1.3 有理数的减法3(1)
人教版七年级数学上册课件:第一章1.3第3课时
2. 计算: (1)(+7.2)-(+3.6); (2)(-38)-(-24)-(+65); (3)(-3)-(-17)-(-33).
解:(1)原式=7.2+(-3.6)=3.6; (2)原式=-38+24+(-65)=-79; (3)原式=-3+17+33=47.
3. 计算: (-38)+52+118+(-62).
4. -0.25比-0.52大__0_._2_7__,比-1 小2的数是
__________. 5. 计算: (1)11-(-9)-(+3);
解: 11-(-9)-(+3) =11+9+(-3) =20+(-3) =17;
(2)(+18.5)-(-18.5).
解: (+18.5)-(-18.5) =18.5+18.5 =37.
(3)如果某天A地气温是-2 ℃,B地气温是4 ℃,A地比 B地气温高多少?(列式计算)
解:_-2_-_4_=_-2_+__(-_4_)=_-_6_, _________________ ____所__以__A_地__比__B_地__气__温_高__-_6_℃__.________
【例2】计算: (1)7.21-(-9.35);(2)(-19)-(+9.5);
=100(册). 答:上周平均每天借出100册.
9. 已知m是8的相反数,n比m的相反数小2,求n比m 大多少?
解:因为m是8的相反数,所以m=-8. 因为n比m的相反数小2,所以n=8-2=6. 所以n-m=6-(-8)=14,即n比m大14.
10. 淮海中学图书馆上周借书记录如下表:(超过100 册记为正,少于100册记为负).
1.3 有理数的加减法 辅导资料(含答案)
1.3 有理数的加减法第3课时本节主要是1.经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,能熟练的进行整式加法运算,并能运用运算律简化运算。
鼓励学生借助熟悉的例子解释运算结果,用自己的语言分类、归纳、概括出有理数的加法法则。
有理数的加法交换律和结合律。
2.利用有理数的加法交换律和结合律进行有理数的运算,其中加法交换律是两个数相加,交换加数的位置,和不变,即a+b=b+a;加法结合律是三个数相加,先把前两个数相加再和第三个数相加,或先把后两个数相加再和第一个数相加,和不变,即(a+b)+c=a+(b+c).本节主要讲了有理数减法的运算法则,让学生通过实例,理解有理数减法的法则,能熟练的进行整数的减法运算。
3.对有理数的加法,减法两种运算进行了比较,让学生体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),同时由前两节的整数加减运算很自然的过渡到小数、分数的加减运算。
一. 有理数的加减法运算,能进行小数或分数在内的有理数加减混合运算,能根据具体的问题适当的运用运算律简化运算。
利用混合运算解决实际问题.这是本节的重点【典例引路】中例1,【当堂检测】中第4题,【课时作业】中第10,题,【备选题目】中第2题。
二.灵活运用有理数加减法运算的规律。
有理数的混合运算. 尤其是在计算过程中,一定要注意符号的选择,这是本节的难点.【典例引路】中例1,【当堂检测】中第5题,【课时作业】中第21题.三.易错题目【课时作业】中第7题,【典例引路】中例2,在计算过程中,一定要注意符号的选择,这是学生最容易出现错误的地方。
点击一:有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加为0;3.一个数同0相加,仍得这个数.注意:运用有理数加法法则时,看清两数符号属于哪种情况,再应用哪种法则. 针对性练习:1.填上适当的符号,使下列式子成立:(1)(______5)+(-15)=-10;(2)(-3)+(______3)=0; (3)(______37)+(______313)=-1. 【解析】先判断和的绝对值与两个加数的绝对值的关系,再根据有理数的加法法则选择符号.【答案】+ + + - 点击二:有理数的加法运算律加法交换律:两个数相加,交换加数的位置,和不变;a+b=b+a. 加法结合律:三个数相加,先把前两个相加,或者先把后两个数相加,和不变. a+b+c=(a+b)+c=a+(b+c) 利用加法交换律、结合律,可以使运算简化. 点击三:有理数的减数法则减去一个数,等于加上这个数的相反数. 点击四:有理数的混合运算 统一成加法后,按加法运算来完成.类型之一:应用创新型例1、仓库内原存粮食4000千克,一周内存入和取出情况如下(存入为正,单位:千克):2000,-1500,-300,600,500,-1600,-200问第7天末仓库内还存有粮食多少千克?【解析】本题使用正负数来表示具有相反意义的量——存入和取出。
1.3.2有理数的减法(有理数的减法法则)教案
举例解释:
-通过具体的计算题,如3-2、-5-(-2)、7/4-3/4等,强调减法法则的应用,确保学生掌握重点知识。
-通过实际情境,如“小明向东走了5米,然后向西走了3米,他现在离起点多远?”,让学生将减法法则应用于实际问题中,加深对重点内容的理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数减法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数减法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了有理数的减法法则,我发现学生们对这个概念的理解程度不尽相同。有的同学能够迅速掌握减法法则,而有的则在正负号的转换上犯了难。这让我意识到,在讲解理论知识时,需要更加注重个别差异,给予不同层次的学生更多的关注和指导。
在讲授过程中,我尝试通过数轴和实际案例来解释减法法则,希望让抽象的数学概念变得具体形象。从学生的反馈来看,这种方法似乎起到了一定的效果,但仍有一部分同学在应用时感到困惑。我想,下次可以尝试引入更多的生活实例,让学生在具体的情境中感受和理解减法的运用。
2.教学难点
-相反数的概念及其在减法运算中的应用。
-减法运算中正负号的处理,尤其是负负得正的规则。
-在实际问题中识别和应用减法法则。
人教版七年级数学上册《一章 有理数 1.3 有理数的加减法 实验与探究 填幻方》优质课教案_1
《有理数》教学设计一、教材分析(一)教学内容的地位和作用本堂课是在引入了负数和学习了运用正数与负数表示具有相反意义的量的基础上,将算术数扩充到有理数并对有理数进行分类,既是算术数到有理数的衔接与过渡,也是后面学习数轴、相反数、绝对值以及有理数运算的基础.由于本堂课还初步渗透了集合的思想和分类的方法,所以本堂课不仅是发展学生原有的认知结构,形成新的知识体系的主要通道,而且是渗透数学思想方法,感受数的应用价值以及增强学生数感的有效载体.因此,本节内容在教材中处于十分重要的地位.(二)教学目标1.知识与技能①了解有理数的意义.②理解有理数的概念.③会将有理数按照两种不同的标准进行分类.2.过程与方法简单回顾数的应用,感受数的初步扩展,经历有理数概念的形成过程,渗透集合思想及分类的数学方法.3.情感、态度与价值观激发学生的学习兴趣,体验有理数的应用价值,增强数感,树立学生“学数学、用数学”的信心.(三)重点与难点1.重点:理解有理数的概念.2.难点:初步领会有理数的分类方法.二、学情分析通过小学阶段的学习,学生对算术数已经有了比较全面深刻的的认识,不过同时思维也造成了一定程度的定势,这就容易与数的概念的扩充发生冲突.另外,刚刚步入初中的学生年龄小,对概念的理解能力不强,对枯燥的数字不如具体事物感兴趣,抽象思维能力弱,好奇、好动、好表现,不能长时间集中精力,因此,他们更喜欢参与生动有趣的教学活动,更容易接受形象直观的教学模型,更渴望得到老师的表扬与鼓励.三、教法与学法1.教法:情趣激发、启发诱导、归纳概括、评价激励.2.学法:观察思考、比较发现、交流探索、分析归纳.五、板书设计六、教学设计与反思(一)教学流程图(二)教学反思1.本堂课利用多媒体辅助教学,以探究性活动为主线,通过对教材进行深入的挖掘和适当的整合,设计生动有趣的教学活动激发学生的学习兴趣,借助形象直观的教学模型启迪学生的思维,为学生提供充分的活动时空,引导学生主动参与,积极探索,体验知识的形成过程,发展原有的知识结构,构建新的知识体系,让学生对知识的理解更加深入全面.2.《数学课程标准》提出:数学学习应使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重渗透分类的方法和集合思想,为后继学习奠定了良好的基础.以上是我对《有理数》第一课时的教学说明,敬请各位评委和专家指导!学 案一、观察各情景中的数字,与同桌交流并完成下列练习1.既是正数又是整数的数有:__________.2.既是负数又是整数的数有:_________ .3.零是正数吗?是负数吗?是整数吗? ____________________________________.4.既是正数又是分数的数有:__________.5.既是负数又是分数的数有:__________. 二、1.整数的概念:______________________. 2.分数的概念:__________________. 3.有理数的概念:______________________________________________________. 三、有理数的分类结构图四、练习巩固1.把下面的有理数填入它所属于的集合的圈内.15, ,- 5, , ,0.1, 5.32,- 80,2.333……负数集合五、课堂小结1.与同桌交流你本堂课的收获.2.顺口溜趣说有理数有理数,非有理,有理“树”,俩枝丫,(有兴趣的同学分数形式表比率,整数分数两边挂,用分类方法二补分子整数任意取,整数分零、正、负整,充完善第三段)分母整数0舍去;分数包括正、负分;六、课外作业发挥你的特长,展示你对有理数的理解.(如绘画、写作、交谈等)。
1.3有理数的加减法本节总结
1.3有理数的加减法本节总结:知识1:有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.有理数加法速记口诀:同号相加一边倒,异号相加大减小,符号跟着大的跑;绝对值相等“0”正好。
有理数的加法运算律加法交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)方法:①互为相反数的两个数先相加——“相反数结合法”②符号相同的两个数先相加——“同号结合法”③分母相同的的数先相加——“同分母结合法”④几个数相加得到整数——“凑整数”⑤整数与整数,小数与小数相加——“同行结合法”。
知识点2:有理数的减法法则:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算。
有理数的减法可以转化为加法来进行:减去一个数,等于加上这个数的相反数。
a—b=a+(—b) a+b—c=a+b+(—c)知识点3:加减法混合的方法和步骤:(1)运用减法法则则将有有理数混合运算中的减法转化为加法,统一成代数和的形式;(2)运用加法则、加法交换律、加法结合律进行简便运算。
知识点4:有理数的比较大小:当a—b>0,a>b;当a—b=0,a=b;a—b<0,a<b。
1.计算1—2的结果是,|—3|—2=2.当b<0,a,a—b,a+b,中最大的数是,最小的数是3.若两个数的和是—27,其中一个数比8的相反数小2,则另外一个数是4.某市某天的最高气温是5℃,最低温度是—1℃,这天的温差是5.—3,—14,7的和比它们绝对值的和小6.在正整数中,前50个偶数的和,减去前50个奇数的和的差是7.口算:3-8= -4+7= -6-9= 8-12= -15+7= 0-2= -5-9+3= 10-17+8= -3-4+19-11= -8+12-16-23=8计算:-4.2+5.7-8.4+10 6.1-3.7-4.9+1.8 9+(—7)+10+(—3)+(—9))4.2()6.0()2.1()8(-+-+-+-12-(-18)+(-7)-15 -40-28-(-19)+(-24)-(-32)(-40)-(+28)-(-19)+(-24)-(32) (+4.7)-(-8.9)-(+7.5)+(-6))31()21(54)32(21-+-++-+ 3173312741++⎪⎭⎫ ⎝⎛-+75.9)219()29()5.0(+-++-)539()518()23()52()21(++++-+- )37(75.0)27()43()34()5.3(-++++-+-+-新人教数学七年级上册第1.3有理数的加减法测试题一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。
1.3有理数的加减法(通用)
人教版义务教育教科书 数学 七年级 上册
1.3.1有理数的加法
在观察的领域中,机遇只 偏爱那种有准备的头脑.
(巴斯德)
第一个加数
第二个加数
正数 0
负数
正数
(-30)+20=-10
(-30)+30= 0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论: 绝对值不相等的异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0 .
(-30)+0=-30
-30
0
• 0+(-30)=-30 • 结论:一个数同0相加,仍得这个数
3.一个数同0相加,仍得这个数.
(1) (-13)+(-8)=-(13+8)=-21
(2) 10 + (-6) =+(10-6)=4
(3) -3.5+0 =-3.5
(4)(-3.4)+ 3.4 =0
每个人手中有理数牌中,各选择 1张与同桌的牌相加,同桌间进行有理 数加法比赛,看看谁算的又快又对!
正数+正数 0+正数
负数+正数
0
正数+0 0+0
负数+0
负数
正数+负数 0+负数
负数+负数
结论:共三种类型. 即:(1)同号两个数相加; (2)异号两个数相加;
(3)一个数与0相加.
(+30) +(+20)= +50
0
30
50
(-30)+(-20) = -50
精品教案:1.3.2_第1课时_有理数的减法法则
1.3 有理数的加减法(第3课时)教学目标1.理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把有理数的减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,向学生渗透事物间普遍联系、可相互转化的辩证唯物主义思想.教学重点难点重点:有理数的减法法则.难点:有理数的混合运算.课前准备多媒体课件教学过程导入新课问题展示如图1所示,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差多少?如何列式?2 / 2图1答案:9 259.43 m8 844.43-(-415)师生活动教师展示问题图片,学生思考并回答.教师:减法运算和加法运算之间的关系是什么?学生:互为逆运算.教师板书:有理数的减法.探究新知图2如图2所示,北京某天的气温是-3 ℃~3 ℃,这一天的温差是多少呢?2 / 22 / 2教师先展示问题图片,学生思考并回答.教师再加以扩展:1.被减数、减数、差的关系.2.3-(-3)=3+3=6,体现了数学中的转化思想.追问:在式子3-(-3)=3+3=6中,是如何把减法转化成加法的?师生活动学生回答问题,教师总结减法的运算法则:减去一个数,等于加上这个数的相反数(板书),用字母表示为a -b =a +(-b )新知应用师:知道了有理数减法法则,我们就可以进行有理数减法的相关运算了. 例 计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4) (−312) -514.(3)7.2-(-4.8)=7.2+4.8=12;(4) (−312) -514= (−312) + (−514) =-834.教师展示问题,并引导学生完成(1)(2)题,学生独立完成(3)(4)题,体会有理数减法的计算法则.课堂练习(见导学案“当堂达标”)参考答案1.A2.A3.A4.-105.(1)10 (2)-69 (3)-297 (4)4 (5)-1146.(1)8-3=5 (2)(-2)-(-3)=1课堂小结1.有理数减法的法则:减去一个数,等于加上这个数的相反数.2.有理数减法的公式是a-b=a+(-b).布置作业教材第23页练习第1,2题,第24页习题1.3第3题.板书设计教学反思2 / 2有理数的减法法则是本课重点,它的探究是本课的难点.“减去一个数等于加上这个数的相反数”这一结论,应当让学生通过具体计算加以讨论,总结得出,从而形成对减法法则的充分感受.在开始运用减法法则计算时,要按照有理数减法法则,先把减法变成加法,再按加法法则运算.学生练习时,要引导学生注意,归纳有理数减法的运算规律,而不能简单机械地把减法化成加法.2 / 2。
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)一. 教材分析《有理数的减法》是初中数学的重要内容,主要让学生掌握有理数减法的基本运算方法,理解有理数减法的运算规律,为后续的数学学习打下基础。
本节课的内容包括有理数减法的定义、法则以及运算方法,通过学习,让学生能够熟练地进行有理数的减法运算。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对减法运算可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到减法运算的学习,帮助学生建立知识体系。
三. 教学目标1.让学生掌握有理数减法的基本运算方法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力。
四. 教学重难点1.教学重点:有理数减法的运算方法。
2.教学难点:理解有理数减法的运算规律,以及如何运用减法运算解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数减法的运算方法。
2.运用实例讲解法,让学生通过具体例子理解有理数减法的运算规律。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学PPT,展示有理数减法的运算方法。
2.准备一些实际问题,让学生在课堂上进行练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数加法的基本运算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示有理数减法的定义和运算方法,让学生初步了解有理数减法的基本概念。
3.操练(10分钟)教师给出一些简单的有理数减法题目,让学生在课堂上进行练习,巩固所学知识。
4.巩固(10分钟)教师通过PPT展示一些复杂的有理数减法题目,引导学生运用所学知识解决问题,提高学生的运算能力。
5.拓展(10分钟)教师引导学生思考有理数减法在实际生活中的应用,让学生举例说明,培养学生的实际应用能力。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调有理数减法的运算方法和规律。
冷水江市第九中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.2 有理数的减法3
有理数的减法第2课时有理数的加减混合运算学习目标:1.理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.2.通过加减法的相互转化,培养应变能力、计算能力.重点:把加减混合运算理解为加法运算.难点:把省略括号的和的形式直接按有理数加法进行计算.自主学习一、知识链接1.有理数的加法法则__________________________________________________________________________.2.有理数的加法运算律__________________________________________________________________________. 有理数的减法法则__________________________________________________________________________. 计算(1)(-7)-(+ 4)(2)0-(-5)(3)(- 2.5)+5.9 (4)(-2)+(-1)二、新知预习一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?方法一:4.5+(-3.2)+1.1+(-1.4)方法二:4.5-3.2+1.1-1.4=1.3+1.1+(-1.4) =1.3+1.1-1.4=2.4+ (-1.4)=2.4-1.4=1(千米). =1(千米).比较以上两种算法,你发现了什么?【自主归纳】加法运算中,各个加数的括号及其前面的运算符号“+”可以省略不写.例如:4.5+(-3.2)+1.1+(-1.4)可写成 4.5-3.2+1.1-1.4 .它表示4.5,-3.2,1.1与-1.4的和,读作“4.5,负3.2,”,或读作“1.4”.自学自测计算(1) 10+(+4)+(-6)-(-5);(2)(-8)-(+4)+(-7)-(+9).四、我的疑惑___________________________________________________________________________________________ ___________________________________________________________课堂探究要点探究探究点1:有理数的加减混合运算问题1:引入相反数后,加减混合运算可以统一为加法运算.如:a+b-c=a+b+______.将(-20)+(+3)-(-5)-(+7)转化为加法:______________________________这个算式我们可以看作是______、______ 、______、______这四个数的和.为书写简单,省略算式中的括号和加号写为____________也可简单写为:(-20)+(+3)+(+5)+(-7)在符号简写这个环节,有什么小窍门么?问题2:观察下列式子,你能发现简化符号的规律吗?(-40)-(+27)+19-24-(-32)=-40-27+19-24+32(-9)-(-2)+(-3)-4=-9 + 2 - 3-4规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”例1 计算:(-2)+(+30)-(-15)-(+27)例2 计算:(1) -127+116-125+115(2)(-18.25)-452+(+1841)+4.4归纳总结:有理数加减混合运算的步骤: (1)将减法转化为加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 探究点2:加减混合运算的应用例3 动物园在检验成年麦哲伦企鹅的身体状况时,最重要的一项工作就是称体重.已知某动物园对6只成年麦哲伦企鹅进行体重检测,以4kg 为标准,超过或者不足的千克数分别用正数、负数表示,称重记录如下表所示,求这6只企鹅的总体重.可以先求出每只企鹅的体重后,再相加吗?哪种方法根简便呢? 针对训练 1.计算(1) 0-1+2-3+4-5; (2) –4.2+5.7-8.4+10.2;(3)–30+11-(-10)+(-11);(4)1111320.252436⎛⎫⎛⎫⎛⎫--+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.某公路养护小组乘车沿南北方向公路巡视维护,某天从地出发,约定向南行驶为正,到收工时的行驶记录如下:(单位:千米)8,-5,7,-4,-6,13,4,12,-11 (1)问收工时,养护小组在地的哪一边?距离地多远?(2)若汽车行驶毎千米耗油0.5升,求从出发到收工共耗油多少升?二、课堂小结有理数加减法混合运算: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算. 当堂检测1.若a= -2,b=3,c= -4 ,则a-(b-c)的值为______ .2.计算:(1)-11-9-7+6-8+10 (2)-5.75-(-3) +(-5)-3.125(3)|-141|-(-43)+1-|21-1|3.下列交换加数的位置的变形中,正确的是( ) A.1-4+5-4=1-4+4-5B.-31+43-61-41=41+43-31-61C.1-2+3-4=2-1+4-34.计算1-2+3-4+5+ …+99-100=________.5.-4,-5,+7这三个数的和比这三个数的绝对值的和小________.数轴教学目标知识与技能:1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法:从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观:通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?生:讨论后进行归纳,最后师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.【板书设计】活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法活动4:课后作业检测内容:5.3-5.4得分________ 卷后分________ 评价________一、选择题(每小题4分,共32分)1.下列A,B,C,D四幅“福牛乐乐”图中,能通过平移图①得到的是( C )2.(2019•湘西州)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为( B ) A.40° B.90° C.50° D.100°第2题图第3题图3.(天门中考)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( D )A.25° B.35° C.45° D.50°4.(2019•甘肃)如图,将一块含有30°角的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( D )A.48° B.78° C.92° D.102°第4题图第5题图5.(2019•泰安)如图,直线l1//l2,∠1=30°,则∠2+∠3=( C )A.150° B.180° C.210° D.240°6.下列命题:①两直线平行,同旁内角互补;②如果x2=4,那么x=2;③经过一点有且只有一条直线平行于已知直线;④邻补角的平分线互相垂直.其中假命题的个数有( B )A.1个 B.2个 C.3个 D.4个7.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( A )A.60° B.120° C.150° D.180°第7题图第8题图8.(内江中考)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( D )A.31° B.28° C.62° D.56°二、填空题(每小题4分,共16分)9.如图所示,同位角一共有__6__对,内错角一共有__4__对,同旁内角一共有__4__对.第9题图第11题图10.命题“邻补角的平分线互相垂直”的题设是__两个角是邻补角__,结论是__它们的平分线互相垂直__.它是一个__真__命题(填“真”或“假”).11.(2019•郴州)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为__100__度.12.如图,在三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于__8__.三、解答题(共52分)13.(10分)完成下面证明.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.证明:∵∠1=∠2(已知),又∵∠2=∠3(__对顶角相等__),∴∠1=∠3(__等量代换__),∴__BD__∥__CE__(_同位角相等,两直线平行_),∴∠C=∠ABD(__两直线平行,同位角相等__).∵∠A=∠F(已知),∴__AC__∥__DF__(内错角相等,两直线平行),∴∠D=∠ABD(__两直线平行,内错角相等__),∴∠C=∠D(__等量代换__).14.(10分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问:直线EF 与AB有怎样的位置关系?为什么?解:EF∥AB.理由:∵CD∥AB,∴∠ABC=∠DCB=70°,又∵∠CBF=20°,∴∠ABF=50°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB(同旁内角互补,两直线平行)15.(10分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,且∠1=∠F,试猜想CE与DF的位置关系?并说明你的理由.解:CE∥DF.理由如下:∵BD平分∠ABC,CE平分∠ACB,∴∠1=12∠ABC,∠2=12∠ACB.又∵∠ABC=∠ACB,∴∠1=∠2,∵∠1=∠F,∴∠2=∠F,∴CE∥DF 16.(10分)如图,已知AB⊥BD,CD⊥BD,AE∥DF,问∠1=∠2吗?为什么?解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴∠BAD=∠CDA,∵AE∥DF,∴∠EAD=∠ADF,∴∠BAD-∠EAD=∠ADC-∠ADF,即∠1=∠217.(12分)(许昌期中)如图,已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B 的左侧,点D在点C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN =120°.(1)若∠ADQ=110°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).解:(1)如图①,延长DE交MN于点H.∵∠ADQ=110°,ED平分∠ADP,∴∠PDH=12∠PDA=35°,∵PQ∥MN,∴∠EHB=11 ∠PDH =35°,∵∠CBN =120°,EB 平分∠ABC ,∴∠EBH =12∠ABC =30°,∴∠BED =∠EHB +∠EBH =65°(2)有三种情形.当n °>60°时,如图②中,延长DE 交MN 于点H .∵PQ ∥MN ,∴∠QDH +∠DHB =180°,∴∠EHB =180°-12 n °,∴∠BED =∠EHB +∠EBH =180°-12n °+30°=210°-12n °;当n °<60°时,如图③中,设BE 交PQ 于点H .∵∠DHB =∠HBA =30°,∠EDH =12 n °,又∵∠DHB =∠BED +∠EDH ,∴∠BED =30°-12n °;当n °-60°时,∠BED 不存在.综上所述,∠BED =210°-12 n °或30°-12n °。
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思1.3.2有理数的减法(1)毛集试验初级中学朱苗苗一、教学目标㈠知识与技能1.理解掌控有理数的减法法那么2.会进行有理数的减法运算㈡过程与方法1.通过把减法运算转化为加法运算,向同学渗透转化思想2.通过有理数减法法那么的推导,进展同学的规律思维技能3.通过有理数的减法运算,培育同学的运算技能㈢情感立场与价值感通过揭示有理数的减法法那么,渗透事物间普遍联系、相互转化的辨证唯物主义思想二、学法引导1.教学方法:尽量引导同学分析、归纳总结,以同学为主体,师生共同参加教学活动。
2.同学学法:探究新知归纳结论练习巩固三、重、难点与关键1.重点:有理数减法法那么和运算2.难点:有理数减法法那么的推导3.关键:正确完成减法到加法的转化四、师生互动活动设计老师提出实际问题,同学积极参加探究新知,老师出示练习题,同学以多种方式争论解决。
五、教学过程㈠创设情境,引入新课1、计算〔口答〕⑴;⑵-3+〔-7〕⑶-10+3;⑷10+〔-3〕2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?引导同学观测:生:3℃比-3℃高6℃师:能不能列出算式计算呢?生:3-〔-3〕师:如何计算呢?总结:这就是我们今日要学的内容.(引入新课,板书课题)㈡探究新知,讲授新课1、师:大家知道减法是与加法相反的运算,计算3-〔-3〕,就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?生:6+(-3)=3师:很好!由此可知3-〔-3〕=6师:计算:3+〔+3〕得多少呢?生:3+〔+3〕=6师:让同学观测两式结果,由此得到3-〔-3〕=3+〔+3〕师:通过上述题,同学们观测减法是否可以转化为加法计算呢?生:可以师:是如何转化的呢?生:减去一个负数〔-3〕,等于加上它的相反数〔+3〕2、换几个数再试一试,计算以下各式:⑴0-〔-3〕=0+〔+3〕=⑵-5-〔-3〕=-5+〔+3〕=⑶9-8=9+〔-8〕=引导同学完成答题,并提问:通过上述的争论,你能得出什么结论?归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。
1.3 有理数的加减法 1.3.1 有理数的加法 第1课时 有理数的加法法则
练习.计算: (1)(-7)+(-4)=____-__1_1_; (2)3+(-12)=_-__9_;
(3)7+(-7)=___0_.
知识点一:有理数加法法则 1.(1)+4与2的和的符号取__+__号; (2)-4与-2的和的符号取_-___号; (3)+4与-2的和的符号取_+___号; (4)-4与2的和的符号取_-___号;
七年级数学上册(人教版)
第一章 有理数
1.3 有理数的加减法
1.3.1 有理数的加法 第1课时 有理数的加法法则
有理数加法法则: (1)同号两数相加,取___相__同___的符号,并把绝对值_相__加____; (2)绝对值不相等的异号两数相加,取绝对值__较__大____的加数的符号,并 用较大的绝对值___减__去___较小的绝对值.互为相反数的两个数相加得____, 即0若a,b互为相反数,则a+b=____; 0 (3)一个数同0相加,仍得__这__个__数____,即a+0=__a__.
①a;②b;③-c;④a+b;⑤a+c;⑥b+c;⑦a+(-b). 解:①③⑦为正;②④⑤⑥为负
19.(阿凡题:1069911)(1)若|x|=3,|y|=8,且x>y,求x+y的值; 解:根据题意,得x=±3,y=-8.所以当x=3,y=-8时,x+y=3+ (-8)=-5;当x=-3,y=-8时,x+y=(-3)+(-8)=-11 (2)若|a-2|与|b+5|互为相反数,求a+b的值. 解:因为|a-2|与|b+5|互为相反数,所以|a-2|+|b+5|=0,所以a=2, b=-5,所以a+b=2+(-5)=-3
D.-3
14.若x的相反数是3,|y|=5,则x+y的值为( D ) A.-8 B.2 C.8或-2 D.-8或2 15.若|a+b|=|a|+|b|,则a,b的关系是( D ) A.a,b的绝对值相等 B.a,b异号 C.a+b的值是非负数 D.a,b同号负整数,p是最小的正整数,则m+n+(-p)= _____0_或__-__4____.
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第一课时有理数加法)
-11
+ 110 0
-8
-32
+8
-23
-30
第十一页,共二十页。
概念理解
计算下列各题:
(1) (-11) + (-9);
(2) (-3.5) + (+7);
( +9) + (-10.2);
(+2.7 ) + (+3.5); (-1.08) + 0;
(+3.2) + (-3.2).
-20
+3.5 -1.2 +6.2 -1.08 0
第十二页,共二十页。
知识点拓展
1、若|a|=3|b|=2,且a、b异号,则a+b=( )
A、5 B、1 C、1或者-1 D、 5或者-5
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异 号,因此当a=3时b-2,当a=-3时 b=2,则a+b=1或-1。
若a>0,b<0, |a|>|b|, 则a+b= + (|a|-|b|);
异号两数
相加
若a>0,b<0, |a|<|b|, 则a+b= -(|b| -|a|);
若a>0,b<0, |a|=|b|,
则a+b= 0.
第十页,共二十页。
概念理解
计算下列各题:
(1) (-10)+(-1); (2) 125+(-15); (3) 29+(-29); (4) 0+(-8); (5) (-25)+(-7); (6) (-5)+13;
第一页,共二十页。前言源自学习目标1.经历探索有理数加法法则的过程,理解有理数的加法法则; 2.能熟练进行整数加法运算; 3.培养学生的数学交流和归纳猜想的能力; 4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
人教版七年级上册数学教案:1.3.2有理数减法 教案
1.3 有理数的减法一、背景与意义分析减法运算有悠久的历史,它随着实践需要而产生,被广泛应用。
二、教学目标1、知识积累与疏导:通过现实生活中的例子,体会到减法的意义,再从减法是加法的相反运算的角度,探求两个有理数的差是多少,以及是否可利用加法进行减法的运算,从而引发有理数的减法法则,并运用有理数减法法则进行运算。
2、能力训练要求:能根据具体问题列出相应的算式,感悟到减法是反映现实世界的一种有效运算。
通过经历减法可以转化成加法的过程,培养学生观察、类比的能力,渗透转化思想。
3、智能的提高与训导:在与他人交流探究过程中,学会与老师对话,与同学合作,合理清晰地表达自己的思维过程。
积极创设问题情景,认识到减法的实用性,并亲身体验其过程。
(教学目标的分立表述,有利于理清数学思路,有利于课堂教学评估,较好地体现新课程多元化的目标和价值追求)三.教学重点:有理数减法法则四、教学难点:将减法运算转化为加法进行,有一定难度,为此应逐阶引导,同时让学生注意归纳有理数减法的规律。
五、教学方法:探究启发式教学。
六、教具准备:课件七、教学过程:(一)创设情景,引入新课4观察温度计:你能从温度计看出4℃比-3℃高出多少度吗?7学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高减-3最低气温,单位℃),如何用算式表示?4-(-3讨论、合作完成)按照刚才观察的结果,可知4-(-3)=7 ①而4+(+3)=7 ②∴由①②可知:4-(-3)=4+(+3)③上述结论的获得应放手让学生回答。
(这是教师设置的问题情景,当学生看到自己所学的知识与生活实际息息相关时,学习通常会更主动)(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?(此时所形成的问题场,既能激活学生思维,又能复习已学知识,培养学生数学语言的表述能力)结论:减去-3等于加上-3的相反数+3(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用减法是与加法相反的运算,引导学生换一个角度去验算。
人教版七年级上册有理数的减法课件(3)
(1)(+2)-(-5)=(+2)+( +5 );
(2)0 - (-8)= 0 +( +8 );
(3)(-6)- 4 =(-6)+( -4 );
(4)1 - (+29) = 1 +( -29
)
课堂检测
1.口算:
(1)3-6= -3
(2)3-(-4)= 7
(3)(-3)-5= -8
①
3+(+3)=6
②
3-(-3)=3+(+3)
③
由①②,有
互动新授
探究
从3-(-3)=3+(+3)能看出减-3相当加哪个数吗?把3换成
0,-1,-5,用上面的方法考虑0-(-3),(-1)-(-3),(-5)(-3).这些数减-3的结果与它们加+3的结果相同吗?
0-(-3)=0+3=3,(-1)-(-3)=(-1)+3=2,(-5)-(-3)=(-5)+3=-2
人教版数学七年级上册
第1.3.2 有理数的减法
学习目标
1.理解掌握有理数的减法法则,会进行有理数的减法运算;
2.理解加减法统一成加法的意义,能熟练地进行有理数加
减法的混合运算;
3.通过加减法的相互转化,培养应变能力、计算能力.
情境引入
实际问题中有时还要涉及有理数的减
法. 例如,本章引言中,北京某天的气温
=-45+0
=-45.
拓展训练
1.下列计算不正确的是( D )
A.-8-8=-16 B.-8-(-8)=0
C.8-(-8)=16
2.0减去一个数的差是这个数的( A )
1.3.2有理数的减法
1.3有理数的加减法1.3.2有理数的减法知识点一有理数的减法法则1.有理数的减法法则:减去一个数,等于加这个数的相反数。
可以表示为:a-b=a+(-b)2.有理数的减法是有理数的加法的逆运算,做减法运算时,常将减法转化为加法再计算,转化过程中,应注意“两变一不变”,“两变”是指运算符号“-”变成“+”,减数变成它的相反数;“一不变”是指被减数不变。
注意:0减去任何数都等于这个数的相反数。
如:0-2=-2例1.(-32)-(+5)(-2)-(-25)特别注意:(1)较大的数-较小的数=正数,即若a>b,则a-b>0;(2)较小的数-较大的数=负数,即若a<b,则a-b<0;(3)相等的两个数的差为0,即若a=b,则a-b=0.知识点二有理数的加减混合运算有理数加减混合运算的步骤:(1)运用减法运算法则,将有理数加减混合运算转化为加法运算,转化为加法后的式子是几个正数或负数的和的形式;(2)进行有理数的加法运算。
例2.(+9)-(+10)+(-2)-(-8)知识点三省略和式中的括号和加号1.进行有理数的加减混合运算时,为简化书写形式,在和式里可以把加号及加数的括号省略不写。
例3.(-9)+(-12)+(-3)2.省略加号和括号得和式通常有两种读法,如-9-12-3按式子和表示的意义读,读作“负9、负12、负3的和”。
按运算的意义读,读作“负9减12减3”题型一有理数的加减混合运算例4.计算:-+例5.用简便方法计算:1-2-3+4+5-6-7+8+9-10-11+12+…+2013-2014-2015+2016+2017-2018题型二利用有理数减法求数轴上两点间的距离例6.根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:______,B:______.(2)观察数轴,与点A的距离为4的点表示的数是:______.(3)若将数轴折叠,使得A点与-2表示的点重合,则:①B点与哪个数表示的点重合?.(数轴上两点间的距离就是这两点表示的数的差的绝对值)题型三数轴与有理数加减运算法则的综合例7.已知有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是()A.a+b<0 B.a+b≥0C.a-b=0 D.b-a>0题型四有理数的加减混合运算在实际生活中的应用例8.小彬和小丽玩一个抽卡片的游戏,游戏规则如下:(1)每人每次抽4张卡片,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字。
初一上册数学第一单元知识点
初一上册数学第一单元知识点关于初一上册数学第一单元知识点在日常过程学习中,大家都背过各种知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
那么,都有哪些知识点呢?下面是店铺帮大家整理的初一上册数学第一单元知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
初一上册数学第一单元知识点篇1第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的.绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
1.3有理数的加减法(1.3.3减法)
16
(6) 16
(7) 0 + (–8) = –8
3.一个数与0相加, 仍得这个数.
有理数的减法运算
15℃比5 ℃高多少? 15 ℃比–5 ℃高多少?
20
10
解:
15 – 5 = 10 15 –(–5)= 20
答: 15º C比5º C高10º C,15º C比–5º C高20º C.
练习:课本23页练习题1,2题 思考:
计算1:
(1)3-5 (2)3-(-5) (3)(-3)-5 (4)(-3)-(-5) (5)-6-(-6) (6)-7-0 (7)0-(-7) (8)(-6)-6
计算2:
(1)8-(-15) (2)23-45 (3)(-13)-35 (4)(-4)-(-15) (5) -17-0 (6) 0-(-25) (7) -8-(-8) (8)(-24)-24
世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是 8848米,吐鲁番盆地的海拔高度大约是-Байду номын сангаас55米.两 处高度相差多少米? 8848米有多 少层楼高?
解:8848-(-155) =9003(米)
想一想
你能在横线上填上适当的数吗?
(-5) (1)15+_______=10 ;
5 (2)15+_______=20 ; 392 (3)8848+_______=9236 下列等式成立吗? (1)15-5=15+(-5) ; (2)15-(-5)=15+5 ; (3)8848-(-392)=8848+392
人,只要有一种信念,有所追求, 什么艰苦都能忍受, 什么环境也都能适应。 —— 丁玲
复习
1. 同号两数相加,取 相同的符号,并把绝 对值相加. 2 .绝对值不相等的 异号两数相加,取绝 对值较大的加数的符 号,并用较大的绝对 值减去较小的绝对值. 互为相反数的两个数 相加得0.
七年级数学上册第一章1.3有理数的加减法人教版
七年级数学上册第一章1.3有理数的加减法(人教版)有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.阅读教材P16~18,思考并回答下列问题.结合教材对两个有理数相加的7个算式,类似地再列举出相应的算式并结合数轴解释,得出结果[如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0],根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数的两个数相加,一个有理数和0相加,和分别为多少?知识探究有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加. 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.自学反馈计算:(1)16+(-8)=8;(2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5;(5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论例1 计算:(1)(-3)+(-9);(2)(-4.7)+解:(1)-12.(2)-0例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0.活动2 跟踪训练1.计算:(1)(+3)+(+8) (2)(+14)+(-12);(3)(-312)+(-3.5); (4)(-314)+(+213);(5)(-19)+8.3; (6)-3.4+4.解:(1)11.(2)-14.(3)-7.(4)-1112.(5)10.7.(6)0 注意计算的符号,特别是负号.2.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均气温是多少?解:2 ℃.3.两个数的和为负数,则下列说法中正确的是(D) A.两个均是负数B.两个数一正一负C.至少有一个正数 D.至少有一个负数4.一个正数与一个负数的和是(D)A.正数 B.负数C.零 D.不能确定符号活动3 课堂小结有理数加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.任意有理数和零相加,仍得这个数.第2课时有理数的加法运算律1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算. 3.能根据有理数加法算式的特点选择适当的简便运算方法.阅读教材P19~20,思考并回答下列问题.知识探究加法交换律的文字表达:两个数相加,交换加数的位置,和不变.加法交换律的字母表达:a+b=b+a.加法交换律的例子说明:1+2=2+1.加法结合律的文字表达:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律的字母表达:(a+b)+c=a+(b+c).加法结合律的例子说明:(1+2)+3=1+(2+3).自学反馈计算:(1)(-7.34)+(-12.74)+7.34+12.4;(2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115);(4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1. 活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4);(2)16+(-25)+24+(-35);(3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6).解:(1)-3.(2)-20.(3)-2.(4)0.例2 10袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=90再计算总计超过多少千克:905.4-90×10=解法2:每袋小麦超过90 kg的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,++1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=0×10+5.4=90答:10袋小麦一共905.4 kg,总计超过5.4 kg.注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-(1)将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发点0千米.(2)118a升.活动3 课堂小结1.有理数的加法交换律、结合律:加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c).2.简便运算:①运用运算律;②运用相反数的和为零;③凑整.1.3.2 有理数的减法第1课时有理数的减法法则1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P21~22,思考下列问题.通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x,使x+(-3)=4,易知x=7,所以4-(-3)=7.①另一方面,4+(+3)=7.②由①②,有4-(-3)=4+(+3).再试着把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.知识探究有理数减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).自学反馈计算:(1)(-3)-(-6);(2)0-8;(3)6.4-(-3.6); (4)(-312)-(+514).解:(1)3.(2)-8.(3)10.(4)-(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).活动1 小组讨论例计算:(1)(-38)-(-36);(2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234); (6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)+(-1123)-(-110);(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2);(4)(5-6)-(7-9).解:(1)-12.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数;(2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2(2)-|-13|-(-23)=-13+23=活动3 课堂小结1.有理数的减法法则:a-b=a+(-b).2.转化原则:减号变加号,减数变成相反数.第2课时有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度.3.能把有理数加法运算省略加号和括号,理解有理数的和.4.形成解决有理数加减混合运算问题的一些基本策略.阅读教材P23~24,体会加法与减法的统一和书写的简约.知识探究把下列算式统一为加法,并写成省略括号的形式: (-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7;(-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10.注意有理数的加减混合运算写成省略括号的和的形式的意义.自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略括号的和的形式,并计算.解:23-45-15+13-1=-活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?解:增加了,增加了1 625元.例3 把-a+(+b)-(-c)+(-d)写成省略括号的和的形式为-a+b+c-d.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算.活动2 跟踪训练1.把下列算式写成省略括号的和的形式.(1)(+9)-(+10)+(-2)-(-8)+3;(2)(-13)-(+22)+(-17)-(-18).解:(1)9-10-2+8+3.(2)-13-22-17+2.计算:(1)(-7)-(+5)+(-4)-(-10);(2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1;(4)-2.4+3.5-4.6+解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算.2.省略加号和括号。
1.3.2 有理数的减法 教学设计-2021-2022学年人教版七年级数学上册
《1.3有理数的加减法——有理数的减法》教学设计一、内容和内容解析1.内容有理数的减法法则.2.内容解析有理数的减法是有理数的一种基本运算,它是有理数加法的推广和延续.在有理数运算中,“减去一个数等于加上这个数的相反数”,于是减法就转化为加法了,这正是引进负数的意义所在,也为后面将除法转化为乘法提供了类比对象.因此,本课的重点是有理数减法法则.二、目标和目标解析1.目标(1)理解有理数减法法则,了解有理数减法与有理数加法的关系,体会转化的思想方法.(2)能利用有理数减法法则计算两个数的减法.2.目标解析达到目标(1)的标志是:学生通过对温度计的观察,探索有理数减法法则的过程,能够知道“减去一个数等于加上这个数的相反数”的结论,感知有理数减法的意义;达到目标(2)的标志是:学生理解有理数的减法法则,并准确运用法则进行简单计算.三、教学问题诊断分析有理数的减法,学生在前面两个学段已经具备了在正有理数范围内用大数减小数的运算方法,但是在有理数范围内,学生遇到了小数减大数不够减的问题,这在理解上造成困难.在学习过程中,将有理数的减法转化为加法时,容易出现“两变”上的错误(一是减法变加法,二是把减数变为它的相反数).本课的教学难点:有理数的减法法则的归纳以及把减法正确地转化为加法.五、教学过程设计(一)复习巩固问题1 有理数的加法法则是如何叙述的?师生活动:学生回答,教师聆听、补充.设计意图:通过复习有理数的加法法则,为学习有理数的减法做铺垫.问题2 某地一天的气温是-3℃~3℃,就是说,这一天的最高温度为3℃,最低温度为-3℃.请用式子表示这天的温差(即最高温度与最低温度的差).观察温度计,从你自己的生活经验出发,这天的温差是多少?师生活动:学生读题、独立思考、回答问题,教师在“温差”的意义,如何观察温度计等作适当引导.结论:按照温差的意义,就是要计算3-(-3),根据生活经验,温差应该为6℃. 设计意图:通过实际问题引入,让学生体会学习减法运算的必要性. (二)探索新知问题 3 根据小学的经验,减法是加法的逆运算.你能由此说明计算3-(-3)的方法吗?得到什么结果?师生活动:在教师的引导下,学生尝试说明:(1)计算3-(-3),就是要求一个数x ,使得x 与-3相加得3.根据有理数加法可知,6与-3相加得3,所以x 应该是6,即3-(-3)=6.(2)想一想:3+ =6.(3)观察(1),(2)两个等式得出的结果,你发现了什么?从结果中能看出减3-相当于加哪个数?【设计意图】以减法是加法的逆运算为依据,针对具体数字的运算,通过说理获得“减-3相当于加上+3”.问题4 将上式中的3换成014--,,,用上面的方法考虑:)3(0--, )3()1(---,)3()4(---,这些数减-3的结果与它们加3+的结果相同吗?师生活动:学生独立思考,再讨论交流.教师指导,在学生交流的基础上进行总结. 设计意图:通过不同实例,加强对“减去-3,相当于加上+3”的认同度,为抽象出减法法则做准备.追问:请你自己再举出几个不同的例子,检验一下上述类似的结论是否成立. 师生活动:教师提醒例子的多样性,例如“正数减正数”,“正数减负数”,“负数减正数”,“负数减负数”,“0减负数”等.学生思考、回答.设计意图:通过学生自己全面举例,进一步确认有理数减法法则,“减去一个数等于加上这个数的相反数”.()a ba b -=+-问题5 归纳上面的例子可知,有理数的减法可以转化为加法.你能概括一下上述例子,尝试给出有理数减法法则吗?师生活动:学生尝试归纳有理数的减法法则——减去一个数,等于加上这个数的相反数.设计意图:培养学生语言表达能力和总结、归纳能力. 追问 你能用字母把法则表示出来吗? 学生在教师的引导下,归纳得出结论:()a b a b -=+-.(三)巩固练习 例题计算:(1))5()3(---;(2)70-;(3))8.4(2.7--;(4)415)213(--. 解:(1))5()3(---=)5()3(++-2=;(2)70-)7(0-+=7-=; (3))8.4(2.7--8.42.7+=12=; (4)415)213(--)415()213(-+-=438-=. 师生活动:由学生独立作业,教师要引导学生归纳有理数减法的运算步骤,即先把减法化成加法,然后按照有理数加法法则运算.设计意图:熟悉有理数减法法则.让学生叙述解题思路时,要强调“步步说理”,这样可以强化有理数减法法则.问题6 思考:在小学,只有当a 大于或等于b 时,我们才会做a -b (例如2-1,1-1)现在,当a 小于b 时,你会做a -b (例如1-2,(-1)-1)吗?一般地,较小的数减去较大的数,所得的差的符号是什么?减号变加号减数(-5)变为相反数(+5)师生活动:由学生独立思考后交流,一方面要得出“小数减大数所得的差是负数”,另一方面也要引导学生体会引入负数的好处.结合学生的回答,教师要带领学生进一步得出:小数减大数,等于大数减小数的相反数.设计意图:让学生在小学的减法基础上认识到有理数的减法的与其之间的统一性和拓展性,即在引入负数后,在有理数范围内,以前不能解决的小数减大数问题就可以解决了.从另一个角度数就是减法总可以得以实施,这就是引入负数的重要目的.练习教科书第23页练习第1,2题.师生活动:学生独立完成,教师巡视点拨.设计意图:练习第1题的目的在于让学生在计算中进一步体会有理数的减法法则,教师关注学生能否熟练地把减法转化为加法,再利用加法法则正确地进行计算.第2题目的是让学生利用有理数的减法解决简单的实际问题.(四)课堂小结师生共同回顾本节课所学的主要内容,并请学生回答以下问题:1.有理数的减法法则是什么?2.进行有理数的减法运算时需要注意哪几个步骤?师生活动:学生梳理、交流.教师和学生一起补充完善.(五)布置作业教科书习题1.3,第3,4,11题.五、板书设计有理数的减法二、例题三、注意的问题一、有理数减法法则,“减去一个数等于加上这个数的相反数””.a-b=a+(-b)小数减大数,等于大数减小数的相反数.。
1.3.3有理数的减法法则
通过上面的探究可得结论
有理数减法法则
减去一个数,等于加上这个数的相反数.
减号变加号
表达式为: a ― b =a + (-b)
被减数不变
减数变其相 反数
ቤተ መጻሕፍቲ ባይዱ
注意:减法在运算时有 2 个要素要发生变化。
例1 计算下列各题: 1) 9 -(-5) 2)(-3)- 1.2 3)6.1 - 8 4)(-5)-(-7)
典例精析
计算: (1)(-3.2)―(―5.5);
(2)3.3-7.9;
(3)7.2―(―4.8);
(4)-3 1 -5 1
2
4
1 4
1 3
3 2
5 6
例 已知│a│= 5.2,│b│= 3.8, 且a>0,b<0,则a-b的值是多 少?
例 求出下列每对数在数轴上对应点 之间的距离及这两数的差: 1)3与-2;2)4 与2 ;(3)-8与4; 4)-5与-2. 你能发现所得的距离与这两数的差有什 么关系吗?
表示?
5―(―5)=10
问题2: 5+(+5) = ?
结论:由上面两个式子我们不难得
出:
5―(―5) = 5+(+5)
问题3:用上面的方法考虑:
0―(―3)=__3_,0+(+3)=_3__; 1―(―3)=__4_,1+(+3)=__4__; ―5―(―3)=_-_2_,―5+(+3)=_-_2_.
课堂小结
1.有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b) 2.有理数的减法法则是一个转化法则,减号 转化为加号,同时要注意减数变为它的相反 数,这样就可以用加法来解决减法问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何得到的. 6分钟后,比一比,谁能运用减法法则正确做
出检测题.
1·计算下列各式:
50-20= 30 50+(-20)= 30
50-10= 40 50+(-10)= 40
50-0 = 50 50+ 0
(7)0 – ( –7) ;(8 )( – 6) – 6
(9)9 – ( –11)
1减 2数
加 相反数
3·计算下列各题:
(1)9 -(-5) (2)(-3)- 1
(3)0 – 8
(4)(-5) - 0
解:(1)原式= 9 + 5 = 14 减去(-5)等于加上 -5 的相反数。
(2)原式=(-3)+(-1) 减去1等于加上 1 的 相反数。
=-4
(3)原式 = 0 +(-8)= - 8
=50
50-(-10)=60 50+10=60
50-(-20)=70 50+20=70 你能得出什么结论?
3-(-3)=?
问题2:什么数加上-3等于3?
6+(-3)=3 相反数
3-(-3)=6 3+3=6
相同结果
有理数减法法则
减去一个数,等于加上这个数的相反数
注意:减法在运算时有 2 个要素要发生变化。
2、在进行有理数减法运算时,要注意两变一不 变,“两变”即减号变成加号,减数的符号要改 变;“不变”是指被减数不变。
随堂练习
1、口算:(看谁算得快)
(1)3 – 5 ;
(2)3 –)( – 3) – (- 5);
(5)–6 –( –6); (6) – 7 – 0;
(4)原式 =(-5 )+ 0 = -5
例2世界上最高的山峰是珠穆朗玛峰,其海拔高度大约
是8 848米,吐鲁番盆地的海拔高度大约是-155米.两
处高度相差多少米?
.
8 848米有多
.
少层楼高?
解:8 848-(-155)
=8 848+155=9 003(米)
课堂小结
1、本课学习了有理数的减法运算,在进行 有理数减法运算时,我们先把减法运算转 化为加法,然后再根据加法运算的法则进 行。
4 3 2
周六
1
-3 ~ 40C
0 -1 -2
-3 -4
你能从
温度计看出 40C比 – 30C 高多少度吗?
学习目标
1.知识技能: 理解有理数的减法法则,会进行有理数的减 法运算. • 重点: • 有理数减法法则及应用. • 难点: • 运用有理数减法法则解决数学问题.
自学指导
• 认真看课本数(p21_p22) 1.回答“探究”中的问题,理解有理数的减