人教版八年级数学下册函数的图像

合集下载

人教版八年级下册数学19.1.2 第2课时 画函数图像课件 (共16张PPT)

人教版八年级下册数学19.1.2   第2课时   画函数图像课件 (共16张PPT)

试画出函数
y6 x
(>0)
的图象:
合作探究
解:从函数
y 6 x
(x>0)可以看出,x的取值范围是:x>0
第一步:列表:
y
6
x ... 1 2 3 4 5 ...
5
y ... 6 3 2 1.5 1.2 ... 4
第二步:描点(x,y) 第三步:连线.
3
y6
x
2
直线从左向右下降, y 随着 x 的增大而减小。
x的取值范围是全体实数
y
3
根据表中数值描点(x,y),
2
并用平滑曲线连接这些点。
1
y=x+0.5
直线从左向右上升, y 随着 x 的增大而增大。
-3 -2 -1 O 1 2 3 x -1 ((--321,,--210..55))
-2
-3
人教版 八年级 下册
第十九章 一次函数
19.1.2 第2课时 画函数图像
学习目标
1 会用描点法画出函数的图像
2 会判断一个点是否在函数的图象上 3 体会数形结合的思想
认真阅读课本第77例3至79页 的内容,完成下面练习并体验知识 点的形成过程 。
合作探究
探究一 用描点法画函数图象
对于x的每一个确定的值,y都有唯一的对应值, 即y是x的函数.
k=___-7____.
实战演练
4、函数y= - 1 x+5的一部分图象如图所示,利用图象回答:
2
(1)自变量x的取值范围 (2)当x取什么值时,最小值是多少? (3)在图中,当x增大时,y的值是怎样变化的?
解:(1)从图象中观察得知:自变量X 的取值范围是:0≤x≤5
(2)从图象中观察得知: 当 x = 3 时,y 有最小值,最小值 y = 2.5

人教版八年级数学下册课件函数的图像函数的图像

人教版八年级数学下册课件函数的图像函数的图像
用图象表示为( B )
Q (升)
Q (升)
Q (升)
Q (升)
40
40
40
40
0 8 t (时) 0 8 t (时) 0 8 t (时) 0 8 t (时
A.
B.
C.
D.
2.最近中旗连降雨雪,德岭山水库水位上涨.如图 表示某一天水位变化情况,0时的水位为警戒水位. 结合图象判断下列叙述不正确的是 ( C )
(4)张强从文具店回家的平均速度是多少?
用平滑曲线去连接画出的点
(1,1) D.
AB
1注、:已函知数1点图.(1象-1可,能2是)曲是线函,数也y=可kx能的是图直象线上,的也一可点能,是则线段或射线,函数图象的形状取决于函数关系和自变量的取值范围。
请根据图象回答下列问题:
(1)在平面直角坐标系中,平面内的点可以用一对
实际问题中的函数图象
思考:下图是自动测温仪记录的图象,它反映了北 京的春季某天气温 T 如何随时间 t 的变化而变化.
你从图象中得到了哪些信息?
T/℃ 8
O4
14
-3
24 t/时
从图象中可以看出这一天中任一时刻的气温.
1、画出函数 y = x + 0.5 的图象
解:(1)从函数解析式可以看出,x的取值范围是 全体实数 . 从x的取值范围中选取一些简洁的数值, 算出y的对应值,填写在表格里:
-2
-3
-4
.
图象上的点与函数关系式的关系:
(1)函数图象上的任意点(x,y)中的x、y满足 函数关系式;
(2)满足函数关系式的任意一对(x,y)的值, 所对应的点一定在函数图象上。
判断下列各点是否在函数 y=x+0.5 的图象上?

人教版数学八年级下册19.1.3《函数的图象》教学设计3

人教版数学八年级下册19.1.3《函数的图象》教学设计3

人教版数学八年级下册19.1.3《函数的图象》教学设计3一. 教材分析《函数的图象》是人教版数学八年级下册19.1.3的内容,本节内容是在学生已经掌握了函数的概念、性质以及函数的表示方法的基础上进行学习的。

函数的图象是函数的一种形象表示,通过函数的图象可以直观地了解函数的性质和特点。

本节内容主要包括函数图象的性质、函数图象的画法以及函数图象的应用。

二. 学情分析学生在学习本节内容之前,已经掌握了函数的基本概念和性质,对于函数的表示方法也有一定的了解。

但是学生对于函数图象的画法和性质的理解可能还不够深入,需要通过本节内容的学习来进一步掌握。

同时,学生对于函数图象的应用可能还不够熟练,需要通过本节课的学习和实践来提高。

三. 教学目标1.了解函数图象的性质,能够识别和描述函数图象的特点。

2.学会函数图象的画法,能够独立地画出给定函数的图象。

3.掌握函数图象的应用,能够通过函数图象解决一些实际问题。

四. 教学重难点1.函数图象的性质的理解和描述。

2.函数图象的画法的掌握。

3.函数图象的应用的熟练程度。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索,激发学生的学习兴趣和积极性。

2.采用案例教学法,通过具体的案例让学生了解和掌握函数图象的性质和画法。

3.采用小组合作学习法,让学生通过合作交流,共同解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和实例,用于引导学生学习和实践。

2.准备教学课件和教学素材,用于辅助教学。

3.准备练习题和测试题,用于巩固和检查学生的学习效果。

七. 教学过程1.导入(5分钟)通过提出问题引导学生思考和探索,激发学生的学习兴趣和积极性。

问题:你们听说过函数图象吗?函数图象有什么作用呢?2.呈现(10分钟)通过教学课件和教学素材,呈现函数图象的性质和画法。

性质:函数图象有四个基本特点,分别是单调性、连续性、周期性和奇偶性。

画法:函数图象的画法有三种,分别是描点法、连线法和变换法。

人教版八年级数学下册19.1.2《函数的图像》课件

人教版八年级数学下册19.1.2《函数的图像》课件
如点(2,4)表示x=2时 S=4。
八年级 数学
第十一九章 函数的图象
函数的图象
你记住了吗?
对于一个函数, 如果把自变量 与函数的每对对应值分 别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数 的图象。
上图中的曲线即为函数 s x2 (x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
y
2.5
y=x+0.5
从函数图象可以看出,
直线从左到右上升,
1.5
即当x由小到大时,
y=x+0.5随之增大.
0.5
-1
O -0.5
12x
自己动手画一画 画出函数(2)y 6 x 0 的图象
x
(2)y 6 x 0
列表:
x
x … 0.5 1 1.5 2 2.5 3 3.5 4 5 6 …
S/m
S/m
s1
s2
X/s
O
O
s1 s2
S/m X/s
O
S/m
s1
s1
s2
s2
X/s
X/s
O
A
B
C
D
回归问题
问题:观察下图,你能大致描述男女孩平均身高 在平均身高之上还是之下?你能估计自己18岁时 的身高吗?
八年级 数学
第十一九章 函数的图象
一个思想————数学结合思想 两个关系———应用函数图象研究实际 问题时,注意自变量与函数的对应关系
S=x2

(x>0) 0 0.25 1 2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格 中的自变量x及对应的函数值S当作一个点的 横坐标与纵坐标,即可在坐标系中得到一些点。

19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

19.1.1 变量与函数  课件(共16张PPT)  人教版初中数学八年级下册
(2)用关系式表示你猜想的变化规律,并指出关系式中的常量. 变化规律满足:y=280-x,关系式中的常量是:数字280.
当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x

人教版数学八年级下册函数的图像(第2课时)教学课件

人教版数学八年级下册函数的图像(第2课时)教学课件
受力后弹簧的长度(chángdù)l是所挂重物m的函数吗? 答:是, y=0.5x+10.
示弹簧的长 度l与所挂重物 x之间的函数 关系的?
第四页,共三十三页。
列表格来表示的
探究新知
问题(wèntí)2 有一辆出租车,前3公里内的起步价为8元,每超过1公里 收2元,有一位乘客坐了x(x>3)公里,他付费y元.用含x的式子表 示y,y是x的函数吗?
0 101
5 207
显示的数y是输入的数x的函数吗?为什么?
如果是,写出它的解析式.
是, y = 2x+5.
第二页,共三十三页。
素养目标
3. 能对函数关系进行分析,对变量的变化情况进 行初步讨论. 2. 能用适当的方式表示简单实际问题中的变 量之间的函数(hánshù)关系.
1. 了解函数(hánshù)的三种表示法及其优缺点 .
函数的三种表示方法(fāngfǎ): (1)列表法:用___表__格__(列biǎ出ogé自) 变量与函数的对应值,表示函 数两个变量之间的关系,这种表示函数的方法叫做列表法 . (2)图象法:用____图___象表示两个变量之间的函数关系,这种表 示函数的方法叫做图象法. (3)解析式法:用_____数__学__式_表示函数的方法叫做解析式法.
剩余油量不低于油箱容量的
1 4
,按此建议,求该辆汽车最多行驶
的路程.
第十九页,共三十三页。
连接(liánjiē)中考
解:(1)由题意(tíyì)可知:y 40 x 10, 即y=﹣0.1x+40. 100
∴y与x之间的函数表达式:y=﹣0.1x+40.
(2)∵油箱内剩余油量不低于油箱容量的 , 1
第九页,共三十三页。

人教八下数学课件-19.2.1正比例函数

人教八下数学课件-19.2.1正比例函数

巩固练习 2.已知正比例函数y=(k+5)x. (1)若函数图象经过第二、四象限,则k的取值范围是_k_<_-_5___. 解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5. (2)若函数图象经过点(3,-9),则k__=_-8__.
解析:将坐标(3,-9)带入函数解析式中,得-9=(k+5)·3, 解得k=-8.
y=-4x y=-1.5x 看图发现:这两个函数图象都是经过原点和第 二、四 象限 的直线.
探究新知
y=kx (k是常数,k≠0)的图象是一 条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
提示:函数y=kx 的图象我们也称作直线y=kx
巩固练习
1.用你认为最简单的方法画出下列函数的图象:
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下: x … -2 -1 0 1 2 … y … -4 -2 0 2 4 …
探究新知
②描点; ③连线.
同样可以画出
函数
的图
象.
y=2x
y1x 3
看图发现:这两个图象都是经过原点的 直线 . 而且都经过第 一、三 象限;
探究新知 解:(2)函数y=-1.5x,y=-4x的图象如下:
(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米 的南京南站?
探究新知
(1)乘京沪高速列车,从始发站北京南站到终点 站海虹桥站,约需要多少小时(结果保留小数
探究新知
(2)京沪高铁列车的行程y(单位:千米)与 运解行:时y间=30t0(t(单0≤位t≤4:.4)时)之间有何数量关系?

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

函数的图象(课件)八年级数学下册(人教版)

函数的图象(课件)八年级数学下册(人教版)

课堂检测 1.某车间的甲、乙两名工人分别同时生产同种零件,他们一 天生产零件y(个)与生产时间t(h)的函数关系如图所示. (1)根据图象填空:①_甲__先完成一天的生产任务;在生产过 程中,__甲__因机器故障停止生产__2__h; ②当t=__3_或__5_._5 时,甲、乙生产的零件个数相等.
解:(2)由于水位在最近5小时内持续上涨,对于时间t的每一个确定的 值,水位高度y 都有 唯一 的值与其对应,所以,y 是 t 的函数.函数 解析式为: y=3+0.3t .
自变量的取值范围是: 0≤t≤5 .它表示在这 5 小时内,水位 匀速上升的速度为0.3m/h ,这个函数可以近似地表示水位的变化规律.
-1
-2
当自变量的值由小变大时,
-3
-4
对应的函数值 随之减小 .
-5
-6
y 6( x >0). x
1 2 3 4 5x
总结归纳
描点法画函数图象的一般步骤如下:
第一步,列表—表中给出一些自变量的值及其 对应的函数值 ; 第二步,描点—在平面直角坐标系中,以自变量的值为 横坐标 , 相应的函数值为 纵坐标 ,描出表格中数值对应的各点; 第三步:连线—按照横坐标 由小到大 的顺序,把所描出的各点 用平滑曲线 连接起来.
典例精析
例4 一水库的水位在最近5h内持续上涨,下表记录了这5h内6 个时间点的水位高度,其中t表示时间,y表示水位高度.
t/h 0 1 2 3 4 5 y/m 3 3.3 3.6 3.9 4.2 4.5 (1)在平面直角坐标系中描出表中数据对应的点,这些点是否 在一条直线上?由此你发现水位变化有什么规律?
总结归纳
由上可知,写出函数的解析式,或者列表格,或者画函数 图象,都可以表示具体的 函数.这三种表示函数的方法,分别 称为解析式法、列表法、图象法.

函数的图象第2课时(画函数图象)八年级数学下册课件(人教版)

函数的图象第2课时(画函数图象)八年级数学下册课件(人教版)
速度是 90 km/h. 4 ×90=6(km), 60
所以在这段时间内,它走了6 km.
(1) y=x+0.5
(2)
y 6 x
(x>0).
(1) y=x+0.5
解:第一步:列表
x … -3 -2 -1 0 1 2 y … -5 -3 -1 1 3 5
第二步描点:根据表中数值描点(x,y);
第三步连线:用平滑曲线连接这些点.
从函数图象可以看出,直线从左向右上升,即当 x 由小变大时,y = 2x + 1 随之增大.
已知点A (-1,1),B (1,1),C (2,4)在同一个函数的图象上,这个函 数图象可能是( B )
下列四个函数图象中,当x>0时,y 随x 的增大而减小的是( B )
已知某一函数的图象如图所示,根据图象回答下列问题: (1)确定自变量的取值范围. (2)当x=-4,-2,4时,y 的值分别是多少? (3)当y=0,4时,x 的值分别是多少? (4)当x 取何值时,y 的值最大?当x 取何值时,y 的值最小? (5)当x 的值在什么范围内时,y 随x 的增大而增大?当 x 的值
19.1.2 函数的图象
第十九章 一次函数
画函数图象
| 第2课时|
情景引入
怎样画函数图象
问题:正方形面积 S 与边长 x 之间的函数解析式为 S = x2. (1) 填表:计算并填写下表:
x 0.5 S 0.25
1 1.5 1 2.25
2 2.5 4 6.25
3
3.5
9 12.25
(2) 描点:画出上面表格中各对数值所对应的点.
解:(2)∵点P (m,9)在函数 y=2x-1的图象上, ∴2m-1=9, 解得m=5.

人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)

人教版八年级数学 下册 第十九章 19.1.2 函数的图像 课件(3课时,共69张PPT)

(3)如果水位的变化规律不变,按上述 函数预测,再持续2小时,水位的高度: __y_=_0_.3_×__7_+_3_=_5_._1_(m__)_____. 此时函数图象(线段AB)向 ___________延伸到对应的位置,这时 水位高度约为___5_.1_m______米.
由例可以看出,函数的不同表示法 之间可以__转__化_______.
值范围是: X取全体实数 ; 第一步:从的取值范围中选取一些简洁的数 值,算出的对应值,填写在表格里;
x … -3 -2 -1 0 1 2 …
y … -2.5 -1.5 -0.5 0.51.52.5 …
知识点 用描点法画函数图象 第二步:根据表中数值描点( x ,y);
y=x+0.5
• • • • • •
1、如果A、B两人在一次百米赛跑中, 路程(米)与赛跑的时间t(秒)的关系
如图所示则下列说法正确的是( C)
A. A比B先出发; B. A、B两人的速度相同; C. A先到达终点; D. B比A跑的路程多.
2、用列表法与解析式法表示n边形 的内 角和m(单位:度)关于边数的n函数.
解:列表法:
边数n 3 4 5 …
内角和 m/度 180 360 540

解析法:m=(n-2)×180 °,n≥3
大而减小,当x>0时,y随x的增大而增大。
画函数图象的一般步骤:
列表、描点、连线,这种画函数图象 的方法称为描点法。
函数图象的三种表示法
1、描点法画函数图象的一般步骤: (1)_列__表__,(2)_描__点__,(3)_连__线___. 2、表示函数的三种方法分别为:
__解_析__式__法__、___列_表__法__ 、_图__象_法__ .

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.

人教版数学八年级下册函数的图像(第1课时)教学课件

人教版数学八年级下册函数的图像(第1课时)教学课件

停留了5 min;③甲、乙两组同时到达景点;④相遇后,乙组的速度
小于甲组的速度.根据图象信息,以上说法正确的
有 ①②

s/km
55
乙 甲
t/min O 10 20 30 40 50 60 70
第二十九页,共三十三页。
课堂检测 拓广探索题
某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)
由小到的大顺序,把所描出的各
第十二页,共三十三页。
巩固练习
(1)在所给的平面直角坐标系中画出函数 y 1 x的图象.
2
(先填写下表,再描点、连线)
x … -3 -2 -1 0 1 2 3 …
y

3 2
-1 1
2
பைடு நூலகம்
0
1 2
1
3
2…
(2)点P(5,2)
不在 该函数的图象
y 3
(tú xiànɡ)上(填“在”或“不在”). 2
第四页,共三十三页。
探究新知
知识点 1 函数(hánshù)的图象
写出正方形的面积S与边长x的函数解析式,并确定 (quèdìng)自变量x的取值范围.
S=x2 (x>0)
x 0 0.5 1 1.5 2 2.5 3 3.5 4
S 0 0.25 1 2.25 4 6.25 9 12.25 16
第五页,共三十三页。
第二十二页,共三十三页。
连接(liánjiē)中考
甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后
,乙车才沿相同路线行驶.乙车先到达(dàodá)B地并停留1h后,再以原
速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
t(分)
A.
B.
O
t(分)
C.
O
t(分)
D.
巩固练习:
பைடு நூலகம்
5.甲、乙两人以相同路线前往距离单位10千米的培训中心参加学习 .
图中l甲、l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)与 时间t(分钟)的函数关系 . 以下说法 : ①乙比甲提前12分钟到达 ;
②甲的平均速度为15千米/时 ; ③乙走了8千米后遇到甲 ; ④乙出发
(3)由纵坐标看出,食堂离图书 0.2km ; 由横坐标看出,小明从食堂到图书馆用了_3_m_i_n_.
问题(4)小明读报用了多少时间?
(4)由 横坐标 看出,小明读报用了 30min .
问题(5)图书馆离小明家多远?小明从图书馆回家的平均速度是
多(少5?)图书馆离小明家0.8km ;小明从图书馆回家用了 10min .由此算出平均速度是 0.08km/min .
y/米
y/米
y/米
y/米
时间
A .
时间
B .
时间
C .
时间
D .
1500
1500
1500
1500
1000
1000
1000
1000
500
O 10 20 40 50
500 x/分
30
O 10 20
40 50
500 x/分
500 x/分
30
O 10 20 30
O 10 20
40 50
40 50
x/分 30
问题(1)食堂离小明家多远?小明从家到 食堂用了多少时间?
解:(1)由 纵坐标 看出,食堂离小明 家0.6km;由 横坐标 看出,小明从家到食 堂用了8min;
问题(2)小明吃早餐用了多少时间?
(2)由横坐标看出,25-8=17,小明吃早餐用了 17min .
问题(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?
什么是常量? 函数的定义 是什么?
构成函数关 系的三要素 是什么?
新课导入:
1、正方形的面积S与边长x的函数解析式为: S=x2 , 其中x的取值范围是 X>0 .我们还可以利用在坐标系中 画图的方法来表示函数的关系.
等那等函, 数我的们图为象什怎么要画学呢? 函榴数莲的 怪图请像开呢始?你函的数表的演 解吧析式难道不香么?
通过图象,我们可以数形结合地研究函数.
画函数图象一般步骤:
连线
列表
按照横坐标由小到大的
描点
顺序,把所描出的个点
已自变量的值为横坐标,相 用平滑曲线连接起来
应的函数值为纵坐标,描出
表格中数值对应的个点
表中给出一些自变量的
值及其对应的函数值
第三步
第二步
第一步
示范题:
在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是
x的函数,画出这些函数的图象 y = 2 x
x
...... -2
-1
0
1
2
......
y
...... -4
-2
0
2
4
......
y.


.0
x

课堂练习:
在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即
y是x的函数,画出这些函数的图象
x ...... -2 -1 0 1 2 ...... (1) y = x+0.5
巩固练习:
1.小明从家出发,直走了20分钟,到一个离家1000米的 图书室,看了40分钟的书后,用20分钟返回到家,下图中
表示小明离家时间与距离之间的关系的是( D )
y(米)
y(米)
y(米)
y(米)
1000
1000
1000
1000
O 20 60 75
x(分) O 20
x(分) O
75
A.
B.
60 75
A
B
C
D




巩固练习:
4.小王骑自行车上学,开始以正常速度匀速行驶,途中自
行车出了故障,他只好停下来修车.车修好后,因怕耽误上课,
故加快速度继续匀速行驶赶往学校.如图是行驶路程(米)与
时间(分)的函数图象,那么符合小明骑车行驶情况的图象大
致是( D )
s(米)
s(米)
s(米)
s(米)
O
t(分)
(2) y = -3x-1
y ......
......
y
0
x
PART.03
通过函数图象读取信息
思考:
下图是自动测温仪记录的图象,它反映了北京的春季某天
气温T如何随时间t的变化而变化。你从图象中得到了哪些信息?
T/℃ 8
04
-3
14
24t/时
T/℃ 8
04
-3
14
24 t/ 时
由函数图象可知:
(1)从这个函数图象可知:这一天中__4___时____气温最低( -30C ), _1_4__时__气温最高( 80C )
因为有些变化过程是用
解析。式。表。示。比较。麻烦, 像温。度。的。变化,,所以
就直接看图方便咯
1.填表
S=x2
x 0 0.5 1 1.5 2 2.5 3 3.5 4 S 0 0.25 1 2.25 4 6.25 9 12.25 16
自变量x的一个确定的值与它所对应的唯一的 函数值s,是否确定了一个点(x,s)呢?
函数的图象
第一课时
目录
01 学习目标 02 了解函数图象
03
通过函数图象读取信息
04 课堂小结
PART.01 学习目标
学习目标:
1. 会用描点法画函数的图象 ,掌握画函数图象的步骤 2. 能准确无误地观察函数的图象,学会从函数图象里读取信息
PART.02
了解函数图象
回顾上节课知识点:
什么是变量?
T/℃ 8
04
-3
14
24 t/ 时
(2)从__0 _至 4 气温呈下降状态,从4时 至 14时气温呈上升状态,从 14 至 24 气温又呈下降状态.
(3)我们可以从图象中看出这一天中任一时刻的气温大约是多少.
例2 如图所示,小明家、食堂、图书馆在同一条直线上.小
明从家去食堂吃早餐,按着去图书馆读报,然后回家.在这个 过程中,小明离家的距离与时间之间的对应关系.
x(分)
x(分)
O 20 60 80
C.
D.
巩固练习:
2.学校升旗仪式上,徐徐上升
的国旗的高度与时间的关系可以
用一幅图近似地刻画,这幅图是
下图中的( A )
高度
高度
高度
高度
3.小张今天到学校参加初中毕业 会考,从家里出发走10分到离家 500米的地方吃早餐,吃早餐用了 20分;再用10分赶到离家1000米的 学校参加考试.下列图象中,能反 映这一过程的是( D ) .
答:是。
2.描点:表示x与s的对应点有无数个 , 但是实际上我们只能描出其中有限个点 , 同时想象出其他点的位置.
3.连线:用平滑的曲线去连接画出的点.
知识归纳:
一般地 , 对于一个函数 , 如果 把自变量与函数的每对对应值 分别作为点的横、纵坐标 , 那 么坐标平面内由这些点组成的
图形 , 就是这个函数的图象 .
相关文档
最新文档