高分子材料中粉体表面改性的作用
粉体工程简答题汇总
1. 筛分法测量粉体粒径的基本原理是什么?P19利用筛孔尺寸由大到小组合的一套筛,借助振动把粉末分成若干等级,称量各级粉末的质量,即可计算用质量的百分比表示的粒径组成。
2. 粉体的松装密度是如何测定的?P37① 粉末从漏斗中自由落下,充满圆柱杯,漏斗孔径有2.5m 和5.0m 两种,圆柱杯容积为(25±0.05)m ³。
称量刮平后圆柱杯中粉末质量与容积相比即可得出松装密度。
② 将粉末放入漏斗中的筛网上,自然或靠外力流入布料箱,交替经过布料箱中的四块倾角为25°的玻璃板和方形漏斗,最后流入已知体积的圆柱杯中,呈松散状态,然后称取杯中粉末质量,计算松装密度。
3. 推导出粉体真密度的测定公式P38 ()()[]()()()液体密度体的质量比重瓶加待测粉末加液量比重瓶加待测粉末的质比重瓶含液体的质量空比重瓶质量表观体积颗粒质量--m -m -m -m m m m m m m /m m -m m m m sl s 0s sl 00s s sl 00s p l l l l l p ρρρρ----=---==4. 库尔特计数器法测定粉体粒度的基本原理是什么?电传感器是将被测颗粒分散在导电的电解质溶液中,在该导电溶液中放置一个开有小孔的隔板,并将两个电极分别插入小孔两侧的导电溶液中,在电压差作用下,颗粒随导电溶液逐个通过小孔,每个颗粒通过小孔时产生的电阻变化表现为一个与颗粒体积或粒径成正比的电压脉冲。
5. 激光粒度仪测定粉体粒度的原理是什么?颗粒能使激光产生散射这一物理现象测试粒度分布。
当光束遇到颗粒阻挡时,部分发生散射现象。
散射光的传播方向与入射光的传播方向形成一个夹角θ,θ的大小与颗粒的大小有关,即小角度θ的散射光是大颗粒引起的,大角度θ的散射光是小颗粒引起的。
散射光的强度代表该粒径颗粒的数量。
测量不同角度上的散射光强度,就可测得样品的粒度分布。
6.粉体表面改性的目的是什么?①增强与基体的相容性和润湿性。
表面化学改性
表面化学改性粉体工业是一个重要的基础原料工业,在一些高分子材料工业及高聚物复合材料领域中,粉体常常用作无机矿物填料,不仅降低了材料的生产成本,而且还能提高复合材料的力学性能以及稳定性,甚至可以赋予材料某些特殊的物理化学性能,如耐腐蚀性、绝缘性和阻燃性等。
但由于这些无机矿物材料与有机高聚物基质(如塑料、橡胶、树脂等)的界面性质不同,因此当以无机矿物填料作为填充物时,除了需要相关的粒度和粒度分布要求之外,还必须对其表面进行改性,以改善其表面的物理化学特性,使其趋近基体的表面特性,提高其在基体中的分散性,从而提高材料的力学性能及综合性能。
表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。
表面改性的特点是:1)不必整体改善材料,只需进行表面改性或强化,可以节约材料;2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比;3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本;4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。
表面改性的方法有很多,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。
下面本文对表面化学反应法改性做简单介绍,并举例说明几种表面化学改性方法。
所谓无机粉体表面化学改性[1]是指通过无机粉体粒子表面和表面改性剂之间的化学吸附作用或化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。
表面化学改性法是目前最常用的表面改性方法,在无机粉体粒子表面改性技术中占有极其重要的地位。
超细无机粉体颗粒比表面积大,表面键态、电子态与粒子内部不同,配位不全等都为用化学方法对无机粉体粒子进行表面改性提供了有利条件。
通常,表面改性剂一端为极性基团,能与粉体表面发生化学反应而连接在一起,另一端的非极性基团能与基体形成物理缠绕或是发生化学反应,从而改变无机粉体的分散性,改善制品的性能。
无机粉体表面改性的目的、原理及方法及改性剂的选择
无机粉体表面改性的目的、原理及方法及改性剂的选择
虽然无机粉体表面改性的目的因应用领域的不同而异,但总的目的是通过粉体改性剂改善或提高粉体材料的应用性能或赋予其新的功能以满足新材料、新技术发展或者新产品开发的需要。
无机粉体改性的目的是什么呢
1.使无机矿物填料由一般增量填料变为功能性填料;
2.提高涂料或油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性和保色性等;
3.在无机/无机复合粉料中,提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料;
4.通过对层状粉体进行插层改性,制备新型的层间插层矿物材料;
5.对于吸附和催化材料,提高其吸附和催化活性以及选择性、稳定性、机械强度等性能
6.超细和纳米粉体制备中的抗团聚;
粉体表面改性的原理和方法
1.表面或界面性质与其应用性能的关系
2.表面或界面与表面改性剂或者处理剂的作用机理和作用模型
3.各种表面改性方法的基本原理或者理论基础,包括表面改性处理过程中的热力学和动力学,模拟和化学计算等。
玻璃微珠改性技术方法大全以及粉体表面改性剂的作用
玻璃微珠改性技术方法大全以及粉体表面改性剂的作用空心玻璃微珠是由纳硅硼酸盐材料经特殊工艺制成的薄壁、封闭的微小球体,球体内部包裹一定量的气体,其主要成分为硅酸盐,具有良好的综合性能,耐高温,耐腐蚀、防辐射、密度小、低导热率、高绝缘度、热稳定性好、化学稳定性好等,作为复合材料的填料使用,能降低基体密度,提高基体的刚度、强度、绝缘性、尺寸稳定性等。
广泛应用于建材、塑料、橡胶、涂料、航海和航天等领域。
玻璃微珠表面改性技术表面改性是优化玻璃微珠等无机粉体材料性能的关键技术之一,对提高材料的应用性能和价值起着至关重要的作用,主要方法有:表面化学改性、表面包覆改性、高性能表面改性及机械力化学改性。
(1)表面化学改性所谓表面化学改性是指通过表面改性剂与颗粒表面之间的化学吸附作用或者化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。
表面化学改性方法是目前最常用的表面改性方法,在玻璃微珠等无机粉体材料表面改性技术中占有及其重要的地位。
(2)表面包覆改性表面包覆改性是利用无机物或有机物对无机粒子表面进行涂覆/涂层以达到改性的方法,包覆物理涂覆、化学包覆及简单化学反应或沉淀现象进行包覆。
化学包覆是利用官能团反应、游离基反应、溶胶吸附等对无机粉体进行表面包覆改性,从而改善其在高分子聚合物的分散性、相容性等,让其具有更广的使用价值。
物理涂覆是利用表面活性剂、水溶性或者油溶性高分子化合物等对粉体表面进行覆膜处理来达到表面改性的目的,进而改善无机粉体的胶结能力、强度、耐温能力等。
(3)高能表面改性高能表面改名是指利用紫外线、红外线、电晕放电、等离子提照射和电子束辐射等办法对粉体进行表面处理的方法。
(4)机械力化学改性机械力化学改性是利用粉体超细粉碎及其他强烈机械力作用有目的的激活颗粒表面,使其结构复杂或表面无定型化,从而增加其与有机物或其它无机物的反应活性。
机械力化学改性有两层含义:(1)利用矿物超细粉碎规程中机械应力的作用激活矿物表面,使表面晶体结果与物理化学性质发生变化,从而实现应用需要。
【精品文章】超细粉体的表面包覆改性简述
超细粉体的表面包覆改性简述
超细粉体不仅是一种功能材料,而且为新的功能材料的复合与开发建立了坚实的基础,在国民经济与国防各领域有着重要的作用和意义。
超细粉体粒子较为实用的优异特性主要是表面效应和体积效应,随着颗粒尺寸减小,面积与体积的比例随之增大。
由于超细粒子的比表面积很大,很容易产生团聚现象,所以对粉体表面进行处理,使其处于分散状态,充分发挥其优异特性很有必要。
近年来,粉体表面改性技术一直为人们所关注。
表面包覆改性只是表面改性技术中重要的一种。
粉体的表面包覆是根据需要应用物理或化学方法对颗粒表面进行处理,利用无机物或有机物对颗粒表面进行包覆,在其表面引入一层包覆层,这样包覆改性后的粉体可以看成是由“核层”和“壳层”组成的复合粉体。
通过在粉体表面涂敷一层组分不同的覆盖层,能够改变其光、磁、电、催化、亲水、疏水以及烧结特性,提高其抗腐蚀性、耐久性、使用寿命以及热、机械和化学稳定性等。
图1 表面包覆改性粉体的投射及扫描照片
1.超细粉体表面包覆改性的机理及基本原则
1.1 超细粉体表面包覆改性机理
由无机超细粉体表面包覆形成的新粉末是一种核-壳结构的复合粉末。
包覆机理主要有如下几种观点:
(1)库仑静电引力相互吸引机理。
这种观点认为,包覆剂带有与基体表面相反的电荷,靠库仑引力使包覆剂颗粒吸附到被包覆颗粒表面。
(2)化学键机理。
这种观点认为,通过化学反应使基体和包覆物之间形成牢固的化学键,从而生成均匀致密的包覆层。
包覆层与基体结合牢固,。
粉体改性剂对滑石粉表面改性方法及作用
粉体改性剂对滑石粉表面改性方法及作用滑石粉是一种层状含水镁硅酸盐,其表面含有亲水基团,且具有较高的表面能,作为无机填料与有机高聚物分子材料之间在化学结构和物理形态上有着很大的差异,缺少亲和性,使之滑石粉与聚合物之间混合不均匀、粘合力弱,导致制品的力学性能降低。
为此,必须对滑石粉进行表面改性处理。
滑石粉表面改性的机理是利用某些带有两性基团的小分子或高分子化合物对进行复合的物质中的一种或两种进行表面改性,使其表面由憎水变为亲水,目的是使两种物质与树脂更好地相结合。
1、表面覆盖改性法表面覆盖改性法是将表面活性剂或粉体改性剂覆盖于粒子表面,使表面活性剂或粉体改性剂以吸附或化学键的方式与粒子表面结合,使粒子表面由亲水变为疏水,赋予粒子新的性质,使粒子与聚合物的相容性得以改善。
该方法是目前最普遍采用的方法。
大致可理解为:针对滑石粉与聚合物亲和力不高的缺点,将带有两性基团的表面活性剂覆盖粒子上,亲水基团朝向粒子表面,亲油基团朝向外面,这样与聚合物结合时就有好的相容性,达到改性目的,扩大滑石粉的应用范围。
2、机械化学法机械化学法是通过粉碎、摩擦等方法将比较大的粒子变得较小,使粒子的表面活性变大,即增强其表面吸附能力,简化工艺的同时还可以降低成本,同时更易控制产品的质量。
超细粉碎是物料深加工的重要手段,其主要目的是为现代工业提供高性能的粉体产品。
此过程不是简单的物料粒度减小,它包含了许多复杂的粉体物质性质和结构的变化、机械化学变化。
滑石粉经搅拌磨超细粉碎后,表面活性增强,热效应改善,白度提高,粉体性质变化与超细粉碎过程的热力学特性密切相关。
3、外膜层改性法外膜层改性是在粒子表面均匀地包覆一层聚合物,从而赋予粒子表面新的性质。
用澳达粉体表面改性剂对无机粒子滑石粉进行表面处理,与常规的滑石粉粒子填充物相比,包覆后的滑石粉填充高分子材料后,其最大拉伸强度、冲击强度均明显提高,提高率分别达到136%和162%,可作为新型强韧型填充改性剂用于PVC电缆料。
粉体表面改性
粉末进行表
面改性,推测在CH4
和H2
的共同作用下TiO2
表
面将形成Ti-C-O结构,使其导电性与TiC类
似。Yamada等〔12〕先后用Ar和N2
等离子体改性
处理TiO2
膜,在通入N2
之前首先进行Ar处理以
除去吸附在TiO2
表面的水分子、清洁表面,最后
得到的掺氮TiO2
不同,得到的涂层组成也会不同。文献〔23-24〕中还指
出,经无机表面沉积改性以后,粉体的性能提高了,
在基体中分散性较好。章金兵〔25〕用液相沉积法对
纳米ZnO/TiO2
进行表面改性,改性后的粉体表面存
在致密的Al2O3
膜,产物经充分分散后在有机介质
或水中的稳定时间明显提高,紫外线透过率则由改
性前的大于8.5%降低到小于7%。
粉体表面改性
前言:粉体是无数个细小固体粒子集合体的总称。根据固体粒子的尺寸不同可以将固体粒子分为颗粒、微米颗粒、亚微米颗粒、超微颗粒、纳米颗粒。通常粉体是尺度界于10-9m到10-3m范围的颗粒。随着颗粒尺寸的减小相应的各种性质也随着尺寸的改变而改变。
因此小尺寸颗粒有如下几个特征:
1.比表面积增大促进溶解性和物质活性的提高,易于反应处理。
粉体的团聚现象减少了,分散性提高
了,并且改性后的纳米SiO2
粉体与有机基体聚氨
酯弹性体( PUE)的相容性增强了,PUE材料的力学
性能也有较大的改善,能同时达到增强增韧的效
果。余江涛等〔9〕利用阴离子表面活性剂对钛白粉
进行改性,结果表明粉体的疏水性有所改善,其中
使用十二烷基苯磺酸钠与硬脂酸的复配体系其接
向排列,使其表面性质或界面性质发生显著变化;
粉体表面改性处理介绍-文档资料
(3)气相法改性 气相法改性是指将改性剂汽化以后与固体颗粒表
面进行接触,在其表面发生化学反应或物理结合而吸
附在颗粒表面,达到对颗粒进行表面改性处理的方法 。在该方法中由于要将改性剂汽化,一般局限于一些 低分子量、低沸点的改性剂。
干法表面改性设备
目前干法表面改性设备主要有高速加热 式混合机、SLG型连续式粉体表面改性机、 PSC型连续式粉体表面改性机、高速气流冲
图4 HYB主机的结构示意图
(5)流化床式粉体表面改性机
图5 不同形式的流化床
(a) 顶喷式 (b) 底喷式 (c)Wurster式 (d) 侧喷旋转式
2)表面改性的分类
包覆处理改性 表面化学包覆
沉淀反应包膜 胶囊化处理
机械化学改性,等
包覆处理改性 包覆 也称涂敷,利用有机高聚物或树脂等对粉体
(1)干法改性 干法改性是指颗粒在干态下在表面改性设备中首先进 行分散,然后通过喷洒合适的改性剂或改性剂溶液,在一 定温度下使改性剂作用于颗粒材料表面,形成一层改性剂 包覆层,达到对颗粒进行表面改性处理的方法。这种改性 方法具有简便灵活,适应面广,工艺简单,成本低,改性
后可直接得到产品,易于连续化、自动化等优点,但是在
粉体表面改性
概述
1)定义
表面改性 是指利用各类材料或助剂,采用物理、 化学 等方法对粉体表面进行处理,根据应用的需要有目的地改 善粉体表面的物理化学性质或物理技术性能,如表面晶体 结构和官能团、表面能、表面润湿性、电性、表面吸附和
反应特性等等,以满足现代新材料、新工艺和新技术发展
的需要。
2) 表面改性的目的
化学方法
物理化学方法 机械物理方法
其它表面改性方法
无机粉体颗粒表面改性技术在提高燃料的燃烧效率方面的应用
无机粉体颗粒表面改性技术在提高燃料的燃烧效率方面的应用1研究背景无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。
无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。
因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。
2无机粉体颗粒表面改性的方法表面改性是用物理、化学或机械的方法对粉体表面进行处理,根据应用需要有目的的改变粉体表面的物理化学性质,使其表面性质发生变化,以满足材料、工艺或技术发展的需要。
2.1 物理涂覆改性物理涂覆改性即表面包覆改性,当无机粉体和改性剂按照一定比例混合时,由于搅拌的作用,改性剂通过静电引力或范德华力吸附在粉体表面,从而形成单层或多层包覆。
与化学包覆改性不同的是,改性后改性剂与粒子表面无化学反应。
由于包覆层的存在,粒子间产生了空间位阻斥力,对其再团聚起到了减弱或屏蔽的作用。
该法几乎适用于所有无机粉体的表面改性。
用于物理涂覆改性的改性剂主要有表面活性剂、超分散剂等[2]。
无机粉体经过物理涂覆后,其分散性、与有机体的相容性均显著提高[3]。
2.2 化学包覆改性化学包覆改性是指通过一定的技术手段,利用改性剂分子中的官能团和粉体表面进行化学反应或化学吸附,从而包裹在无机粉体的表面。
化学包覆方法是最常用的改性方法,一般采用湿法工艺。
具体方法有多种。
如溶胶-凝胶法,此法不仅可以用于超细粉体的包覆,还可以用于制备超细粉体;非均相凝聚法是先加入分散剂将两种物质分散,通过调节pH值或加入表面活性剂等使包覆颗粒和被包覆颗粒所带的电荷相反,然后通过静电引力形成单层包覆;表面接枝聚合包覆法是通过化学反应将高分子材料连接到无机粒子表面上,该法的特点是最终接枝包覆在改性主体的聚合物改性剂是在改性过程中同时合成的。
粉体表面改性技术
粉体表面改性方法
涂敷改性(冷法、热法) 石英砂涂敷树脂,提高铸造时粘结性 表面化学改性(主要方法) 颗粒表面性质、改性剂种类、用量用法 及工艺设备与操作条件 沉淀反应改性(钛白、云母) 机械化学改性 高能改性、酸碱处理等
粉体表面改性设备
高速混合(捏和)机 HYB高速气流冲击式粉体表面处理机 (东京理科大学、奈良机械制作所) 球磨机、砂磨机 液相表面处理 喷雾表面处理
超分散剂的吸附形态
超分散剂在强极性 表面的单点化学吸附
超分散剂在弱极性 表面的多点氢键吸附
超分散剂通过表面增 效剂在非极性表面吸附
超分散剂作用机理示意图
锚固基团
颗粒
颗粒
溶剂化链
超分散剂的吸附性能
Rehacek方法
Xap
MaCa
Xap Mo(Co Ce) X MoCo ( Mo X Xsolv)Ce Ma X Xsolv Ca X / Ma Xap Ma (Ca Ce) Ma / ( s )
CH-5使用方法
将研磨基料的树脂浓度降低至30-40% 在基料中尽量少使用胶质油或胶凝剂 在用基料调制油墨时多补充上述物质 由于CH-5降低基料粘度,故可提高颜 料含量,减少溶剂用量,改善油墨干燥 性能
热固型/单张纸型研磨基料配方
RUBINE / Ca 4B TONER 36 PHTHALOCYANINE BLUE DIARYLIDE YELLOW CARBON BLACK GRINDING VEHICLE 48 ALKYD RESIN 8 CH-5 HYPERDISPERSANT CH-11B HYPERDISPERSANT CH-22 HYPERDISPERSANT ANTIOXIDANT 2 ALIPHATIC DISTILLATE 6 50 36 50 28 26 8 4 52 9 33 9 3.75 1.25 3 65 5 40 49 5 3 1 2 40 53 5 50 33 5 4
表面改性
纳米TiO2的制备及表面改性的研究摘要:本文通过钛盐络合物水解方法制备了纳米二氧化钛,并用KH-570对TiO2进行表面改性。
利用XRD、TEM等分析测试手段对制备的TiO2粉体的晶相组成,晶体形貌进行了表征。
并讨论了热处理温度对TiO2晶型的影响,结果表明改性后的TiO2有优良的分散性能。
关键词:纳米TiO2;表面改性;高分子材料;负离子二氧化钛是一种性能最好的白色颜料,对光散射力强,着色力高,遮盖力大,白度好。
随着粒子尺寸的微细化(1nm~100nm),其表面电子结构和晶体结构发生了变化,产生了普通粒度级粒子所不具备的表面效应,小粒子效应,量子效应和宏观量子隧道效应,从而使其具有优异的紫外线屏蔽作用,颜色效应,光化活性等,纳米TiO2 具有多种优越的特殊性能,将之与高分子材料相结合,将会推动着材料科学的发展,提高人们的物质生活水平[1]。
1.实验部分1.1实验药品 C2H5OH(乙醇),TiCl4(四氯化钛), TEA(三乙醇胺), AMP-95(2-氨基-甲基-丙醇),KH-570(γ-甲基丙烯酰氧基三(甲氧基)硅烷),H2O。
1.2性能测试德国Mastersizer2000激光粒度分析仪测试二氧化钛粒径及分布;日本JEOL-2010型透射电镜观察二氧化钛形态及粒径;丹东奥龙射线有限公司生产Y2000型X—射线粉末衍射仪测试二氧化钛晶体结构;日本ECO-HOLISTIC.INC出品的负离子强度测试仪EB-13 IONTESTER 测试二氧化钛放负离子强度。
1.3 实验过程1.3.1纳米二氧化钛的制备方法在常温,磁力搅拌的情况下,将四氯化钛缓慢滴加到溶有三乙醇胺的乙醇溶液中。
该反应剧烈,放出大量的热,并有大量的酸雾形成,形成糊状络合物。
TiC14与TEA的物质的量比为l:2,乙醇作为溶剂,其体积为三乙醇胺的3倍。
将络合物在30℃左右保温一段时间后,加去离子水溶解配成溶液。
将配好的溶液在磁力搅拌的情况下,按不同的量滴加到100m1AMP-95的水溶液中,得到纳米锐钛矿型二氧化钛溶胶。
粉体表面改性处理介绍
2)有机酸及其盐类改性剂
❖高级脂肪酸及其盐 结构通式:RCOOH 为阴离子表面活性剂,其结构和聚合物分子结
构相似,与聚合物基料有一定的相容性。分子一 端为羧基,可与无机填料或颜料表面发生物理、 化学吸附作用,另一端为长链烷基(C16-C18)
作用: 用高级脂肪酸及其盐(如硬脂酸)处理无机填料
或颜料,有一定的表面处理效果 可改善无机填料或颜料与高聚物基料的亲和性, 提高其在高聚物基料中的分散度。 本身具有润滑作用,可使复合体系内摩擦力减
(1)干法改性 干法改性是指颗粒在干态下在表面改性设备中首先进
行分散,然后通过喷洒合适的改性剂或改性剂溶液,在一 定温度下使改性剂作用于颗粒材料表面,形成一层改性剂 包覆层,达到对颗粒进行表面改性处理的方法。这种改性 方法具有简便灵活,适应面广,工艺简单,成本低,改性 后可直接得到产品,易于连续化、自动化等优点,但是在 改性过程中对颗粒难以做到处理均一、颗粒表面改性层可 控等目的。
2023最新整理收集 do something
概述
1)定义
粉体表面改性
表面改性是指利用各类材料或助剂,采用物理、 化学 等方法对粉体表面进行处理,根据应用的需要有目的地改 善粉体表面的物理化学性质或物理技术性能,如表面晶体 结构和官能团、表面能、表面润湿性、电性、表面吸附和 反应特性等等,以满足现代新材料、新工艺和新技术发展 的需要。
亲水基的性质
硅烷偶联剂亲水基也称水解性基团,遇水可分解成 活性硅醇(≡Si-OH),通过硅醇和无机矿物表面反应, 形成化学结合或吸附于矿物表面 X为—OCH3和—OC2H5,水解速度缓慢,产物
醇为中性物质,用水介质进行表面改性。 X为—OC2H4OCH3基团,不仅保留水解性,还
能提高水溶性、亲水性,应用更为方便
粉体表面改性及分散技术
1、纳米粉体的分散重要性
纳米粉体稳定分散在各种液相介质形成的分散体本身往往 就是十分重要的产品。如将某些具有特殊电磁性的纳米粉 体分散在液相介质中可制成导电料浆或磁性浆料;将纳米 TiO2粉体分散在水中或有机溶剂中可以制成具有抗紫外、 自清洁或光催化等特殊功能的涂料;这些产品的性能与纳 米粉体的分散状况密切相关。
3、粉体表面改性的目的
4、环境保护
某些公认的对健康有害的原料,如石棉,对人体健康有害主要 在于其生理活性;一是细而长的纤维形状(长度为5-100微米, 直径3微米以下的纤维)在细胞中特别具有活性;二是石棉表面 的极性点(这些极性点主要是OH-官能团)容易与构成生物要素 的氨基酸蛋白酶的极性基键合。如果这两个因素在细胞中起主导 作用的话,那么就可以认为表面改性有可能改变石棉的生理活性。 可用对人体无害和对环境不构成污染,又不影响其使用性能的其 他化学物质覆盖、封闭其表面的活性点OH-。
1、粉体的用途
在橡胶、塑料、涂料、胶粘剂等高分子材料工业及高 聚物基复合材料领域中,无机粉体填料占有很重要的 地位。如碳酸钙、高岭土、氢氧化铝、云母、石棉、 石英、硅藻土、白碳黑等等,不仅可以降低材料成本, 还能提高材料的硬度、刚性和尺寸稳定性,改善材料 的力学性能并赋予材料某些特殊的物理化学性能,如 耐腐蚀性、耐侯性、阻燃性和绝缘性等。
2、纳米粉体分散改性的目的
粉体表面改性及分散技术
主要内容
一.粉体表面改性 二.纳米粉体表面改性 三.超分散剂
超细粉体分类
分类
直径
原子数目
微米粉体
>1m
>1011
亚微米粉体 100nm~1 m 108
特征 体效应 体效应
纳米粉体 100nm~10nm 105 尺寸与表 1nm
粉体表面改性
4.1 概述
1)定义 表面改性是指利用各类材料或助剂,采用物理、 化学、机械等方法对矿物粉体表面进行处理,根据 应用的需要有目的地改善粉体表面的物理、化学性 质或物理技术性能,以满足现代新材料、新工艺和 新技术发展的需要。
粉体的表面改性处理直接影响着粉体的使用价值和应 用领域。
常用改性剂 偶联剂 ——最常用的矿物表面改性剂 高级脂肪酸及其盐 ——适用于表面含金属活性粒子的矿物 不饱和有机酸和有机硅,等
改性剂的选择范围较大,具体选用时要综合考虑粉 体的表面性质、改性产品的用途、质量要求、处理 工艺以及表面改性剂的成本等因素。
表面化学改性一般在高速加热混合机或捏合 机、流态化床、研磨机等设备中进行。这是因为 粉体的表面改性处理大多是在粉体物料中加入少 量表面改性剂溶液进行的操作。
常见的方法:包覆改性和高能改性。
包覆改性 包覆也称涂敷,是一种对粉体表面简单处理的方法, 借助于黏附力,利用有机高聚物或树脂等对粉体表面 进行“包覆”,以达到改善粉体表面性能的方法。
影响因素: 颗粒的形状 比表面积 孔隙率 涂覆剂的种类 涂敷处理工艺,等
例:树脂包覆石英砂--冷法和热法
表面改性是为改善矿物材料的使用性能,提高使用
价值并拓展新的应用领域,以满足新材料、新技术
发展、新产品开发的需要。
• 对膨润土进行有机阳离子覆盖处理,可提高其在弱极 性或非极性体系中的膨胀、悬浮、触变等特性;
• 通过表面改性处理,可提高涂料的分散性并改善涂料 的光泽、着色力、遮盖力以及耐热性、保光性、保色 性等。
在包覆处理前对石英砂进行冲洗或擦洗和干燥。
冷法包覆砂是在室温下制备的,先将粉状树脂与砂混匀,然后加 入溶剂(工业酒精、丙酮或糠醛),溶剂加入量根据混砂机能否 封闭而定。封闭者,酒精用量为树脂用量的40-50%;不能封闭 者为70-80%,再继续混碾到挥发完,干燥后经粉碎和筛分即得 产品。但该法使用有机溶剂量大,仅用于少量生产。
超细粉体的应用及其表面改性机理浅析
超细粉体的应用及其超细粉体的应用及其表面表面表面改性机理改性机理改性机理浅析浅析刘涛(上海汇精亚纳米新材料有限公司凤阳汇精纳米新材料科技有限公司)功能材料是高分子材料研究、开发、生产和应用中最活跃的领域之一,在材料科学中具有十分重要的地位。
超细粉体不仅是一种功能材料,而且其为新的功能材料的复合更使之具有广阔的应用前景,在国民经济各个领域都有着广泛的应用,起着极其重要的作用。
一:超细粉体的性质及应用1.超细粉体表面特性超细粉体科学与技术是近年来发展起来的一门新的科学技术,是材料科学的一个重要组成部分。
对于超细粉体统一定义,一般将粒径大于1μm 的粉体称为微米粉体,粒径处于0.1-1μm 之间的粉体称为亚微米粉体,粒径小于100nm 的粉体称为纳米粉体,也有人将粒径小于3μm 的粉体称为超细粉体。
超细粉体通常又分为微米粉体、亚微米粉体及纳米粉体。
超细粉体的粒径与其特性的关系如下表所示。
2.超细粉体表面结构根据晶体的空间结构,可以分为四种类型紧密堆积结构、骨架结构、层状结构和链状结构。
晶体受外力作用破坏时,将沿着晶体构造中键合力最弱的地方断裂。
在断裂面上均产生得不到补偿的断键,即不饱和键。
不同化学组成的超细粉体在新鲜表面具有极不相同的不饱和度。
根据断裂键能的性质,表面不饱和键有强弱之分,断裂面以离子键和共价键为主的是强不饱和键,表面为极性表面断裂面以分子键为主的为弱不饱和键,表面为非极性表面。
超细粉体不同,表面官能团的种类和数量不同,同一超细粉体表面官能团有一定的分布。
3、超细粉体的应用(1)超细粉体在塑胶领域中的应用超细粉体在化工领域中的应用十分广泛,在涂料、塑料、橡胶、造纸、催化、裂解、有机合成、化纤、油墨等领域都有广泛的应用。
在塑料行业,将超细粉体与塑料复合可起到增强增韧的作用,如将纳米碳酸钙表面改性后,对材料的缺口抗冲击强度和双缺口冲击强度的增韧效果十分显著,而且加工性能依然良好。
除此之外,超细粉体的加入,可以改善复合材料的耐老化性,防止塑料光辐射老化,提高塑料制品的使用寿命。
纳米二氧化硅粉体的表面改性研究
纳米二氧化硅粉体的表面改性研究一、本文概述随着纳米科技的飞速发展,纳米二氧化硅粉体因其独特的物理化学性质,在众多领域如橡胶、塑料、涂料、陶瓷、医药和化妆品等中得到了广泛的应用。
然而,纳米二氧化硅粉体的高比表面积和强表面能使得其极易发生团聚,这不仅影响了其性能的发挥,也限制了其在某些领域的应用。
因此,对纳米二氧化硅粉体进行表面改性,提高其分散性和稳定性,成为了当前研究的热点之一。
本文旨在探讨纳米二氧化硅粉体的表面改性研究,通过对表面改性方法、改性剂种类和改性效果等方面的深入研究,为纳米二氧化硅粉体的应用提供理论支持和实践指导。
文章首先介绍了纳米二氧化硅粉体的基本性质和表面改性的重要性,然后综述了目前常用的表面改性方法,包括物理法、化学法和复合法等,并分析了各种方法的优缺点。
接着,文章重点研究了不同改性剂对纳米二氧化硅粉体表面改性的效果,通过对比实验和表征分析,揭示了改性剂种类、用量和改性条件等因素对改性效果的影响。
文章对纳米二氧化硅粉体表面改性的未来发展趋势进行了展望,提出了一些有待进一步研究的问题和方向。
本文的研究结果不仅有助于深入理解纳米二氧化硅粉体的表面改性机制,也为优化改性工艺、提高改性效果提供了有益的参考。
本文的研究也有助于推动纳米二氧化硅粉体在各个领域的应用,促进纳米科技的进一步发展。
二、纳米二氧化硅粉体的基本性质纳米二氧化硅粉体是一种无机纳米材料,因其独特的物理化学性质,在众多领域有着广泛的应用。
其基本性质主要表现在以下几个方面:粒径与比表面积:纳米二氧化硅粉体的粒径通常在1-100纳米之间,这使得其比表面积远大于常规材料。
高比表面积赋予了纳米二氧化硅优异的吸附性能和反应活性。
表面能:由于纳米二氧化硅粉体的高比表面积,其表面能也相对较高。
这使得纳米二氧化硅易于团聚,从而影响了其分散性和应用性能。
表面羟基:纳米二氧化硅粉体表面存在大量的羟基(-OH),这些羟基不仅使纳米二氧化硅具有亲水性,还为其表面改性提供了反应位点。
粉体表面改性剂用于硅酮胶领域中的作用
粉体表面改性剂用于硅酮胶领域中的作用什么叫碳酸钙?碳酸钙是一种无味、无色、无刺激的白色粉末,是用途最广的填料之一。
碳酸钙呈中性,基本上不溶于水,溶于酸。
根据碳酸钙生产方法的不同,可以将碳酸钙分为重质碳酸钙,轻质碳酸钙和晶体碳酸钙。
那么改性碳酸钙用于硅酮胶中起到什么重要的作用呢?什么叫硅酮胶?硅酮胶是一种类似软膏,一旦接触空气中的水分就会固化成一种坚韧的橡胶类固体材料。
硅酮胶的主要分类为:聚氨酯胶、MS胶、107胶那么改性后的碳酸钙应用于硅酮胶领域中起到怎样的重要作用呢?下面让我们一起来看看澳达粉体表面改性剂。
澳达粉体表面改性剂AD8058技术指标外观:淡黄透明液体;粘度:13±2mPa.S(25℃);PH值:7-8;比重:1.113±0.02g/ml;溶解性:与水以任意比例混溶粉体表面改性剂产品特点1、亲油亲水行业:本品是较低分子量的聚合物,集助磨、降粘、流动、分散、防沉降、增加相容性、光泽度等功能于一体,每个分子有多个双亲基团,部分基团朝无机粉体表面,另一部分朝油性溶液,通过分子间力或氢键与油性溶液产生缔合,耐高温、高压、性能稳定。
2、降低粉体吸油量,使粉体具有亲水亲油特性,与环氧树脂体系、不饱和树脂等体系相容性更好,从而达到工艺生产中低粘度的加工要求。
粉体表面改性剂用法及用量1、干法改性:将需要改性的粉料倒入高速搅拌机中,用喷头将助剂原液,高压雾化的方式添加到搅拌机中,继续搅拌10-20分钟,直到包覆均匀。
也可与其他助剂混用,需先加入本品,再加入其它组分。
加入量以粉体固含量计算,加入粉体的0.3%—1%2、湿法生产:取3份研磨后的浆液,第1份做空白样对比,第2份、第3份各添加0.5%、1%的AD8058作为效果对比,混合均匀,浆料测试分散性,烘干检测成品粉的相关数据效果。
根据效果调整精确的添加量,再上机进行测试。
3、大货生产:在反应釜或浆池中添加(具体添加方法,请提前咨询我们技术人员)粉体表面改性剂改性后的碳酸钙应用到硅酮胶领域中会起到的重要作用1.将重钙表面改性,增加与树脂间的相容性,提升硅酮胶的机械性能(拉伸性能、抗断裂性等)2.节省成本,硅酮胶采购部分的重钙和轻钙混合做,可以降低硅酮胶的生产成本的同时,不降低产品性能。
粉体表面改性方法原理、工艺技术及使用的粉体改性剂
粉体表面改性方法原理、工艺技术及使用的粉体改性剂无机粉体的表面改性是根据使用行业所需求粉体具备的性能而进行的对应表面改性,以满足现代新材料、工艺和技术的发展需求,提升原有产品的性能特点,而且还可以提升对应的产能以及生产效率,在粉体加工行业也越来越受到重视,目前无机粉体表面改性的方法主要为6大类。
1、方法一:物理涂覆方法原理:利用高聚物或树脂等对粉体表面进行处理,一般包括冷法和热法两种。
粉体改性剂:高聚物、酚醛树脂、呋喃树脂等。
影响因素:颗粒形状、比表面积、孔隙率、涂敷剂的种类及用量、涂敷处理工艺等。
适用粉体:铸造砂、石英砂等。
2、方法二:化学包覆方法原理:利用有机物分子中的官能团在无机粉体表面的吸附或化学反应对颗粒表面进行包覆,一般包括干法和湿法两种。
除利用表面官能团改性外,该方法还包括利用游离基反应、鳌合反应、溶胶吸附等进行表面包覆改性。
粉体改性剂:如硅烷、钛酸酯、铝酸酯、锆铝酸盐、有机铬等各种偶联剂,高级脂肪酸及其盐,有机铵盐及其他各种类型表面活性剂,磷酸酯,不饱和有机酸,水溶性有机高聚物等。
影响因素:粉体的表面性质,粉体改性剂种类、用量和使用方法,改性工艺,改性设备等。
适用粉体:石英砂、硅微粉、碳酸钙、高岭土、滑石、膨润土、重晶石、硅灰石、云母、硅藻土、水镁石、硫酸钡、白云石、钛白粉、氢氧化铝、氢氧化镁、氧化铝等各类粉体。
3、沉淀反应方法原理:通过无机化合物在颗粒表面的沉淀反应,在颗粒表面形成一层或多层“包膜”,以达到改善粉体表面性质,如光泽、着色力、遮盖力、保色性、耐候性、电、磁、热性和体相性质等。
粉体改性剂:金属氧化物、氢氧化物及其盐类等各类无机化合物。
影响因素:原料的性质(粒度大小和形状、表面官能团),无机表面改性剂的品种,浆液的pH值、浓度,反应温度和反应时间,洗涤、脱水、干燥或焙烧等后续处理工序。
适用粉体:钛白粉、珠光云母、氧化铝等无机颜料。
4、机械力化学方法原理:利用超细粉碎及其他强烈机械作用,有目的的对粉体表面进行激活,在一定程度上改变颗粒表面的晶体结构、溶解性能(表面无定形化)、化学吸附和反应活性(增加表面活性点或活性基团)等。
粉体表面处理技术
MODIFIED PHENOLIC RESIN
25
15
ALIPHATIC SOLVENT
40
60
留油配方
M O D IFIE D PH E N O LIC R E SIN R E A C TIV E H Y D R O C A R B O N R E SIN ISO A LK Y D R E SIN (SO Y A ) M O D IFIE D M A LE IC R E SIN ISO A LK Y D R E SIN (LIN SE E D ) G E LLIN G A G E N T A LIPH A TIC D ISTILLA TE
20
30%
2%
20%
5%
15%
7%
10%
1%
3%
10
沉降时间 min 0 20 40 60 80 100 120
超分散剂对磁浆沉降稳定性的影响
1,200 粘度 ( cp )
1,000
D
C 800
B 600
A
400
0.1
1
10
100
剪切速率 ( s )-1
超分散剂对油墨粘度稳定性的影响
超分散剂的使用方法
(Mn=1500)
起始配比
X
Ma
Ca
δ
(mg/m2磁粉表面) (mg/m2磁粉表面) (%) (nm)
1:2.0
1.89
10.4
18.3 11.8
1:1.3
2.01
11.3
17.8 12.9
1:1.0
1.80
9.81
18.3 11.2
平均
1.90
10.5
18.1 12.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超细粉体材料进行表面改性的作用分析
(上海汇精亚纳米新材料有限公司刘涛)
(凤阳汇精纳米新材料科技有限公司)
高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。
随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。
因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。
但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。
因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。
因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。
研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。
而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。
表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。
汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。
若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。
因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。
上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。