垂径定理公开课PPT课件

合集下载

《垂径定理公开课》课件

《垂径定理公开课》课件

《垂径定理公开课》PPT 课件
这是一场关于《垂径定理》的公开课,旨在通过清晰的PPT展示,向大家介绍 垂径定理的定义、推导过程、应用以及拓展内容,让大家深入了解这一重要 的几何概念。
课程介绍
这门课程将为大家详细介绍垂径定理的内容。我们将从基础知识开始,逐步 引入更深入的概念和应用。希望通过本课程的学习,大家能够对垂径定理有 一个全面的了解。
垂径定理的应用
垂径定理不仅仅是一种几何概念,还具有广泛的应用价值。在多种几何问题 中,都可以利用垂径定理来解决具体问题,例如确定直径、垂径的位置,计 算相关角度和长度等。
垂径定理的例题分析
通过一些具体的例Βιβλιοθήκη 分析,我们将进一步探究垂径定理的应用。我们将结合实际问题,通过解题的方式,帮助 大家更好地理解和掌握垂径定理,并培养灵活运用的能力。
垂径定理的拓展
垂径定理作为一个基础定理,还有许多有趣的拓展内容。这些拓展内容可以进一步丰富和拓宽我们的几何知识, 使我们在解决更复杂的几何问题时能够更加游刃有余。
结论和总结
通过这门课程,我们已经全面地学习了垂径定理的相关内容。希望大家通过 这次学习,对垂径定理有了更深入的理解,并且能够在实际问题中灵活运用。 谢谢大家的参与!
垂径定理的定义
垂径定理是几何学中的一个基本定理,它描述了直径与垂直线的关系。通过垂径定理,我们可以从直径推导出 垂直线,以及从垂直线推导出直径,从而建立了直径与垂直线的重要联系。
垂径定理的推导过程
通过推导过程,我们将深入探讨垂径定理的原理和推理。我们将通过几何推导和逻辑推理,引导大家逐步理解 垂径定理的推导过程,并梳理其中的关键步骤和思路。

垂径定理课件

垂径定理课件
平行线的关系
性质:垂线与平行线互相垂直,即当两条直线相交时,其中一条为垂线时,另一条即为平行线。
垂心和比例点的概念
垂心:三角形内的垂线交点称为垂心,是三角形内心的一种特殊情况。 比例点:三角形内的垂线与对边的交点称为比例点,可以在相似三角形中使用。
如何求垂直线的长度
方法:根据垂径定理,可以使用勾股定理或相似三角形的比例关系求解垂直 线的长度。
垂径定理课件PPT
欢迎来到本次垂径定理课件PPT!今天我们将介绍垂径定理的定义、特点、 应用以及与其他几何知识的关系。让我们开始探索这个有趣且实用的几何原 理吧!
垂径定理的定义
垂径定理:在一个平面内,通过三角形的一个内角的三垂线的交点共线。 示意图:(图片示意图)
直角三角形的特点
直角三角形:一个角为90度的三角形,特点是拥有一个直角和两个锐角。 性质:勾股定理成立,垂径定理可用于求解各边的长度。
垂径定理的应用
应用举例:垂径定理可用于解决三角形面积、边长、角度等问题,也可以在多边形的证明和相似三角形 的研究中应用。
证明垂径定理的方法
一种证明方法:通过构造垂线、平行线和相似三角形,可以从不同角度证明垂径定理的正确性。
如何画垂径
步骤:确定要画垂线的三角形,找到该三角形的某个角,通过该角的顶点作垂线,使其与对边垂直相交。 图片示意:(图片示意图)

《垂径定理》PPT课件(上课用)

《垂径定理》PPT课件(上课用)

.(分)如图,矩形与圆心在上的⊙交于点,,,,= ,= ,= ,则 =. .(分)(· 兰州)如图是一圆柱形输水管的横截面,阴影部分为有水部分 ,如果水面宽为 ,水的最大深度为 ,则该输水管的半径为( )




.(分)如图,为⊙的半径,以为直径的⊙与⊙的弦相交于点.求证:是
的中点.
பைடு நூலகம்
连接.∵为⊙的直径,∴⊥,∴是的中点
.(分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题 :“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一 尺,问径几何?”用现在的数学语言可表达为:“如图,为⊙的直径 ,弦⊥于点,=寸,=寸,则直径的长为多少?
设⊙半径为,连接,在△中,由勾股定理得=+,即=(-)+,∴ =,∴==(寸)
.(分)如图,某地有一座圆弧形的拱桥,桥下面宽为 ,拱顶高出水面 ,现有一艘宽 ,船舱顶部为正方形并高出水面 的货船要经过这里, 此时货船能顺利通过这座拱桥吗?请说明理由.
能顺利通过.理由:由题意 AB=7.2,CD=2.4,设⊙O 的半径为 R,在 Rt△AOD 中,OD=R-2.4,AD=3.6,∴R2=(R-2.4)2+3.62, ∴R = 3.9 ,在 Rt△OHN 中,若 HN = 1.5 ,则 OH = ON2-HN2 = 3.92-1.52=3.6,∵OD=OC-DC=3.9-2.4=1.5,∴DH=OH-OD =3.6-1.5=2.1(m),NF=ME=HD=2.1 m>2 m,∴此货船能顺利通 过
4.(4 分)如图,以点 O 为圆心的两个圆中,大圆的弦 AB 交小圆于点 C,D,已知 AB=4,CD=2,点 O 到弦 AB 的距离等于 1,那么这两个 圆的半径之比为( A.3∶2 C. 5 ∶ 2 ) B. 5 ∶ 2 D.5∶4

《垂径定理》课件

《垂径定理》课件

答案:3cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再根据勾股定 理求解。
习题二
题目:已知圆O的半径为5cm,弦AB的长为6cm,则圆心O到弦AB的距 离为 _______.
答案:4cm
解析:根据垂径定理,圆心到弦的垂线段就是圆心到弦中点的距离,再 根据勾股定理求解。
习题三
01
02
CATALOGUE
垂径定理的表述
定理的文字表述
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的两条弧。
解释
如果一条直径垂直于一条弦,那 么这条直径会平分这条弦,并且 平分弦所对的两条弧。
定理的图形表述
图形示例
可以画出一个圆和经过圆心的一条弦 ,然后画一条垂直于该弦的直径,用 以展示垂径定理。
03
这种方法需要学生掌握相似三角形的 性质和判定方法,适合数学基础较好 的学生理解和掌握。
04
CATALOGUE
垂径定理的应用
在几何作图中的应用
确定圆的中心
利用垂径定理,我们可以确定一个圆 的中心,只需在圆上任取两点,然后 通过这两点作垂直平分线,两条垂直 平分线的交点即为圆心。
作圆的切线
利用垂径定理,我们可以找到一个圆 的切线。在圆上任取一点,然后通过 这一点作圆的切线,切线与过圆心的 垂线交于一点,该点即为切点。
《垂径定理》ppt课 件
目录
• 引言 • 垂径定理的表述 • 垂径定理的证明 • 垂径定理的应用 • 垂径定理的变式 • 习题与解答
01
CATALOGUE
引言
什么是垂径定理
垂径定理
垂径定理是平面几何中一个重要的定理,它描述了垂直于弦的直径与弦之间的 关系。具体来说,如果一条直径垂直于一条弦,则这条直径将该弦平分,并且 平分该弦所对的弧。

数学公开课优质课件精选《垂径定理》

数学公开课优质课件精选《垂径定理》

解析
要证明FM垂直于FN, 只需证明角MFN等于 90度。根据抛物线的 性质可知AF = AM, BF = BN。因此,角 AFM和角BFN均为45 度。所以角MFN等于 90度,即FM垂直于FN

例题6
已知椭圆C: (x^2)/a^2 + (y^2)/b^2 = 1 (a > b > 0)的左、右焦点分别 为F1、F2,过F1的直 线l与椭圆C交于A、B 两点。若|AF1| = 3|F1B|,且|AB| = 4√3 ,求椭圆C的方程。
利用垂径定理求线段中点
01
通过构造以线段为直径的圆,利用垂径定理可求得线段的中点
Hale Waihona Puke 。判定线段中点的性质
02
根据垂径定理,若一条线段是某圆的直径,则该线段的中点是
圆心,从而可判定线段中点的性质。
解决与线段中点相关的几何问题
03
利用垂径定理可以解决与线段中点相关的各种问题,如求线段
的长度、证明线段的平行或垂直等。
应用场景
在解决三维几何问题中,如计算球面上两点的最短距离、 判断点到球面的位置关系等问题时,可应用三维空间中的 垂径定理。
垂径定理与其他知识点的联系
与勾股定理的联系
在直角三角形中,垂径定理可视 为勾股定理的特殊情况,当直角 三角形的两条直角边相等时,斜
边上的中线即为垂径。
与圆的性质的联系
垂径定理与圆的性质密切相关,如 圆心角、弧长、弦长等概念在证明 垂径定理时均有涉及。
解决角平分线问题
1 2 3
利用垂径定理构造角平分线
通过构造以角为顶点的圆,利用垂径定理可求得 角的平分线。
判定角平分线的性质
根据垂径定理,若一条射线是某圆的切线,且切 点是角的顶点,则该射线是角的平分线,从而可 判定角平分线的性质。

2024版《垂径定理》优秀ppt课件

2024版《垂径定理》优秀ppt课件

《垂径定理》优秀ppt课件目录•垂径定理基本概念与性质•垂径定理证明方法•垂径定理在几何问题中应用•垂径定理在代数问题中应用•垂径定理拓展与延伸•总结回顾与课堂互动环节垂径定理基本概念与性质垂径定义及性质垂径定义从圆上一点向直径作垂线,垂足将直径分成的两条线段相等,且垂线段等于半径与直径之差的平方根。

垂径性质垂径所在的直线是圆的切线,且垂径平分过切点的半径。

垂线与直径关系垂线与直径垂直垂线垂直于直径,且垂足在直径上。

垂线与直径平分垂线平分直径,即垂足将直径分为两段相等的线段。

03垂径长度与直径关系垂径长度等于直径的一半减去半径,即垂径长度与直径成线性关系。

01垂径长度公式垂径长度= 半径-直径/2。

02垂径长度与半径关系垂径长度等于半径与直径之差的平方根,即垂径长度与半径成比例关系。

垂径长度计算垂径定理证明方法通过圆的性质,如弦的中垂线过圆心等,结合已知条件进行推导。

利用圆的性质利用相似三角形利用勾股定理构造与垂径相关的相似三角形,通过相似比和已知条件进行证明。

在直角三角形中,利用勾股定理和已知条件进行推导和证明。

030201建立坐标系以圆心为原点建立平面直角坐标系,将圆的方程表示为$x^2+y^2=r^2$。

垂径表示设垂径的两个端点分别为$(x_1, y_1)$和$(x_2, y_2)$,则垂径的方程可表示为$y-y_1=frac{y_2-y_1}{x_2-x_1}(x-x_1)$。

求解交点联立垂径方程和圆的方程,求解交点坐标,进而证明垂径定理。

1 2 3设圆心为$O$,垂径的一个端点为$A$,另一个端点为$B$,则向量$vec{OA}$和$vec{OB}$可分别表示为垂径的两个向量。

向量表示利用向量的点积运算和模长运算,结合已知条件进行推导和证明。

向量运算通过向量运算,可得垂径定理的向量形式为$(vec{OA}+vec{OB})cdot vec{AB}=0$。

垂径定理的向量形式垂径定理在几何问题中应用求解三角形问题利用垂径定理求解直角三角形01通过垂径将直角三角形划分为两个较小的直角三角形,便于求解边长和角度。

垂径定理》PPT课件

垂径定理》PPT课件
A、2条 b、3条 C、4条 D、5条 C
5 3 OO
A
4 PP B
D
练习册
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
OEA 90 EAD 90 ODA 90
∴四边形ADOE为矩形,
AE
1 2
AC,AD
1 2
AB
又 ∵AC=AB
C
∴ AE=AD
E
·O
∴ 四边形ADOE为正方形.
A
D
B
C
(1)如何证明?
已知:如图,CD是⊙O的直径,
·O
AB为弦,且AE=BE.
求证:CD⊥AB,且⌒ AD=BD,

A
A⌒C =⌒BC
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
A
C
·O
E B
D
垂径定理:
垂直于弦的直径平分弦,且平分弦所对的两条弧.
图形语言
C
●O
A E└
B
D
符号语言
∵ CD是直径, CD⊥AB,
∴AE=BE,
A⌒C =B⌒C, A⌒D=B⌒D.

演示文档垂径定理课件PPT.ppt

演示文档垂径定理课件PPT.ppt

可推得
平分弦
平分弦所对的劣 (优)弧
..........
7
在下列图形,符合垂径定理的条件吗?
练习1 D
A
B
E
A
O
O
CE
O
A
E
B
AC
B C
O
O
E
C
D
AE
B
B
D..........
D D
O
AE
B
C
8
C
O
A
A
E
B
A
O
D
B
D
B
O
D
C
A
A
O
C
B
C
C
B
D
O
..........
9
判断下列图形,能否使用垂径定理?
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
..........
14
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
OD
(1) B
C
•O
A
B
(2) D
..........
拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥
主桥拱的半径吗?
37.4
C
解:如图,设半径为R,
AB=37.4,CD=7.
7.2
A
18.7
AD 1 AB2 1 37.4 18.7,
2
2
D
R
R-7.2

《垂径定理》PPT课件 (公开课获奖)2022年浙教版

《垂径定理》PPT课件 (公开课获奖)2022年浙教版

•O D
C
A
(5)
C
•O A EB
D (6)
练一练
1、已知:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,
垂足为E,交弦CD于点F.
图中相等的线段有 :
.
图中相等的劣弧有:
.
M
B
E
D
A
O
F
C
N
2、如图,圆O与矩形ABCD交于E、F、G、H,
EF=10,HG=6,AH=4.求BE的长.
2、物体在水下,水深每增加米承受的压力就会增加1个大气
压.当“蛟龙”号下潜至3500米时,它承受的压力约为340个
大气压.问当它承受压力增加到500个大气压时,它又继续下
潜了多少米?
340 1 x500
设它又继续下潜了x米 ,可列出方程 _______1_0__.3_3_________
3、小强、小杰、张明参加投篮比赛,每人投20次.小强投进10个
(7)平分弦的直线,必定过圆心。
(8)一条直线平分弦(这条弦不是直径),那么这
条直线垂直这条弦。
A
C
C
C
OD
•O
(1) B
A
B
(2) D
•O
A
B
(3) D
(9)弦的垂直平分线一定是圆的直径。
(10)平分弧的直线,平分这条弧所对的弦。
(11)弦垂直于直径,这条直径就被弦平分。
•O ACB
(4)
B
2. 若 x 2 是关于 2x3mn0的方程的解,
则3m-n的值为

有的温度计有华氏、摄氏两种温标,华氏(℉)、摄氏(℃)
温标的转换公式是F=1.8C+32。请填下表:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
CE D A
-
5
知识点二:垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对 的两条弧
B
应用格式:在⊙O 中,
∵ CD⊥AB(AB是直径)
∴ CE=DE,A C = A D ,B C = B D
O
CE D A
B
B
O
CE D A
O
E
C
D
A
O
O
C ED C ED
条件的实质是:(1)过圆心(2)垂直于弦
第3章 对圆的进一步认识
3.1 圆的对称性(1)
-
1
-
2
一、以旧引新
1.与圆有关的概念
圆是平面内到定点的距离等于定长的点的集合.
连接圆上任意两点的线段叫做弦. 经过圆心的弦叫做直径. 圆上任意两点间的部分叫做圆弧,简称弧. 大于半圆的弧叫做优弧,
小于半圆的弧叫做劣弧.
在同圆或等圆中,能够互相重合的弧叫做等弧. 2.什么是轴对称图形?
条件的实质是:(1)过圆心(2)垂直于弦
-
11
【解题方法】 构造直角三角形,运用垂径定理和勾股定
理解决圆中弦、弦心距、半径问题
【数学思想】6
针对训练(一)
1.判断正误 (1)如图,CD是⊙O的弦,BE经过圆心O,BE⊥CD于 E,则
CE=DE,BC BD(. √ )
(2)如图,CD是⊙O的弦,OA是圆的半径,OA⊥CD,垂
足为E,则CE=DE,OE=EA.(× )
(3)如图,CD是⊙O的弦,OE⊥CD,则CE=DE.( √ )
B
解:作OM ⊥AB于M,连接OB,
则OM=3,
BM=
1 2
1
AB= 2
×8=4,
在Rt△OMB中,
O AMB
O B O2 M M 2 B 3 2 4 2 5 .
答: ⊙O的半径为5厘米.
总结:对于圆中有关弦、弦心距、半径问题,常作
辅助线---作出半径或圆心到弦的垂线段,构造直角三
角形,运用垂径定理和勾股定理解决有关问题.
B
O C ED
O
E
C
D
A
O C ED
O
CM
D
A
(1)题图 (2)题图 (3)题图
2题图
2.如图,AB是⊙O的直径,弦CD⊥AB于M,BC 4cm,
AD 1cm,那么 B D _4___cm ,A C __ 1__cm .
-
7
【典例讲解】
例1 如图,已知在⊙O中,弦AB 的长为8厘米,圆心
O到弦AB的距离(弦心距)为3厘米,求⊙O的半径.
-
3
二、新知探究
【动手实践一】
在一张半透明的纸片上画一个圆,标出它的圆 心O,并任意作出一条直径AB,将⊙O沿直径AB折叠, 你发现了什么?由此你能得到什么结论?
知识点一:圆的轴对称性 圆是轴对称图形,每一条直径所在 的直线都是它的对称轴,圆的对称轴有 无数条
-
4
知识点二:垂径定【理动手实践二】
在垂⊙直O于中弦,的作直弦径CD平,分使这CD条⊥弦AB,,记并垂且足平为分E弦.将所⊙对O 沿的直两径条A弧B折叠,你发现线段CE与DE有什么关系?
A C 与 A D 有什么关系?B C 与 B D 有什么关系? B
能证明你的结论吗?与同学交流.
条件:CD⊥AB(AB是直径)
结论:CE=DE,A C = A D B C = B D
设半径为R, OC=R-2,在Rt△OCB中, C
O2C BC 2O2B ,即 (R2)242R2
M
解得:R=5 构造直角三角形,运用垂径定理和勾股定理
列方程求解.
-
10
【知识点】
三、课堂小结
1.圆的轴对称性 圆是轴对称图形,每一条直径所在的直线都
是它的对称轴,圆的对称轴有无数条 2.垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对 的两条弧
D
A OM B
C 1题图
2题图
C M 3题图
-
9
针对训练(二)
4. 如图是一圆柱形输水管的横截面,阴影部分为
有水部分,如果水面AB宽为8cm,水面最深地方的
高度为2cm,则该输水管的半径为 5cm
.
解:作OC ⊥AB并延长交弧AB与点M,连接OB,
则CM=2, BC=
1 2
1
AB= 2
×8=4,
O
-
8
针对训练(二)
1.如图,在⊙O中,AB为直径,弦CD⊥AB于点M, AB=20, OM=6,则CD= 16 . 2. 绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离 CD为8m,桥拱半径OC为5m,则水面宽AB为 8m . 3.如图,⊙O是水平放置的输油管道的横截面,其直径为2m, 油面的宽度AB=1.2m,则点O到油面的距离是 0.8m ,油 面的最大深度为 0.2m .
相关文档
最新文档