电容式传感器的特点及应用中存在的问题
电容式传感器
![电容式传感器](https://img.taocdn.com/s3/m/9ea945b1844769eae109ed3d.png)
电容值与电极材料无关,仅取决于电极的几何尺寸,且空 气等介质的损耗很小。因此仅需从强度、温度系数等机械性考 虑,合理选择尺寸即可,本身发热极小,影响稳定性甚微。 2)结构简单,适用性强。
3)动态响应好。 (固有频率很高,动态响应时间很短外,又由于其介质损耗小, 可以用较高频率供电,因此系统工作频率高。 4)可以实现非接触式测量,具有平均效应。
d d0
d d0
2
d d0
3
C
C1
C2
C0
2
d d0
2
d d0
3
2
d d0
C
0
1
d d0
2
d d0
4
略去高次项,则
C
2
d d0
C0
传感器的灵敏度为 K C 2C0 d d0
其非线性误差为
( d )3
d 0 (d /d 0)2 100%
( d ) d0
灵敏度较单组变极距型提高了一倍,非线性大大减小。
②等有U关sc ,与任电何源这电些压参U数的、波固动定都电将容使C0及输电出容特式性传产感生器误的差ε,0因、此A 固定电容C0必须稳定,且需要高精度的交流稳压源。 ③由于电容传感器的电容小,容抗很高,故传感器与放大器之 间的联结,需要有屏蔽措施。 ④不适用于差动式电容传感器的测量。
五、电容式传感器的特点及设计要点
主要缺点:
输出阻抗高,负载能力差 寄生电容影响大
输出特性是非线性
2、设计要点
设计时可从以下几个方面考虑:
1)减小环境温度、湿度等变化所产生的误差,保证绝缘材料
的绝缘性能;
2)消除和减小边缘效应 边缘效应不仅使电容传感器灵敏度降低而且产生非线性,
电容式传感器原理和应用
![电容式传感器原理和应用](https://img.taocdn.com/s3/m/dccef6d6b8f67c1cfad6b861.png)
2(d)
d0
d0
比较以上式子可见,电容传感器做成差动式之 后,灵敏度提高一倍,而且非线性误差大大降 低了。
4.3 特点及应用中存在的问题
4.3.1 电容式传感器的特点
1.优点: ●温度稳定性好
电容式传感器的电容值一般与电极材料无关, 有利于选择温度系数低的材料,又因本身发热 极小,影响稳定性甚微。而电阻传感器有电阻, 供电后产生热量;电感式传感器有铜损、磁游 和涡流损耗等,易发热产生零漂。 ●结构简单 电容式传感器结构简单,易于制造,易于保证
4.1电容式传感器的工作原理和结构
4.1.2 变面积型电容式传感器
图4-3 变面积型电容传感器原理图
上图是变面积型电容传感器原理结构示意图。 被测量通过动极板移动引起两极板有效覆盖面 积S改变,从而改变电容量。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
图4-1 变极距型电容传感器原理图
4.1电容式传感器的工作原理和结构
若电容器极板间距离由初始值d0缩小Δd,电容量增大
Δ由C式,(则4C -3有)知C0传 感C器d的00输rA出d特C1性0(1(Cdd =0d2)d02f()d)不是(4线3)性关系,
而是如图4-2所示的曲线关系。
C d 1d
(1 )
C0 d0
d0
由此可得出传感器的相对非线性误差δ为:
(d)2 d
100%
d
100%
d
d0
d
由以上三个式可以看出:要提高灵敏度,应减 小起始间隙d0,但非线性误差却随着d0的减小而 增大。在实际应用中,为了提高灵敏度,减小 非线性误差,大都采用差动式结构。
电容传感器
![电容传感器](https://img.taocdn.com/s3/m/74ffe8f15ebfc77da26925c52cc58bd631869316.png)
接近开关接近开关又称无触点行程开关,它除可以完成行程控制和限位保护外,还是一种非接触型的检测装置,用作检测零件尺寸和测速等,也可用于变频计数器、变频脉冲发生器、液面控制和加工程序的自动衔接等。
特点有工作可靠、寿命长、功耗低、复定位精度高、操作频率高以及适应恶劣的工作环境等。
一、性能特点在各类开关中,有一种对接近它物件有“感知”能力的元件——位移传感器。
利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,这就是接近开关。
当有物体移向接近开关,并接近到一定距离时,位移传感器才有“感知”,开关才会动作。
通常把这个距离叫“检出距离”。
不同的接近开关检出距离也不同。
有时被检测验物体是按一定的时间间隔,一个接一个地移向接近开关,又一个一个地离开,这样不断地重复。
不同的接近开关,对检测对象的响应能力是不同的。
这种响应特性被称为“响应频率”。
二、种类因为位移传感器可以根据不同的原理和不同的方法做成,而不同的位移传感器对物体的“感知”方法也不同,所以常见的接近开关有以下几种:1、涡流式接近开关这种开关有时也叫电感式接近开关。
它是利用导电物体在接近这个能产生电磁场接近开关时,使物体内部产生涡流。
这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。
这种接近开关所能检测的物体必须是导电体。
2、电容式接近开关这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。
这个外壳在测量过程中通常是接地或与设备的机壳相连接。
当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。
这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。
3、霍尔接近开关霍尔元件是一种磁敏元件。
利用霍尔元件做成的开关,叫做霍尔开关。
当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。
电容传感器寄生电容干扰的产生原因及消除方法
![电容传感器寄生电容干扰的产生原因及消除方法](https://img.taocdn.com/s3/m/2904cea265ce050876321396.png)
电容传感器寄生电容干扰的产生原因及消除方法分析了电容传感器寄生电容存在的主要原因,以及消除寄生电容干扰的几种方法:主要采用驱动电缆技术、运算放大器驱动技术、整体屏蔽技术、集成组合技术来减小寄生电容,以提高传感器的性能。
电容式传感器具有结构简单,灵敏度高,温度稳定性好,适应性强,动态性能好等一系列优点,目前在检测技术中不仅广泛应用于位移、振动、角度、加速度等机械量的测量,还可用于液位、压力、成份含量等热工方面的测量中。
但由于电容式传感器的初始电容量很小,一般在皮法级,而连接传感器与电子线路的引电缆电容、电子线路的杂散电容以及传感器内极板与周围导体构成的电容等所形成的寄生电容却较大,不仅降低了传感器的灵敏度,而且这些电容是随机变化的,使得仪器工作很不稳定,从而影响测量精度,甚至使传感器无法正常工作,所以必须设法消除寄生电容对电容传感器的影响。
以下对消除电容传感器寄生电容的几种方法进行分析。
增加初始电容值法采用增加初始电容值的方法可以使寄生电容相对电容传感器的电容量减小。
由公式C0=ε0·εr·A/d0可知,采用减小极片或极筒间的间距d0,如平板式间距可减小为0.2毫米,圆筒式间距可减小为0.15毫米;或在两电极之间覆盖一层玻璃介质,用以提高相对介电常数,通过实验发现传感器的初始电容量C0不仅显著提高了,同时也防止了过载时两电极之间的短路;另外,增加工作面积A或工作长度也可增加初始电容值C0。
不过,这种方法要受到加工工艺和装配工艺、精度、示值范围、击穿电压等的限制,一般电容的变化值在10-3~103pF 之间。
采用“驱动电缆”技术,减小寄生电容如图1所示:在压电传感器和放大器A之间采用双层屏蔽电缆,并接入增益为1的驱动放大器,这种接法可使得内屏蔽与芯线等电位,进而消除了芯线对内屏蔽的容性漏电,克服了寄生电容的影响,而内外层之间的电容Cx变成了驱动放大器的负载,电容传感器由于受几何尺寸的限制,其容量都是很小的,一般仅几个pF到几十pF。
教案项目电容式传感器
![教案项目电容式传感器](https://img.taocdn.com/s3/m/b66f1440c381e53a580216fc700abb68a982adcd.png)
教案项目:电容式传感器一、教学目标1. 了解电容式传感器的原理和应用。
2. 掌握电容式传感器的接线方式和基本操作。
3. 能够分析电容式传感器的测量数据并进行误差处理。
二、教学内容1. 电容式传感器概述定义:电容式传感器是一种利用电容变化来检测物体或物质的传感器。
特点:灵敏度高、响应速度快、非接触式测量等。
2. 电容式传感器的工作原理电容的定义和公式:电容是电荷存储的能力,C = Q/V。
电容式传感器的测量原理:通过测量电容的变化来检测物体或物质的变化。
3. 电容式传感器的接线方式和基本操作接线方式:电容式传感器通常有单端式和差分式两种接线方式。
基本操作:如何连接电源、信号输出、接地等。
4. 电容式传感器的测量数据分析和误差处理测量数据分析:如何分析电容式传感器的输出信号,并进行数据处理和显示。
误差处理:常见的误差类型和处理方法,如系统误差、偶然误差、粗大误差等。
三、教学方法1. 讲授法:讲解电容式传感器的原理、接线方式和基本操作。
2. 实践操作法:学生亲自动手进行电容式传感器的接线和操作,并进行测量数据分析和误差处理。
3. 问题解答法:针对学生提出的问题进行解答和讨论。
四、教学准备1. 教具:电容式传感器、示波器、信号发生器等。
2. 教材或讲义:关于电容式传感器的相关知识。
五、教学步骤1. 引入:介绍电容式传感器在工业和科研中的应用,激发学生的兴趣。
2. 讲解电容式传感器的原理和接线方式,并展示示例图片。
3. 学生进行实践操作,接线和操作电容式传感器,并记录测量数据。
4. 学生进行分析数据,识别和处理误差。
5. 学生提出问题,教师进行解答和讨论。
六、教学评估1. 学生自评:学生对自己的学习过程和掌握情况进行评价,包括理解程度、操作技能等。
2. 同伴评价:学生之间互相评价,互相学习,提高彼此的操作技能和解决问题的能力。
3. 教师评价:教师对学生的学习情况进行评价,包括理论知识的掌握和实际操作能力等。
电容式传感器
![电容式传感器](https://img.taocdn.com/s3/m/7f9917024a7302768e993978.png)
2.5 运算放大器电路
由前述已知,极距变化型电容传感器的极距变化 与电容变化量成非线性关系,这一缺点使电容传 感器的应用受到一定限制。为此采用比例运算放 大器电路可以得到输出电压u g 与位移量的线性关系。
C0 ug =-u 0 0 A
输出电压ug与电容传感器间隙 成线性关系。这种电路用于位移测量传感器。
4.温度影响
环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系, 从而引入温度干扰误差。温度影响主要包括温度对结构尺寸和对介质的影响两 方面。
24
四、电容式传感器的研究现状
1.PT800型压力变送器
PT系列产品中的标准型号,内置陶瓷电容式传感器。可以自由选 配模拟、数字现场显示表头。有多种过程连接件,可以现场调零 点、满量程。广泛用于自动化工业中对液体、气体和蒸汽的测量。
27
9
1.2.2 角位移型
当动板转动一角度时,与定板之间的覆盖面积就发生 变化,导致电容量随之改变。
覆盖面积
A
r2
2
其中, 为覆盖面积对应的中心角,r为极板半径。
r 2 所以,电容量为 C 2
C r 2 灵敏度S 常数 2
由上式可知,角位移型电容传感器的输出C与输入也为线性关系。
电容式传感器
目录
一、电容式传感器的工作原理及分类
二、电容式传感器的测量电路
三、电容式传感器在应用中的注意事项
四、电容式传感器的研究现状
2
一、电容式传感器的工作原理及分类
由物理学可知,两块平行金属板构成的电容器,其电容量C为
0 A C
3
当被测参数(如位移、压力等)使公式中的、A、 变化时,都将引起 电容器电容量C的变化,从而达到从被测参数到电容的变换。
电容式传感器实训报告
![电容式传感器实训报告](https://img.taocdn.com/s3/m/fc4705d3cd22bcd126fff705cc17552706225e58.png)
一、实训目的电容式传感器实训旨在使学生了解电容式传感器的基本原理、结构、工作特性以及在实际应用中的重要性。
通过本次实训,学生应掌握电容式传感器的安装、调试、测试方法,并能够根据实际需求设计和应用电容式传感器。
二、实训内容1. 理论部分- 电容式传感器的基本原理:电容式传感器是利用电容变化来检测物理量的传感器。
其基本原理是通过测量电容的变化来检测被测量的物理量,如位移、振动、压力等。
- 电容式传感器的结构:电容式传感器主要由敏感元件、测量电路和信号处理电路组成。
- 电容式传感器的工作特性:电容式传感器具有高灵敏度、高精度、抗干扰能力强等特点。
2. 实践部分- 安装与调试1. 根据实验要求,将电容式传感器安装到相应的测试平台上。
2. 调整传感器与测试平台的距离,确保传感器能够正确地检测到被测量的物理量。
3. 调整传感器的灵敏度,使其在检测范围内达到最佳性能。
- 测试与数据分析1. 利用实验设备对电容式传感器进行测试,记录测试数据。
2. 分析测试数据,评估传感器的性能,如灵敏度、线性度、重复性等。
3. 根据测试结果,对传感器进行调整和优化。
3. 应用设计- 根据实验要求,设计一个应用实例,如位移测量、振动检测等。
- 分析应用实例中电容式传感器的需求,选择合适的传感器型号和参数。
- 设计电路,实现电容式传感器的信号采集、处理和输出。
三、实训结果与分析1. 测试结果通过实验,我们得到了以下测试结果:- 传感器的灵敏度为0.1mm/V,线性度为0.5%,重复性为0.3%。
- 在测试范围内,传感器能够稳定地检测到被测量的物理量。
2. 数据分析根据测试结果,我们可以得出以下结论:- 电容式传感器具有较高的灵敏度和线性度,能够满足实际应用的需求。
- 传感器的重复性好,稳定性高,适用于长时间连续工作。
3. 应用设计根据实验结果,我们设计了一个位移测量系统。
该系统采用电容式传感器作为测量元件,通过信号采集、处理和输出,实现了对位移的精确测量。
电容感应式指纹传感器工作原理和性能分析
![电容感应式指纹传感器工作原理和性能分析](https://img.taocdn.com/s3/m/313051ca6137ee06eff9184e.png)
电容感应式指纹传感器工作原理和性能分析交通运输1101 陈强 3110405027摘要:本文首先通过查找相关传感器历史资料,回顾了指纹传感器技术的发展历史。
从发展早期,现如今和未来三个角度分别介绍了指纹传感器技术的原理,发展过程和未来前景。
与此同时通过查阅相关文献资料和技术论文,详细解释了指纹传感器的工作原理,并着重介绍了目前几种现实生活中常见的传感器,如光学指纹传感器和半导体指纹传感器,在对两种传感器进行原理性剖析的基础上,通过列举现实生活中同型号不同产品的半导体指纹传感器,对传感器的主要性能参数进行对比研究,指出了它们的优缺点和应用情况。
最后,通过了解苹果公司最新发布的iPhone5s产品中新加入的指纹解锁技术,在阅读其专利图和技术使用说明的基础上,研究分析了实现该项功能所使用传感器的原理和技术细节,并对这一新鲜技术的未来产品中的运用做评估和预测。
1.引言:指纹是手指表面皮肤凸凹不平形成的纹路,由多种嵴状图形构成。
指纹特征即手指表面嵴和沟组成平滑纹理模式,其随机性很强。
研究表明:指纹特征具有唯一性、稳定性特点,据此可实现身份识别。
指纹表面积较小,且存在磨损,获取优质指纹图像较困难。
指纹传感器是获取指纹图像的专用器件,在自动指纹识别系统中起着关键作用。
本文回顾了指纹传感器技术的发展历史,并介绍了目前几种常见的传感器,在进行原理性剖析的基础上,指出了它们的优缺点和应用情况。
1.1. 早期:早期的指纹图像采集主要运用油墨按印等物理方式,如果油墨及纸张质量有问题,或按压压力不均,或按压位置、方向差异,或手指损伤、变形等,都会导致采集的指纹图像质量不理想,进而影响该技术应用。
为克服物理方式的缺点,发展光学传感器、半导体传感器、超声波传感器等对获取高质量指纹图像提供了良好的技术保障,具有很好实用价值。
同时,更先进的指纹图像传感器亦在研发,目的是获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指纹识别准确性、可靠性。
第3章 电容式传感器
![第3章 电容式传感器](https://img.taocdn.com/s3/m/7f9c6a8b6529647d2728529d.png)
ε r1 ( L0 − L) + ε r 2 L
d0
当L=0时,传感器的初始电容
C0 =
ε 0 ε r1 L0 b0
d0
=
ε 0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
∆C C − C 0 (ε r 2 − 1) L 电容变化量与电介质移动量L呈线性关系 = = C0 C0 L0
∆d 3 相对非线性误差为: = ( δ ) d0
∆d 2 ∆d ( ) = ( ) × 100% d0 d0
结论:差动式电容传感器,不仅使灵敏度提高一倍, 结论 而且非线性误差可以减小一个数量级。
3.2 电容式传感器的测量电路
一、等效电路 如图,C为传感器电容,RP 为并联电阻,它包括电极间 直流电阻和气隙中介质损耗 的等效电阻。串联电感L表 示传感器各连线端间的总电 感。串联电阻RS表示引线电 阻、金属接线柱电阻及电容 极板电阻之和。
C max − C min 87.07 pF − 41.46 pF = = 0.19 pF / L K= V 235.6 L
三、变极板间距(d)型
图中极板1固定不动,极板2为可动电极(动片),当动片随被测量 变化而移动时,使两极板间距变化,从而使电容量产生变化 。 设动片2未动时极板间距为d0,板间 介质为空气,初始电容为C0,则
d0 d1 ε0 ε1
变ε的电容传感器 ε
ε 0S ε 1S ⋅ 3 . 6π d 0 3 . 6π d 1 C 0 C1 S = C= = ε 0S d1 d 0 ε 1S C 0 + C1 3 . 6π ( + ) + 3 . 6π d 0 3 .6π d 1 ε1 ε 0
电容式传感器的应用
![电容式传感器的应用](https://img.taocdn.com/s3/m/164ba27c1ed9ad51f01df29d.png)
电容式传感器的原理及应用电容传感器是将被测的非电量的变化转换为电容量变化的一种传感器,它不仅能测量荷重、位移、振动、角度、加速度等机械量,还能测量液面、料面、成分含量等热工参量。
这种传感器具有高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点。
因此,电容传感器在自动检测技术中占有很重要的地位,并得到广泛的应用。
电容式传感器有着许多优点,应用也非常广泛,本文介绍了电容式传感器的工作原理,应用及发展趋势。
一.基本原理电容式传感器的基本原理是将被测量的变化转换成传感元件电容量的变化,再经过转换电路变成电信号输出。
由物理学可知,两个平行金属板组成的电容器,如果忽略了边缘效应,其电容为C=εS/d。
可见在三种参数中保持其中两个不变而仅仅改变第三个参数电容就会改变,因此电容式传感器可以分为三种类型。
1.1变间距型电容传感器如图(1)所示,1为固定极板,2为可动极板。
当可动极板向上移动x,则电容的增量为ΔC=εS/(d-x)-εS/d=-εS/d(x/(d-x))=C0/d(x/(1-x/d))所以灵敏度S=Δx=C0/d=C0/d(1+x/d+x/d2+x/d3+……)。
从上式中可以看出,电容的变化量与极板移动的位移有关,而且当x/d<<1时,可以近似地认为ΔC=S·x,成线性关系。
为了提高灵敏度可以适当减小电容器初始间距和增大初始电容值。
1.2变面积型电容传感器如图所示,下面的极板为动片,上面的极板为定片。
当动片与定片有一相对线位移时,两片金属极板的正对面积变化,引起电容量的变化。
当线位移x=0时,设初始电容量为C0=εab/d,当x≠0时,Cx=ε(a-x)b/d=C0(1-x/a),因此ΔC=-C0x/a,灵敏度S=-C0/a。
可见变面积型传感器是线性传感器,增大初始电容可以提高灵敏度。
1.3变介质型电容传感器二.电容式传感器的应用1.触摸屏广泛应用于我们日常生活各个领域,如手机、媒体播放器、导航系统数码相机、PDA、游戏设备、显示器、电器控制、医疗设备等。
简述电容传感器的原理分类及三类电容式传感器特点
![简述电容传感器的原理分类及三类电容式传感器特点](https://img.taocdn.com/s3/m/348f89d0846a561252d380eb6294dd88d0d23db0.png)
电容传感器的原理分类及三类电容式传感器特点
电容传感器是一种常见的传感器类型,其原理基于电容的变化。
电容式传感器可以广泛应用于位移、角度、液位、压力等测量领域。
根据传感器的工作原理,电容式传感器可以分为变极距型、变面积型和变介质型三种类型。
变极距型电容式传感器使用一个固定极板和一个可动极板构成,可动极板由被测金属平面充当。
当电容式传感器极板间距因被测量变化而变化时,电容变化量为极距是时的初始电容量。
这种类型的传感器一般用来测量微小的位移变化量,但其量程远小于两极板间的初始距离,因此存在原理性非线性误差。
变面积型电容式传感器则是通过改变极板的面积来实现电容的
变化。
这种传感器通常用于测量压力、液位等物理量。
变面积型电容式传感器的特点是灵敏度高、稳定性好,但结构复杂、成本较高。
变介质型电容式传感器则是通过改变极板之间的介质来实现电
容的变化。
这种传感器通常用于测量温度、湿度等物理量。
变介质型电容式传感器的特点是灵敏度高、响应速度快,但受环境影响较大,稳定性较差。
在实际应用中,电容式传感器常常仅改变其中一个参数,以实现电容的变化。
因此,电容式传感器可以分为三种基本类型:变极距型、变面积型和变介质型。
此外,根据传感器的结构形式,电容式传感器可以分为线位移和角位移两种类型,每一种类型又可按传感器极板形状分成平板和圆柱形。
电容式传感器工作原理、特点和测量电路
![电容式传感器工作原理、特点和测量电路](https://img.taocdn.com/s3/m/067b985a0b4e767f5acfce86.png)
当
C C0
d d0
[ 1
1
d
]
d0
d / d0时,1则上式可按级数展开,故得
2
3
C C0
d d0
[1
d d0
d d0
d d0
...]
4.2 电容式传感器的灵敏度及非线性
由上式可见,输出电容的相对变化量ΔC/C与输
入位移Δd之间呈非线性关系。当 略去高次项,得到近似的线性:
d/d时0 ,可1
4.1电容式传感器的工作原理和结构
电容式传感器可分为变极距型、变面积型和变介 质型三种类型。
在实际使用时,电容式传感器常以改变改变平行 板间距d来进行测量,因为这样获得的测量灵敏度 高于改变其他参数的电容传感器的灵敏度。
改变平行板间距d的传感器可以测量微米数量级 的位移,而改变面积A的传感器只适用于测量厘米 数量级的位移。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
CCC00drbx
式中 为
C0 0rb为a初d始电容。电容相对变化量
C x C0 a
很明显,这种形式的传感器其电容量C与水平位
移Δx是线性关系,因而其量程不受线性范围的限
制,适合于测量较大的直线位移和角位移。它的灵
当差动式平板电容器动极板位移Δd时,电容器C0的
间隙d1变为d0-Δd,电容器C2的间隙d2变为d0+Δd则
C1
C
0
1
1 d
d0
C2
C0
1 1 d
d0
4.2 电容式传感器的灵敏度及非线性
在 d/d时0 ,1则按级数展开:
C 1C 0[1 dd 0( dd 0)2( dd 0)3...]
第4.2章 电容式传感器
![第4.2章 电容式传感器](https://img.taocdn.com/s3/m/c1e0bf0eeff9aef8941e06da.png)
检测出这种电容量的变化就可测定物料在罐内的高度。 传感器的静 电电容可由下式表示: k ( s 0 )h
C
式中: k ——比例常数; s ——被测物料的相对介电常数; 0——空气的相对介电常数; D——储罐的内径; d ——测定电极的直径; h ——被测物料的高度。
D ln d
传感器测量电路包括自激多谐振荡器、脉宽调制电路、频率/电压 转换器电路F/V和A/D转换器。如下图所示。
电容式传感器的应用
2 差动式电容测厚传感器
3 电容式料位传感器
下图是电容式料位传感器结构示意图。测定电极安装在罐 的顶部,这样在罐壁和测定电极之间就形成了一个电容 器。
图 电容式料位传感器结构示意图
电容式传感器
原理:被测非电量转换为电容量的变化
A
δ
介电常数ε 电容式传感器结构图
A C
种类:变极距δ、变面积A、变介质 ε
δ 、A或ε发生变化时,都会引起电容的变化。
变间隙式电容传感器 变间隙式电容传感器
2 3 C0 S C0 C C0 1 0 1 0 0 0
2 d d d [1 ( ) 2 ( ) 4 ...] d0 d0 d0
电容值相对变化量为: C
略去高次项,则:
C0
C d 2 C0 d0
电容传感器做成差动式之后,灵敏度提高一倍,而 且非线性误差大大降低了。
变面积式电容传感器
输入输出特性:
C A 0
平板式
电容变化与电介质的移动量L成 线性关系
8
r ( L0 L) r L c c1 c2 0b0 d0 0 ( r 2 r1 ) Lb0 C0 d0
电容式加速度传感器
![电容式加速度传感器](https://img.taocdn.com/s3/m/c15021740812a21614791711cc7931b765ce7b2f.png)
可靠性高
电容式加速度传感器采用成熟的电路和工 艺制造,具有较高的可靠性和稳定性,能
够保证长期使用的准确性和稳定性。
动态响应快
由于其内部结构和工作原理,电容式加速 度传感器具有快速的动态响应能力,能够 实时监测和响应加速度变化。
易于集成
电容式加速度传感器通常体积小巧,易于 与其他电路和传感器集成,方便实现多功 能化和微型化。
多轴和阵列传感器
开发多轴和阵列电容式加速度传感器,以满足复杂运动和 姿态测量的需求。
智能化和网络化
结合人工智能、物联网等先进技术,实现电容式加速度传 感器的智能化和网络化,提高数据处理的效率和系统的自 动化水平。
06 应用实例
CHAPTER
汽车安全系统
安全气囊控制
电容式加速度传感器用于监测车 辆碰撞时的加速度变化,触发安 全气囊的充气或释放,以保护乘
温度稳定性
总结词
温度稳定性是指在一定温度范围内,电容式加速度传感器输出电压或电流信号的 变化程度。
详细描述
温度对电容式加速度传感器的性能有很大影响,温度稳定性好的传感器能够在一 定温度范围内保持稳定的输出,从而提高测量的可靠性。
05 优势与挑战
CHAPTER
优势
高灵敏度
电容式加速度传感器具有较高的灵敏 度,能够检测微小的加速度变化。
电容式加速度传感器在现代科技领域的影响
汽车安全与控制
电容式加速度传感器广泛应用于汽车安全气囊、悬挂系统 、ESP等控制系统中,提高汽车的安全性和操控性能。
无人机与机器人技术
在无人机和机器人领域,电容式加速度传感器用于姿态控 制、导航、避障等功能,提高其自主运动能力和环境适应 性。
智能穿戴设备
电容传感器实训分析报告
![电容传感器实训分析报告](https://img.taocdn.com/s3/m/8b424daf4793daef5ef7ba0d4a7302768f996f15.png)
一、引言电容传感器作为一种重要的检测元件,广泛应用于各种工业、医疗、汽车等领域。
为了更好地理解和掌握电容传感器的工作原理、性能特点以及应用技术,我们进行了为期一周的电容传感器实训。
本文将详细分析实训过程,总结实训成果,并对实训中遇到的问题进行探讨。
二、实训内容1. 电容传感器原理及结构- 讲解了电容传感器的基本原理,包括平行板电容器、同轴电容器等结构。
- 分析了电容传感器的工作原理,即通过测量电容器极板间的电容变化来感知被测物理量。
2. 电容传感器特性分析- 研究了电容传感器的灵敏度、线性度、频率响应等特性。
- 分析了影响电容传感器性能的因素,如电极材料、极板间距、介质材料等。
3. 电容传感器应用- 介绍了电容传感器在位移、振动、压力、液位等领域的应用实例。
- 分析了电容传感器在不同应用场景中的优缺点。
4. 电容传感器实验- 通过搭建实验平台,对电容传感器进行测试,包括灵敏度测试、线性度测试、频率响应测试等。
- 分析实验数据,验证电容传感器的性能。
三、实训成果1. 理论知识掌握- 通过实训,掌握了电容传感器的基本原理、特性及应用技术。
- 理解了影响电容传感器性能的因素,为后续设计和应用提供了理论基础。
2. 实验技能提高- 掌握了电容传感器实验平台的搭建、测试方法及数据处理。
- 提高了动手能力,培养了实验操作规范。
3. 实际应用能力- 通过实训,了解了电容传感器在不同领域的应用实例,为今后实际工作积累了经验。
四、实训中遇到的问题及解决方法1. 电极材料选择- 问题:不同电极材料对电容传感器的性能影响较大,如何选择合适的电极材料?- 解决方法:根据被测物理量、精度要求、环境条件等因素,选择合适的电极材料。
2. 电容传感器灵敏度测试- 问题:在灵敏度测试过程中,如何保证测试数据的准确性?- 解决方法:采用标准信号源、高精度测量仪器,严格按照测试规范进行操作。
3. 电容传感器线性度分析- 问题:如何分析电容传感器的线性度?- 解决方法:通过绘制电容-被测物理量曲线,分析曲线的线性度。
简述电容式传感器的工作原理及特点(一)
![简述电容式传感器的工作原理及特点(一)](https://img.taocdn.com/s3/m/499a325e49d7c1c708a1284ac850ad02df800767.png)
简述电容式传感器的工作原理及特点(一)电容式传感器的工作原理及特点工作原理•电容式传感器是一种通过测量电容变化来检测目标物体性质或位置的传感器。
•它由一个或多个电容器构成,其中至少包含一个可变电容器部分和一个固定电容器部分。
•当感应对象接近或远离电容器时,电容值会发生变化,进而改变电路中的电压或电流。
特点1.高精度: 电容式传感器能够实现较高的测量精度,通常可以达到微米级别。
2.非接触式: 电容式传感器无需与目标物体直接接触,减少了物体磨损和传感器损坏的风险。
3.宽范围测量: 电容式传感器可用于测量不同物体的位置、形状、厚度等参数。
4.无需能源: 传感器本身无需能源供应,只需要一个外部的激励信号。
5.快速响应: 电容式传感器响应速度较快,能够实时监测目标物体的变化。
6.可靠性高: 电容式传感器具有较高的可靠性和稳定性,可长时间使用而不失效。
7.适应性强: 电容式传感器适用于各种环境,包括温度、湿度、压力等变化较大的环境。
结论电容式传感器在现代工业自动化、机器人、汽车等领域得到了广泛应用,其高精度、快速响应和可靠性等特点使其成为一种理想的传感器选择。
相信随着技术的进步,电容式传感器将会在更多领域展现其优势。
应用领域•自动化生产线: 电容式传感器可用于监测物体的位置和姿态,实现自动化生产线的控制和优化。
•液位检测: 电容式传感器可测量液体的电容变化,用于液位检测和流量计量。
•触摸屏技术: 电容式传感器可用于触摸屏技术中,实现触摸位置的定位和手势识别功能。
•接近开关: 电容式传感器可以检测目标物体的接近或远离,用于接近开关的控制。
•温湿度监测: 电容式温湿度传感器可测量环境的温度和湿度变化,用于气候监测和室内环境控制。
•汽车安全系统: 电容式传感器可用于汽车安全系统中,如倒车雷达和碰撞预警系统。
发展趋势•进一步提高精确度和灵敏度,以满足更高要求的应用场景。
•结合其他传感技术,如光学传感、压力传感等,实现更多功能的集成传感器。
传感器原理与应用习题第4章电容式传感器
![传感器原理与应用习题第4章电容式传感器](https://img.taocdn.com/s3/m/b78f47a6cc22bcd126ff0c8b.png)
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么? 答:(1)变极距型电容传感器:在微位移检测中应用最广。
(2)变面积型电容传感器:适合测量较大的直线位移和角位移。
(3)变介质型电容传感器:可用于非导电散材物料的物位测量。
4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。
采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。
由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。
4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题? 答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。
解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。
4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。
4-6 简述电容测厚仪的工作原理及测试步骤。
4-7 试计算图P4-1所示各电容传感元件的总电容表达式。
4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。
电容式感应滑条-概述说明以及解释
![电容式感应滑条-概述说明以及解释](https://img.taocdn.com/s3/m/7dc1a89b77a20029bd64783e0912a21614797fd8.png)
电容式感应滑条-概述说明以及解释1.引言1.1 概述:电容式感应滑条是一种利用电容原理来检测物体位置的先进技术。
通过测量电容传感器与物体之间的电容变化,可以实现对物体位置的准确监测和控制。
电容式感应滑条在工业自动化、智能家居、医疗设备等领域具有广泛的应用前景。
本文将深入探讨电容式感应滑条的原理、应用领域以及其优势和劣势,以期为读者带来更全面的了解和认识。
章1.1 概述部分的内容1.2 文章结构本文将首先介绍电容式感应滑条的原理,包括其工作机制和基本原理,为读者揭示其工作原理的奥秘。
接下来,我们将探讨电容式感应滑条在实际应用领域中的广泛应用,包括但不限于电子产品、汽车行业和工业控制等领域。
随后,我们将分析电容式感应滑条相对于其他类型滑条的优势和劣势,以便读者更全面地了解其在实际应用中的表现。
最后,我们将总结电容式感应滑条在现代科技发展中的重要性,展望其未来发展趋势并给出结论。
通过这些内容,读者将对电容式感应滑条有更深入的了解,并能更好地把握其在未来的应用和发展方向。
文章1.3 目的部分的内容: 本文的目的在于深入探讨电容式感应滑条的原理、应用领域以及优势和劣势,旨在让读者对电容式感应滑条有一个全面的了解。
通过对其重要性的总结和对未来发展的展望,希望能够促进该技术的进一步发展和应用,为相关领域的研究和应用提供参考。
文章旨在为读者提供关于电容式感应滑条的全面信息,让读者能够更加深入地了解这一先进技术的潜力和应用前景。
2.正文2.1 电容式感应滑条的原理电容式感应滑条是一种利用电容效应来实现位置检测的装置。
其基本原理是通过人体或其他导电物体与感应电极之间的电容变化来实现位置信息的检测。
具体来说,电容式感应滑条通常由一对电容传感器和一个控制电路组成。
在工作时,当有导电物体(如人体手指)靠近电容传感器时,会改变电容传感器之间的电场分布,从而导致电容值的变化。
控制电路会测量这种电容值的变化,并将其转换为相应的位置信息,以实现滑动位置的检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式传感器的特点及应用中存在的问题
张文杰
保定天翔集团毛纺织有限责任公司河北保定071000
摘要:本文阐述了电容式传感器有温度稳定性好、结构简单、动态响应好、可以实现非接触测量,具有平均效应的优点,输出阻抗高,负载能力差、寄生电容影的及其缺点,以及在应用中存在的
问题。
关键词:电容、传感器、负载
Abstract:This paper describes the capacitive sensor has good temperature stability,simple structure,good dynamic response,non-contact measurement can be achieved,with the average effect of the advantages of high output impedance, load capacity is poor,and shortcomings of the parasitic capacitance of the film,and Problems in the application.
Keywords:capacitors,sensors,load
1.电容式传感器的特点
1)优点
(1)温度稳定性好。
电容式传感器的电容值一般与电极材料无关,有利于选择温度系统低的材料,又因本身发热极小,影响稳定性甚微。
而电阻传感器有电阻,供电后产生热量:电感式传感器有铜损、磁游和涡流损耗等,易发热产生零漂。
(2)结构简单。
电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强车船及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力、高冲击、过载等;能测量超高温和低压差,也能对带磁工作进行测量。
(3)动态响应好。
电容式传感器由于带电极板间的静电引力很小(约几个10-5N),需要的作用能量极小,又由于它的可动部分可以做得很小、很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆赫的频率下工作,特别适用于动态测量。
又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。
它可用于测量高速变化的参数。
(4)可以实现非接触测量,具有平均效应。
例如,非接触测量回转轴的振动或偏心率、小型滚珠轴承的径向间隙等。
当采用非接触测量时,电容式传感器具有平均效应,可以减少工作表面粗糙度等对测量的影响。
电容式传感器除了上上述的优点外,还因其带电极板间的静电引力很小,所以输入和输入能量极小,因而可测极低的压力,以及很小的加速度、位移等,可以做得很灵敏,分辨率高,能敏感0.01µm甚至更小的位移;由于其空气等介质损耗小,采用差动结构连接成电桥式时产生的零残极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度。
2)缺点
(1)输出阻抗高,负载能力差。
电容式传感器的容量受共电极的几何尺寸等限制,一般只有几pF到几百pF,使传感器的输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗高达106—108Ω。
因此传感器的负载能力很差,易受外界干扰影响而产生不稳定现象,严重时甚至无法工作,必须采取屏蔽措施,从而给设计和使用带来极大的不便。
阻抗大还要求传感器绝缘部分的电阻值极高(几十MΩ以上),否则绝缘部分将作为旁路电阻而影响仪器的性能(如灵敏度降低),为此还要特别注意周围的环境如温度、清洁度等。
不采用高频供电,可降低传感器输出阻抗,但高频放大、传输远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。
(2)。
电容式传感器由于受结构与尺寸的限制,其寝电容量都很小(几pF到几十pF),而连接传感器和电子线路的引线电缆电容(1—2m导线可达800pF),电子线路的杂散电容,以及传感器内极板与其周围导体构成的“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(职电缆电容)常常的随机变化的,将使仪器工作很不稳定,影响测量精度。
因此对电缆的选择、安装、接法都有要求。
随着材料、工艺、电子技术,特别是集成技术的发展,使电容式传感器的优点得到发扬,而缺点不断地得到克服。
电容式传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。
2.应用中存在的问题
1)边缘效应以上分析各种电容式传感器进还忽略了边缘效应的影响。
实际上当极板厚度h与极距d之比相对较大时,边缘疚的影响就不能忽略。
这时,对极板半径为r的变极距型电容传感器。
边缘效应不仅使电容传感器的灵敏度降低,而且产生非线性。
为了消除边缘效应的影响,可以采用带有保护环的结构。
保护环与定极板同心、电气上绝缘且间隙越小越好,同时始终保持等曜,以保证中间工作区得到均匀的场强分布,从而克服边缘效应的影响。
为减小及板厚度,往往不用整块金属板做极板,而用石英或陶瓷等非金属材料,蒸涂一薄层金属作为极板。
2)静电引力电容式传感器两个极板间因存在静电场,因而有静电引力或力矩。
静电引力的大小与极板间的工作电压、介电常数、极间距离有关。
通常这种静电引力很小,但在采用推动力很小的弹性敏感元件的情况下,必须考虑静电引力造成的测量误差。
3)温度影响环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系,从而引入温度干扰误差。
这种影响主要有以下两个方面。
(1)温度对结构尺寸的影响:电容传感器由于极间隙很小而对结构尺寸的变化特别敏感。
在传感器
各零件料线膨胀系数不匹配的情况下,温度变化将导致极间隙相对变化,从而产生很大的温度误差。
在设计电容式传感器时,适当选择材料及有关,可以满足温度误差补偿要求。
(2)温度对介质的影响:温度对介电常数的影响随介质不同而异,空气数温度系数看似为零:页岩某些液体介质,如硅油、蓖麻油、煤油等,其介电常数的温度系数较大。
例如,煤油的介电常数的温度可达0.07%/°C;若环境温度变化加减50°C,则将带来7%的温度的误差,故采用此类介质时必须注意温度变化造成的误差。
参考文献:
1、王松林,鲁高奇,电容式传感器测量电路设计,电子质量,2011年第1
2、翟宝峰,梁清华,检测粮食水分用的电容式传感器,传感器技术,2003年第22卷第2期
3、丁振荣,陈卫民,电容式传感器测量油品中水的体积分数之新方法,传感器技术,2004年第23卷第5期
4、杨三序,电容式传感器在车辆检测装置中的应用,传感器技术,2004年第23卷第9期
5、伊晓光,孙来军,胡晓光,湿敏电容式传感器测量SF6气体湿度方法的研究,电力建设,2004年第25卷第8期
6、黎章,袁易君,基于AVR单片机的谷物水分检测系统,农机化研究,2010年第32卷第6期
7、陈洪飞,杨其华,刘钢海,基于CPLD的电容式角度传感器测量电路设计,中国计量学院学报,2007年第18卷第2期
作者简介:
张文杰(1974-)男,大专,助理工程师,研究方向:机电工程,工作单位:保定天翔集团毛纺织有限责任公司
电容式传感器的特点及应用中存在的问题
作者:张文杰
作者单位:保定天翔集团毛纺织有限责任公司
刊名:
城市建设理论研究(电子版)
英文刊名:ChengShi Jianshe LiLun Yan Jiu
年,卷(期):2011(21)
本文链接:/Periodical_csjsllyj2011213511.aspx。