认识实习超声波测距报告汇总
超声波测距实验报告

超声波测距实验报告1. 实验目的1.掌握超声波测距的基本原理;2.熟悉超声波测距仪器的使用;3.培养实验操作能力和数据处理能力。
2. 实验原理超声波测距是利用超声波在空气中的传播速度和反射原理,通过测量超声波发射和接收之间的时间间隔来计算被测物体与测距仪之间的距离。
超声波在空气中的传播速度约为 340 m/s。
3. 实验器材与步骤3.1 器材1.超声波测距仪;2.连接线;3.测量物体。
3.2 步骤1.连接超声波测距仪与电源;2.打开超声波测距仪,进行自检;3.将测量物体放置在合适的位置;4.调整超声波测距仪的测量范围;5.记录测量数据;6.分析数据,计算距离。
4. 实验数据与分析本实验共进行五次测量,记录数据如下:序号 | 测量距离(cm) | 误差(cm) |— | ———— | ——– |1 | 150.0 | 2.0 |2 | 152.5 | 1.5 |3 | 148.0 | 2.0 |4 | 151.0 | 1.0 |5 | 149.5 | 1.5 |平均距离 = (150.0 + 152.5 + 148.0 + 151.0 + 149.5) / 5 = 150.0 cm最大误差 = 2.0 cm最小误差 = 1.0 cm5. 实验总结本次实验掌握了超声波测距的基本原理和操作方法,通过对测量数据的分析,得出被测物体与测距仪之间的平均距离为 150.0 cm,最大误差为 2.0 cm,最小误差为 1.0 cm。
实验结果表明,超声波测距技术在实际应用中具有较高的准确性和可靠性。
6. 建议与改进1.在实验过程中,要确保测量物体与测距仪之间的距离在测距仪的测量范围内;2.提高实验操作技巧,减小人为误差;3.后续可以尝试使用不同类型的超声波测距仪进行实验,比较其性能和精度。
7. 实验拓展7.1 超声波测距的应用领域超声波测距技术广泛应用于工业、农业、医疗、交通、安防等领域,例如:1.工业领域:测量物体的尺寸、厚度、距离等;2.农业领域:测量土壤湿度、作物高度等;3.医疗领域:测量人体内部器官的距离、厚度等;4.交通领域:车辆测距、速度检测等;5.安防领域:监控设备、报警系统等。
超声波测距仪-实习总结

超声波测距仪-实习总结第一篇:超声波测距仪-实习总结电子实习总结2010-2011学年第一学期,08级电气工程及其自动化专业电子实习与09级电气工程及其自动化专业数字电子技术课程设计,所采用的题目均是“超声波无线测距仪设计”。
该题目是贯彻机电系教学改革精神,根据实践教学要求,新近设计研发的实习内容。
经过两周的实习过程,对于其中一些进步的方面与发现的问题进行总结,以便为接下来的教改工作提供有价值的参考。
对于此次设计过程,一些收获令人满意:第一,从教师团队的角度来说,是一次比较成功的锻炼机会。
无论对于设计研发的老师,还是对参与实习指导的老师,都从中得到了全方面的提高。
相对于原先的教学套件,本设计从理论基础,到软硬件设计,老师们都能够做到深刻理解,熟练掌握。
因此在实习过程中,指导的针对性相较以往,有了明显的进步。
学生反响较好。
同时,在实习结束时进行答辩,有效的提高了教师对于学生掌握实践效果的认识,能够更好的指导下一步的工作。
第二,从学生角度来说,一周的时间,严格按照实习大纲安排,进行了全方面的理论学习,到元器件焊接,最后进行设计分组答辩。
时间紧凑,内容充实。
从实习答辩过程与实习报告的反馈来看,大家都能够做到主动思考,积极求解。
尤其是对于一些成绩相对较差的学生,在实习过程中表现非常主动,令人印象深刻。
尤其在答辩过程中,将固定的“老师问——学生答”方式实现反转,变成“学生问——教师答——教师问——学生答”,用答疑的方式,鼓励学生们发现问题,解决问题。
这种尝试,对于实习过程总结与提高意义重大。
尤其是鼓励每名同学积极主动的寻找问题,用启发式的问题促进每个人去思考问题,符合我们教学改革的目的。
同时,让每名老师的身份由“考官”变为考生,也能够很好的促进教师们的学习能力,为更好的了解学生所想,打下基础。
建议将此经验进行系内教研讨论。
第三,从系部角度来说,由于教学改革势在必行,因此由任课教师设计有针对性的实习内容也是大势所趋。
超声波测距总结报告

电子技术实验课程设计超声波测距系统总结报告自03胡效赫2010012351一、课题内容及分析首先根据课程所给的几个题目进行选择,由于自己最近在做电子设计大赛的平台设计,希望对超声波测距在定位方面应用有更详尽的了解,所以选择课题三——超声波测距作为课程设计,内容如下:对课题进行分析:实验提供超声波传感器T40-16和R40-16,利用面包板和小规模芯片搭接电路,实现距离的测量及显示。
大致思路即驱动发射端发出超声波,接收端收到返回的脉冲进行处理与计算得到测量距离并通过数码管和蜂鸣器显示。
二、方案比较与选择由于超声波测距方案原理基本相同,只要能够检测出发射到接收的时间,并通过相应计算就可以得到所测距离。
所以问题大致分为驱动发射端、接收端检测、间隔时间计算与计算结果显示四部分。
具体的方案设计如下:闸门脉冲源产生基准宽度为T 的闸门脉冲,该脉冲一方面控制计数电路的计数启动和并产生计数器清零脉冲,使计数器从零开始对标准脉冲源输出的时钟脉冲(频率为17KHz)计数。
同时开启控制门,超声波振荡器输出的40kHz脉冲信号通过控制门,放大后送至超声波换能器,由发射探头转换成声波发射出去。
该超声波经过一定的传播时间,达到目标并反射回来,被超声波换能器的接收探头接收变成电信号,经放大、滤波、电压比较和电平转换后,还原成方波。
图中的脉冲前沿检测电路检测出第一个脉冲的前沿,输出控制信号关闭计数器,使计数器停止计数。
则计数器的计数值反映了超声波从发射到接收所经历的时间(或距离)。
三、模块化设计及参数估算1、闸门控制模块●设计思路555振荡电路产生频率为2Hz的脉冲,作为闸门脉冲源。
RC微分电路将输出的2Hz脉冲进行微分运算产生脉冲信号,作为计数启动和计数清零的信号,分别控制D触发器的置高端和74LS90的清零端。
●参数设计:555振荡电路T = (R1+2*R2)*C*ln2。
其中R1取4.7kΩ,R2接入10kΩ滑动变阻器,最后实测7.51kΩ,C取47uF。
实训报告超声波测距仪

一、实训目的本次实训旨在通过实际操作,掌握超声波测距仪的设计、制作和调试方法,了解超声波测距的原理和特点,提高动手能力和创新思维。
二、实训内容1. 超声波测距原理超声波测距仪是利用超声波的传播速度和反射原理进行距离测量的设备。
当超声波发射器发射超声波信号后,遇到障碍物会反射回来,接收器接收反射信号,通过计算超声波往返时间,即可得到距离。
2. 超声波测距仪设计(1)硬件设计本次实训所设计的超声波测距仪主要由以下模块组成:1)超声波发射模块:采用超声波发射器产生40kHz的超声波信号。
2)超声波接收模块:采用超声波接收器接收反射回来的超声波信号。
3)单片机模块:采用AT89S51单片机作为主控制器,负责控制超声波发射、接收、数据处理和显示。
4)显示模块:采用四位共阳数码管显示距离。
5)电源模块:采用稳压电源为整个系统供电。
(2)软件设计1)初始化:设置单片机工作状态,初始化各个模块。
2)超声波发射:单片机控制超声波发射器发射超声波信号。
3)超声波接收:单片机控制超声波接收器接收反射回来的超声波信号。
4)数据处理:计算超声波往返时间,根据超声波在空气中的传播速度,计算出距离。
5)显示:将计算出的距离显示在数码管上。
3. 超声波测距仪调试(1)硬件调试:检查各个模块的连接是否正确,确保电路正常工作。
(2)软件调试:编写程序,调试单片机控制程序,使超声波测距仪能够正常工作。
三、实训过程1. 硬件制作(1)按照电路图连接各个模块,焊接电路板。
(2)组装超声波发射器、接收器和数码管。
2. 软件编写(1)根据超声波测距原理,编写程序实现超声波发射、接收、数据处理和显示功能。
(2)调试程序,确保超声波测距仪能够正常工作。
3. 调试与测试(1)检查电路连接是否正确,确保电路正常工作。
(2)调试单片机控制程序,使超声波测距仪能够正常工作。
(3)进行实际测量,测试超声波测距仪的测量精度和稳定性。
四、实训结果与分析1. 测量精度通过实际测量,超声波测距仪的测量精度在1厘米以内,满足日常使用要求。
超声测距实验报告

超声测距实验报告一、实验目的本次超声测距实验的主要目的是研究和掌握利用超声波进行距离测量的原理和方法,并通过实际操作和数据分析,评估测量系统的精度和可靠性。
二、实验原理超声波是一种频率高于 20kHz 的机械波,其在空气中传播时具有良好的指向性和反射特性。
超声测距的基本原理是利用超声波在发射后遇到障碍物反射回来的时间差来计算距离。
具体计算公式为:距离=(超声波传播速度×传播时间)/ 2 。
在常温常压下,空气中超声波的传播速度约为 340 米/秒。
通过测量超声波从发射到接收的时间间隔 t,就可以计算出距离。
三、实验仪器与材料1、超声测距模块:包括发射探头和接收探头。
2、微控制器:用于控制超声模块的工作和处理数据。
3、显示设备:用于显示测量结果。
4、电源:为整个系统供电。
5、障碍物:用于反射超声波。
四、实验步骤1、硬件连接将超声测距模块的发射探头和接收探头正确连接到微控制器的相应引脚。
连接电源,确保系统正常供电。
将显示设备与微控制器连接,以便显示测量结果。
2、软件编程使用相应的编程语言,编写控制超声模块工作和处理数据的程序。
实现测量时间的计算和距离的换算,并将结果输出到显示设备。
3、系统调试运行程序,检查系统是否正常工作。
调整发射功率和接收灵敏度,以获得最佳的测量效果。
4、测量实验将障碍物放置在不同的距离处,进行多次测量。
记录每次测量的结果。
五、实验数据与分析以下是在不同距离下进行多次测量得到的数据:|距离(米)|测量值 1(米)|测量值 2(米)|测量值 3(米)|平均值(米)|误差(米)||||||||| 05 | 048 | 052 | 050 | 050 | 000 || 10 | 095 | 105 | 100 | 100 | 000 || 15 | 148 | 152 | 150 | 150 | 000 || 20 | 190 | 205 | 195 | 197 | 003 || 25 | 240 | 255 | 245 | 247 | 003 || 30 | 290 | 305 | 295 | 297 | 003 |通过对实验数据的分析,可以看出在较近的距离(05 米至 15 米)内,测量误差较小,基本可以准确测量。
超声波测量检测实训报告

一、实验目的1. 熟悉超声波测量检测的基本原理和实验方法;2. 掌握超声波测距仪器的操作技能;3. 学会利用超声波测量检测技术进行实际应用;4. 提高分析问题和解决问题的能力。
二、实验原理超声波是一种频率高于人类听觉上限(20kHz)的声波。
超声波在介质中传播时,其传播速度与介质的密度、弹性模量等因素有关。
超声波测量检测技术利用超声波的这些特性,通过测量超声波在介质中的传播时间或反射时间来获取距离信息。
三、实验仪器与设备1. 超声波测距仪;2. 超声波发射器;3. 超声波接收器;4. 数字示波器;5. 电源;6. 测量距离的标尺;7. 实验平台。
四、实验内容1. 超声波测距仪器的使用与操作;2. 超声波传播速度的测量;3. 超声波反射系数的测量;4. 超声波衰减系数的测量;5. 超声波测距的实际应用。
五、实验步骤1. 超声波测距仪器的使用与操作(1)打开超声波测距仪,调整仪器至正常工作状态;(2)根据实际需求,选择合适的测量模式(如距离测量、速度测量等);(3)将超声波发射器固定在实验平台上,确保发射器与接收器之间的距离固定;(4)将超声波接收器放置在距离发射器一定距离的位置;(5)启动超声波测距仪,观察测量结果。
2. 超声波传播速度的测量(1)根据实验要求,设置超声波发射器与接收器之间的距离;(2)启动超声波测距仪,记录超声波往返传播时间;(3)根据超声波往返传播时间,计算超声波在介质中的传播速度。
3. 超声波反射系数的测量(1)将超声波发射器与接收器之间的距离设置为固定值;(2)启动超声波测距仪,记录超声波往返传播时间;(3)根据超声波往返传播时间,计算超声波在介质中的传播速度;(4)利用超声波传播速度和超声波发射器与接收器之间的距离,计算超声波的反射系数。
4. 超声波衰减系数的测量(1)根据实验要求,设置超声波发射器与接收器之间的距离;(2)启动超声波测距仪,记录超声波往返传播时间;(3)根据超声波往返传播时间,计算超声波在介质中的传播速度;(4)利用超声波传播速度和超声波发射器与接收器之间的距离,计算超声波的衰减系数。
认识实习超声波测距报告汇总

Harbin University Of Science And Technology 认识实习报告学院:自动化学院专业:电子信息科学与技术班级:电技12-3姓名:蔡成灼学号:1212020301日期:2015.1.9任务书实习项目名称:超声波测距仪的研制实习时间:2014.12.29 —2015.1.9一、实习的目的和意义认识实习是一个重要的基础实习环节,通过认识实习,学生可以了解电子产品的制作工艺和基本原理,掌握电子产品制作的基本操作技能和调试技能,培养学生用所学知识分析实际问题、解决实际问题的能力,为以后的实践性教学环节打下基础。
二、实习内容本实习以《超声波测距仪的研制》项目为目标,培养学生对电子产品的制作工艺的认识和操作技能,以及电子产品的原理分析。
1、超声波测距原理学习;2、电路原理图及PCB绘制;3、电子元器件识别与焊接;4、超声波测距仪软件设计;5、超声波测距仪调试。
三、报告内容和格式内容:1、超声波测距的意义和应用;2、超声波测距的原理(原理说明、原理图);3、超声波测距仪的制作与调试;4、实习体会格式:报告包括封面、任务书、目录、正文等部分,一级标题(章标题):黑体小二;二级标题(节标题):黑体小三;正文:宋体小四;目录:二级目录,宋体小四。
行间距: 1.25倍。
报告A4纸打印,左侧装订。
目录1、实习目的 (2)2、实习内容2.1方案选择 (2)2.2 整理思路 (2)3、超声波测距原理3.1超声波探头 (2)3.2超声波测距原理 (3)3.3 基于单片机超声波测距仪系统构成 (4)4、超声波测距原理图分析4.1 发射电路 (4)4.2 接收电路 (5)5、超声波测距的意义和应用5.1超声波测距的意义 (6)5.2 超声波测距的应用 (7)6、元件装配及硬件调试6.1元件装配 (7)6.2 编程及调试 (8)6.3 PCB板及成果展示 (12)7、实习总结7.1实习总结 (13)7.2实习体会 (14)第1章实习的目的和意义认识实习是一个重要的基础实习环节,通过认识实习,学生可以了解电子产品的制作工艺和基本原理,掌握电子产品制作的基本操作技能和调试技能,培养学生用所学知识分析实际问题、解决实际问题的能力,为以后的实践性教学环节打下基础。
超声波测距仪实训报告

超声波测距仪实训报告一、实训目的本次超声波测距仪实训的主要目的是让我们深入了解超声波测距的原理和应用,通过实际操作和调试,掌握超声波测距仪的设计、制作和调试方法,提高我们的实践动手能力和解决问题的能力,同时培养我们的团队合作精神和创新思维。
二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。
超声波发生器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时时间 t 就可以计算出发射点距障碍物的距离 s,即 s = 340t/2。
三、实训设备与材料1、超声波传感器模块(包括发射探头和接收探头)2、单片机开发板3、显示屏4、杜邦线若干5、面包板6、电源适配器四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板进行连接,使用杜邦线将发射探头连接到单片机的某个输出引脚,接收探头连接到单片机的某个输入引脚。
将显示屏连接到单片机的相应引脚,以便显示测量到的距离值。
2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 软件。
编写初始化程序,包括单片机引脚的配置、定时器的设置等。
编写超声波发射和接收的控制程序,实现超声波的发射和接收,并计算往返时间。
根据距离计算公式,将计算得到的距离值转换为合适的格式,并通过显示屏进行显示。
3、系统调试硬件调试:检查电路连接是否正确,电源是否正常,传感器是否工作正常等。
软件调试:通过单步调试、设置断点等方式,检查程序的执行流程和计算结果是否正确。
综合调试:将硬件和软件结合起来进行调试,不断修改和优化程序,直到系统能够稳定准确地测量距离。
五、实训过程中遇到的问题及解决方法1、测量误差较大问题描述:测量得到的距离值与实际距离存在较大偏差。
原因分析:可能是由于超声波在空气中的传播受到温度、湿度等环境因素的影响,也可能是由于硬件电路的干扰或者软件算法的不完善。
超声波测距实训报告结尾

首先,通过本次实训,我们明白了超声波测距技术的原理和应用。
超声波测距仪利用超声波的传播特性,通过测量声波在介质中传播的时间,从而计算出目标物体的距离。
这种非接触式的测量方法,具有精度高、速度快、不受光照和介质影响等优点,在工业、农业、医疗、科研等领域有着广泛的应用前景。
在实训过程中,我们首先学习了超声波测距仪的组成及工作原理。
通过阅读相关资料,我们了解了超声波传感器、单片机、显示屏等关键部件的功能和作用。
在此基础上,我们通过实验验证了超声波在空气中的传播速度,为后续的测距计算奠定了基础。
接下来,我们学习了超声波测距仪的设计与制作。
在老师的指导下,我们完成了电路图的绘制、元器件的选型、电路板的制作和焊接等工作。
在这个过程中,我们遇到了许多困难,如电路板焊接不良、传感器参数不匹配等。
但在老师和同学的帮助下,我们逐一解决了这些问题,最终成功制作出了自己的超声波测距仪。
在测试阶段,我们进行了多次实验,测试了测距仪在不同距离、不同角度、不同环境下的测量精度。
实验结果表明,我们的超声波测距仪在距离范围内具有较高的测量精度,且稳定性较好。
此外,我们还尝试了不同的超声波传感器和单片机,发现不同的组合会对测量结果产生一定影响,这为我们后续的优化工作提供了参考。
在实训过程中,我们还学习了如何利用单片机编程控制超声波测距仪。
通过学习C 语言编程,我们掌握了单片机的基本原理和编程方法。
在编程过程中,我们学会了如何读取传感器数据、计算距离、显示结果等。
这些技能对我们今后的学习和工作具有重要意义。
总结本次实训,我们有以下几点收获:1. 深入了解了超声波测距技术的基本原理和应用领域;2. 提升了动手能力和解决问题的能力;3. 掌握了电路设计、焊接、编程等技能;4. 增强了团队合作意识和沟通能力。
当然,在实训过程中我们也发现了一些不足之处:1. 测距仪的测量精度有待提高;2. 软件功能较为简单,有待进一步优化;3. 实验环境对测量结果有一定影响,需要进一步研究。
超声波测距实习报告

一、实习背景随着科技的不断发展,超声波测距技术逐渐在各个领域得到广泛应用。
为了提高自身实践能力,了解超声波测距技术在实际应用中的原理和操作,我参加了本次超声波测距实习。
二、实习目的1. 了解超声波测距的基本原理及工作流程;2. 掌握超声波测距仪的使用方法及注意事项;3. 培养动手能力和团队合作精神;4. 提高对超声波测距技术在实际应用中的认识。
三、实习内容1. 超声波测距原理及工作流程超声波测距是利用超声波在介质中传播的速度和反射原理来测量距离的一种技术。
当超声波发射器发出超声波后,在遇到障碍物时,部分超声波会被反射回来。
通过测量发射超声波和接收反射超声波之间的时间差,可以计算出障碍物与测距仪之间的距离。
超声波测距工作流程如下:(1)发射器发射超声波;(2)超声波遇到障碍物后反射回来;(3)接收器接收反射回来的超声波;(4)计算发射和接收之间的时间差;(5)根据超声波在介质中的传播速度,计算出障碍物与测距仪之间的距离。
2. 超声波测距仪的使用方法及注意事项(1)使用前,确保超声波测距仪的电源充足,避免因电量不足导致测量误差;(2)将测距仪放置在平稳的表面上,避免因震动导致测量误差;(3)调整测距仪的量程,使其适应被测物体的距离;(4)根据需要,调整测距仪的发射角度,确保超声波能够有效传播;(5)在测量过程中,避免测距仪受到其他信号的干扰;(6)测量完成后,关闭测距仪,确保设备安全。
3. 实际操作在实习过程中,我们使用超声波测距仪对实验室内的物体进行了测量。
具体操作如下:(1)将测距仪放置在平稳的桌面上;(2)调整测距仪的量程,使其适应被测物体的距离;(3)调整测距仪的发射角度,确保超声波能够有效传播;(4)按下测距仪的测量按钮,开始测量;(5)观察测距仪的显示屏,读取测量结果;(6)重复以上步骤,对多个物体进行测量。
四、实习心得通过本次超声波测距实习,我深刻认识到以下几方面:1. 超声波测距技术在实际应用中的重要性;2. 掌握超声波测距仪的使用方法及注意事项对于提高测量精度至关重要;3. 动手能力在实践过程中得到了锻炼,为今后的工作积累了宝贵经验;4. 团队合作精神在实习过程中得到了体现,为今后的团队协作打下了基础。
超声波测距实验报告

超声波测距模块工作原理
超声波发射器发射 一组超声波脉冲
脉冲遇到物体后反 射回来
超声波接收器接收 反射回来的脉冲
通过计算发射和接 收脉冲之间的时间 差,得到物体与传 感器之间的距离
编写Arduino程序,控制 超声波传感器发送和接收 信号
连接Arduino板与电脑, 上传程序并运行
调整超声波传感器的角度 和位置,确保测量距离准 确
开始测量
准备超声波传感器和Arduino板 连接超声波传感器和Arduino板 编写程序,设置触发和接收引脚 启动Arduino板,开始测量距离
数据记录和处理
添加标题
添加标题
添加标题
添加标题
拓展应用场景:将超声波测距技术 应用于更多领域,如自动驾驶、智 能机器人等。
降低成本:通过优化设计和生产工艺, 降低超声波传感器和测距系统的成本, 使其更广泛地应用于各种领域。
感谢您的观看
汇报人:XX
实验步骤
准备实验器材
超声波传感器 添加标题
连接线 添加标题
添加标题 Arduino开发板
添加标题 面包板
跳线 添加标题
测量工具 添加标题
添加标题 电脑和软件
添加标题 实验环境
搭建实验装置
准备超声波传感器、 Arduino板、面包板、跳 线等材料
连接超声波传感器与 Arduino板的引脚
连接Arduino板与面包板 的引脚
学会使用超声波传感器进行距离测 量
学会分析实验数据,得出结论
掌握数据处理和分析技巧
学习如何使用超声波传感器进行距 离测量
超声实习总结4篇

超声实习总结超声实习总结4篇超声实习总结1通过6周的超声科实习,我对超声科常见的疾病、工作流程有了初步的了解。
超声检查的简便、快捷是其一个特点,每天要处理大量的病人,这也是我学会了如何进行医患沟通。
第1周是见习阶段,我跟着带教老师学习如何准备病人以及如何描述病变、书写报告。
第2---4周是B超实习阶段,我学习了超声扫查方式,扫查顺序级各种标准切面的扫查方法,并且对一些常见疾病有了一定的掌握。
第5—6周是彩超实习阶段,我重点实习了心脏彩超,了解了心脏彩超的检查顺序,心脏彩超测量的径线值及其意义,初步掌握了部分常见疾病的诊断。
整个实习阶段,我学会了超声的诊断报告书写,基本切面的解剖结构和一些常见病的超声诊断。
每周由老师进行一次系统的实习进修医生讲座,让我系统、完整的学习了相关的知识,收获颇丰。
每天下午带教老师带着我进行床边超声的检查,我熟悉了住院病人常见的疾病诊断和如何在非标准体位下进行超声扫查。
通过对门诊病人的超声扫查,我初步掌握了一些扫查方法和技巧,对超声多切面,多角度扫描有了更深一层次的体会,同时也锻炼了我的空间想象能力。
超声科室的实习只是一个开始,我一定会在今后的工作中,将实习阶段稳扎稳打的学风融入到工作中去;将对每一位病患认真负责的态度融入到工作中去,只有这样,实习阶段才起到了具有长远影响力的作用。
xxxxxxxxxxx超声实习总结2短短一个月的超声诊断临床实习即将结束,在各位带教老师的认真指导下,我能很快的投入到超声诊断的临床工作中。
平时做到不迟到,不早退,不旷工,认真完成各项实习任务,并将书本知识应用到实践中去。
不懂就问,虚心请教。
在带教老师的引导下,已基本能够独立上机操作,并且独立完成报告500余份,完成床边超声检查30余次,辅助老师完成超声引导下穿刺活检、抽液术近40次这一个月充实的学习,使我的理论知识在实践中得以运用并得以加深和巩固,然而,期间我也发现自己还存在一些不足,我会继续学习,努力完善自我。
超声波测距总结1

1.压电式超声波发生器原理收发同体型超声波测距只用一个换能器,既做发射又做接收。
当换能器发射出一个短暂的振荡信号后,便处于接收状态。
压电式超声波发生器实际上是利用压电晶体的谐振来工作的。
超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
2.超声波测距的原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2。
3.超声波测距电路图的设计该系统由发射电路、前置放大电路、二级放大电路、三级放大电路、滤波电路、音频译码电路和单片机控制器等组成。
发射部分:测距电路的发射端接单片机P1.0端口,在P1.0 端口输出一个40kHz的脉冲信号,经过三极管T放大,驱动超声波传感器发出40kHz的脉冲超声波,且持续发射200μs,即大概八个脉冲信号。
接收部分:放大电路:超声波在传播途中不可避免地会衰减, 到达物体表面后,经过吸收、散射后, 反射回来的回波信号极其微弱,要想检测到回波,必须对其进行适当的放大。
另一方面,超声波碰到不同表面的物体回波信号起伏很大, 以至于有可能完全被背景噪声淹没。
考虑到超声换能器的输出电阻比较大,因此前置放大器必须有足够大的输入阻抗。
前置放大电路采用一个由精密、高输入阻抗仪表放大器AD623构成的差动放大器。
由于采用了收发同体传感器,因而收发信号之间会产生干扰,较大的发送信号能量有可能直接进入接收电路,它要比回波大得多,因此前级放大器会饱和,电路工作不稳定。
单片机超声波测距实习报告

一、实习背景随着科技的不断发展,单片机技术在各个领域得到了广泛应用。
超声波测距技术作为一种非接触式测量方法,具有精度高、稳定性好、抗干扰能力强等优点,在工业自动化、智能家居、机器人等领域有着广泛的应用前景。
本实习报告旨在通过单片机超声波测距实验,了解超声波测距原理,掌握单片机编程技巧,并实现一个简单的超声波测距系统。
二、实习目的1. 理解超声波测距原理,掌握超声波传感器的工作原理。
2. 掌握单片机编程技巧,实现超声波测距功能。
3. 了解超声波测距系统在实际应用中的注意事项。
三、实习内容1. 超声波测距原理超声波测距原理基于声波在介质中传播的速度和距离的关系。
当超声波发射器发出超声波信号后,遇到障碍物会发生反射,反射信号被接收器接收。
根据超声波发射和接收的时间差,可以计算出障碍物与传感器的距离。
2. 实验设备(1)51单片机开发板(2)HC-SR04超声波测距模块(3)蜂鸣器(4)LED灯(5)面包板、连接线3. 实验步骤(1)搭建实验电路将51单片机开发板、HC-SR04超声波测距模块、蜂鸣器、LED灯等元器件按照电路图连接到面包板上。
(2)编写程序使用C语言编写单片机程序,实现以下功能:1)初始化51单片机、HC-SR04超声波测距模块、蜂鸣器、LED灯等外围设备。
2)使用定时器0产生定时中断,定时检测HC-SR04超声波测距模块的回波信号。
3)根据超声波往返时间计算距离,并显示在LCD显示屏上。
4)当距离小于设定值时,蜂鸣器发出报警声,LED灯亮起。
(3)编译、下载程序将编写好的程序编译并下载到51单片机开发板上。
(4)测试与调试连接LCD显示屏,观察距离显示是否正常。
调整HC-SR04超声波测距模块与障碍物的距离,测试报警声和LED灯是否正常工作。
四、实习结果与分析1. 实验结果通过实验,成功实现了超声波测距功能。
当距离小于设定值时,蜂鸣器发出报警声,LED灯亮起。
2. 分析(1)超声波测距原理正确,程序编写无误。
超声波测距总结报告

成分专班一、超声波测距原理超声波是指频率高于20KHZ的机械波(我们采用40KHZ)。
为了以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置超声波测距模块。
该模块利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
超声波测距的原理是测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就可以得到二倍的声源与障碍物之间的距离。
即:D=C*T/2。
其中,D为超声波测距模块到障碍物之间的距离;C为超声波此时在空气中的传播速度;T为超声波的发收时间。
在空气中,声波的传播速度一般受温湿度的影响,在没有温湿度传感器或对测量精度要求不高的情况下,一般取340m/s。
在实验中,本程序采用C=340m/s。
二、超声波测距模块(URF04):1、板上接线方式:VCC、trig(控制端)、echo(接收端)、GND2、模块工作原理:(1)采用IO触发测距,给10us以上的高电平信号;(2)模块自动发送8个40khz的方波,自动检测是否有信号返回;(3)有信号返回,通过IO输出一高电平,高电平持续的时间就是超声波从发射到返回的时间.测试距离=(高电平时间*声速(340M/S))/2;3、操作方法:用一个控制口发一个10US以上的高电平,在接收口等待高电平输出.当有高电平输出就可以开定时器计时,当此口变为低电平时就可以读定时器的值,此时就为此次测距的时间,方可算出距离.如此不断的周期测,就可以移动测量的值了4、局限性:该模块在将电信号转化成声波的过程中,所产生的声波并不是理想中的矩形,而是一个类似花瓣一样形状,发送超声波的波束角大约为15度。
在实际应用中,该波束应为一个立体的圆锥形,这也导致两个问题:1)随着探测距离的延长,探测障碍物方位的准确性下降。
即无法对障碍物进行准确定位。
2)探测距离越远,能量扩散越严重,在障碍物不理想的情况下,返回信号减弱,以至于在标准探测范围内,返回脉冲也达不到该模块的判断阈值。
超声波探测实验实验报告(3篇)

第1篇一、实验目的1. 了解超声波的基本原理及其在探测中的应用。
2. 掌握超声波探测仪器的操作方法和使用技巧。
3. 通过实验,验证超声波探测技术在实际测量中的应用效果。
二、实验原理超声波探测技术是利用超声波在介质中传播的特性,通过发射、接收和反射等过程来获取被测物体内部结构信息的一种非接触式检测方法。
超声波探测的原理如下:1. 超声波的产生:利用压电换能器将电能转换为超声波能量。
2. 超声波的传播:超声波在介质中传播,遇到不同介质的界面时会发生反射、折射和透射等现象。
3. 超声波的接收:接收换能器接收反射回来的超声波信号。
4. 信号处理:通过信号处理技术,提取出有用的信息,如距离、速度、厚度等。
三、实验设备1. 超声波探测仪2. 超声波发射器3. 超声波接收器4. 试块(用于模拟被测物体)5. 计时器6. 示波器7. 数据采集器四、实验步骤1. 连接设备:将超声波发射器、接收器、探测仪和试块连接好。
2. 调整参数:根据实验要求,设置探测仪的频率、灵敏度等参数。
3. 放置试块:将试块放置在实验台上,确保其稳定。
4. 发射超声波:打开超声波发射器,向试块发射超声波。
5. 接收反射波:打开超声波接收器,接收试块反射回来的超声波信号。
6. 观察波形:使用示波器观察反射波波形,记录反射波的时间、幅度等信息。
7. 数据处理:根据反射波的时间和幅度,计算出被测物体的厚度、距离等参数。
8. 重复实验:改变试块的位置和角度,重复实验步骤,验证实验结果的准确性。
五、实验结果与分析1. 反射波时间:通过实验,我们得到了不同位置和角度下反射波的时间。
根据反射波时间和超声波在介质中的传播速度,可以计算出被测物体的厚度。
2. 反射波幅度:反射波幅度反映了超声波在试块中的衰减程度,从而可以判断试块内部是否存在缺陷。
3. 实验误差:实验过程中,由于设备精度、环境因素等原因,可能会产生一定的误差。
通过多次实验,我们可以分析误差产生的原因,并采取措施减小误差。
超声波测距报告

超声波测距报告摘要:本报告旨在介绍超声波测距技术及其在实际应用中的重要性。
超声波测距是一种常见的非接触式测距方法,它通过发射超声波并计算其传播时间来测量目标物体与传感器之间的距离。
本报告将介绍超声波测距的基本原理、技术特点、应用领域和未来发展方向。
一、简介超声波测距是利用超声波在空气中传播速度快、能量损耗小的特性,通过测量超声波的传播时间来计算目标物体与传感器之间的距离。
这种测距方法被广泛应用于工业自动化、机器人导航、车辆防撞系统等领域。
二、超声波测距原理超声波测距的原理基于声波在空气中的传播速度恒定的事实。
传感器发送一个短脉冲超声波信号,当它达到目标物体时,部分能量被目标吸收,其余的能量会被反射回传感器。
传感器通过测量收到的回波的时间来计算距离。
三、超声波测距技术特点1. 非接触式测距:超声波测距不需要与目标物体直接接触,可以在远距离范围内进行测量,避免了物体表面损坏和污染的问题。
2. 高精度:超声波测距可以实现毫米级别的测量精度,适用于精密测量和控制应用。
3. 稳定性好:超声波传播速度恒定,不受环境温度和湿度等因素的影响。
4. 响应速度快:超声波测距传感器可以在几毫秒内完成距离测量,适用于快速反应的应用。
四、超声波测距应用领域1. 工业自动化:超声波测距广泛应用于生产线上的物体检测、位移测量等工业自动化应用,为生产过程提供了准确和可靠的测量数据。
2. 机器人导航:超声波测距被用于机器人导航系统中,可以实现避障和目标定位的功能,提高机器人的自主导航能力。
3. 车辆防撞系统:超声波测距被应用于车辆的倒车雷达和自动驾驶系统中,可以实时监测车辆周围的距离,防止碰撞事故的发生。
4. 医疗诊断:超声波测距在医疗领域中被用于检测胎儿发育、器官疾病的诊断等方面,为医生提供重要的辅助诊断信息。
五、超声波测距的未来发展随着科技的不断发展,超声波测距技术也不断进步。
未来,我们可以期待以下方面的发展:1. 更高精度:通过改进传感器和信号处理算法,超声波测距可以实现更高精度的测量,满足更多应用的需求。
超声波测距实训报告

超声波测距实训报告
超声波测距实训报告
一、实验目的
1. 掌握超声波测距的原理和方法;
2. 学习使用超声波模块进行测距;
3. 验证超声波测距的准确性和可靠性。
二、实验原理
超声波测距原理是利用超声波传播速度较快、能够穿透介质的特性来测量距离的一种方法。
通过发射超声波信号并接收回波信号,根据信号的往返时间来计算距离。
超声波模块一般由超声波传感器和控制电路组成。
超声波传感器会发射一束超声波信号,并接收回波信号。
控制电路会计算信号往返时间,并转换为距离值。
三、实验步骤
1. 将超声波模块与Arduino主板通过引脚连接;
2. 在Arduino上编写程序,设置超声波模块的引脚模式,并读取距离值;
3. 将Arduino通过USB线连接到电脑上,并上传程序;
4. 打开串口监视器,观察并记录测得的距离值;
5. 移动障碍物,再次记录距离值,并与实际距离进行对比。
四、实验数据
实验中我们测得的距离值如下:
实际距离(cm)测得距离(cm)
10 9.8
20 19.6
30 29.4
五、实验结果分析
通过实验数据可以看出,超声波测距的结果与实际距离十分接近,测距精度较高。
但是由于超声波信号的传播受到环境影响,如空气温度、湿度等,可能会有一定的误差。
同时,超声波测距的有效范围也受限于传感器的特性。
六、实验结论
通过本次实验,我们成功掌握了超声波测距的原理和方法,并验证了其准确性和可靠性。
超声波测距在实际应用中具有较高的测量精度和稳定性,广泛用于物体检测、避障等领域。
超声科实习总结6篇

超声科实习总结6篇第1篇示例:超声科实习总结在医学专业的学习中,实习是非常重要的一环。
超声科作为医学影像学的一个重要分支,对于医学生来说,实习经历是非常宝贵的。
在过去的几个月里,我有幸在某某医院的超声科进行了实习,通过这段时间的学习和实践,我对超声科有了更深入的了解,也锻炼了自己的专业能力和团队合作精神。
超声科实习让我更加深入地了解了超声波的原理和应用。
在实习期间,我跟随着医生和技师进行了多次超声检查,学习了超声波的产生和传播原理,了解了不同类型的超声检查在临床中的应用。
通过观摩和实际操作,我逐渐熟悉了超声设备的使用方法,学会了如何调整超声波的频率和幅度,使得检查结果更加准确、清晰。
超声科实习也提高了我的临床思维和观察能力。
在超声科实习中,我能够通过观察医生和技师的操作,了解患者的病情特点,并学会了如何从超声图像中发现异常情况。
在肝脏超声检查中,我学习了如何判断肝脏的形态和内部结构是否正常,如何发现肝脏疾病的征兆。
这些经验对我今后的临床工作将会非常有帮助。
实习期间,我也加深了对团队合作的认识。
在超声科实习中,医生、技师、病人和家属都是一个团队,每个人的角色都是不可或缺的。
我学会了如何与医生和技师合作,如何在与患者交流中保持耐心和同理心,如何与家属有效沟通。
这些都是我未来在临床工作中必须具备的素质和能力。
超声科实习是我医学专业学习中的一段宝贵经历。
通过这段实习,我不仅加深了对超声波原理和应用的理解,也锻炼了自己的临床思维和观察能力,培养了团队合作精神。
我相信,这段实习经历将成为我未来医学生涯中的宝贵财富,让我更好地为患者服务,为医学事业贡献自己的力量。
感谢某某医院超声科的医生和技师们对我的指导和帮助,也感谢我的老师和同学们在学习中的支持和鼓励。
超声科实习,让我受益匪浅,定会铭记于心。
第2篇示例:超声科实习总结超声科实习是医学学生在医院临床实习中的重要环节,通过此次实习,我对超声科的工作有了更深入的了解,也学到了很多宝贵的经验和知识。
超声波测距传感器实习报告

一、实习背景随着科技的发展,超声波测距传感器在工业、农业、医疗、科研等领域得到了广泛应用。
为了更好地了解超声波测距传感器的工作原理和应用,我参加了本次实习,旨在通过实际操作,掌握超声波测距传感器的使用方法,提高自己的动手能力和实际操作能力。
二、实习目的1. 了解超声波测距传感器的工作原理和基本组成;2. 掌握超声波测距传感器的安装、调试和操作方法;3. 学会使用超声波测距传感器进行实际测量;4. 提高自己的动手能力和实际操作能力。
三、实习内容1. 超声波测距传感器原理及组成超声波测距传感器是一种非接触式测距传感器,其基本原理是利用超声波的传播速度来测量距离。
当超声波发射器向目标物体发射超声波时,超声波遇到目标物体后会反射回来,传感器接收到反射回来的超声波信号,根据发射和接收信号的时间差,即可计算出目标物体与传感器之间的距离。
超声波测距传感器的组成主要包括以下几个部分:(1)超声波发射器:产生超声波信号;(2)超声波接收器:接收反射回来的超声波信号;(3)信号处理器:对接收到的信号进行处理,计算出距离;(4)显示模块:将计算出的距离显示出来。
2. 超声波测距传感器的安装与调试(1)安装:根据实际需要,将超声波测距传感器安装在合适的位置,确保传感器能够与目标物体进行有效接触。
(2)调试:首先检查传感器电源是否正常,然后使用示波器或其他测量工具,检查传感器发射和接收信号是否正常。
如果存在问题,需要调整传感器位置或检查电路连接。
3. 超声波测距传感器的操作方法(1)打开电源,启动超声波测距传感器;(2)设置测量参数,如测量距离范围、分辨率等;(3)将传感器对准目标物体,确保传感器与目标物体之间无遮挡;(4)读取测量结果,观察显示模块上的距离数值。
4. 超声波测距传感器的实际测量本次实习,我们使用超声波测距传感器对一段距离进行了实际测量。
具体步骤如下:(1)将超声波测距传感器安装在合适的位置,确保传感器能够与目标物体进行有效接触;(2)设置测量参数,如测量距离范围、分辨率等;(3)将传感器对准目标物体,确保传感器与目标物体之间无遮挡;(4)读取测量结果,观察显示模块上的距离数值;(5)重复以上步骤,进行多次测量,取平均值作为最终测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin University Of Science And Technology 认识实习报告学院:自动化学院专业:电子信息科学与技术班级:电技12-3姓名:蔡成灼学号:1212020301日期:2015.1.9任务书实习项目名称:超声波测距仪的研制实习时间:2014.12.29 —2015.1.9一、实习的目的和意义认识实习是一个重要的基础实习环节,通过认识实习,学生可以了解电子产品的制作工艺和基本原理,掌握电子产品制作的基本操作技能和调试技能,培养学生用所学知识分析实际问题、解决实际问题的能力,为以后的实践性教学环节打下基础。
二、实习内容本实习以《超声波测距仪的研制》项目为目标,培养学生对电子产品的制作工艺的认识和操作技能,以及电子产品的原理分析。
1、超声波测距原理学习;2、电路原理图及PCB绘制;3、电子元器件识别与焊接;4、超声波测距仪软件设计;5、超声波测距仪调试。
三、报告内容和格式内容:1、超声波测距的意义和应用;2、超声波测距的原理(原理说明、原理图);3、超声波测距仪的制作与调试;4、实习体会格式:报告包括封面、任务书、目录、正文等部分,一级标题(章标题):黑体小二;二级标题(节标题):黑体小三;正文:宋体小四;目录:二级目录,宋体小四。
行间距: 1.25倍。
报告A4纸打印,左侧装订。
目录1、实习目的 (2)2、实习内容2.1方案选择 (2)2.2 整理思路 (2)3、超声波测距原理3.1超声波探头 (2)3.2超声波测距原理 (3)3.3 基于单片机超声波测距仪系统构成 (4)4、超声波测距原理图分析4.1 发射电路 (4)4.2 接收电路 (5)5、超声波测距的意义和应用5.1超声波测距的意义 (6)5.2 超声波测距的应用 (7)6、元件装配及硬件调试6.1元件装配 (7)6.2 编程及调试 (8)6.3 PCB板及成果展示 (12)7、实习总结7.1实习总结 (13)7.2实习体会 (14)第1章实习的目的和意义认识实习是一个重要的基础实习环节,通过认识实习,学生可以了解电子产品的制作工艺和基本原理,掌握电子产品制作的基本操作技能和调试技能,培养学生用所学知识分析实际问题、解决实际问题的能力,为以后的实践性教学环节打下基础。
第2章实习内容2.1方案选择对方案的评估完成后,我们开始整理方案设计思路,制定实训计划表,分期完成各项指标。
在实践紧迫的情况下,我们明确了分工,按照预先整理好的设计流程进行分工作业。
2.2整理思路对方案的评估完成后,我们开始整理方案设计思路,分期完成各项指标。
在时间紧迫的情况下,我们明确了分工,按照预先整理好的设计流程进行分工作业,首先绘制电路图,并且制作PCB板,然后通过焊接,把元器件组装,最后通过编程调试,完成这次实习。
第3章超声波测距原理3.1超声波探头超声波探头是实现声、电转换的装置,又称超声波换能器或传感器,这种装置能发射超声波和接收生回波,并转换成相应的电信号。
超声波探头按其作用原理可分为压电式、磁致伸缩式和电磁式等数种,其中以压电式最为常用。
压电式超声波传感器实际上是利用压电晶体的谐振来工作的。
压电式超声波发生器的内部有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波(一种机械波)(逆压电效应),即为超声波发射器。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号(压电效应),即为超声波接收器。
3.2超声波测距原理在某一时刻给超声波发生器施加40KHZ方波信号,发生器发出超声波,遇到被测物体后反射回来,被超声波接收器接收到。
只要计算出超声波信号从发射到接收的时间差,知道在介质中的传播速度,就可以计算出被测物体的距离d=s/2=(vt)/2 。
其中d为被测物到测距仪之间的距离,s为超声波往返通过的路程,v为超声波在介质中的传播速度,t为超声波从发射到接收所用的时间。
由于超声波在空气中的传播速度与温度有关,如果温度变化不大,则可认为声速基本不变。
如果测距精度要求较高,则还要通过温度补偿的方法加以校正。
不同温度下超声波在空气中传播速度随温度变化的关系:v=331.4+0.61t 。
式中,t 为实际温度(℃)。
3.3 基于单片机超声波测距仪系统构成第4章 超声波测距原理图分析4.1 发射电路超声波发射器超声波接收器超声波发射电路由40KHZ振荡电路、驱动电路、超声波发射器构成。
方案二用的是555芯片,通过555芯片产生超声波发射的40KHZ 的方波信号,通过调节10k的电位器可微调振荡频率。
单片机I/O口输出的控制信号由555芯片的4脚输入,控制超声波的振荡与停止。
并且方波信号由3脚输出。
为提高超声波的发射功率,增大提高测量距离,可采用音频集成功放做驱动电路。
LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点。
4.2 接收电路40KHZ振荡电路驱动电路超声波接收电路由放大、整形、译码电路构成。
音频译码集成块构成接收电路接收头将超声波调制脉冲变为交变电压信号,通过CMOS 6非门芯片CD4069整形,整形后的信号由C1耦合给带有锁定环的音频译码集成块LM567的输入端 3脚,当输入信号的幅度落在其中心频率上时,LM567的逻辑输出端8脚由高电平跃变为低电平。
8脚输出的低电平接单片机的外部中断引脚,单片机接收到低电平后触发中断,调用计算子程序计算距离。
第5章超声波测距的意义和应用5.1超声波测距的意义随着计算机技术、自动化技术和工业机器人的不断发展和广泛应用,测距问题显得越来越重要。
目前常用的测距方式主要有雷达测距、红外测距、激光测距和超声测距4种。
与其他测距方法相比较,超声测距具有下面的优点:(1) 超声波对色彩和光照度不敏感,可用于识别透明及漫反射性差的物体(如玻璃、抛光体)。
(2) 超声波对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中。
(3) 超声波传感器结构简单、体积小、费用低、技术难度小、信息处理简单可靠、易于小型化和集成化。
因此,超声波作为一种测距识别手段,已越来越引起人们的重视。
5.2 超声波测距的应用随着社会的发展,人们对距离或长度测量的要求越来越高。
由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。
因此,用途极度广泛。
例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。
由于超声波易于定向发射,方向性好,强度好控制,它的应用价值已被普遍重视,其中在汽车倒车防撞系统中的应用最为直观。
汽车倒车防撞测距报警器,是我国八·五期间需重点开发的重大科研项目之一,也是汽车六大类汽车电子产品中的一种。
以往的汽车倒车报警器可分为四大类,即嘀嘀声加闪光,音乐声加闪光,语言声加闪光和倒车至危险距离(如015m)时发出报警声的超声波倒车报警器。
本研究综合了第3、4类报警器各功能,并将第4类报警器加以改进、发展,使其不仅可发出警告行人的语言声,而且还能在整个倒车过程中自动测量车尾与最近障碍物之间的距离,并用数字显示出来,在倒车至极限安全距离(如016m)时,会发出急促的警告声,提醒驾驶员注意刹车。
另外当蓄电池电压过低时,还会发出声光警告,提醒驾驶员及时充电,以保证仪器及汽车正常工作。
第6章元件装配及调试6.1元件装配元件装配过程比较简单,但也是一个不容忽视的过程,要求购买的元件对应元件清单,焊接美观严实,元件排列整齐美观等。
我们在安装元件的过程中也发现了一些问题,即单排针和传感器探头的引脚不能插入插孔,我们只能用镊子一点一点地钻宽,并且保证铜片不脱落。
元件焊好后,我们还要细心的检查看是否有虚焊,焊接不到位的还要补焊。
6.2 编程及调试程序如下:#include<reg52.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned char#define nop _nop_()sbit T = P1^0;sbit R = P3^2;sbit beep = P1^1;sbit shu4 = P2^7;sbit shu3 = P2^6;sbit shu2 = P2^5;sbit shu1 = P2^4;sbit k1 = P3^4;sbit k2 = P3^5;sbit k3 = P3^6;sbit k4 = P3^7;uint ge,shi,bai,xiaoshu;uint flag,flag1,flag2;uint timeh,timel,distance;uchar anjian,aj;uchar codeled[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x89,0xbf};//无小数点0~9uchar buff[10];void delay(uint z){uchar i;while(z--){for(i=110;i>0;i--);}}void delayus(){uchar i;for(i=8;i>0;i--){T = !T;nop;nop;nop;nop;nop;nop;nop;nop;nop;}}void LEDDisplay(uint i,uint j,uint k,uint m)shu4 = 0;shu3 = 1;shu2 = 1;shu1 = 1; //百位部分P0=led[i];delay(2);shu4 = 1;shu4 = 1;shu3 = 0;shu2 = 1;shu1 = 1; //十位部分P0 = led[j];delay(2);shu3 = 1;shu4 = 1;shu3 = 1;shu2 = 0;shu1 = 1; //个位部分P0 = led[k]+0x80;delay(2);shu2 = 1;shu4 = 1;shu3 = 1;shu2 = 1;shu1 = 0; //小数部分P0=led[m];delay(2);shu1 = 1;}void display(uint dat){bai = dat/1000;shi = dat%1000/100;ge = dat%1000%100/10;xiaoshu = dat%1000%100%10;if((dat>100)&(dat<4000)){LEDDisplay(bai,shi,ge,xiaoshu);}else if(dat<=100){LEDDisplay(0,0,0,0);}else{LEDDisplay(10,10,10,10);}}void FS(){float temp;TH0 = 0;TL0 = 0;//清定时TR0 = 1;//开定时delayus();T = 1;delay(1);EX0 = 1;//开中断if(flag == 1) //中断标志位置,说明有回波{temp = timeh*256+timel; //以下为路程计算temp = temp*0.017;distance = (uint)(temp*10);}}void keycan(){{delay(10);{flag = 1;EX0 = 1;//flag2 = 0;}}}void init(){TMOD = 0X01;TH0 = 0;TL0 = 0;EA = 1;IT0 = 1;}void main(){init();flag2 = 100;while(flag2>=1){LEDDisplay(11,11,11,11);keycan();flag2--;}while(1){FS();keycan();display(distance);if(distance < 130 && flag == 1){beep=0;delay(50);beep=1;while(1){LEDDisplay(8,8,8,8);if (k1==0) break;}}}}void Time() interrupt 0{uint tmp;TR0 = 0; //关定时器ET0 = 0; //关外部中断tmp = TH0*256+TL0; //读取定时器的值if((tmp>0)&&(tmp<65536)) //判断是否超出范围,此设置的范围为到米{timeh = TH0; //把计时值放入缓冲timel = TL0;}else //超出范围则重新测量{timeh = 0;timel = 0;}}6.3 PCB板及成果展示第7章实习总结7.1实习总结经过两周的实训时间,我付出了什么?收获了什么?我反复地回忆,反复地总结,思路终于慢慢清晰。