midas软件初级使用教程
midas 用户手册 三册

midas 用户手册三册MIDAS(MId-Span Design and Analysis System)是一款用于桥梁设计、分析和评估的软件系统。
以下是MIDAS用户手册的简要介绍:第一册:基础与进阶指南1. 概述:介绍MIDAS软件系统的基本概念、特点和应用领域。
2. 基础知识:详细介绍MIDAS软件系统的界面、菜单、工具栏和常用命令等。
3. 建模方法:介绍MIDAS软件系统的建模方法,包括梁、桩、土等元素的建模和参数设置。
4. 加载与边界条件:介绍如何在MIDAS软件系统中施加各种加载和边界条件。
5. 分析与评估:介绍如何进行各种分析和评估,包括静力分析、动力分析、稳定性分析等。
6. 结果查看与后处理:介绍如何在MIDAS软件系统中查看和后处理结果,包括应力、应变、位移等。
第二册:高级功能与插件指南1. 高级建模功能:介绍MIDAS软件系统的高级建模功能,包括复杂结构建模、节点连接方式等。
2. 插件介绍:详细介绍MIDAS软件系统的各种插件,包括插件的使用方法、参数设置和注意事项等。
3. 特殊加载与边界条件:介绍如何在MIDAS软件系统中施加特殊加载和边界条件,包括地震加载、流体加载等。
4. 高级分析与评估:介绍如何进行高级分析和评估,包括稳定性分析、疲劳分析等。
5. 结果验证与校准:介绍如何在MIDAS软件系统中验证和校准结果,包括与其他软件的对比、实验数据对比等。
第三册:案例与实践指南1. 案例介绍:介绍MIDAS软件系统在实际工程中的应用案例,包括各种类型的桥梁结构、工业设施等。
2. 实践经验分享:分享MIDAS软件系统在实际应用中的经验,包括参数设置、建模技巧、结果解读等。
3. 常见问题与解决方案:总结MIDAS软件系统在实际应用中常见的问题,并提供相应的解决方案。
4. 最佳实践与优化建议:介绍如何优化MIDAS软件系统的性能和结果精度,包括参数优化、建模优化等。
希望这些简要介绍能对您有所帮助,如果需要更多关于MIDAS用户手册的详细信息,建议您查阅相关的官方文档或联系专业技术人员。
MIDAS迈达斯入门教程

MIDAS迈达斯入门教程MIDAS(Mechanical Integrated Design and Analysis System,机械集成设计和分析系统)是一种基于计算机辅助工程技术的产品设计和工程分析的软件平台。
它是一种综合性的分析软件,可以用于进行结构、流体和多物理场的分析和仿真。
MIDAS软件的应用范围广泛,涉及到建筑、土木、机械、汽车、电子等领域。
首先,打开MIDAS软件后,您会看到一个简洁明了的用户界面。
主要界面包括了菜单栏、工具栏、工程树、工作区和结果展示等区域。
菜单栏和工具栏提供了各种功能和命令的选项,工程树用于组织和管理工程的各个部分,工作区是您进行建模和分析的主要区域,结果展示区用于显示分析结果。
在开始建模之前,首先需要创建一个新的工程文件。
您可以通过菜单栏中的“文件”选项来创建新的工程文件。
然后,选择合适的建模单元(Unit)和坐标系(Coordinate System)。
建模单元用于定义建模的单位制,坐标系用于定义建模的基准坐标。
建模完成后,接下来就可以进行分析了。
MIDAS提供了各种分析功能和工具,包括静力分析、动力分析、热力学分析、流体分析等。
您可以通过菜单栏中的“分析”选项来选择适合您的分析类型,并设置相应的分析参数和条件。
在进行分析之前,还需要定义材料和边界条件。
通过菜单栏中的“材料”选项,您可以定义材料的力学性能和热力学性质。
通过菜单栏中的“边界条件”选项,您可以定义约束和载荷等边界条件。
完成分析设置后,即可开始进行分析。
MIDAS将根据您的分析参数和条件,自动进行求解和计算。
在分析完成后,您可以通过结果展示区查看分析结果,包括变形、应力、应变、位移等。
您还可以通过菜单栏中的“报告”选项生成分析报告,以便后续的工程设计和决策。
除了上述基本功能外,MIDAS还提供了许多高级功能和扩展模块。
例如,您可以通过MIDAS Civil模块进行土木工程分析和设计,通过MIDAS FEA模块进行有限元分析,通过MIDAS GTS模块进行地质和地下工程分析等。
迈达斯入门教程

第一讲 简支梁模型的计算1.1 工程概况20米跨径的简支梁,横截面如图1-1所示。
图1-1 横截面1.2 迈达斯建模计算的一般步骤 后处理理处前第五步:定义荷载工况第八步:查看结果第七步:分析计算第六步:输入荷载第四步:定义边界条件第三步:定义材料和截面第二步:建立单元第一步:建立结点1.3 具体建模步骤第01步:新建一个文件夹,命名为Model01,用于存储工程文件。
这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documents and Settings\Administrator\桌面\迈达斯\模型01。
第02步:启动Midas Civil.exe ,程序界面如图1-2所示。
图1-2 程序界面第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。
图1-3 新建工程第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb ”。
如图1-4所示。
图1-4 保存工程第05步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel文件,命名为“结点坐标”。
在excel里面输入结点的x,y,z 坐标值。
如图1-5所示。
图1-5 结点数据第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。
如图1-6所示。
图1-6 建立节点第07步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel 文件,命名为“单元”。
在excel 里面输入单元结点号。
如图1-6所示。
图1-6 单元节点第08步:选择树形菜单表格按钮“表格->结构表格->单元”,将excel里面的数据拷贝到单元表格的“节点1、节点2”列,并“ctrl+s”保存。
MIDAS基础教程

MIDAS基础教程MIDAS(Mixed Data Sampling)是一种基于混合数据采样理论的统计方法,用于分析经济和金融数据的高频和低频关系。
MIDAS方法通过将高频数据转化为低频数据,以便更好地利用高频数据的信息,从而提高低频数据的预测能力和统计效率。
本篇文章将介绍MIDAS方法的基本原理和如何进行MIDAS模型的估计和预测。
首先,我们来了解MIDAS方法的基本原理。
在金融和经济领域,我们通常会面对两种数据频率:高频数据和低频数据。
其中,高频数据通常是指每日、每小时、每分钟或每秒钟的频率,低频数据则是以更长时间间隔为单位的数据,例如每月或每季度的频率。
MIDAS方法的核心思想是将高频数据的信息转化为低频数据的信息,从而提高低频数据的预测能力。
具体来说,MIDAS方法通过建立一个高频数据与低频数据的关系模型来实现。
这个关系模型通常被称为MIDAS模型。
MIDAS模型的一般形式可以表示为:Y(t)=β0+∑(j=1,J)βjX(t-j/k)+ε(t)其中,Y(t)表示低频数据的值,X(t-j/k)表示高频数据的值,β0是常数项,βj是系数,ε(t)是误差项。
J是MIDAS模型的滞后阶数,k是高频数据与低频数据之间的转换比例。
接下来,我们来介绍如何进行MIDAS模型的估计和预测。
通常,MIDAS模型的估计可以通过两个步骤来完成:参数估计和转换比例的选择。
首先,我们需要对参数进行估计。
参数估计可以使用最小二乘法来进行,通过最小化残差平方和来求解模型的系数。
在进行参数估计之前,我们需要进行高频数据与低频数据之间的转换。
通常,有两种常用的转换方式:均值和方差转换。
均值转换可以用于将高频数据转化为低频数据的平均值,方差转换则可以用于将高频数据转化为低频数据的方差。
其次,我们需要选择合适的转换比例。
转换比例k是一个关键参数,它决定了高频数据与低频数据之间的转换方式。
选择合适的转换比例可以提高模型的预测能力和统计效率。
迈达斯教程及使用手册讲解

01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数图3 时间依存材料特性连接图4 时间依存材料特性值修改定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
Midas操作步骤

Midas软件建模操作步骤及所遇问题的解决办法姓名:学号:班级:目录一、建模步骤 (3)1. 建立结点 (3)2. 建立单元 (3)3. 在Midas导入结点及单元坐标 (4)4. 绘制各个截面 (4)5. 边界条件 (5)6. 建立材料和界面特性 (5)7. 建立荷载工况 (5)8. 添加钢束 (6)9. 添加施工阶段 (8)10. 结果输出 (9)二、操作过程中遇到的问题 (9)1. 变截面的设计 (9)2. 单位的调整 (10)3. 荷载组的分配 (10)4. 弯矩图与实际不相符的情况 (10)一、建模步骤1.建立结点新建Excel文件,命名为“结点”,在“结点”的列中输入间距,利用第二列的Excel的加法计算得出各个结点坐标,其中第一点坐标为坐标原点(0,0,0)。
如图所示。
2.建立单元新建Excel文件,命名为“单元”,在“单元”的列中输入i与j,其中第一点的i=1、j=2,利用Excel的下拉功能得到其他的单元节点号。
如图所示。
3.在Midas导入结点及单元坐标新建Midas文件,在界面中【树形菜单】→【结构表格】→【结点】或【单元】,将Excel中的结点及单元坐标分别复制、粘贴得到数据,在操作过程中还应熟练应用合并重复结点以及分割单元。
部分数据如下。
4.绘制各个截面(1)在CAD中绘制出各个截面的尺寸及形状,将绘制好的图形保存为dxf文件,在Midas,选择【工具】→【截面特性值计算器】→【file】→【Import】→【AutoCad dxf】导入在CAD中绘制好的dxf文件,【Generate】→【Plane】→(命名如1#)(选择图形)→【apply】→【Calculate property】→(命名)→【Midas section file】→【apply】。
按这种做法以此做其他的图形。
(2)将计算好的截面利用一下操作导入Midas。
【模型】→【工具】→【材料与界面特性】→【截面】→【添加】→【数值】→【输入名称】→【任意截面】→【从spc中导入】→【修改偏心】。
midas Civil 基本操作

midas Civil 基本操作——by 石头歌一、材料定义三种定义材料的方法:1、导入数据库中的材料性能参数2、用户自定义【材料和截面】对话框——【添加】——【设计类型】选择【用户定义】,输入【名称】和【用户定义】中的材料性能参数,【确认】。
3、导入其它模型中的材料性能参数【材料和截面】对话框——【导入】,打开其它模型,从【选择列表】中选择不导入的材料,输回到【材料列表】,【编号类型】选择【新号码】以避免覆盖已存在的材料,点击【确认】。
二、时间依存材料定义时间依存材料是英文说法的直译,在国内就是指混凝土的收缩徐变特性,在其他国家还包含混凝土抗压强度随时间变化的特性。
1、徐变和收缩在这里,先介绍混凝土收缩徐变特性的定义方法。
三个步骤:(1)定义收缩徐变函数【特性】——【时间依存性材料】——【徐变/收缩】——【时间依存性材料(徐变和收缩)】对话框——【添加】,输入【名称】,选择【设计规范】,例如选择【China (JTG D62-2004)】,输入各参数,【确认】。
注意:【构件理论厚度】可暂时输入一个正数值,以后在利用软件的自动计算功能进行修改;【水泥种类系数】规范中只给出一个值,一般的硅酸盐水泥或快硬水泥取 5 。
国外相关论文对该系数的解释:与水泥种类有关的系数,对于慢硬水泥(SL)取4;对于普通水泥(N)和快硬水泥(R)取5;对于快硬高强水泥(RS)取8。
用户也可以自定义混凝土的收缩徐变函数:【特性】——【时间依存性材料】——【用户定义】。
用户自定义混凝土收缩徐变函数很少使用,所以不再介绍。
(2)将定义好的收缩徐变函数与材料相连接【特性】——【时间依存性材料】——【材料连接】,选择【徐变和收缩】名称,【选择指定的材料】,点击【添加/编辑】。
(3)修改单元依存材料特性【特性】——【时间依存性材料】——【修改特性】,选中要修改的单元,选择要修改的参数,例如,选择【构件的理论厚度】,采用【自动计算】,选择【中国标准】,输入参数【a】,【适用】。
midas_GTS_基础入门操作指南汇总

操作指南Modeling, Integrated Design & Analysis Softwareㅡ目录第一部分. 操作指南1. 关于GTS 51.1 概要 / 5 1.2 程序安装 / 6 1.2.1 系统配置 / 6 1.2.2 安装顺序 / 7 1.2.3 安装驱动程序 / 9 1.2.3 登记密钥 / 112. 开始之前 22.1 了解GTS / 12 2.1.1 GTS的操作流程 / 12 2.1.2 GTS的建模方式 / 16 2.1.3 分析体系 / 33 2.2 界面的构成 / 37 2.2.1 工作窗口 / 39 2.2.2 工作目录树 / 41 2.2.3 特性窗口 / 44 2.2.4 输出窗口 / 47 2.2.5 主菜单 / 50 2.2.6 工具条和图标菜单 / 51 2.2.7 关联菜单 / 52 2.3 选择与视图 / 53 2.3.1 选择 / 53 2.3.2 视图控制 / 6712.3.3 模型显示 / 69 2.3.4 数据输入 / 742.4 使用联机帮助 / 76 2.5 使用MIDAS/GTS的主页 / 77 2.6 输入/输出文件 / 79附录. 工具条和图标菜单 / 82 标准工具条 / 82 撤销/重做工具条 / 83 选择工具条 / 84 工作平面工具条 / 86 捕捉工具条 / 87 视图工具条 / 88 测量工具条 / 91 函数工具条 – 曲线 / 92 函数工具条 – 面 / 98 函数工具条 – 实体 / 103 函数工具条 – 几何体 / 108 函数工具条 – 自动/映射划分网格 / 111 函数工具条 – 伸展网格 / 116 函数工具条 – 网格 / 121 函数工具条 – 分析 / 125 函数工具条 – 后处理数据 / 129 函数工具条 – 后处理命令 / 131关于GTS1. 关于GTS1.1 概要GTS (Geotechnical and Tunnel analysis System) 是包含施工阶段的应力分析和渗透分 析等岩土和隧道所需的几乎所有分析功能的通用分析软件。
迈达斯教程及使用手册

01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
midas软件初级使用教程

北京迈达斯技术有限公司目录建立模型①设定操作环境 (2)定义材料 (4)输入节点和单元 (5)输入边界条件 (8)输入荷载 (9)运行结构分析 (10)查看反力 (11)查看变形和位移 (11)查看内力 (12)查看应力 (14)梁单元细部分析 (15)表格查看结果 (16)建立模型②设定操作环境 (19)建立悬臂梁 (20)输入边界条件 (21)输入荷载 (21)建立模型③建模 (23)输入边界条件 (24)输入荷载 (24)建立模型④建立两端固定梁 (26)输入边界条件 (27)输入荷载 (28)建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18 材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存(保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
Midas基本操作

05-建立单元
在 MIDAS/Civil 中可以通过多种方法来建立单元,包括连接已有节点建立单元、对已有 单元进行分割建立新的单元、扩展已有节点或单元生成更高维数的单元、导入 AUTOCAD 的 DXF 文件来生成单元的方法等。
对于复制单元、分割单元、扩展单元都可以执行等间距操作和任意间距操作。 需要注意的是:使用镜像功能复制单元时,新生成的单元的局部坐标系方向与源单元的 局部坐标系方向相反,因此需要调整单元的局部坐标系方向使得输出的单元内力方向统一。 在导入 AUTOCAD 的 DXF 文件时,只要选择需要的图层中的图形文件就可以方便的建 立整体结构模型,然后再对导入的单元赋予单元属性即可完成结构模型的建立。
参数。 (一)、车道及车道面定义
移动荷载的施加方法,对于不同的结构形式有不同的定义方法。对于梁单元,移动荷载 定义采用的是车道加载;对于板单元,移动荷载定义采用的是车道面加载。对梁单元这里又 分为单梁结构和有横向联系梁的梁结构,对于单梁结构移动荷载定义采用的是车道单元加载 的方式,对于有横向联系梁的结构移动荷载定义采用的是横向联系梁加载的方式。对于单梁 结构的移动荷载定义在 PSC 设计里边已经讲过了,这里介绍的是有横向联系梁结构的移动 荷载定义以及板单元移动荷载定义。
通过导入其他模型中的 PSC 截
面来形成当前模型中的两个新
的截面。 对于在截面数据库中没有
的截面类型,还可以通过程序 提供的截面特性计算器来生成 截面数据,截面特性计算器的 使用方法有相关文件说明,这
输入截 面控制 参数定 义截面
调用数据库中标准截面
里就不赘述。
图 1 数据库/用户截面定义对话框 图 2 数值型截面定义对话框
midas软件初级使用教程

北京迈达斯技术有限公司目录建立模型①设定操作环境 (2)定义材料 (4)输入节点和单元 (5)输入边界条件 (8)输入荷载 (9)运行结构分析 (10)查看反力 (11)查看变形和位移 (11)查看内力 (12)查看应力 (14)梁单元细部分析 (15)表格查看结果 (16)建立模型②设定操作环境 (19)建立悬臂梁 (20)输入边界条件 (21)输入荷载 (21)建立模型③建模 (23)输入边界条件 (24)输入荷载 (24)建立模型④建立两端固定梁 (26)输入边界条件 (27)输入荷载 (28)建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18 材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存( 保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
Midas基本操作

的功能,将适用于一组单元的变截面组转变为针对每个单元的变截面。 图 3 变截面组转变为变截面后
横向联系梁加载车道定义:在定义车道之前首先要定义横向联系梁组,选择横向联系梁, 将其定义为一个结构组。车道定义中移动荷载布载方式选择横向联系梁布载(图 1),然后 选择车道分配单元、偏心距离、桥梁跨度后添加即可完成车道的定义。
横向联系梁组定义
图 1 采用横向联系梁布载时车道定义
车道面定义(图 2):对于板单元建立的模型进行移动荷载分析时,首先需要建立车道 面。输入车道宽度、车道偏心、桥梁跨度、车道面分配节点后添加即可完成车道面定义。 (二)、车辆类型选择
无论是梁单元还是板单元在进行移动荷载分析时,定义了车道或车道面后,需要选择车 辆类型,车辆类型包括标准车辆和用户自定义车辆两种定义方式(图 3)。 (三)、移动荷载工况定义
定义了车道和车辆荷载后,将车道与车辆荷载联系起来就是移动荷载工况定义。在移动 荷载子工况中选择车辆类型和相应的车道,对于多个移动荷载子工况在移动荷载工况定义中 选择作用方式(组合或单独),对于横向车道折减系数程序会自动考虑(图 4)。 (四)移动荷载分析控制
07-定义自重荷载
MIDAS/Civil 对结构的自重荷载可以通过程序来自动计算。程序计算自重的依据是材料 的容重、截面面积、单元构件长度、自重系数来自动计算结构自重。
在定义自重时,首先要定义自重荷载的荷载工况名称,并定义自重所属的荷载组,然后 输入自重系数即可。对于荷载系数,通常在 Z 方向输入-1 即可,因为通常考虑的模型的重 力作用方向都是竖直向下,而程序默认的整体坐标系 Z 的正方向是竖直向上的。如果自重 作用时考虑结构的容重与材料定义时的容重不同,这里自重系数只要输入计算自重时要考虑 的容重与材料定义的容重之比就可以了。演示例题中以计算自重时混凝土自重按 26KN/m3 考虑。
midas软件初级使用教程

目录建立模型①建立模型②建立模型③建立模型④建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型悬臂梁、两端固定梁简支梁 6@2 = 12 m截面 : HM 440×300×11/18材料 : Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘’ 为名保存( 保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple ) 单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3.点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。
默认设置中没有包含输入节点和单元所需的图标,用户可根据需要将所需工具条调出,其方法如下。
1. 在主菜单选择工具>用户定制>工具条2. 在工具条选择栏勾选‘节点’, ‘单元’, ‘特性’3. 点击4.工具>用户定制>工具条工具条>节点 (开), 单元 (开), 特性 (开)图2. 工具条编辑窗口 将调出的工具条参考图3拖放到用户方便的位置。
(a )调整工具条位置之前(b )调整工具条位置之后图3. 排列工具条也可使用窗口下端的状态条(图3(b))来转换单位体系。
移动新调出的工具条时,可通过用鼠标拖动工具条名称(图3(a)的①)来完成。
迈达斯教程及使用手册

01-材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
2、通过自定义方式来定义——示范混凝土材料定义。
3、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
Midas截面计算软件的使用

Midas/SPC截面属性计算之导入AutoCAD DXF文件一、打开Midas
首先进行设置:
将线段与圆弧等的长度单位设置为与AutoCAD中一致。
二、导入AutoCAD生成的DXF文件
File->Import->AutoCAD DXF
三、导入AutoCAD生成的DXF文件
得到如下所示的界面:
四、生成截面
双击上图中左侧工具树中“Section”部分的“Generate”(或者主菜单→Model→Section→Generate)。
在右侧的图形界面中用鼠标框选所有线条,亦即根据选定的线条来生成截面,然后点击左侧“Generate”面板中的“Apply”。
得到的截面如下所示:
五、计算截面属性
点击主菜单→Property→Calculate
用鼠标单击选择上面生成的截面,然后点击左边工具面板中的“Apply”计算截
面属性。
六、列表查看截面属性
点击主菜单→Property→List。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m i d a s软件初级使用教程Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】目录建立模型①建立模型②建立模型③建立模型④建立模型⑤⑥⑦⑧摘要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。
包含的主要内容如下。
1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS,ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。
图1. 分析模型 悬臂梁、两端固定梁 简支梁 6@2 = 12 m截面 : HM 440×300×11/18材料: Grade3建立模型①设定操作环境首先建立新项目( 新项目),以‘’ 为名保存( 保存)。
文件 / 新项目文件 / 保存( Cantilever_Simple ) 单位体系是使用tonf(力), m(长度)。
1. 在新项目选择工具>单位体系 ?2. 长度 选择‘m ’, 力(质量) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf ?本例题将主要使用图标菜单。
默认设置中没有包含输入节点和单元所需的图标,用户可根据需要将所需工具条调出,其方法如下。
1. 在主菜单选择工具>用户定制>工具条2. 在工具条选择栏勾选‘节点’, ‘单元’, ‘特性’3. 点击4. 工具>用户定制>工具条工具条>节点 (开), 单元 (开), 特性 (开)图2. 工具条编辑窗口将调出的工具条参考图3拖放到用户方便的位置。
(a )调整工具条位置之前(b )调整工具条位置之后图3. 排列工具条 定义材料使用Civil 数据库中内含的材料Grade3来定义材料。
1. 点击 材料 ?2. 点击3. 确认一般的材料号为‘1’(参考图4)4. 在类型 栏中选择‘钢材’5. 在钢材的规范栏中选择‘GB(S)’ ?6. 在数据库中选择‘Grade3’ ?7. 点击模型/ 材料和截面特性 / 材料设计类型>钢材 ; 钢材规范>GB(S) ; 数据库>Grade3 ?也可使用窗口下端的状态条(图3(b))来转换单位体系。
移动新调出的工具条时,可通过用鼠标拖动工具条名称(图3(a)的①)来完成。
对于已有的工具条则可通过拖动图3(a)的②来移动。
②轴网 & 捕捉选 择 激活钝化 缩放 & 移动 视 点 动态视点单 元节 点特 性状 态 条也可不使用图标菜单而使用关联菜单的材料和截面特性>材料来输入。
关联菜单可通过在模型窗口点击鼠标右键调出。
使用内含的数据库时,不需另行指定材料的名称,数据库中的名称会被自动输入。
图4. 输入材料数据定义截面模型 / 材料和截面特性 /截面数据库/用户 ; 截面形状>工字形截面 ; 数据库; 数据库>KS截面名称>H 440×300×11/18 偏心>中心 ?图5. 输入截面数据输入节点和单元Civil 是为分析三维空间结构而开发的,对于二维平面内的结构需约束不需要的自由度。
对此可通过选择结构类型简单地处理。
本例题的模型处于整体坐标系(Global Coordinate System, GCS)的X-Z 平面,(自动约束Y 方向的位移和绕X 轴和Z 轴的转动)。
故可将结构指定为二维结构(X-Z Plane)。
模型 / 结构类型结构类型>X-Z 平面建模之前先简单介绍一下鼠标编辑功能。
在建立、复制节点和单元或者输入荷载等建模过程中,需输入坐标、距离、节点或单元的编号等数据,此时可使用鼠标点击输入的方式来代替传统的键盘输入方式。
用鼠标点击一下输入栏,其变为草绿色时,即可使用鼠标编辑功能。
对于大部分前处理工作都可使用鼠标编辑功能,用户手册或例题资料中的‘?’标志即表示该处可使用鼠标编辑功能。
设计类型中包括钢材、混凝土、组合材料(SRC)、用户定义等4种类型,包含的规范有GB(中国), ASTM (美国), JIS (日本), DIN (德国), BS (英国), EN (欧洲), KS (韩国)等。
XYZ为使用鼠标编辑功能需将捕捉功能激活,根据需要也可定义用户坐标系 (User-defined Coordinate System, UCS)。
点栅格是为了方便建模而在UCS的x-y平面内显示的虚拟参照点。
激活点栅格捕捉功能,鼠标就会捕捉距离其最近的参照点。
?正面, 点格(开),捕捉点(开)捕捉节点(开), 捕捉单元 (开)模型 /用户坐标系统 / X-Z平面坐标 > 原点 ( 0, 0, 0 )旋转角度 > 角度( 0 ) ?图6. 各种被激活的捕捉功能图标以及GCS和UCS对于模型①,采用先建立节点后再利用这些节点建立单元的方法来建模。
节点号(开), 单元号(开)模型 / 节点 / 建立节点坐标 ( 0, 0, 0 )图 7. 在原点(0, 0, 0)建立节点图 7. 在原点(0, 0, 0)建立节点将建立的节点复制到梁单元的各节点位置。
(将12m长的梁单元分割成6等分)自动对齐(开) ?模型 / 节点 / 移动和复制单选 (节点 : 1 )移动和复制 >等间距 ?dx, dy, dz ( 2, 0, 0 ) ; 复制次数( 6 )?图 8. 复制节点在捕捉点被激活的状态下利用建立单元功能输入梁单元勾选交叉分割(图9的①)的话,即使直接连接单元的起点(节点1)和终点(节点7),在各节点处还是会自动分割而生成6个单元。
模型/ 单元 / 建立单元类型 > 一般梁 / 变截面梁材料>1 : Grade3 ; 截面>1 : HM440x300x11/18捕捉功能的详细说明请参考在线帮助手册。
点栅格的间距可在模型>定义轴网>定义点格中调整。
处于开启状态的捕捉功能UCS GCS点格单元的1/2 捕捉功能被激活时,鼠标就会捕捉单元的中点,另外也可将其设置为1/3或1/5。
单元1/2 捕捉开启自动对齐可将新建立的节点、单元及整个模型自动缩放使其充满窗口。
输入dx, dy, dz等两节点间距离时可使用鼠标编辑功能通过连续点击相应节点来方便地输入。
(0, 0, 0)状态条的U指UCS, G指GCS。
6@2 = 12 m点栅格间距的默认值为,可以此确认复制的节点间的距离是否正确。
输入单元时使用鼠标编辑功能的话,点击节点的同时会生成单元,故不需另行点击键。
交叉分割 > 节点 (开) ; 节点连接 ( 1, 7 )?图9. 输入梁单元输入边界条件使用一般支承输入边界条件,即将节点1的Dx, Dz, Ry 自由度约束使其成为悬臂梁。
因为已将结构类型定义为了X-Z 平面,故不需对Dy, Rx, Rz 自由度再做约束。
MIDAS/Civil 是三维空间结构分析程序,故每个节点有6个自由度(Dx, Dy, Dz, Rx, Ry, Rz)。
如图10所示,这6个自由度在模型中是由6个三角形按顺序组成的6边形表现的,被约束的自由度其三角形颜色会变成绿色,以便区分。
单元号 (关)模型 / 边界条件 / 一般支承单选 (节点 : 1 ) 选择> 添加支撑条件类型>Dx (开), Dz (开), Ry (开) ?图10. 输入边界条件(固定端)输入荷载输入节点荷载、梁单元荷载、压力荷载等荷载前,需先定义静力荷载工况(Static Load Case)。
荷载 / 静力荷载工况名称 ( NL ) ; 类型>用户定义的荷载在悬臂梁中央(节点4)输入大小为1 tonf 的节点荷载。
荷载 / 节点荷载荷载工况名称>NL ; 选择>添加 ; FZ ( -1 ) ?图12. 输入节点荷载运行结构分析建立悬臂梁单元、输入边界条件和荷载后,即可运行结构分析。
分析/ 运行分析 查看反力查看反力的步骤如下。
由结果可以看出分析结果与手算的结果一致。
(竖向反力1tonf ,弯矩–6 tonf*m )结果 / 反力 / 反力/弯矩荷载工况/荷载组合>ST:NL ; 反力>FXYZ ? 显示类型> 数值 (开) ; 图例 (开) ? ?点击 消隐可如图显示输入的梁单元的实际形状。
DxDy DzRx Ry Rz右上角(Dx)代表节点坐标系(未定义节点坐标系时为整体坐标系) x 轴方向的位移自由度,并按顺时针方向分别代表y 、z 方向位移及绕x 、y 、z 轴的转动位移。
节点荷载的方向为 GCS的Z 轴的反方向,故在FZ 输入栏中输入‘-1’。
荷载的加载方向按‘+, -‘号来输入。
加载方向 GCS Z 轴选择FXYZ 可同时查看水平反力和竖向反力。
图13. 查看反力查看变形和位移查看集中荷载的位移。
节点号 (关)结果 / 位移 / 变形形状荷载工况/组合>ST:NL ; 内力组成>DXYZ ? 显示组成>变形 (开) ; 变形前 (开) 图例(开) 数值>小数点 ( 3 ) ; 指数型 (开) ?最大值最小值>最大绝对值 ; 显示范围(%) ( 1 ) ? ?图14. 查看变形形状查看内力构件内力根据相应单元的单元坐标系输出。
首先确认单元坐标系,并查看弯矩。
图15中My 为弯矩,Fz 为剪力,Fx 为轴力。
显示荷载>荷载值, 节点荷载 (关) ? 单元>单元坐标轴 (开) ? 初始画面 ? ; 隐藏(开)图15. 确认单元坐标系下面查看悬臂梁中点作用集中荷载时的弯矩。
结果 /内力 / 梁单元内力图 ?荷载工况/荷载组合>ST:NL ; 内力>My显示选项>5 点 (开) ; 线涂色 (开) ; 系数 (1)选择数值可在窗口显示结果的大小,选择图例可在窗口右侧查看最大、最小值。
数值 荷载节点1的反力结果图例快速查询如要在模型窗口显示施加的荷载,可点击 显示,在荷载表单选择相应荷载类型(这里选择节点荷载)和荷载值即可。
在后处理模式中开启快速查询(Fast Query )的话,鼠标所在的节点或单元的相关分析结果就会在画面上显示。
DXYZ= 222DZ DY DX ++输出小数点后3位数。
选择最大和最小值的话,在显示范围内(%)的结果就会在画面显示。
取消之前显示的节点荷载。
将单元坐标系显示于画面。