数值分析.ppt

合集下载

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析ppt-华中科技CHP1

数值分析ppt-华中科技CHP1

计算方法华中科技大学数学系教材张诚坚, 高健, 何南忠. 计算方法. 北京:高等教育出版社,1999年参考书¾李庆扬, 易大义, 王能超. 现代数值分析, 北京:高等教育出版社¾Richard L. Burden & J. Douglas Faires .Numerical Analysis(Seventh Edition), 北京:高等教育出版社, 2001¾徐士良.C常用算法程序集(第二版).北京:清华大学出版社,1996期末考试试题期末考试的试卷有填空题和解答题。

解答题共7个题,分数约占70%。

期末考试主要考核:基本概念;基本原理;基本运算。

必须带简易计算器。

总成绩=平时成绩*20%+期末成绩*80%§1绪论第1节数值算法概论第2节预备知识与误差第1节数值算法概论1. 引言数值计算已经是计算机处理实际问题的一种关键手段。

它使各科学领域从定性分析阶段走向定量分析阶段,从粗糙走向精密。

2. 计算机数值方法的研究对象与特点计算问题x I n∫+ =15dxxx n 11nx I dx =∫011615 , ln5n n n n I I I I −==−1615 , ln I I I I ==−误差的传播与积累丽的北京就刮起台风来了?!3 数值算法计算方法的主要任务:1.将计算机上不能执行的运算化为在计算机上可执行的运算2.针对所求解的数值问题研究在计算机上可执行的且有效的计算公式3.因为可能采用了近似等价运算,故要进行误差分析,即数值问题的性态及数值方法的稳定性数值算法是指有步骤地完成解数值问题的过程.数值算法有四个特点:1.目的明确算法必须有明确的目的,其条件和结论均应有清楚的规定2.定义精确对算法的每一步都必须有精确的定义3.算法可执行算法中的每一步操作都是可执行的4.步骤有限算法必须在有限步内能够完成解题过程例如给出等差数列1,2,3,…,10000的求和算法算法构造如下:N取记数器置零=S.1=,0⇒+,.21+N⇒SNNS.3<N10000若2,,否则转.4输出SN,一、误差的种类及来源1模型误差在建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,而对问题作一些简化,因此和实际问题有一定的区别.2观测误差在建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度的限制,这些数据一般是近似的,即有误差.3截断误差由于计算机只能完成有限次算术运算和逻辑运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这就带来误差.第2节预备知识与误差在数值计算过程中还会遇到无穷小数,因误差与有效数字有效数字用科学计数法,记(其中)若(即的截取按四舍五入规则),则称为有n 位有效数字,精确到。

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

《数值分析教程》课件

《数值分析教程》课件
总结词
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。

课件-数值分析(第五版)1-3章

课件-数值分析(第五版)1-3章
2017/3/12
x x
f ( x) f ( x* ) f ( x)
x x

xf ( x) f ( x)
C p 10 即认为是病态
f ( x) x n
9 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
2. 算法的数值稳定性 定义3 一个算法如果输入数据有误差,而在计算过程中舍入误 差不增长,则称此算法是数值稳定的,否则称此算法为不稳定 的。 例1.1:P.9 I n e
x 0.003
y 1
2017/3/12

1000
1.00314 , y * 1.003
6 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
注: 有效位数与小数点后有多少位无关; m相同情况下,有效位数越多,误差限越小; 相对误差及相对误差限是无量纲的,绝对误差及误差限是有量纲的。
数值计算 算法设计
数学软件
1.1 数值分析的对象、作用与特点
1 研究对象
用计算机求解数学问题的数值计算方法、理论及软件实现
实际问题 数学模型 数值计算方法 程序设计(数学软件) 上机计算求出结果
应用数学
计算数学即数值分析
数值分析(计算方法) 插值与函数逼近(2、3)数值微分与数值积分(4) 的研究对象
第一章习题
1, 5,7,12,14

谢 !
2017/3/12
14 第1章 数值分析与科学计算引论
第2章 插值法
引言
拉格朗日(Lagrange)插值 均差与牛顿(Newton)插值 埃尔米特(Hermite)插值 分段低次插值 三次样条插值

《数值分析》第二讲插值法PPT课件

《数值分析》第二讲插值法PPT课件

1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1

P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)

数值分析PPT--颜庆津-北京航空航天大学出版社-2000

数值分析PPT--颜庆津-北京航空航天大学出版社-2000
* I1 * I0
We just got lucky?
1 * (1 I 2 ) 0 .36787944 2 1 * (1 I 1 ) 0 .63212056 1
考察反推一步的误差:
| E N 1 | 1 1 1 * (1 I N ) (1 I N ) | EN | N N N
0.5 e (b) 0.5 e r (a) 0.16%, e r (b) 2.08%, | a | 312 |b| 24
e (a)
| x a | e (a) 0.5 a 0.5 x a 0.5
311.5 x 312.5,同理
23.5 y 24.5 (mm).
以此类推,对 n < N 有:
1 | En | | EN | . N (N 1) (n 1)
误差逐步递减, 这样的算法称为稳定的算法
(stable algorithm)
在我们今后的讨论中, 误差将不可回避, 算法的
稳定性会是一个非常重要的话题。
1.2.3 误差与有效数字 (Error and Significant Digits )
S4
R4
( Remainder )
例 :近似计算 e
0
1
x2
dx = 0.747… …
取 0
1
e x dx S4 ,
2
1 1 1 1 称为截断误差 ( Truncation Error ). 则 4! 9 5! 11 1 1 这里 R4 0 .005 4! 9 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 3 10 42 R4

数值分析第一章基础知识优秀课件

数值分析第一章基础知识优秀课件

16 周二 3课时 第八章 常微分方程初值问题数值解法[1] 17 周二 3课时 第八章 常微分方程初值问题数值解法[2] 18 周二 3课时 习题课 19 周二 3课时 总复习
注:数值算法演示主要用Matlab和C语言实现,有时采用
Mathematica
实8/7现6 。课郑后州实大验学题201可4-用20任15何学年一硕种士计研算究生工课具程完成数值。分析 Numerical Analysis
4/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Analysis
预备知识
➢ 微积分和常微分方程; ➢ 线性代数; ➢ 数值计算程序设计
(C/Matlab和Mathematica)
5/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Ana.1 教学内容时间安排
周次 2 3 4 5 6 7 8 9 10 11
课次 周二 周二 周二 周二 周二 周二 周二 周二 周二 周二
课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时
教学内容 第一章 基础知识 第二章 代数插值[1] 第二章 代数插值[2] 第三章 数据拟合的最小二乘法[1] 第三章 数据拟合的最小二乘法[2] 第四章 数值微分与数值积分[1] 第四章 数值微分与数值积分[2] 习题课 第五章 解线性代数方程组的直接法[1] 第五章 解线性代数方程组的直接法[2]
参考教材
教材
李庆扬,王能超,易大义.数值分析(第五版).北京:清华大学出版社,2008 李清善,宋士仓. 数值方法. 郑州:郑州大学出版社,2007.
参考资料
1.关治,陈景良. 数值计算方法. 北京:清华大学出版社,1990. 2.周铁,徐树方等. 计算方法. 北京:清华大学出版社,2006. 3.徐翠微,孙绳武. 计算方法引论. 北京:高等教育出版社,2005. 4.John H.Mathews, Kurtis D.Fink. 数值方法(MATLAB版). 北京:电子

数值分析-第一章ppt课件

数值分析-第一章ppt课件
3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题

解释 实际问题

结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

数值分析(02)线性空间与赋范线性空间_图文

数值分析(02)线性空间与赋范线性空间_图文
验证 对上述加法与数乘运算构成线性空间. 证明
所以对定义的加法与数乘运算封闭.
下面一一验证八条线性运算规律:
所以 对所定义的运算构成线性空间.
3、线性空间的基和维数 已知:在 中,线性无关的向量组最多由
个向量组成,而任意 个向量都是线性相关的.
问题: 在线性空间V中,最多能有多少线性无关的向量?
C[a,b]:区间[a,b]上一元连续函数的全体。是 R上的线性空间,因为两个连 续函数之和以及实数k与连续函数乘积仍是连续函数; Cn[a,b]:类似于C[a,b],在区间[a,b]上 n阶连续可微的一元函数全体.构成R上的线性空间。
线性空间的判定方法
(1)一个集合,如果定义的加法和数乘运算是通常的 实数间的加乘运算,则只需检验对运算的封闭性.
数值分析(02)线性空间与赋范线性空间_图文 .ppt
第一节 线性空间与赋范线性空间
一、线性空间
1.线性空间概念
定义2-1 设V是一个非空集合,F是数域,如果 ①在集合V中定义了加法运算,记为“+”, ②即∀α,β∈V,有α+β∈V; ③在数域F和集合V的元素之间定义了数量乘法, ④即∀ k∈F,α∈V,有kα∈V;
2、几个具体的线性空间实例
R:可以看成是实数域R上的线性空间,加法和数乘是
实数中的加法和数乘;
C:可以看成是复数域C上的线性空间,加法是复数的
加法,数乘是实数与复数按复数乘法相乘;
Rm×n(Cm×n):实数域(复数域)上所有m×n矩
阵的集合。按矩阵的加法和数乘矩阵定义加法和数乘, 构成线性空间;
P[x]n:实数域上所有次数≤n的多项式。按多项式加法和 数乘多项式定义加法和数乘,构成线性空间。但次数=n 的多项式全体不能构成线性空间; P[x]:实数域上多项式全体.按多项式加法和数乘多项式法 则构成线性空间;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间 车辆 18:00 19:00 20:00 21:00 22:00 23:00 24:00 22 10 9 11 8 9 3
首先我们对题中所给的数据作一个初步的观察, 可以发现19:00到23:00这个时间段所记录的每 一分钟的车流量为8~11,说明这段时间的车流量较 为稳定,波动不大,故我们对这段时间的车流量采 用随机模拟的方法进行求解。 求解过程具体如下: 从19:00~23:00共为5个小时的时间,也就是说其中包含了300 分钟,故利用matlab软件模拟300个(0,1)上的随机数。 设得到的随机数为R: 若R<=0.25则通过车流量为8 若0.25<R<=0. 5则通过车流量为9 若0. 5<R<=0. 75则通过车流量为10 若0.75<R<=1则通过车流量为11
桥梁车流量计算问题
问题重现 在桥梁的一端每隔一段时间记录一分钟有几辆车 过桥,得到下表数据: 试估计一天通过桥梁的车流量。
时间 车辆 0:00 2 2:00 2 4:00 0 5:00 2 6:00 5 7:00 8 8:00 25
时间 车辆 9:00 10:30 11:30 12:30 14:00 16:00 17:00 12 5 10 12 7 9 28
对于6:00到18:00的车流量,我们采用三次样条插值 的方法: 其中x=
1 2 3 4 5.5 6.5 7.5 9 11 12 13 14 5
y=
8 25 12 5 10 12 7 9 28 22 10
相应程序如下: h=1:1/60:14; p=interp1(x,y,h,'spline'); plot(x,y,'*',h,p,x,y,'r:') xlabel('x'),ylabel('y')
求解结果具体如下:
注:这里我们只给出部分结果,其中左列为模 拟出的随机数,右列为相应的车流量。 这段时间里总的车流量为2863
对于0:00~5:00的车流量,我们依然采用随机模拟的方 法,具体操作同上,具体结果如下:
注:这里只显示部分结果,左列为模拟 出的随机数,右列为相应的车流量。 这段时间的总车流量为5304
插值函数的拟合图如下:
30
25
20
15
y
10
5
0
0
2Hale Waihona Puke 46 x8
10
12
14
插值结果如下: 注:只显示部分结果 这段时间的总的车流量约为 9205
故一天的总的车流量为12598
相关文档
最新文档