第2章习题 测试信号的描述与分析
机械工程测试技术第二章信号分析基础习题
第二章 信号分析基础(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
7、信号x(t)的均值μx 表示信号的 分量,方差2x σ描述信号的 。
7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。
9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。
10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。
11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2x ψ= ,均方根值为x rms = 。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
(√)p39-402、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( ×)(离散傅立叶变换)4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
(×)5、 随机信号的频域描述为功率谱。
(√)6、 互相关函数是偶实函数。
( × )(三)单项选择题1、下列信号中功率信号是( B )。
A.指数衰减信号B.正弦信号、C.三角脉冲信号D.矩形脉冲信号2、周期信号x(t) = sin(t/3)的周期为(B )。
A. 2π/3B. 6πC. π/3D. 2π3、下列信号中周期函数信号是(C )。
A.指数衰减信号B.随机信号C.余弦信号、D.三角脉冲信号4、设信号的自相关函数为脉冲函数,则自功率谱密度函数必为(D )。
信号分析与处理答案第二版完整版
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
现代测试技术习题解答第二章信号的描述与分析副本
第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===22Δ0Δ0000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x πx x →→<≤+====-x (t )正弦信号xx +ΔxΔtΔtt2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
测试技术与信号处理题库
测试技术与信号处理题库第⼀章习题测试信号的描述与分析⼀、选择题1.描述周期信号的数学⼯具是()。
A.相关函数B.傅⽒级数C. 傅⽒变换D.拉⽒变换2. 傅⽒级数中的各项系数是表⽰各谐波分量的()。
A.相位B.周期C.振幅D.频率3.复杂的信号的周期频谱是()。
A .离散的 B.连续的 C.δ函数 D.sinc 函数4.如果⼀个信号的频谱是离散的。
则该信号的频率成分是()。
A.有限的B.⽆限的C.可能是有限的,也可能是⽆限的5.下列函数表达式中,()是周期信号。
A. 5cos10()0x t ππ ≥?= ? ≤?当t 0当t 0B.()5sin 2010cos10)x t t t t ππ=+ (-∞<<+∞C .()20cos20()at x t e t t π-= -∞<<+∞6.多种信号之和的频谱是()。
A. 离散的B.连续的C.随机性的D.周期性的7.描述⾮周期信号的数学⼯具是()。
A.三⾓函数B.拉⽒变换C.傅⽒变换D.傅⽒级数8.下列信号中,()信号的频谱是连续的。
A.12()sin()sin(3)x t A t B t ω?ω?=+++B.()5sin 303sin50x t t t =+ C.0()sin at x t e t ω-=?9.连续⾮周期信号的频谱是()。
A.离散、周期的B.离散、⾮周期的C.连续⾮周期的D.连续周期的10.时域信号,当持续时间延长时,则频域中的⾼频成分()。
A.不变B.增加C.减少D.变化不定11.将时域信号进⾏时移,则频域信号将会()。
A.扩展B.压缩C.不变D.仅有移相12.已知 ()12sin ,()x t t t ωδ=为单位脉冲函数,则积分()()2x t t dt πδω∞-∞?-的函数值为()。
A .6 B.0 C.12 D.任意值13.如果信号分析设备的通频带⽐磁带记录下的信号频带窄,将磁带记录仪的重放速度(),则也可以满⾜分析要求。
信号与系统 第二章习题 王老师经典解法(青岛大学)小白发布
2-16 已知 f1 (t ) =
画出下列各卷积的波形。 (1) s1 (t ) = f1 (t ) ∗ f 2 (t ) ; (2) s2 (t ) = f1 (t ) ∗ f 2 (t ) ∗ f 2 (t ) ; (3) s3 (t ) = f1 (t ) ∗ f 3 (t ) 。
2-17 求题图 2-17 所示电路在 e(t ) = (1 + 2e
第二章
连续时间系统的时域分析
2-1 电路如题图 2-1 所示,列写求 vo (t ) 的微分 方程。
L1 1H R1 2Ω + e(t) i 1 (t )
R2 1Ω + L2 2H 题图 2-1
C
1F
i 2 (t )
vo(t)
2-2 电路如题图 2-2 所示, 列写求 i2 (t ) 的微分方 程。
题图 2-18
−2 t
− 1)U (t ) , 试利用卷积的性质求题
1 0 -1
e2(t)=tU(t) 1 t 0
e3(t)
t 0 1
2-19 一线性时不变的连续时间系统,其初始状态一定,当输入 e1 (t ) = δ (t ) 时,其全响应
r1 (t ) = −3e − tU (t ) ; 当 输 入 e2 (t ) = U (t ) 时 , 其 全 响 应 r2 (t ) = (1 − 5e − t )U (t ) 。 求 当 输 入 e(t ) = tU (t ) 时的全响应。
2-14 计算卷积 f (t ) = f 1 (t ) ∗ f 2 (t ) ,其中 f1 (t ) = sgn(t − 1) , f 2 (t ) = e 2-15 求下列卷积 (1) f1 (t ) = e
信号分析与处理 杨西侠 第2章习题答案
2-1 画出下列各时间函数的波形图,注意它们的区别1)x 1(t) = sin Ω t ·u(t )2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t )3)x 3(t) = sin Ω t ·u ( t – t 0 )-14)x2(t) = sin[ ( t – t0) ]·u( t – t0)2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图(1)x ( t-2 )(2)x ( t+2 )(3)x (2t)(4)x ( t/2 )(5)x (-t)(6)x (-t-2)(7)x ( -t/2-2 )(8)dx/dt2-3 应用脉冲函数的抽样特性,求下列表达式的函数值(1)⎰+∞∞--)(0t t x δ(t) dt = x(-t 0) (2)⎰+∞∞--)(0t t x δ(t) dt = x(t 0) (3)⎰+∞∞--)(0t t δ u(t -20t ) dt = u(2t )(4)⎰+∞∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)()⎰+∞∞--+t etδ(t+2) dt = e 2-2(6)()⎰+∞∞-+t t sin δ(t-6π) dt =6π+21(7) ()()[]⎰+∞∞-Ω---dt t t t e tj 0δδ=()⎰+∞∞-Ω-dt t etj δ–⎰+∞∞-Ω--dt t t e t j )(0δ= 1-0t j eΩ- = 1 – cos Ωt 0 + jsin Ωt 02-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =⎰+∞∞---ττττd t ue u a )()( =⎰-ta d e 0ττ = )1(1ate a--x 1(t)* x 2(t) =ττδτδτπd t t u t )]1()1([)]()4[cos(---+-+Ω⎰+∞∞-= cos[Ω(t+1)+4π]u(t+1) – cos[Ω(t-1)+4π]u(t-1)(3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) =⎰+∞∞-+-----τττττd t u t u u u )]1()()][2()([当 t <0时,x 1(t)* x 2(t) = 0 当 0<t <1时,x 1(t)* x 2(t) =0td τ⎰ = t 当 1<t <2时,x 1(t)* x 2(t) =21d τ⎰= 1当 2<t<3时,x 1(t)* x 2(t) = 12t d τ-⎰=3-t 当 3<t 时,x 1(t)* x 2(t) = 0(4) x 1(t) = u(t-1) , x 2(t) = sin t · u(t) x 1(t)* x 2(t) =⎰+∞∞---ττττd t u u )1( )( )sin(=⎰⎰∞==01-t 01-t 0| cos - d sin 1)d --u(t sin ττττττ= 1- cos(t-1)2-5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t)在一个周期( 0<t<T )的波形(1) x(t)是偶函数,只含有偶次谐波分量f(t) = f(-t), f(t) = f(t ±T/2)(2) x(t)是偶函数,只含有奇次谐波分量 f(t) = f(-t), f(t) = -f(t ±T/2)(3) x(t)是偶函数,含有偶次和奇次谐波分量f(t) = f(-t)(4) x(t)是奇函数,只含有奇次谐波分量f(t) = -f(-t), f(t) = -f(t±T/2)(5) x(t)是奇函数,只含有偶次谐波分量f(t) = -f(-t), f(t) = f(t±T/2)(6) x(t)是奇函数,含有偶次和奇次谐波分量f(t) = -f(-t)2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量(a)这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。
第二章课后习题
第二章课后习题2、为方便储户,某银行拟开发计算机储蓄系统.储户填写的存款单或取款单由业务员输入系统,如果是存款,系统记录存款人姓名、住址、存款类型、存款日期、利率等信息,并印出存款单给储户;如果是取款,系统计算利息并印出利息清单给储户。
写出问题定义并分析系统的可行性。
答:如果是存款,储户填写存款单,然后交给业务员键入系统,同时系统还要记录存款人姓名、住址(或电话号码)、身份证号码、存款类型、存款日期、利率等信息,完成后由系统打印存款单给储户。
如果是取款,储户填写取款单,然后交给业务员,业务员把取款金额输入系统并要求储户输入密码以确认身份,核对密码正确无误后系统计算利息并印出利息清单给储户。
为了满足储户的需求,该系统需要迅速的对用户的要求做出反馈,要对用户输入的信息作出最快的处理,所以就需要很大的主存容量,以及强大的数据库支持。
由于是所面向的用户是广泛的储蓄用户群,所以需要系统强大的安全性能支持。
可行性研究方法条件、假定和限制建议开发软件运行的最短寿命:5年进行系统方案选择比较的期限:2个月经费来源和使用限制:定制银行硬件、软件、运行环境和开发环境的条件和限制:银行中心拥有大型机以及用来支持的数据库,各个银行网点都有安好的PC机,安装有Windows2000及以上的操作系统。
建议开发软件投入使用的最迟时间:开发完成后试运行1个月.可行性研究方法通过与银行熟练业务员进行深入讨论,制定详细用户调查问卷,真正了解用户以及银行业务员的实际需求,根据业务员提供的信息以及问题定义再综合调查问卷中用户提出的意见进行改进。
最终确定项目需要解决的问题,并确定问题能不能被解决。
决定可行性的主要因素1)项目开发成本2)所需设备置办成本3)技术是否能满足需求4)操作人员的熟练程度5)资源有效性对现有系统的分析1处理流程和数据流程系统流程图存款流程图:取款流程图:数据流图:2工作负荷当前大多数银行所使用的银行储蓄系统在办理业务时手续繁琐,人工业务操作过多,办理一个客户的业务就需耗费较长的时间,其他客户只有等待。
《信号与系统分析基础》第二章部分习题参考答案
第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。
121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。
信号与系统课后答案 第2章 习题解
第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。
(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。
解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。
机械工程测试技术课本习题及参考答案
第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。
根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。
不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:001()sin()(1,2,3,)n n n x t a A n n ωϕ∞==++=∑2021()T T a x t dt T-=⎰n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt Tω-=⎰ )tan n n n b a ϕ=式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。
n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。
周期信号通过傅里叶级数复指数函数展开式可表示为:0()(0,1,2,)jn tnn x t C e n ω∞=-∞==±±∑0221()T jn t n T C x t e dt Tω--=⎰n C 是一个复数,可表示为:n j n nR nI n C C jC C e ϕ=+=n C = arctan n nI nR C ϕ=n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。
▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。
但可间接进行傅里叶变换。
参见书中第25页“正弦和余弦信号的频谱”。
【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得22()()j tA a j X x t edt A a j a ωωωωω∞--===++⎰由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式)参考答案:周期三角波为: (2)20()(2)02A A T tT t x t A A T tt T +-≤<⎧=⎨-≤≤⎩则0221()T jn t n T C x t e dt T ω--=⎰积分得 02222204(1cos )(1cos )2n A T AC n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为:00(21)222()(0,1,2)(21)jn tj k tnn n A x t C ee k k ωωπ∞∞+=-∞=-∞===±±+∑∑【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。
数字信号处理(第三版)第2章习题答案
第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析
第二章随机信号分析基础习题
2.6
解:由图可得下表 ξ1 ξ2 ξ3
X(2) 3 X(6) 5
所以:
4 7
6 2
1 14 E[ X (6)] (5 7 2) ; 3 3 1 55 E[ X (2) X (6)] (3 5 4 7 6 2) ; 3 3
出现一个典型的错误:
1 13 E[ X (2)] (3 4 6) ; 3 3
2
0
cos( ot )d
由定义先求出均方值,就可以得到方差:
E[ X (t )] E[a cos (0t )] 2 1 cos(2 0 t 2 ) E[a ] 2 2 2 a a 2 cos(2 0t 2 )d 22 2 0 a 2
2.12 证明:
dX (t ) E[ X (t ) ] dt
X (t t ) X (t ) E[ X (t )lim ] t t 0
E[ X (t ) X (t t )] E[ X (t ) X (t )] lim t t 0
lim
t 0
RX (t , t t ) RX (t , t ) t
3、随机过程的数字特征 数学期望
m X (t ) E[ X (t )] x p X ( x; t )dx
2 X 2
2 ( t ) E [ X ( t )] x 均方值 p X ( x ; t )dx
2 2 ( t ) D [ X ( t )] E [{ X ( t ) m ( t )} ] 方差 X
第二章 随机信号概论
本章要点: 1、随机过程的概念 可理解为依赖于时间t的一族随机变量或 随机试验得到的一族时间t的函数。 2、随机过程的概率分布
现代测试技术习题解答 第二章 信号的描述与分析 - 副本(2020年7月整理).pdf
没有偶次谐波。其频谱图如下图所示。
5
学海无涯
|cn| 2A/π 2A/π
2A/3π 2A/5π -5ω0 -3ω0 -ω0
2A/3π 2A/5π ω0 3ω0 5ω0 ω
φn
π/2 ω0 3ω0
-5ω0 -3ω0 -ω0 -π/2
幅频图
周期方波复指数函数形式频谱图
相频图
5ω0 ω
2-5 求指数函数 x(t) = Ae−at (a 0,t 0) 的频谱。
2-12 已知信号的自相关函数为 Acos,请确定该信号的均方值x2 和均方根值 xrms。
解:Rx()=Acos
x2= Rx(0)=A
xrms =
2 x
=
A
2-13 已知某信号的自相关函数,求均方值 、和均方根值 xrms 。
2-14 已知某信号的自相关函数,求信号的均值 μx 、均方根值 、功率谱。
1
学海无涯
2-1 求图示 2.36 所示锯齿波信号的傅里叶级数展开。 2
学海无涯
2-4 周期性三角波信号如图 2.37 所示,求信号的直流分量、基波有效值、信号有效值及信号 的平均功率。
3
学海无涯
2-1 求图示 2.36 所示锯齿波信号的傅里叶级数展开。
补充题 2-1-2 求周期方波(见图 1-4)的傅里叶级数(复指数函数形式),划出|cn|–ω 和 φn–ω 4
学海无涯
第二章 信号的描述与分析
补充题
2-1-1
求正弦信号
x(t)
=
x0
sin(ωt
+
φ)
的均值
μx
、均方值
ψ
2 x
和概率密度函数
p(x)。 解答:
(完整版)测试技术部分课后习题参考答案
第1章 测试技术基础知识1.4 常用的测量结果的表达方式有哪3种?对某量进行了8次测量,测得值分别为:82.40、82.43、82.50、82.48、82.45、82.38、82.42、82.46。
试用3种表达方式表示其测量结果。
解:常用的测量结果的表达方式有基于极限误差的表达方式、基于t 分布的表达方式和基于不确定度的表达方式等3种1)基于极限误差的表达方式可以表示为0max x x δ=±均值为8118i x x ==∑82.44因为最大测量值为82.50,最小测量值为82.38,所以本次测量的最大误差为0.06。
极限误差max δ取为最大误差的两倍,所以082.4420.0682.440.12x =±⨯=±2)基于t 分布的表达方式可以表示为x t x x ∧±=σβ0标准偏差为s ==0.04样本平均值x 的标准偏差的无偏估计值为ˆx σ==0.014 自由度817ν=-=,置信概率0.95β=,查表得t 分布值 2.365t β=,所以082.44 2.3650.01482.440.033x =±⨯=±3)基于不确定度的表达方式可以表示为0x x x x σ∧=±=±所以082.440.014x =±解题思路:1)给出公式;2)分别计算公式里面的各分项的值;3)将值代入公式,算出结果。
第2章 信号的描述与分析2.2 一个周期信号的傅立叶级数展开为12ππ120ππ()4(cos sin )104304n n n n n y t t t ∞==++∑(t 的单位是秒) 求:1)基频0ω;2)信号的周期;3)信号的均值;4)将傅立叶级数表示成只含有正弦项的形式。
解:基波分量为12ππ120ππ()|cos sin 104304n y t t t ==+ 所以:1)基频0π(/)4rad s ω=2)信号的周期02π8()T s ω==3)信号的均值42a = 4)已知 2π120π,1030n n n n a b ==,所以4.0050n A n π=== 120π30arctan arctan arctan 202π10n n nn bn a ϕ=-=-=-所以有0011()cos()4 4.0050cos(arctan 20)24n n n n a n y t A n t n t πωϕπ∞∞===++=+-∑∑2.3某振荡器的位移以100Hz 的频率在2至5mm 之间变化。
测试技术章节习题(附答案)
各章节习题(后附答案)第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而b ,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=Tt T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x atω的频谱。
第二章测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin)(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141nn n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
3、 为了获得测试信号的频谱,常用的信号分析方法有 、和 。
信号与系统王明泉第二章习题解答
题2、两线性时不变系统分别为S1和S2,初始状态均为零。将激励信号 先通过S1再通过S2,得到响应 ;将激励信号 先通过S2再通过S1,得到响应 。则 与 的关系为_________________。
答案:
分析:该题是考查级联系统的交换率:两级联系统交换保持不变
特征方程为 ,
特征根为 ,
所以
代入初始条件 , ,解得 ,
所以,
(2)求零状态响应
(3)
2.6 已知某线性时不变系统的方程式为
试求系统的冲激响应h(t)。
解:方程右端的冲激函数项最高阶数为 ,设
,
则有: ,将其代入原系方程,得
2.7若描述系统的微分方程为
试求系统的阶跃响应。
解:由题可知:
阶跃响应:
2.8已知某线性时不变(LTI)系统如题图2.8所示。已知图中 , , ,试求该系统的冲激响应 。
(7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。;
2.2 本章重点
(1)系统(电子、机械)数学模型(微分方程)的建立;
(2)用时域经典法求系统的响应;
(3)系统的单位冲激响应及其求解;
(4)卷积的定义、性质及运算,特别是 函数形式与其它信号的卷积;
(5)利用零输入线性与零状态线性,求解系统的响应。
2.4.4系统的零输入响应与零状态响应
(1)零输入响应
系统的零输入响应是当系统没有外加激励信号时的响应。
零输入响应 是满足
及起始状态 的解,它是齐次解的一部分
由于没有外界激励作用,因而系统的状态不会发生跳变, ,所以 中的常数 可由 确定。
(2)零状态响应
现代测试技术习题解答--第二章--信号的描述与分析---副本
现代测试技术习题解答--第二章--信号的描述与分析---副本第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值xμ、均方值2xψ和概率密度函数p (x )。
解答: (1)00011lim()d sin()d 0TT xT μx t t x ωt φt TT →∞==+=⎰⎰,式中02πTω=—正弦信号周期 (2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内12ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T t P x x t x x T T T →∞<≤+===Δ0Δ000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x →→<≤+====正弦信号2-8 求余弦信号0()sin x t x ωt 的绝对均值xμ和均方根值rmsx 。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图2.37所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。
图1-4 周期方波0 tx (T 02-T2T -……A -T 0解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)000000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为 001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
大学信号测试习题
第1章信号及其表述学习目标1.了解信号的分类;2.掌握对周期性信号及非周期信号的描述;3.掌握傅里叶变换的主要性质;4.掌握典型信号的概率密度函数及其频谱。
学习难点信号的时域描述和频域描述的物理意义及时域、频域描述的互相转换。
单位脉冲函数的性质及其物理意义。
内容概述本章从不同角度说明信号的分类及其定义。
介绍周期信号和非周期信号的频域描述及其频域特征,随机信号的概念和关于随机信号幅值的若干统计参数,时域—频域转换的数学工具即傅里叶变换的概念和主要性质,若干典型函数的频谱。
例1.1: 求周期方波的频谱,并作出频谱图。
解: (1)写出周期方波的数学表达式。
x(t)在一个周期内可表示为(2)利用傅立叶级数的三角函数展开,计算其幅、相频特性。
因该函数x(t)是奇函数,奇函数在对称区间积分值为0,所以,因此,有(3)绘制幅、相频图。
根据上式,幅频谱和相频谱分别如图b 和 c 所示。
幅频谱只包含基波和奇次谐波的频率分量,且谐波幅值以1/n 的规律收敛;相频谱中各次谐波的初相位)的频谱,并作频谱图。
利用欧拉公式,代入上式后这里定义森克函数sinc(x)=sin(x)/x ,该函数是以 为周期,并随x 增加而1.1 n ω图。
解:(1)方波的时域描述为:(2) 从而:的绝对均值和均方根值。
1.2 .求正弦信号解(1)(2)1.3.求符号函数和单位阶跃函数的频谱。
解:(1)因为不满足绝对可积条件,因此,可以把符合函数看作为双边指数衰减函数:其傅里叶变换为:(2)阶跃函数:1.4. 求被截断的余弦函数的傅里叶变换。
解:(1)被截断的余弦函数可以看成为:余弦函数与矩形窗的点积,即:(2)根据卷积定理,其傅里叶变换为:5.设有一时间函数f(t)及其频谱如图所示。
现乘以余弦函数cosω0t(ω0>ωm)。
在这个关系中函数f(t)称为调制信号,余弦函数cosω0t称为载波。
试求调幅信号的f(t)cosω0t傅氏变换,并绘制其频谱示意图。
信号与系统第二章习题
方法一
1. 完全响应
该完全响应是方程
d2 rt
dt2
3
dr d
t
t
2r
t
2δ
t
6ut
且满足r0 2, r0 0的解
方程(1)的特征方程为
特征根为
α 2 3α 2 0
α1 1,α2 2
(1)
方程(1)的齐次解为
r t A1 et A2 e2t
因为方程(1)在t>0时,可写为
1
1
1 t1 eτ 1 dτ 1 1 et u t 1
注意:1 et1 ut 1 et1 ut 1
X
例2-5
对图(a)所示的复合系统由三个子系统构成,已知各子系 统的冲激响应如图(b)所示。 (1)求复合系统的冲激响应h(t) ,画出它的波形;
(2)用积分器、加法器和延时器构成子系统 ha t和hb t
2
5
dr d
t
t
6r
t
3
de d
t
t
2et
试 求 其 冲 激 响 应 h(t )。
冲激响应是系统对单位冲激信号激励时的零状态响应。 在系统分析中,它起着重要的作用。下面我们用两种方 法来求解本例。
方法:奇异函数项相平衡法
奇异函数项相平衡法
首先求方程的特征根,得
α1 2,α2 3
因为微分方程左边的微分阶次高于右边的微分阶次,
A1 A2 t 3A1 2A2 t 3 t 2 t
则得
A1 A2 3 3A1 2A2 2
解得
A1 A2
4 7
代入(1)得
ht 4e2t 7e3t ut
例2-3
已知线性时不变系统的一对激励和响应波形如下图所示,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11. 1;等强度;白噪声
12. 实频;虚频
13.能量有限;能量有限;功率有限
14.
15.
16. ;把原函数图象平移至 位置处
17. ;脉冲采样
18.
19.Biblioteka 20.三、计算题1. 解: 函数图形见图1-5所示。
图1-5
2.解:见图1-6所示。图(a)为调幅信号波形图,图(b)为调幅信号频谱图。当 时,两边图形将在中间位置处发生混叠,导致失真。
3. 均方根值;均方值
4.傅氏三角级数中的各项系数( 等 )傅氏复指数级数中的各项系数( )。
5.0;+∞;–∞;+∞
6. —余弦分量的幅值; —正弦分量的幅值; —直流分量; -- n次谐波分量的幅值; --n次谐波分量的相位角; --n次谐波分量的角频率
7.衰减
8.A;A/2;更慢;工作频带
9.
解:由于
并且
于是可得
利用傅立叶变换的线形性质可得
例13.已知 ,试求f(t)。
解:利用傅立叶变换的对称性可求得f(t)。将题中给定的F(ω)改写为f(t),即
根据定义
于是
将上式中的(-ω)换成t可得
所以有
例14.已知 ,试求其频谱F(ω)
解:因为
利用频移性质可得
于是
例15.求下图(a)所示三角脉冲信号的频谱。三角脉冲的分段函数表示为
解:已知幅值X=2,频率 ,而在t=0时,x=-1,则将上述参数代入一般表达式
得
所以
例5.设有一组合复杂信号,由频率分别为724Hz,44 Hz,500 Hz,600 Hz的同相正弦波叠加而成,求该信号的周期。
解:合成信号的频率是各组成信号频率的最大公约数则:
而
所以该信号的周期为0.25s。
例6.利用 函数的抽样性质,求下列表示式的函数值:
A.扩展 B.压缩 C.不变 D.仅有移相
12.已知 为单位脉冲函数,则积分 的函数值为( )。
A.6 B.0 C.12 D.任意值
13.如果信号分析设备的通频带比磁带记录下的信号频带窄,将磁带记录仪的重放速度( ),则也可以满足分析要求。
A.放快 B.放慢 C.反复多放几次
14.如果 ,根据傅氏变换的( )性质,则有 。
图1-3
4.求图1-4所示三角波调幅信号的频谱。
图1-4
参考答案
一、选择题
1.B 2.C 3.A 4.C 5.B 6.C 7.C 8.C 9.C 10.C 11.D 12.C 13.B 14.A 15.B 16.C 17.C 18.B 19.C 20.B
二、填空题
1.确定性信号;随机信号
2.周期信号;非周期信号;离散的;连续的
解:先把信号展开为傅立叶级数三角形式为
显然,信号的直流分量为
基波分量有效值为
信号的有效值为
信号的平均功率为
例11.周期矩形脉冲信号f(t)的波形如下图所示,并且已知τ=0.5μs,T=1μs,A=1V,则问;该信号频谱中的谱线间隔Δf为多少?信号带宽为多少?
解:(1)谱线间隔::
或
(2)信号带宽
或
例12.求指数衰减振荡信号 的频谱。
解:方法一、 按傅氏变换的定义求解。因为x(t)是偶函数,傅氏变换为:
x(t)的幅值频谱如图(b)所示。
方法二、 利用卷积定理求解。
三角脉冲x(t)可以看成两个等宽矩形脉冲 和 的卷积。如下图所示。
因为
根据时域两函数的卷积对应频域函数的乘积:
所以
A.时移 B.频移 C.相似 D.对称
15.瞬变信号x(t),其频谱X(f),则∣X(f)∣²表示( )。
A.信号的一个频率分量的能量
B.信号沿频率轴的能量分布密度
C.信号的瞬变功率
16.不能用确定函数关系描述的信号是( )。
A.复杂的周期信号 B.瞬变信号 C.随机信号
17.两个函数 ,把运算式 称为这两个函数的( )。
(d) 时,(即 ,同时 ),由图(h)可知积分区间为(t-2,1)。得
(e) 时, 与 无重叠部分,见图(i)所示,这时
归纳以上结果得
卷积结果见图(j)所示。
例9.求下图所示锯齿波信号的傅立叶级数展开式。
解:锯齿波信号表达式为(一周期内)
由公式得
所以
式中
例10.周期性三角波信号如下图所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
(2)是周期信号, ;
(3)是非周期信号,因为周期函数是定义在 区间上的,而 是单边余弦信号,即t>0时为余弦函数,t<0无定义。属非周期信号;
(4)是非周期信号,因为两分量的频率比为 ,非有理数,两分量找不到共同的重复周期。但是该类信号仍具有离散频谱的特点(在频域中,该信号在 和 处分别有两条仆线)故称为准周期信号。
4.如果一个信号的频谱是离散的。则该信号的频率成分是( )。
A.有限的 B.无限的 C.可能是有限的,也可能是无限的
5.下列函数表达式中,( )是周期信号。
A.
B.
C.
6.多种信号之和的频谱是( )。
A. 离散的 B.连续的 C.随机性的 D.周期性的
7.描述非周期信号的数学工具是( )。
A.三角函数 B.拉氏变换 C.傅氏变换 D.傅氏级数
17.单位脉冲函数 与在 点连续的模拟信号 的下列积分: ___。这一性质称为___。
18.已知傅氏变换对 ,根据频移性质可知 的傅氏变换为___。
19.已知傅氏变换对:
时,则 =___。
20.非周期信号,时域为x(t),频域为 ,它们之间的傅氏变换与逆变换关系式分别是: =___,x(t)=___。
8.下列信号中,( )信号的频谱是连续的。
A.
B.
C.
9.连续非周期信号的频谱是( )。
A.离散、周期的 B.离散、非周期的 C.连续非周期的 D.连续周期的
10.时域信号,当持续时间延长时,则频域中的高频成分( )。
A.不变 B.增加 C.减少 D.变化不定
11.将时域信号进行时移,则频域信号将会( )。
例2.粗略绘出下列各函数的波形(注意阶跃信号特性)
(1) (2)
(3)
解:(1) 是由阶跃信号 经反折得 ,然后延时得 ,其图形如下(a)所示。
(2)因为 。其波形如下图(b)所示。(这里应注意 )
(3) 是两个阶跃函数的叠加,在 时相互抵消,结果只剩下了一个窗函数。见下图(c)所示。
例3.粗略绘出下列各函数的波形(注意它们的区别)
以下进行分段计算:
(a)当 时, 的位置如图(e)所示。这时 与没有重合部分。所以
(b) 时,的位置如图(f)所示。这时 与 的图形重叠区间为 至t。把它作为卷积积分的上、下限,得:
(c) 时(即 ,并且 时),则的位置如图(g)所示,这时的图形重叠区间为( ,1),把它作为卷积积分的上、下限,得:
第2章习题 测试信号的描述与分析
一、选择题
1.描述周期信号的数学工具是( )。
A.相关函数 B.傅氏级数 C. 傅氏变换 D.拉氏变换
2. 傅氏级数中的各项系数是表示各谐波分量的( )。
A.相位 B.周期 C.振幅 D.频率
3.复杂的信号的周期频谱是( )。
A.离散的 B.连续的 C.δ函数 D.sinc函数
11.单位脉冲函数 的频谱为___,它在所有频段上都是___,这种信号又称___。
12.余弦函数只有___谱图,正弦函数只有___谱图。
13.因为 为有限值时,称 为___信号。因此,瞬变信号属于___,而周期信号则属于___。
14.计算积分值: ___。
15.两个时间函数 的卷积定义式是___。
16.连续信号x(t)与单位脉冲函数 进行卷积其结果是: ___。其几何意义是:___。
8.周期方波的傅氏级数: 周期三角波的傅氏级数: ,它们的直流分量分别是___和___。信号的收敛速度上,方波信号比三角波信号___。达到同样的测试精度要求时,方波信号比三角波信号对测试装置的要求有更宽的___。
9.窗函数ω(t)的频谱是 ,则延时后的窗函数 的频谱应是___。
10.信号当时间尺度在压缩时,则其频带___其幅值___。例如将磁带记录仪___即是例证。
A.自相关函数 B.互相关函数 C.卷积
18.时域信号的时间尺度压缩时,其频谱的变化为( )。
A.频带变窄、幅值增高 B.频带变宽、幅值压低
C.频带变窄、幅值压低 D.频带变宽、幅值增高
19.信号 ,则该信号是( ).
A.周期信号 B.随机信号 C. 瞬变信号
20.数字信号的特性是( )。
A.时间上离散、幅值上连续 B.时间、幅值上均离散
三、计算题
1.三角波脉冲信号如图1-1所示,其函数及频谱表达式为
图1-1
求:当 时,求 的表达式。
2.一时间函数f(t)及其频谱函数F(ω)如图1-2所示已知函数 ,示意画出x(t)和X(ω)的函数图形。当 时,X(ω)的图形会出现什么情况?( 为f(t)中的最高频率分量的角频率)
图1-2
3.图1-3所示信号a(t)及其频谱A(f)。试求函数 的傅氏变换F(f)并画出其图形。
(1) (2)
(3) (4)
(5) (6)
解: 函数是一类应用广泛的重要函数。在卷积运算、傅立叶变换及测试系统分析中,利用它可以简化许多重要结论的导出。本例题的目的在于熟悉并正确应用 函数的性质。
(1)由于
则
(2)
这里应注意:
(3)
(4)
(5)
这里应注意信号 的含义,由于 表示t=0时有一脉冲,而在 时为零。所以 就表示当t=±2时各有一脉冲,即 。
例8.已知 和 的波形图如下图(a),(b)所示,试计算 与 的卷积积分。