高级运筹学题集及答案
高级运筹学题集及答案
1. 假设有一百万元可以投资到三支股票上,设随机变量iR 表示投资到股票i 上的一元钱每年能够带来的收益。
通过对历史数据分析,知期望收益1()0.09E R =,2()0.07E R =,3()0.06E R =,三支股票的协方差矩阵为0.200.030.040.030.200.050.040.050.15⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
假设使用股票涨跌稳定性来评测风险,试构建优化模型,在保证期望年收益率不低于0.075的情况下,风险最小,同时表示为非线性优化的向量形式。
解:设123(,,)T X x x x =,其中123,,x x x 分别表示投资组合中123,,R R R 的所占的比例,有1231x x x ++= ……①保证期望收益率不低于0.075:112233()()()0.075x E R x E R x E R ++≥ ……②建立如下优化模型:222123121323min ()0.200.200.150.060.080.10f X x x x x x x x x x =+++++ ..s t 1231x x x ++=1230.090.070.060.075x x x ++≥123,,0x x x ≥记:0.200.030.040.030.200.050.040.050.15A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦表示成向量形式:min ()T f X X AX =..s t 1111T X ⎛⎫⎪= ⎪ ⎪⎝⎭0.090.070.0750.06T X ⎛⎫ ⎪≥ ⎪ ⎪⎝⎭123,,0x x x ≥2. 用伪算法语言描述“成功-失败”搜索方法。
解:1s :初始化:0x , h,ε>02s :x=0x ;1f =f(x) 3s :2f =f(x+h)4s : if 2f <1f go to 5s ;elsego to 6s ; end5s : x=x+h;2f =1f ;h=2h6s : if ||h ε<go to 7s ; else go to 8s ; end7s : x x *=8s : 4h h =-; go to 3s . □3. 请简述黄金分割法的基本思想,并尝试导出区间收缩比率φ≈0.618.基本思想:黄金分割法就是用不变的区间缩短率ϕ,来代替Fibonacci 法每次不同的缩短率,因而可以看成是Fibonacci 法的近似。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
历年高级运筹题汇总
工时(小时) A B C D
车床
8624
铣床
3 1 3 12
若以 A、B、C、D 零件顺序安排加工,则共需 32 小时。适当调整零件加工顺序,可使所需总
工时最短。在这种最短总工时方案中,零件 A 在车床上的加工顺序安排在第(1) 位,四个
零件加工共需(2)小时。
(1)A. 1
B. 2
C. 3
D. 4
升序意味着课程难度逐步增加)。
为此,各门课程考试的安排顺序应是(
)。
A. AE,BD,CF
B. AC,BF,DE
C. AF,BC,DE
D. AE,BC,DF
解析: 直接对各个选择答案进行验证,排除不合理的,确认合理的安排。 选择答案 A 不合理,因为 BD 排在同一天将使 B1 等考生一天考两门课程。 选择答案 B 不合理,因为 AC 排在同一天将使 B2 等考生一天考两门课程。 选择答案 C 不合理,因为 AF 排在同一天将使 B3 等考生一天考两门课程。
此时,另一方的市场份额就会缩小,利润将下降到 200 万元。如果这两个网站同时降价,则
他们都将只能得到 700 万元利润。这两个网站的主管各自经过独立的理性分析后决定,
(
)。
A.甲采取高价策略,乙采取低价策略
B.甲采取高价策略,乙采取高价策略
C.甲采取低价策略,乙采取低价策略
D.甲采取低价策略,乙采取高价策略
依次执行类似的步骤,从结点 1 到 6 的最大流量应是所有可能运输路径上的最大流量之和:
(1)路径 1-3-5-6 的最大流量为 10 万
(2)路径 1-2-5-6 的剩余流量最大为 6 万
(3)路径 1-4-6 的剩余流量最大为 5 万
高级运筹学试题10(研究生)
《高级运筹学》试题一、模型应用分析1、线性规划模型与解(要求:1)建立问题的线性规划模型,使用运筹学软件进行求解;2)写出问题的最优解及目标函数的最优值;3)针对求解结果进行分析:各价值系数的范围、各个资源数量的变化范围;4)哪些资源是紧缺资源?应采取哪些措施或对策进行改进?5)任意完成2题,多选无效。
)1)某公司已开发一种新型洗衣皂,广告部门正在制订宣传计划,决定使用电视、无线电广播和直接邮寄广告单等三种宣传手段。
广告费分别是:电视节目2600元,无线电节目1000元,直接邮寄广告单1500元。
可采用的各种方法的套数为:电视节目不超过12套,无线电节目不超过40套,直接邮寄不超过25套;并且无线电至少要9套,直接邮寄广告单至少要5套。
每套广告宣传手段的有效覆盖量取决于该广告所达到的地区,这里先考虑两个区:一区内电视节目、无线电节目和直接邮寄广告单的有效覆盖量分别被限制为7万、10万和7.5万人;二区内的有效覆盖量大大增加,相应为65万、30万和45万人。
三种宣传手段相应每套广告对未婚人的覆盖量是10万、8万和9.5万人;每套广告对已婚人的覆盖量是40万、50万和25万人。
公司要求:从事广告活动的开支不得超过60000元。
一区覆盖量至少要达到250万人,二区覆盖量至少达到1000万人。
在未婚人中的覆盖量不超过350万人,已婚人中覆盖量至少为280万人。
试确定要作广告手段的最佳套数,以获得最大有效覆盖量。
2)某糖果厂用原料A,B,C加工成三种不同牌号的糖果甲、乙、丙。
已知各种牌号糖果中A,B,C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价见表2所示。
问该厂每月生产这三种牌号糖果各多少kg,使该厂获利最大?3)某构件厂生产甲、乙两种商品混凝土拌合料,该厂每小时可以生产甲种混凝土拌合料14车,或生产乙种混凝土拌合料7车。
由于运输条件的限制,每小时可运输甲种混凝土拌合料7车,或运输乙种混凝土拌合料12车。
运筹学习题集(第二章)
判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=CB-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划 A约束条件相同B目标函数相同 C最优目标函数值相同 D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证 A使原问题保持可行 B使对偶问题保持可行C逐步消除原问题不可行性 D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系 A若最优解存在,则最优解相同 B原问题无可行解,则对偶问题也无可行解 C对偶问题无可行解,原问题可能无可行解 D一个问题无界,则另一个问题无可行解 E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为 A—(λ1,λ2,……λn) B (λ1,λ2,……λn) C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则 A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解 C可能一个问题有最优解,另一个问题具有无界解D 原问题与对偶问题都有最优解计算题线性规划问题和对偶问题对于如下的线性规划问题min z = 3x1 + 2x2+x3. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3. y1 + 2y2- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、 y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3. x1 + x2+ x3+ x4= 15 (1)-2x1 + x2- x3+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)x1 x2x3x4x5x6 ≥ 0原始问题的最优解为(X1 X2 X3 X4 X5 X6)=(2,0,5,8,0,0),minz=11对偶问题的最优解为(y1 y2 y3 y4 y5 y6)=(0,7/5,-1/5,0,19/5,0),maxw=11对于以下线性规划问题max z = -x1 - 2x2. -2x1 + 3x2≤ 12 (1)-3x1 + x2≤ 6 (2)x1 + 3x2≥ 3 (3)x1≤ 0, x2≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b2=6在什么范围内变化,最优解保持不变。
五邑大学《高级运筹学》考试试卷
五邑大学 试 卷学期: 2014 至 2015 学年度 第 1 学期 课程:高级运筹学 任课教师(命题人): 使用班级: 经管研2014 姓名: 学号: 2111401002一、构建下述问题的线性规划数学模型并用系统软件求解(10分)生产需要2.9米、2.1米和1.5米的元钢各100根,已知原材料的长度是7.4米,问应如何下料,才能使所消耗的原材料最省。
说明利用的是什么软件,求解的结果和重要的截图。
解:分析可得,每一根原材料的下料方案有如下几种:87654321x x x x x x x x 、、、、、、、根,所需要的原材料的总根数为z 根.数学模型如下:目标函数为:87654321min x x x x x x x x Z +++++++=10024321≥+++x x x x10023276532≥++++x x x x x 1004323876431≥+++++x x x x x x087654321≥x x x x x x x x 、、、、、、、且为整数这是一个线性规划问题,我用的软件lingo 来解这道题,以下就是我用软件解这道题的重要步骤:1、打开lingo 软件2、输入上述线性规划模型3、运行软件,结果如下由软件的运行结果可知,最优解如下,耗费原材料90根,其中按方案一下料的原材料为40根,按方案二下料的原材料为20根,按方案六下料的原材料为30根。
二、用图解法求解下述线性规划问题(5分)2153max x x Z +=123221≤+x x204521≤+x x321≥+x x0,021≥≥x x解:由题意可得,以21x x 、为坐标轴建立直角坐标系(1)根据约束条件画出与约束条件相应方程的直线,由这些直线共同确定出一个 区域,即可行解的区域可行区域如下图所示:为纵轴为横轴,21x x其中,01232:121=-+x x Y Y2:0204521=-+x x Y3:0321=-+x x其中阴影部分的每一个点都是这个线性规划问题的解。
(完整版)运筹学习题集
销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
运筹学试题及答案
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________; 10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1,X 2≥02) 若C 2从4变成5,最优解是否会发生改变,为什么?3) 若b 2的量从12上升到15,最优解是否会发生变化,为什么?4) 如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
运筹学考研真题及答案
运筹学考研真题及答案运筹学考研真题及答案一、选择题1. 在线性规划中,若最优化问题的对偶问题有最优解,则原始问题也有最优解。
(正确)解析:线性规划理论中对偶定理:“若原始问题的对偶问题有可行解,且存在最优解,则原始问题也有最优解。
”2. 若在线性规划的单纯形法中,某一回路上的所有非基变量(非基变量为0)均为0,则这一问题无有限最优解。
(错误)解析:所有非基变量为0时,相应的基变量可以任意非负,问题有无穷多最优解。
3. 在线性规划中,若某元组在原始问题和对偶问题下都是可行解,则该元组是原始问题和对偶问题的最优解。
(错误)解析:若某元组在原始问题和对偶问题下都是可行解,则该元组满足原始问题的可行性和对偶问题的可行性,但并不一定是最优解。
4. 线性规划的最优性条件是原始问题的可行解和对偶问题的可行解所对应的目标函数值相等。
(正确)解析:线性规划理论中最优性条件:“若原始问题的可行解与对偶问题的可行解所对应的目标函数值相等,则解是原始问题和对偶问题的最优解。
”5. 线性规划的可行性要求约束条件为不等式约束。
(错误)解析:线性规划的可行性要求是所有约束条件都满足,包括等式约束和不等式约束。
二、填空题1. 与线性规划的相对论证法相对应的是(单纯形法)。
解析:线性规划的相对论证法和单纯形法是互为相对的两种求解方法。
2. 在线性规划中,若最优差异为0,则最优解是(非唯一)。
解析:最优差异为0意味着最优解是非唯一的,有多个最优解。
3. 线性规划的最优性条件是(对偶定理)与最优条件相对应。
解析:线性规划的最优性条件是对偶定理,而最优条件是原始问题的可行解和对偶问题可行解所对应的目标函数值相等。
4. 在线性规划中,若一个可行解在原始问题和对偶问题下都是最优解,则称为(互补性)条件。
解析:若一个可行解在原始问题和对偶问题下都是最优解,则满足互补性条件。
三、应用题1.某公司生产两种产品A和B,每个产品的制造工序及所需时间如下表,在一天内,公司有8小时的工时可用,每个工序只能由一名员工负责完成。
最全运筹学习题及答案
最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。
数学:运筹学试题及答案(强化练习)
数学:运筹学试题及答案(强化练习)1、单选不属一般系统,特别是人造系统特征的是()A.整体性B.集合性C.目的性D.规模性正确答案:D2、名词解释概率向量正确答案:任意一个向量u=(u1,u2,…,un),如果(江南博哥)它内部的各种元素为非负数,且总和等于1,则此向量称为概率向量。
3、填空题影子价格实际上是与原问题各约束条件相联系的()的数量表现。
正确答案:对偶变量4、单选关于线性规划和其对偶规划的叙述中,正确的是()A.极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B.极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C.若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D.若对偶问题可行,则其目标函数无界的充要条件是原始问题可行正确答案:A5、单选为建立运输问题的改进方案,在调整路线中调整量应为()。
A.奇数格的最小运量B.奇数格的最大运量C.偶数格的最小运量D.偶数格的最大运量正确答案:A6、单选下述选项中结果一般不为0的是()。
A.关键结点的结点时差B.关键线路的线路时差C.始点的最早开始时间D.活动的专用时差正确答案:D7、填空题动态规划中,把所给问题的过程,分为若干个相互联系的()正确答案:阶段8、多选系统评价常用的理论有()A.数量化理论B.效用理论C.最优化理论D.不确定性理论E.模糊理论正确答案:A, B, C, D9、填空题常用的两种时差是工作()和工作自由时差。
正确答案:总时差10、填空题()(EOQ)是使总的存货费用达到最低的某种存货台套的最佳订货量。
正确答案:经济订货量11、填空题分枝定界法一般每次分枝数量为()正确答案:2个12、单选用单纯形法求解线性规划时,不论是极大化或是极小化问题,均用最小比值原则确定出基变量,该说法()。
A.正确B.不正确C.可能正确D.以上都不对正确答案:A13、名词解释安全库存量正确答案:也称保险库存量,是为了预防可能出现的缺货现象而保持的额外库存量14、填空题若线性规划问题有(),必在某顶点上得到。
运筹学试题及答案4套汇总
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
(完整word版)运筹学习题及答案
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
高级运筹学K-T条件极值试题(含答案)
解上述方程组,可得 或 ,而 不满足 条件,而 及 同情形(1)的结果。
(4)假设两个约束均起作用,这时 , 。故有
求解上述方程组,得到的解不满足 与 ,故舍去。
因此本题的K-T点为: 。
同时本题 为凸函数,而 为凸函数, 为线性函数,也为凸函数,所以本题是凸规划。对凸规划K-T也是充分条件。因此 也是本题的全局最小点。
得 , ,故 不满足Kuhn-Tucker条件。
6.用库恩-塔克条件解非线性规划
,
,
引入广义拉格朗日乘子 ,则有
所以 ,具体分析如下.
若 引出矛盾,无解;
若 : ,点; ( 6)
若 : , ;
若 : , ( 4)
所以最大值点 ,最大值 .
注: 非凸函数,
在 上有两个局部最小值点.
还有一个”驻点”
7.用K-T条件解非线性规划
.
解 ,(是凸规划)
,
所以 ,具体分析如下.
若 引出矛盾,无解;
若 解得 ,非K-T点;
若 解得 ,非K-T点;
若 解得 , 全局最小
8.求下列非线性规划问题的K-T点:
s.t.
解:将上述问题的约束条件改写为 的形式:
设K-T点为 ,有
,
由定理得
求解上述方程组,即可求出 , , , ,则可得到满足K-T条件的点。上述方程组是非线性方程组,求解时一般都要利用松紧条件(即上述方程组中的第3,4个方程),其实质是分析 点处,哪些是不起作用约束,以便得到 ,这样分情况讨论求解较为容易:
用库恩-塔克条件判断 是否为极小点。
解:计算目标函数和约束函数在X*点的梯度
运筹学习题及答案1
一、用动态规划方法求解下列问题某公司有资金400万元,向A,B,C三个项目追加投资,三个项目可以有不同的投资额度,相应的效益值如下表所示,问如何分配资金,才使总效益值最大?二、推导确定型存贮问题中“不允许缺货,补充需要一定时间”的数学模型。
其中包括:假设条件、库存状态变化分析图、存贮费用分析、最佳经济批量、最小存贮费用三、作图题,请写明步骤1、用避圈法找出下图的最小支撑树,并绘出最小支撑数图2、求出图中从V1~V6的最短路线;四、绘制网络图,计算时间参数,找出关键线路,若资源限量为10人/天,试用资源安排方法求出“资源有限,工期最短”的网络计划。
答案一、用动态规划方法求解下列问题1、解:1、阶段划分:按项目划分为三个阶段;2、状态变量k y ;3、决策变量k x ;4、状态转移方程:k k k x y y -=+15、阶段收益k v —查表6、指标函数:)](m ax [)(11+++=k k k k k y f v y f7、边界条件:04=fK=3时K=2时K=1时回溯过程:41=y 31=x 12=y 02=x 13=y 13=x万190)(11=y f二、推导确定型存贮问题中“不允许缺货,补充需要一定时间”的数学模型。
其中包括:假设条件、库存状态变化分析图、存贮费用分析、最佳经济批量、最小存贮费用(一)、假设条件:1、补充需要一定的时间;生产(供货)时间T ;速度为P ;2、生产(订购)产量:Q=P ·T3、C 1、C 3为常数,C 2=0,若缺货C 2 ∞4、需求速度:R 是一连续而均衡的常数,R <P ;5、补充周期t :P tR T T P t R Q ⋅=⇒⋅=⋅= PRt T tR T P T R t R T R T P T t R T R P T t R S T R P S =⋅=⋅⋅-⋅=⋅-⋅-⋅=⋅-∴-=⋅-=)()()(;)( (二)、存贮状态变化图(边生产边向外输出)[0,T] P -R >0[T ,t] S —最大库存量,S <Q (以一个周期内单位库存费用最小为目标)在T 区间内,库存量以P -R 的速率在增加,在t -T 区间内,库存量以R 的速率在减少,因而在T 时间内以(P -R)的速度供应产品应等于在t -T 时间内以R 的速度的需求消耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 假设有一百万元可以投资到三支股票上,设随机变量iR 表示投资到股票i 上的一元钱每年能够带来的收益。
通过对历史数据分析,知期望收益1()0.09E R =,2()0.07E R =,3()0.06E R =,三支股票的协方差矩阵为0.200.030.040.030.200.050.040.050.15⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
假设使用股票涨跌稳定性来评测风险,试构建优化模型,在保证期望年收益率不低于0.075的情况下,风险最小,同时表示为非线性优化的向量形式。
解:设123(,,)T X x x x =,其中123,,x x x 分别表示投资组合中123,,R R R 的所占的比例,有1231x x x ++= ……①保证期望收益率不低于0.075:112233()()()0.075x E R x E R x E R ++≥ ……②建立如下优化模型:222123121323min ()0.200.200.150.060.080.10f X x x x x x x x x x =+++++ ..s t 1231x x x ++=1230.090.070.060.075x x x ++≥123,,0x x x ≥记:0.200.030.040.030.200.050.040.050.15A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦表示成向量形式:min ()T f X X AX =..s t 1111T X ⎛⎫⎪= ⎪ ⎪⎝⎭0.090.070.0750.06T X ⎛⎫ ⎪≥ ⎪ ⎪⎝⎭123,,0x x x ≥2. 用伪算法语言描述“成功-失败”搜索方法。
解:1s :初始化:0x , h,ε>02s :x=0x ;1f =f(x) 3s :2f =f(x+h)4s : if 2f <1f go to 5s ;elsego to 6s ; end5s : x=x+h;2f =1f ;h=2h6s : if ||h ε<go to 7s ; else go to 8s ; end7s : x x *=8s : 4h h =-; go to 3s . □3. 请简述黄金分割法的基本思想,并尝试导出区间收缩比率φ≈0.618.基本思想:黄金分割法就是用不变的区间缩短率ϕ,来代替Fibonacci 法每次不同的缩短率,因而可以看成是Fibonacci 法的近似。
在搜索区间[a,b]内取两点x<y ,然后在x,y 中选取一个作为端点,将搜索区间缩小,直至搜索区间足够小,然后在其内取一点作为最优解的近似。
一维搜索时,在区间内取两对称点1λ,'1λ作为搜多点,并满足:1λ= a+(1-ϕ)(b-a) '1λ= a+ϕ(b-a)ϕ取近似值0.618证明:设在第k 次迭代时的搜索区间为[k a ,k b ],则在区间内取两对称点1k λ+,'1k λ+作为探索点,并满足:1(1)()k k k k a b a λϕ+=+-- ……① '1()k k k k a b a λϕ+=+- ……②由于对称性,即: '11k k k k a b λλ++-=-在第k+1次迭代中,不妨取收缩区间为'1,k k a λ+⎡⎤⎣⎦ 这样,收缩率ρ表示为:'1()0.618k kk k k kk ka b a b a b a λϕρϕ+--====≈-- □ 4. 请简述牛顿(Newton )法的基本原理,并指出可能会出现的“坏现象”。
基本思想:牛顿法是二阶近似仿照切线法思想,推导出下降方向 11()()k k k k X X H X f X +-=-∇每次计算 1()()k k k D H X f X -=∇,可看成是椭球范数||||k D 下的最速下降法。
对于正定二次函数,一次可达最优解。
一定条件下,具有二阶收敛速度。
坏现象:对初始点的依赖性很大,要求初始点接近极小点。
若初始点远离极小点,不能保证收敛,甚至连Newton 方向2()1()()()k k f x f x --∇∇都不一定是下降方向,导致算法达不到极小点。
□ 5. 叙述Powell 算法思想.(方向加速法)算法思想:又称方向加速法。
是在研究正定二次函数的极小化问题时形成的,由于迭代过程中构造一组共个方向,其本质属于共轭方向法。
每一轮迭代过程中由n+1个相继的一维搜索组成,先依次沿着n 个已知的线性无关方向搜索,然后沿本轮迭代的初始点和第n 次搜索所得点的连线方向搜索,得到这一轮迭代的最好点并作为下一阶段的起点,再用第n+1个方向(最后的搜索方向)代替前n 个方向的一个,开始下一轮的迭代。
□ 6. 简述有约束优化时既约梯度法的基本思想。
基本思想:将线性规划的单纯形法推广到带线性约束的非线性问题上。
把线性约束优化问题min ()f XX=b..0A s t X ⎧⎨≥⎩ 简化为仅在非负限制下的极小化问题min ()N F X11X =B 0..0B N N b B NX s t X --⎧-≥⎪⎨≥⎪⎩其中,(,)A B N =,B N X X X ⎡⎤=⎢⎥⎣⎦,B 为m ×m 的可逆矩阵,B X 为m 维的基向量,N X 为n-m 维的非基向量。
求出目标函数()N F X 的梯度,此时的梯度是n-m 维函数的梯度,称为()f X 的既约梯度1()()[(),]()[(),]N B T N N X B N N X B N N r X F X f X X X B N f X X X -=∇=∇-∇。
N X 沿负既约梯度方向()N r X -移动,可使目标函数值降低。
□7. 利用罚函数法求解非线性规划的收敛点12211221min ()()0.. ()0f X x xg X x x s t g X x =+⎧=-+≥⎨=≥⎩ 分别假设初始可行点满足1)12()0,()0g X g X <<; 2) 12()0,()0g X g X <>.解:马良书69页8. 设()(1,2,)j g X j l -=为凸函数,则{|()0,1,2,}j R X g X j l =≥=为凸集。
证明:设 (), 0,1x y R α∈∈,,有()()00j j g x g y ≥≥,, 1,2,,j l =()(1,2,)j g X j l -=为凸函数,则有()()11[()]()j j j g x y g x g y αααα+-≤----,1,2,,j l =两边变号()()[()]11()0j j j g x y g x g y αααα-≥+-≥+, 1,2,,j l =即1()x y R αα+-∈。
R 为凸集□ 9. 设2,1,2,k k x k -==,则{}k x 收敛阶数为1,且线性收敛。
证明:显然,0X *=。
由于(1)(1)()00||||21lim lim ||||22k k k k k k X X X X +*-+*-→→-==- 所以由收敛定义和α阶收敛知,{}k x 收敛阶数为α=1,且β=1/2知为线性收敛。
□10. 设1()2TT f X X AX b X c =++,A 是对称矩阵。
给定初始点0X ,试证明由最速下降法产生的迭代点列{}k X 有如下公式:1()()k T k k kkk T kg g XX g g Ag +=-,0,1,2,3,k =其中k k g AX b =+。
证明:由数学分析知,在k X 的领域中,使()f X 下降最快的方向是负梯度方向,取()()K k P f X =-∇ ……①下面确定步长k λ:由于()f X 为二次函数,故二阶连续可导,作二阶Taylor 展开:()()()()1()()()()()()2k k k k T k k T k f X P f X f X P P A P λλλλ+≈+∇+令()()()()()0k T k k T k dff X P P AP d λλ≈∇+= 可得最优步长为()()()()()k T k k k T k f X P P APλ∇=- ……②记()k k k g f X AX b =∇=+ 则1()()()k T k k kkkkk k T kg g XX f X X g g Ag λ+=-∇=-, 0,1,2,3,k =□11. 试证在最速下降法中,相邻两次搜索方向必正交,即1()()0k Tk f Xf X +∇∇=证明:设第k 步的步长为k λ,梯度为k P ,则有第k+1步的梯度为(1)(1)k k P b AX ++=-()()()k k k b A X P λ=-+ ()()k k k b AX AP λ=--()()k k k P AP λ=-()2()()()()()()||||(,)()(,)k k k k k T k k k P P P P AP AP P λ==(1)()()()()()(,)(,)(,)0k k k k k k k P P P P AP P λ+∴=-=即1()()0k Tk f Xf X +∇∇=,两次搜索方向必正交。
□12. ()f x 在凸集R 内是凸函数的充要条件是对于任意的,x y R ∈,()[(1)]g f x y ααα=+-在[0,1]内是凸函数。
证明:必要性:设[0,1]αλβ∈,,,由于R 是凸集,所以对于任意的,x y R ∈,有(1)x y R αα+-∈,(1)x y R ββ+-∈[(1)]([(1)]{1[(1)]})g f x y λαλβλαλβλαλβ+-=+-+-+-[(1)][(1)(1)(1)(1)]([(1)](1)[(1)])f x x y y y y f x y x y f x y x y λαλβλαβλβλαλαλβλβλααλββ=+-+--+=+-+-+--=+-+-+- 由()f x 为R 上凸函数可知[(1)][(1)](1)[(1)]g f x y f x y λαλβλααλββ+-≤+-+-+-()(1)()g g λαλβ=+-所以,()[(1)]g f x y ααα=+-在[0,1]内是凸函数。
充分性:若对于任意的,x y R ∈,()[(1)]g f x y ααα=+-在[0,1]内是凸函数,则有[(1)]f x y αα+-=()[1(1)0]g g ααα=+-(1)(1)(0)g g αα≤+- ()(1)()f x f y αα=+-所以()f x 是凸函数。
□ 13. 考虑二次函数f(x)=x x x x x x 2122212132+-++1) 写出它的矩阵—向量形式: f(x)=x Qx b xTT +21 221()(1,1)262T f x X X X ⎛⎫=+- ⎪⎝⎭2) 矩阵Q 是不是奇异的?|Q|=8≠0,非奇异 3) 证明: f(x)是正定的显然Q 正定,故f(x)正定 4) f(x)是凸的吗?由于f(x)正定,所以f(x)是凸的5) 写出f(x)在点x =T )1,2(处的支撑超平面(即切平面)方程()10f X =,22-15()26111f X X ⎛⎫⎛⎫⎛⎫∇=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭切平面方程:()()()()T f X f X f X X X -=∇-即2211221223610110x x x x x x ++--+= □ 14. 设δ++=x r Gx x x f T T21)(是正定二次函数,证明一维问题 )()(min k k ad x f a +=ϕ的最优步长为.)(kTk kT k k Gdd dx f a ∇-=证明: 同(10)题15. 考虑约束优化问题()221212min 4..3413f x x x s t x x =++≥初始点(2,2),用两种惩罚函数法求解. 解:标准化()2212min 4f x x x =+ 112..()34130s t g x x x =+-≥(1)外罚函数法构造罚函数2221212(,)4{min(0,3413)}P X M x x M x x =+++-当1()0g x <时,2221212(,)4(3413)P X M x x M x x =+++-112126(3413)0P x M x x x ∂=++-=∂, 212188(3413)0Px M x x x ∂=++-=∂ 解得:(3,1)M X =。