向无关,以无向图讨论。

电路原理 第三章

电路原理 第三章

第三章电阻电路的一般分析一、教学基本要求电路的一般分析是指方程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建立以支路电流或回路电流或结点电压为变量的电路方程组,解出所求的电压、电流和功率。

方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。

本章学习的内容有:电路的图,KCL和KVL的独立方程数,支路电流法,网孔电流法,回路电流法,结点电压法。

本章内容以基尔霍夫定律为基础。

介绍的支路电流法、回路电流法和节点电压法适用于所有线性电路问题的分析,在后面章节中都要用到。

内容重点:会用观察电路的方法,熟练应用支路电流法,回路电流法,结点电压法的“方程通式”写出支路电流方程,回路电流方程,结点电压方程,并求解。

预习知识:线性代数方程的求解难点:1. 独立回路的确定2. 正确理解每一种方法的依据3. 含独立电流源和受控电流源的电路的回路电流方程的列写4. 含独立电压源和受控电压源的电路的结点电压方程的列写二、学时安排总学时:6三、教学内容§3-1 电路的图1. 网络图论图论是拓扑学的一个分支,是富有趣味和应用极为广泛的一门学科。

图论的概念由瑞士数学家欧拉最早提出,欧拉在1736年发表的论文《依据几何位置的解题方法》中应用图的方法讨论了各尼斯堡七桥难题,见图3.1a和b所示。

图3.1 a 哥尼斯堡七桥 b 对应的图19~20世纪,图论主要研究一些游戏问题和古老的难题,如哈密顿图及四色问题。

1847年,基尔霍夫首先用图论来分析电网络,如今在电工领域,图论被用于网络分析和综合、通讯网络与开关网络的设计、集成电路布局及故障诊断、计算机结构设计及编译技术等等。

2. 电路的图电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应,如图3.2所示,所以电路的图是点线的集合。

第三章 电阻电路的一般分析

第三章 电阻电路的一般分析


I1
+ US1



(
U S1 U S 2 1 1 1 U n1 IS3 R1 R2 R3 R1 R2 U S1 U S 2 IS3 R1 R2 U n1 1 1 1 R1 R2 R3
)

R1
R2
R3
IS3
对n=2的电路有
U n1
GU I G
I1 I l 1 I 2 I l1 I l 2 I3 Il2
据KVL得
R1 I1 R2 I 2 U S1 U S 2 R I R I U 3 3 S2 2 2
(不可解)
回路电流法比支路电流法求解的方程数少(n1)即只有(b-n+1)个。
由于有受控源,100=R12 ≠R21 = –1350 !
例2.求uA 、iB
a iB 4Ω
6A
b + 20V
-

iC
+ u A-
c

2 uA
d
- 2Ω 6iB +
a
b
c
o
解:回路取lbodb(2uA) 、 labdoa(iB) 、 lbcdb (iC), lacdoa(6A) labdoa 7iB +3×6=6iB -20 lbcdb 8iC+2×6 = 20
其系数规律为:
R11 ─自电阻,回路l1的所有电阻之和(恒正)(R22…Rmm 同);
R12 、R21 ─互电阻,回路1、2的公有电阻“代数和”,Il1 、 Il2在互电阻上同方向时取正;反之取负。无受控源时相 等.
US11 ─ 回 路 l1 沿 Il1 方 向 上 电 压 源 电 位 升 的 代 数 和 (US22…USmm 同)。

第3章 线性电阻电路的一般分析方法

第3章  线性电阻电路的一般分析方法

设回路电流Ia、 Ib和 IC,参考方向如图所示。
(1) 将VCVS看作独立源建立方程;
4Ia-3Ib=2
-3Ia+6Ib-Ic=-3U2

-Ib+3Ic=3U2
(2) 找出控制量和回路电流关系。
U2=3(Ib-Ia)

将②代入①,得
4Ia -3Ib = 2 -12Ia+15Ib-Ic = 0 9Ia -10Ib+3Ic= 0
回路法的一般步骤:
(1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写
其KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示);
网孔电流法(mesh-current method) 对平面电路(planar circuit),若以网孔为独立回 路,
iS3
un1 1 i3
R3
un2 2
iS1
i1
i2
i5
R1 iS2
R2 i4 R4
R5
0 G11=G1+G2+G3+G4 —节点1的自电导,等于接在节点1上所
有支路的电导之和。
G22=G3+G4+G5 — 节点2的自电导,等于接在节点2上所有 支路的电导之和。
G12= G21 =-(G3+G4) — 节点1与节点2之间的互电导,等于 接在节点1与节点2之间的所有支路的 电导之和,并冠以负号。
整理得
(R1+ R2) il1-R2il2=uS1-uS2
- R2il1+ (R2 +R3) il2 =uS2
(3)解上述方程,求出各回路电流,进一步求各支路 电压、电流。

3 第 三 章 电阻电路的一般分析

3 第 三 章 电阻电路的一般分析
第 三 章 电阻电路的一般分析
重点掌握
1. 图论有关概念、独立结点、独立回路。 图论有关概念、独立结点、独立回路。 2. 电路三大分析法: 电路三大分析法: 支路电流法 结点电压法 回路电流法(含网孔电流法) 回路电流法(含网孔电流法)
★§3.1 ★§
一、概念 i1 R1 R2 + uS – ② i2
支路与结点的移去: 支路与结点的移去:支路必须 终止在结点上, 终止在结点上,移去支路不意 味着移去结点,但移去结点必 味着移去结点, 须移去与之相连的所有支路, 须移去与之相连的所有支路, 因此可以存在孤立结点 孤立结点。 因此可以存在孤立结点。
6. 回路(loop): 回路 : 由支路所构成的一条闭合路径。 由支路所构成的一条闭合路径。 该闭合路径中与每个结点相关联 的支路数为2。 的支路数为 。 7. 网孔(mesh):平面 网孔( : 图中的自然孔。 图中的自然孔。孔内区 域中不再含有任何支路 和结点。 和结点。 1 ②
i −i −i = 0
− i 2 + i 3 + i4 = 0 − i4 + i 5 − i 6 = 0 u1 + u2 + u3 = 0 − u3 + u4 + u5 = 0 − u2 − u4 + u6 = 0 u1 = R1 i1 − uS 1 u2 = R2 i2 u3 = R3 i3 u4 = R4 i4 u5 = R5 i5 + R5 i S 5 u6 = R6 i6
② ① ③
树支

连支
9.单连支回路(基本回路):只有一个连支 单连支回路(基本回路 只有一个连支 单连支回路 的回路。 个单连支回路. 的回路。有(b-n+1)个单连支回路 个单连支回路

3第三章电阻电路的一般分析

3第三章电阻电路的一般分析

b 1 a 2 3 5
树支
7 8 e
选树 连支
6 9 d
图G
2 3 4
5
8
4
2 8 5 4
独立回路 l=5 3
例题:
该图可写出多少个独立的KCL、 KVL方程;该图具有多少个独立 的电流变量和电压变量。 答:该图共有5个结点,10条支路。 独立结点数为5-1=4个;独立回路数为10-4=6个。 所以可写出4个独立KCL方程,6个独立KVL方程。 该图中数支数为4个,连支数为6个。
US2=6V

根据回路电流和支路电流的关系
I1=IⅠ=6A ;I2=IⅡ=-2A ; I3=IⅠ+IⅡ=4A
2.电路如图所示,应用网孔分析法求网孔电流 及支路电流I。 0.5I _
6Ω +
解:(1) 选定网孔电流I1、
I I1 I2 2Ω 5Ω
I2的参考方向如图所示。
(2) 列网孔方程:
49
+ _
三、支路电流法解题步骤: (1)确定支路(电流)数b和节点数n b=6,n=4 (2)列出独立的KCL方程(n-1)=3个 R1 a : I 1 + I5 = I2 b: I2 = I3+ I4 I1 c: I3 + I6 = I1 + U 1 (3)列出独立的KVL方程 b-(n-1)=3=(网孔数) R2 b R3 a
(6 2) I1 2I 2 49
(3) 解方程组, 得
补充方程
2I1 (2 5) I 2 0.5I
I I1 I 2
I1 6.5 A, I 2 1.5 A, I 5 A
3.E1=1V,E3=6V,IS=6A,R1=3,R2=2, R3=1,R4=4,求网孔电流。

第03章_电阻电路的一般分析

第03章_电阻电路的一般分析

第三章 电阻电路的一般分析
例1:
KCL:
(1) i1i3i60 (2) i3i4i50 (3) i2i5i60
R6
i6
1 i3
R3
+
uS1
i1 II
-
I
2 i5 R5
R4 III i2 i4
3
+
uS2
-
KVL:
(5) u1 u3 u5 u5 0
(6) (7 )
u2 u1
u3 u2
u4 u6
0
u6
0
② 1
3
2③
4 ④
5 6
最大独立方程组由3 个方程组成,如方 程1、2、3和方程1、 4、7等。
第三章 电阻电路的一般分析
KVL的独立方程数
若电路有n个节点,b条支路,则有 L=(b-n+1) 个 独立 KVL方程。与独立KVL方程对应的回路称为 独立回路。
u 1 u S 1 R 1i1
u 2 R 2i2
u 3 R 3i3 u 4 R 4i4
(4)
u5R 5i5 R Nhomakorabea5
i
S
5
u 6 R 6i6
第三章 电阻电路的一般分析
uS1R1i1R2i2 R3i3 0
R3i3 R4i4 R5i5 R5iS5 0
特别要强调一点的是 如果你不够熟练,到
支路的电源电压,
电源电压包括电
压源,也包括电
流源引起的电压。
第三章 电阻电路的一般分析
➢最后,将(2)式和(6)式联立求解:
i1 i2 i6 0
i2 i3 i4 0
i4
i5
i6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。

方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。

本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。

3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。

解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。

图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。

图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。

根据定义,画出图(a)和(b)所示图G 的4个树如题解3-3图(a)和(b)所示。

树支数为结点数减一。

故图(a)的数有树支,图(b)的树有树支1615n -=-=3-4 图示桥形电路共可画出16个不同的树,试一一列出(由于节点树为4,故树支为3,可按支路号递减的方法列出所有可能的组合,如123,124,…,126,134,135,…等,从中选出树)。

解:图示电路,16个不同的树的支路组合为:(123),(124),(125),(136),(145),(146),(156),(234),(235),(236),(246),(256),(345),(346),(456)3-5 对题图3-3所示的1G 和2G ,任选一树并确认其基本回路组,同时指出独立回路数和网孔数各为多少?解:在连通图G 中,由树支和一个连支组成的回路称为G 的基本回路(或单连支回路),基本回路是独立回路,网孔也是独立回路,因此,基本回路数=独立回路数+网孔数。

对一个节点数为n ,支路数为b 的连通网,其独立回路数)1(+-=n b l 。

从题图3-3所示的1G 和2G 中任选一树,(见题解3-5图(a)和(b)中粗线所示),对应于这一树的基本回路分别为6,521==l l 。

3-6 对图示非平面图,设:(1)选择支路(1,2,3,4)为树;(2)选择支路(5,6,7,8)为树,问独立回路各有多少?求其基本回路组。

解:图中有结点数5=n ,支路数10=b ,故独立回路树为615101=+-=+-n b(1)选择支路(1,2,3,4)为树,对应的基本回路组为:(1,2,3,4,5),(1,2,3,7),(1,2,6),(2,3,4,8),(2,3,9),(3,4,10)(2)选择支路(5,6,7,8)为树,对应的基本回路组为:(1,5,8),(2,5,6,8),(3,6,7),(4,5,7),(5,7,8,9),(5,6,10)3-7 图示电路中V u V u R R R R R R s s 40,20,2,8,4,1063654321==Ω=Ω==Ω=Ω==,用支路电流法求解电流5i 。

解:本题电路有4个节点,6条支路,独立回路数为6-4+1=3。

设各支路电流和独立回路绕行方向如图所示,由KCL 列方程,设流出节点的电流取正号。

节点① 0621=++i i i节点② 0432=++-i i i节点③ 0654=-+-i i i由KVL 列方程回路Ⅰ 401082246-=--i i i回路Ⅱ 2041010321-=++-i i i回路Ⅲ 20884543=++-i i i联立求解以上方程组,得电流 A i 956.05-=注:由本题的求解过程可以归纳出用支路电流法分析电路的步骤如下:(1)选定各支路电流的参考方向;(2)任取(n-1)个结点,依 KCL 列独立结点电流方程;(3)选定(b-n+1)个独立回路(平面回路可选网孔),指定回路的绕行方向,根据KVL 列写独立回路电压方程;(4)求解联立方程组,得到个支路电流,需要明确:以上支路电流法求解电路的步骤只适用于电路中每一条支路电压都能用支路电流表示的情况,若电路中含有独立电流源或受控电流源,因其电压不能用支路电流表示,故不能直接使用上述步骤。

此外,若电路中含有受控源,还应将控制量用支路电流表示,即要多加一个辅助方程。

3-8 用网孔电流法求解题图3-7中电流5i 。

解:设网孔电流为1,23,l l l i i i ,其绕行方向如题图3-7中所标。

列写网孔方程⎪⎩⎪⎨⎧=+---=-+--=--20204820424104081020321321321l l l l l l l l l i i i i i i i i i应用行列式法解上面方程组 48802048202410401020,5104204842410810203-=------=∆=------=∆ 所以 A i i l 956.051044880335-=-=∆∆== 注:网孔电流法是以假想的网孔电流作为求解量,它仅适用于平面电路。

从本题的求解可以归纳出用网孔电流法求解电路的步骤是:(1)选取网孔电流1,23,l l l i i i ,如网孔电流方向即认为是列网孔 KVL 方程的绕行方向。

(2)列网孔电流方程。

观察电路求自电阻1122,R R (一个网孔中所有电阻之和称该网孔的自电阻,如本题中11223320,24,20R R R =Ω=Ω=Ω,自电阻总为正值);互电阻121323,,R R R (两网孔公共支路上的电阻之和,如本题中12132310,8,4R R R =-=-=-,当流过互电阻的两网孔电流方向一致,互电阻为正值,否则为负值),等效电压源数值(方程右方为各回路中电压源的代数和,与网孔电流方向一致的电压源前取负号,否则取正号)。

3-9 用回路电流法求解题图3-7中电流3i 。

解法一:取回路电流为网孔电流,如题图3-7中所示。

回路方程同题3-8中方程。

故有488051043-=∆=∆ 128002020842010840203-=------=∆所以 A i i i A i A i l l l l 5517.19561.05078.29561.0510448805078.25104128003233322-=+-=-=-=-=∆∆=-=-=∆∆=解法二:取回路电流如题解3-9图所示。

仅让Ⅱ号回路电流流经3i 所在的支路。

列写回路方程。

⎪⎩⎪⎨⎧=++--=++--=--03620182020241040181020321321321l l l l l l l l l i i i i i i i i i用行列式法求上面方程组 792036018202010184020,51043620182024101810202-=-----=∆=----=∆ 所以 A i i l 5517.151047920223-=-=∆∆== 显然解法二中回路电流的选取法使计算量减小。

注:回路电流法适用于平面或非平面电路,比网孔法更具灵活性。

回路法分析电路时,首先要确定一组基本回路,表定回路电流的绕行方向,其余步骤与网孔法类似。

需要指出的是回路电流法中两回路的共有支路有时会有多条,因而互有电阻的确定要特别细心。

否则会发生遗漏互有电阻的错误。

3-10 用回路电流法求解题图中Ω5电阻中的电流i 。

解:选取网孔为基本回路,回路电流的绕行方向如图中所示。

列回路方程⎪⎩⎪⎨⎧=+-=-+-=+-=-016848817601648326123232121l l l l l l l i i i i i i i 应用行列式法 4608080481760612,19201680817606123=---=∆=----=∆ 所以 A i i l 4.21920460833==∆∆== 3-11 用回路电流法求解图示电路中电压o U 。

解:回路电流如图中所标。

因A 3电流源仅与回路Ⅰ相关,即有,A i l 31=其余两回路的方程为865013620101813610508321321=-=++-=++-l l l l l l i i i i i i把A i l 31=带入两个方程中,加以整理得 ⎩⎨⎧=+=+140201016010503232l l l l i i i i解得 A i l 22=电压 V i U l o 80240402=⨯=⨯=3-12 用回路电流法求解图示电路中电压U 。

解:按图示设网孔电流为回路电流。

因受控电流源仅和Ⅲ号回路相关,故有1615n -=-=,对回路Ⅰ和Ⅱ列方程,并代入131.0l l i i -=有⎩⎨⎧-=⨯++-=⨯+-4201.0510401.010*********l l l l l l i i i i i i整理得⎩⎨⎧-=+-=-420105.304352121l l l l i i i i解得 Ai i A i i i l l l l l 5.0)5(1.01.053575.43435475.4313222=-⨯-=-=-=⨯-=⨯=-=选外层回路列KVL 方程 042012021=-+⨯+U i i l l从中解出 V U 25.276420)75.43(1)5(20=+-⨯+-⨯=3-13 用回路电流法求解题图(a),(b)两电路中每个元件的功率,并做功率平衡检验。

解(a):选取(a)图中网孔为基本回路,回路电流方向如图中所标,列回路方程 ⎪⎪⎩⎪⎪⎨⎧==++⨯-=ϕU i i i i i l l l l l 41102311533211 )3()2()1(式中ϕU 为受控电流源的控制量,需要用回路电流加以表示,所以增补一个方程 3324)(2l l l i i i U =+⨯=ϕ )4(从中解得 32l l i i =把方程)1(和)4(代入方程)2(中,有 10231522=++-l l i i即 A i i l l 552532=== 各元件的功率分别为V 10电压源发出的功率W i p l 505101021=⨯=⨯=A 15电流源发出功率[][]Wi i i i p l l l l 105010120315 )(1)(31521312=⨯+⨯⨯=-⨯++⨯⨯=受控电流源发出功率 [][]W i i U i i U p l l l l 400)2060(54203 )(34133313=+⨯=⨯+⨯⨯=++⨯⨯=ϕϕWi i i i i i p l l l l l l 1500203102101 )(3)(2)(12223132221=⨯+⨯+⨯=+⨯++⨯+-⨯=吸电路共发出功率 W p p p p1500400105050321=++=++=发满足 吸发p p=解(b):解法一:取网孔为基本回路,电路电流如图(b)中所标。

相关文档
最新文档