22 一元二次方程同步练习

合集下载

人教版九年级上册数学22 2二次函数与一元二次方程 同步练习(含答案)

人教版九年级上册数学22 2二次函数与一元二次方程 同步练习(含答案)

人教版九年级上册数学22.2二次函数与一元二次方程同步练习一、单选题1.抛物线223y x x =+-与x 轴的交点个数有( )A .0个B .1个C .2个D .3个 2.下列二次函数的图象与x 轴有且只有一个交点的是( ) A .239y x x =+ B .244y x x =-++C .2245y x x =++D .221y x x =-+3.已知二次函数()22221y x b x b =----+的图象不经过第二象限,则实数b 的取值范围是( )4.二次函数2y ax bx c =++图象的一部分如图所示,它与x 轴的一交点为()6,0B ,对称轴为直线2x =,则由图象可知,方程20ax bx c ++=的解是( )A .10x =,26x =B .12x =-,26x =C .11x =-,26x =D .12x =-,22x = 5.已知抛物线()243y a x =--的部分图象如图所示,则图象与x 轴另一个交点的坐标是( )A .()5,0B .()6,0C .()7,0D .()8,06.如图是二次函数²y ax bx c =++的部分图像,由图像可知不等式²0ax bx c ++≥的解集是( )A .15x <<B . 5x ≤C .15x -≤≤D . 1x <-或5x >7.二次函数()()2y x a x b =---,()a b <的图像与x 轴交点的横坐标为m 、n ,且m n <,则a ,b ,m ,n 的大小关系是( )A .m a b n <<<B .a m b n <<<C .a m n b <<<D .m a n b <<<8.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论中:①0ac <;①24b ac <;①20a b -=;①930a b c ++>.正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,在平面直角坐标系中,抛物线222y x mx m =-++-(m 为常数,且0m >)与直线y =2交于A 、B 两点.若AB =2,则m 的值为______.10.抛物线()231y ax a x =+-+的顶点在x 轴上,则a 的值为________.11.已知二次函数24y x x c =++的图象与x 轴的一个交点坐标是()20,,则它与x 轴的另一个交点坐标是______.12.已知二次函数y =﹣x 2+bx +c 的顶点为(1,5),那么关于x 的一元二次方程﹣x 2+bx +c ﹣m =0有两个相等的实数根,则m =______________.13.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,平移后抛物线的顶点坐标为_____. 14.如图,抛物线2y ax c =+与直线y mx n =+交于()()2,,4,A p B q -两点,则不等式2ax mx c n -+<的解集是___________.15.如图,已知二次函数()20y x m m =-+>的图像与x 轴交于A 、B 两点,与y 轴交于C 点.若AB OC =,则m 的值是______.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图.则有以下5个结论:①a <0;①b 2-4ac<0;①b =-2a ;①当0<x <2时,y >0;①a -b +c >0;其中正确的结论有:____________.(写出你认为正确的序号即可)三、解答题17.在平面直角坐标系中,已知抛物线22y x 2mx m 9=-+-.(1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A ,B 两点,点A 在点B 的左侧,且3OA OB =,求m 的值. 18.如图,抛物线2y x bx c =-++交x 轴于()1,0A -、B 两点,交y 轴于()0,3C ,点P 在抛物线上,横坐标设为m .(1)求抛物线的解析式;求BDC的面积.(1)求抛物线的解析式;(2)若D 是抛物线上一点(不与点C 重合),且ABD ABC S S △△,请求出点D 的坐标.参考答案:。

上册第第二十二章一元二次方程同步练习册以及答案

上册第第二十二章一元二次方程同步练习册以及答案

第二十二章 一元二次方程22.1 一元二次方程(1)学习要求:通过学习感受现实生活和学习环境中方程知识的实际意义、体会建模思想,接受和理解一元二次方程及相关概念,通过交流、辨析,能将方程化为一般形式,认识二次项系数、一次项系数、常数项等概念,并注意系数的符号.做一做: 填空题:1.一元二次方程5x 2=3x +2的一般形式是____________,它的二次项系数是______,一次项系数是______,常数项是______.2.已知方程(m +1)x 2-2mx =1是一元二次方程,那么m ≠______. 3.当m ______时,方程223213x x mx =--不是关于x 的一元二次方程. 4.已知:方程(m 2-4)x 2-6(m -2)x +3m -4=0,当m ______时,它是一元二次方程,当m ______时,它是一元一次方程. 选择题:5.把方程(2x +1)(3x +1)=x 化成一般形式后,一次项系数和常数项分别是( ) (A)4,1 (B)6,1 (C)5,1 (D)1,6 6.下列方程中,一元二次方程是( ) (A)2x 4-5x 2=0 (B)(2x 2+7)2-3=0 (C)012=+xx(D)0312142=++-x x 7.把方程(2x -1)(3x +2)=x 2+2化成一般形式后,二次项系数和常数项分别是( )(A)5,-4 (B)5,1 (C)5,4 (D)1,-4 解答题:8.根据题意,列出方程:(1)一个三角形的底比高多2cm ,三角形面积是30cm 2,求这个三角形的底和高.(2)两个连续正整数的平方和是313,求这两个正整数.(3)已知两个数的和为6,积为7,求这两个数.问题探究:已知关于x 的一元二次方程3(x -k )2+4k -5=0的常数项等于1,则所得关于k 的一元二次方程的一般形式是什么?22.1 一元二次方程(2)学习要求:进一步理解一元二次方程的概念,灵活掌握二次项系数、一次项系数、常数项,体会一元二次方程与现实生活的关系.做一做: 填空题:1.方程(x +1)(x +2)=3化为一般形式是____________.2.两个连续奇数的积是255,求这两个数,若设较小奇数为x ,则根据题意,可得方程为____________.3.一个矩形的长比宽多2cm ,面积为30cm 2,求这个矩形的长与宽,设矩形的长为x cm ,列出方程为____________. 选择题:4.下列各方程中,一定是关于x 的一元二次方程的是( ) (A)mx 2+8x =6x (x -1)-2 (B)ax 2+bx +c =0 (C)(m 2+1)x 2-5x +3=0(D)x1+5x +8=0 5.下列各方程中,一定是关于x 的一元二次方程的个数是( )①1232=-xx ;②mx 2+nx -4=0;③11-=-x x x ;④x 2-x 2(1+x 2)-2=0 (A)4个 (B)3个 (C)2个 (D)1个6.长50cm ,宽30cm 的矩形薄铁片,在四个角截去四个大小相同的正方形,做成底面积为1200cm 2的无盖长方体盒子.设截去的小正方形边长为x cm ,列出的正确方程是( ) (A)(50-2x )(30-2x )=1200 (B)(50-x )(30-x )=1200 (C)(50-2x )(30-x )=1200 (D)50 ×30-4x 2=1200 解答题:根据下列问题,列出方程(不必求解).7.学校有一块长方形空地,长42米,宽30米,准备在中间开辟花圃,四周修建等宽的林荫小道,使小道的面积和花圃面积相等,求小道的宽.问题探究:根据方程:(50+x )(40+x )=3000,你能结合身边的实际,编一个应用问题吗?试试看.22.2 降次——解一元二次方程(1)学习要求:在进一步理解一元二次方程的有关概念的基础上,结合平方根的意义,初步体会利用开平方可以将一些一元二次方程降次转化为一元一次方程.做一做: 填空题: 1.x (x +2)=5(x +2)的一般形式是_______,其中二次项系数是______,一次项系数是______,常数项是______.2.若x =2满足方程x 2-12x -m =0,则m =______. 3.形如方程x 2=a (a ≥0)的解是______.4.形如方程(x +m )2=n (n ≥0)的解是______.选择题:5.方程(x +2)2=9的解为( ) (A)x 1=9,x 2=-9 (B)x 1=9,x 2=0 (C)x 1=-9,x 2=0 (D)x 1=1,x 2=-5 6.方程(x +3)2-9=0的解的情况为( ) (A)x 1=3,x 2=-3 (B)x 1=0,x 2=-6 (C)x 1=9,x 2=-6 (D)x 1=6,x 2=0 7.方程4x 2-1=0的根的情况是( ) (A)x =±2 (B)0,2121=-=x x (C)21±=x(D)无实根解答题: 8.解下列方程:(1)x 2=169;(2)5x 2=125;(3)(x +3)2=16;(4)(6x -7)2-128=0.问题探究: 若等式24x a ·(a 1-2x)4=a 9成立,求x 的值.22.2 降次——解一元二次方程(2)学习要求:在掌握了利用求平方根的方法解一元二次方程以后,结合完全平方的特征,体会转化思想:即配方转化降次求解一元二次方程.理解配方法的要领,掌握配方法的基本步骤.做一做: 填空题:1.根据公式a 2±2ab +b 2=(a ±b )2,填充下列各式: (A)x 2+8x +______=(x +______)2 (B)x 2-2x +______=(x -______)2(C)x 2+x +______=(x +______)2 (D)x 2-x +______=(x -______)2 选择题:2.用配方法解方程x 2-3x -1=0时,以下解法中的配方过程正确的是( ) (A)x 2-3x -1=0 (B)x 2-3x -1=0 x 2-3x +9=9+1 x 2-3x +9=1 (x -3)2=10 (x -3)2=1 (C)x 2-3x -1=0 (D)x 2-3x -1=01494932+=+-x x 1232332+=+-x x413)23(2=-x 25)23(2=-x解答题:3.用配方法解下列方程: (1)x 2-6x +4=0; (2)x 2+5x -6=0;(3)x 2+6x +8=0;(4)x 2+4x -12=0;(5)(2x -3)2-3=0;(6)x 2+2mx -n 2=0.问题探究:求证:不论a 、b 取何实数,多项式a 2b 2+b 2-6ab -4b +14的值都不小于1.22.2 降次——解一元二次方程(3)学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.做一做: 填空题:1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______.3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______. 选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( ) (A)(x -1)2=m 2+1 (B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +1 5.方程x 2=x +1的解是( ) (A)1+=x x(B)251±=x (C)1+±=x x(D)251±-=x6.方程x 2-6x -3=0的解的情况为( ) (A)有两个相等的实数根 (B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根解答题:7.用公式法解方程: (1)2x 2+2x =1; (2)5x +2=3x 2;(3)x (x +8)=16; (4)(2y +1)(3y -2)=3.问题探究:在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A)m =0,n =0 (B)m ≠0,n ≠0 (C)m ≠0,n =0(D)m =0,n ≠022.2 降次——解一元二次方程(4)学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.做一做: 填空题:1.方程x 2+x -3=0的两根是____________. 2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________. 选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( ) (A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数 5.已知x 2-3x +1=0,则xx 1+的值为( )(A)3 (B)-3 (C)23 (D)16.下列方程中,两实根之和等于零的是( ) (A)9x 2+4=0 (B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6 解答题: 7.解下列方程: (1)x 2+3x -4=0; (2)x 2-x -1=0;(3)-2x 2=5x -3;(4)3x 2+2x =4.问题探究:一根长36cm 的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm 的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.22.2 降次——解一元二次方程(5)学习要求:在理解了利用求平方根的思想来达到降次求解一元二次的方程之后,因式分解又是一种转化的思想,来实现将一元二次方程降次为一元一次方程求解.做一做: 填空题:1.当x =3时,(x -3)(x +3)的值为____________. 2.方程x (x -3)=0的根为______________.3.方程x 2=x 的右边化为零后变为________,左边分解因式后化为______,原方程的解为______选择题:4.关于x 的方程(m 2-m )x 2+mx +n =0是一元二次方程的条件是( ) (A)m ≠0 (B)m ≠1 (C)m ≠0或m ≠1 (D)m ≠0且m ≠1 5.方程x 2=2x 的解是( ) (A)x =0 (B)x =2 (C)x =0或x =2 (D)x =±2 6.方程(x -3)2=3-x 的解是( ) (A)x =3 (B)x =2或x =3 (C)x =2 (D)x =4 解答题:7.用因式分解法解方程: (1)(x -1)(x -2)=0; (2)x 2-3x =0;(3)x2-4x+4=0;(4)x2-5x+4=0.问题探究:若等腰三角形的两边长分别是方程x2-9x+14=0的两根.那么这个等腰三角形的周长是多少?22.2 降次——解一元二次方程(6)学习要求:进一步体会利用因式分解法降次的基本思想,掌握因式分解法求解一元二次方程.做一做:填空题:1.分解因式:2x2+5x-3=____________.2.用因式分解法解方程x2-5x=6,得方程的根为____________.3.方程2(x+3)2-5(x+3)=0的解为______.最简便的解法是____________.4.若代数式x2+6x的值为零,则x的值为______.选择题:5.已知(x+y)(x+y+2)=15,则x+y的值为( )(A)3或5 (B)3或-5(C)-3或5 (D)-3或-56.下列方程:①x2-5x-6=0;②x2-6x-5=0;③x2+5x+6=0;④x2+6x+5=0.适宜用因式分解求解的是( )(A)①、②、③、④(B)①、③、④(C)①、②、③(D)②、③、④解答题:7.解下列方程:(1)9(x-3)2=25;(2)6x2-x=1;(3)x2+4x-96=0;(4)x(x-1)=2;(5)4(2x-1)2=9(x-2)2;(6)(2x-3)2-2(3-2x)=8.问题探究:当k是什么整数时,方程(k2-1)x2-6(3k-1)x+72=0只有正整数根?22.2 降次——解一元二次方程(7)学习要求:在掌握了配方法、公式法及因式分解法求解一次二次方程之后,同学们应注意灵活地应用这些知识.做一做: 填空题: 1.方程0)75.0)(5.0()43(2=--+-x x x 的较小根是____________. 2.已知单项式xxb a 3222-与4221b a -是同类项,则x 的值是__________. 3.++x x 222______=(x +______)2. 4.4x 2-______+9=(______-3)2.选择题:5.方程x (x 2+1)=0的实数根的个数是( ) (A)0(B)1(C)2(D)36.下列方程中,两根分别为-1+3和-1-3的是( ) (A)0)31)(31(=--++x x (B)0)31)(31(=+--+x x (C)0)31)(31(=--+-x x (D)0)31)(31(=++-+x x解答题: 7.解下列方程 (1)x 2-6x +4=0;(2)x 2-22x -3=0;(3)2y (y +2)=(y +2); (4)(2x -1)2-4=0;(5)3y 2+1=23y ;(6)(2x -1)(x -2)=-1.问题探究:小明养了一群鸽子,小亮问小明养了几只鸽子,小明说:“如果你给我一只鸽子,那么鸽子总数的平方是鸽子总数的9倍.”你知道小明现在有几只鸽子吗?阅读与思考——一元二次方程的近似解与连分数学习要求:将一些具体值代入所要解的一元二次方程,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,逐步估计出一元二次方程的近似解.这就是求一元二次方程近似解的基本要领.下面介绍另外一种估计一元二次方程近似解的方法.方程:x 2-3x -1=0,因为x ≠0,所以先将其变形为x =x 13+,用x13+代替x ,得 xxx 131313++=+=反复若干次用x13+代替x ,就得到 xx +++++++=3131313131313形如上式右边的式子称为连分数.可以猜想,随着替代次数的不断增加,右式最后的x1对整个式子的值的影响将越来越小,因此可以根据需要,在适当的时候把x 1忽略不计,例如,当忽略x =x 13+中的x 1时,就得到x =3,当忽略xx 1313++=的x 1时,就得到313+=x ;如此等等.于是就可以得到一系列分数:,,3131313,31313,313,3 ++++++即: .30303.333109,3.31033,333.3310,3 ===可以发现它们越来越趋于方程x 2-3x -1=0的正根.同学们不妨利用此方法求一求方程x 2-5x -1=0的近似解.22.3 实际问题与一元二次方程(1)学习要求:在学习一元二次方程的解法的过程中,同学们应注意与实际问题相联系,逐步培养用方程的思想与知识解决实际问题的能力,培养学数学用数学的意识.做一做: 填空题:1.某公司10月份产值为a 万元,比5月份增长20%,则5月份产值为____________. 2.一个六位数,低位上的三个数字组成的三位数是a ,高位上的三个数字组成的三位数是b ,现将a ,b 互换,则得到的六位数是____________3.一项工程,甲班干完需m 天,乙班干完需(m +2)天,甲、乙两班合干,完成工程需__________________天. 选择题:4.甲走20天的路程乙走30天,已知乙每天走15千米,问甲每天走多少千米?在下列几种设未知数的写法中,正确的是( ) (A)设甲每天走x (B)设甲速为x 千米 (C)设甲走x 千米 (D)设甲每天走x 千米5.一件工作,甲独做4天完成,乙独做6天完成,则二人合做( )天完成. (A)6(B)5(C)512 (D)2解答题:6.列方程解应用题:(1)两个数的差为4,它们的积为45,求这两个数.(2)一个直角三角形的三条边的长是三个连续的整数,求三条边的长.(3)某林场第一年造林200亩,第一年到第三年共造林728亩,求后两年造林面积的平均增长率.问题探究:我国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一题:直田积(矩形面积) 八百六十四步(平方前),只云长阔(长与宽)共六十步,问阔及长各几步?22.3 实际问题与一元二次方程(2)学习要求:进一步运用方程解决实际问题,逐步培养逻辑思维能力和分析问题、解决问题的能力. 做一做: 填空题:1.某公司今年的年产值是1000万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是______万元.2.制造某种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分率是______.3.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm,宽为32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为______cm.解答题:4.有一个两位数恰等于其个位与十位上的两个数字乘积的3倍,已知十位上的数字比个位上的数字小2,求这个两位数.5.某电冰箱厂今年每个月的产量都比上个月增长同样的百分数.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月增长率.6.某养鸡场的矩形鸡舍一边靠墙,另三边用竹篱笆围成,现有材料可制作竹篱笆13m,若欲围成20m2的鸡舍,鸡舍的长、宽应各是多少?问题探究:第6题中,利用13m的竹篱笆,能围成21m2的鸡舍吗?能围成22m2的鸡舍吗?若能围成,求出鸡舍的长和宽,若不能围成,说明理由.22.3 实际问题与一元二次方程(3)学习要求:通过应用一元二次方程解决一些实际问题,进一步体会学数学用数学的意识,培养分析问题和解决问题的能力.做一做:选择题:1.已知两个连续奇数的积为63,求这两个数.设其中一个数为x,甲、乙、丙三同学分别列出方程①x(x+2)=63 ②x(x-2)=63 ③(x-1)(x+1)=63其中正确的是( )(A)只有①(B)只有②(C)只有①②(D)①②③都正确2.某机床厂今年一月份生产机床500台,三月份生产机床720台,求二,三月份平均每月的增长率,设平均每月增长的百分率为x,则列出方程正确的是( )(A)500+500x=720 (B)500(1+x)2=720(C)500+500x2=720 (D)(500+x)2=7203.生物兴趣小组的同学,将自己采集到的标本向本组其他组员各赠送一件,全组共互赠了182件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是( ) (A)x (x +1)=182 (B)x (x -1)=182 (C)x 21(x +1)=182 (D)x 21(x -1)=182 4.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少.设每月的平均增长率为x ,根据题意列方程为( ) (A)50(1+x )2=175 (B)50+50(1+x )2=175 (C)50(1+x )+50(1+x )2=175 (D)50+50(1+x )+50(1+x )2=175 解答题:5.为响应国家“退耕还林”的号召,改变某省水土流失严重的现状,2004年某省退耕还林1600公顷,到2006年全年退耕还林1936公顷,问这两年平均每年退耕还林的增长率是多少? 6.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112元,求甲种债券的年利率.问题探究:在长为a 的线段AB 上有一点C ,且AC 是AB 和BC 的比例中项,试求线段AC 的长.观察与猜想——一元二次方程根与系数的关系学习要求:一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.做一做: 填空题:1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1·x 2=______. 2.若α ,β 是一元二次方程x 2-3x -2=0的两个实数根,则=+βα11______.3.若α ,β 是方程x 2-3x =5的两根,则α 2+β 2-α β 的值是______. 4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).选择题:5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( ) (A)b 2-4ac =0 (B)b =0 (C)c =0 (D)c ≠06.若α ,β 是方程2x 2+3x -4=0的两根,则α +α β +β 的值是( ) (A)-7 (B)213- (C)21-(D)77.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( ) (A)53(B)53-(C)-3 (D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( ) (A)两个实数根的和为23- (B)两个实数根的和为23 (C)两个实数根的积为23 (D)以上说法都不正确解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值:(1);221221x x x x +(2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.问题探究:已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.数学活动(1)学习要求:通过合作、交流、归纳与探索,挖掘一元二次方程两根与一些二次三项式的分解因式之间的内在联系,认识二次三项式的因式分解,并进一步理解一元二次方程的根.做一做:我们已经学过一些特殊的二次三项式的因式分解,如3x 2-2x =x (3x -2) x 2-9=(x +3)(x -3) x 2+4x +4=(x +2)2但对于一般的二次三项式ax 2+bx +c (a ≠0),你能把它分解因式吗? 观察下列各式,你能发现什么呢?方程方程的根分解因式x 2-7x +6=0 x 1= x 2=x 2-7x +6=( )( )x 2+2x -3=0 x 1= x 2= x 2+2x -3=( )( ) 4x 2-12x +9=0 x 1= x 2= 4x 2-12x +9=( )( ) 3x 2+7x +4=0 x 1= x 2=3x 2+7x +4=( )( )通过上面的计算、观察,你能得到什么结论呢?设方程ax 2+bx +c =0(a ≠0)的两个实数根为x 1,x 2,则二次三项式分解因式为ax 2+bx +c =_________________________.你能说说其中的道理吗?根据你们得到的结论,试一试将下列因式分解. (1)x 2+20x -69; (2)24x 2-2x -35;(3)x 2-x -1;(4)2x 2-6x +3.数学活动(2)学习要求:通过合作、交流利用方程的知识解决一些实际问题,体会建立数学模型、学数学用数学的意识,提高学习基本素养.做一做:1.如果与水平面成45°角向斜上方投掷标枪,那么标枪飞行的水平距离S (单位:m)与标枪出手的速度v (单位:m/s)之间大致有如下关系:28.92+=v S .某同学按这种要求投掷标枪,标枪飞行的水平距离为42m ,求标枪出手时的速度(结果精确到0.1m/s).2.某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元? 3.小明将勤工俭学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的450元连同应得税后利息又全部按一年定期存入银行.如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(利息税为利息的20%,结果精确到0.01%).数学活动(3)学习要求:通过合作、交流、实践与探索,初步学习把现实世界的问题化为纯数学的问题,即建立数学模型,培养创新精神与实践能力.课题:洗衣服的数学问题.现在衣物已打好了肥皂,揉搓得很充分了,再拧一拧,当然不可能完全把水拧干,设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂得更干净?(1)如果把衣服一下放到20斤清水里,那么连同衣服上那1斤水,一共21斤水,污物均匀分布在这21斤水里,拧干后,衣服上还有1斤水,所以污物残存量是原来的⋅211如何洗,效果更佳呢?(2)如果衣服上残存水量是1.5斤或2斤,洗衣用水量是37斤,那么又该怎么洗法?复 习学习要求:通过复习,全面认识和理解一元二次方程的有关概念,掌握用公式法、因式分解法求解一元二次方程.理解配方法原理及这一思想的含意,会用方程的思想解决一些实际问题,认识根与系数之间的关系.做一做: 填空题:1.方程(2x -1)(3x +2)=x 2+2化为一般形式后,a =______,b =______,c =______. 2.y 2-4y +______=(y -______)2. 3.+-x x 252______=(x -______)2. 4.如果关于x 的一元二次方程x 2+px +q =0的两个根是x 1=1,x 2=3,那么这个一元二次方程是______.5.等腰△ABC 两边的长分别是一元二次方程x 2-5x +6=0的两个解,则这个等腰三角形的周长是______. 选择题: 6.①,542=-x ②xy =1,③2122=+x x④0312=x ,以上方程中,是一元二次方程的有( )(A)0个 (B)1个 (C)2个 (D)3个 7.x 2-3=3x 化为一般式后,a ,b ,c 的值分别为( ) (A)0,-3,-3 (B)1,-3,3 (C)1,3,-3 (D)1,-3,-3 8.解方程3x 2+27=0得( ) (A)x =±3 (B)x =3 (C)x =-3(D)无实根9.方程0)21()21(2=--+x x 的解是( ) (A)332,021-==x x (B)223,121-==x x (C)322,021-==x x(D)x 1=0,x 2=110.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )(A)若x 2-8=0,则22=x(B)方程x (2x -1)=2x -1的解为x =1(C)若方程x 2+2x +k =0有一个根是-3,则k =-3(D)若分式1232-+-x x x 的值等于零,则x =1或2解答题:11.用适当的方法解下列方程:(1);17.052=+x(2)4x 2+3x =0;(3)x 2-25x +144=0; (4)(3y -2)2-5(3y -2)=14;(5)x 2-6x +6=0;(6)(x +6)(x -7)=14.12.一个两位数的两个数字之和为9,把个位数与十位数字互换后所得的新数乘以原数,积为1458,求这个两位数. 13.有一个两位数等于其各位数字之和的4倍,其中十位数字比个位数字小2,求此两位数.14.已知关于x 的方程x 2-bx -a =0有两等根,且一次函数y =ax +b 的图像如图所示,又a 、b 满足5||2=--b a b ,求a 2+b 2的值.图115.某中学从2008年到2011年四年内师生共植树2008棵,已知该校2008年植树353棵,2009年植树500棵,如果2010年和2011年植树棵数的年增长率相同,那么该校2011年植树多少棵?第二十二章 一元二次方程测试题填空题(每题6分,满分36分)1.一元二次方程的一般形式是________________,当一次项系数为零时,其形式为_______ _________.2.方程2x 2=9的二次项系数是________________,一次项系数是________________常数项是________________ 选择题:3.方程①5x 2-38=x ,②4x 2-5y +9=0,032=x ③,0312=+-xx ④中,是一元二次方程的有( )(A)①② (B)① (C)①③④ (D)①③ 4.把方程x 2+3=4x 配方,得( ) (A)(x -2)2=7 (B)(x +2)2=1 (C)(x -2)2=1(D)(x +2)2=25.方程x 3=3x 的所有的解为( ) (A)0(B)0,3(C)3,3- (D)3,3,0-6.方程(x +m )2=n 2的解为( ) (A)x =-m ± n (B)x =m ±n (C)x =m +n (D)x =-m +n解答题:7.解下列方程:(每题6分,满分36分)(1)x 2-3x +2=0;(2)(y -2)2=3;(3)(2x +1)2+3(2x +1)=0; (4)x 2-4x =8;(5)6x 2-4=2x ;(6)3x 2+5(2x +1)=0.8.(9分)一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数,求这个两位数.9.(9分)某发电厂规定,该厂家属区的每户居民如果一个月的用电量不超过akWh ,那么这个月这户居民只要交10元电费.如果超过akWh ,则这个月除仍要交10元电费外,超过部分还要按100a元/kWh 交费.下表是一户居民3月和4月的用电情况及交费情况:根据表中的数据求a 的值.月份 用电量(kWh)电费总额(元)3 80 25 4451010.(10分)一次函数y =x +b 与反比例函数xk y 3+=图象的交点为A (m ,n ),且m 、n (m <n )是关于x 的一元二次方程kx 2+(2k -7)x +k +3=0的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求点A 的坐标与一次函数、反比例函数的解析式.参考答案第二十二章 一元二次方程22.1 一元二次方程(1)1.5x 2-3x -2=0,5,-3,-2. 2.-1 3.=3 4.≠±2, =-2 5.A 6.D 7.A 8.(1)设宽为x cm ,x (x +2)=15 (2)设两个连续的整数分别为x ,x +1.x 2+(x +1)2=313.(3)设一个数为x .x (6-x )=7问题探究:3k 2+4k -6=022.1 一元二次方程(2)1.x 2+3x -1=0 2.x (x +2)=255 3.x (x -2)=30 4.C 5.D 6.A 7.设小道的宽为x 米.(42-2x )(30-2x )=304221⨯⨯ 问题探究:略 22.2 降次——解一元二次方程(1)1.x 2-3x -10=0,1, -3, -10 2.-20 3.a x ±= 4.n m x ±-= 5.D 6.B 7.C 8.(1)x =±13 (2)x =±5 (3)x 1=1,x 2=-7 (4)6287±=x 问题探究:25或21-22.2 降次——解一元二次方程(2)1.(A)16,4 (B)1,1 (C)21,41 (D).21,41 2.C 3.(1),531+=x 532-=x(2)x 1=1,x 2=-6 (3)x 1=-2,x 2=-4 (4)x 1=2,x 2=-6 (5)233±=x(6)22n m m +±- 问题探究.提示:将a 2b 2+b 2-6ab -4b +14进行配方为a 2b 2-6ab +9+b 2-4b +4+1=(ab -3)2+(b -2)2+1,可证22.2 降次——解一元二次方程(3)1.4x 2+7x +3=0,4,7,3 2.b 2-4ac 3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t 4.D 5.B 6.B 7.(1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 问题探究:C22.2 降次——解一元二次方程(4)1.2131,213121--=+-=x x 2.x 1=-2,x 2=1 3.y 2+4y -140=0 4.C 5.A 6.D 7.(1)x 1=1,x 2=-4 (2)251,25121-=+=x x (3)211=x ,x 2=-3 (4)3131,313121--=+-=x x 问题探究:长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339- 22.2 降次——解一元二次方程(5)1.0 2.x 1=0,x 2=3 3.x 2-x =0,x (x -1)=0,x 1=0,x 2=1 4.D 5.C 6.B 7.(1)x 1=1,x 2=2 (2)x 1=0,x 2=3 (3)x 1=x 2=2 (4)x 1=4,x 2=1 问题探究:1622.2 降次——解一元二次方程(6)1.(2x -1)(x +3) 2.x 1=6,x 2=-1 3.-3,21- 因式分解 4.0或-6 5.B 6.B 7.(1)34,31421==x x (2)31,2121-==x x (3)x 1=8,x 2=-12 (4)x 1=2,x 2=-1 (5)78,421=-=x x (6)25,2121=-=x x 问题探究:1,2,3.提示:分两种情况讨论:(1)当k 2-1=0,即k =±1,检验当k =1时,x =6,k =-1时,x =-3(不合题意舍去) (2)k 2-1≠0时,用因式分解法可得,16,11221-=+=k x k x 因k 为整数,要使x 1,x 2,都为整数,只有k =2,k =3,综上所述k =1,2,322.2 降次——解一元二次方程(7)1.85 2.4或-1 3.2,2 4.12x ,2x 5.B 6.D 7.(1)53,5321-=+=x x (2)52,5221-=+=x x (3)21,221=-=y y (4)23,2121=-=x x (5)3321==y y (6)1,2321==x x 问题探究:8只 22.3 实际问题与一元二次方程(1)1.a 65万元 2.1000a +b 3.22)2(++m m m 4.D 5.C 6.(1)5,9或-5,-9 (2)3,4,5 (3)20% 问题探究:阔为24步,长为36步22.3 实际问题与一元二次方程(2)1.1210 2.10% 3.4 4.24 5.20% 6.长8m ,宽2.5m 或长5m ,宽4 m .问题探究:能围成21m 2的,长为7m ,宽为3m ,也可为长6m ,宽3.5m ,不能围成22m 2的22.3 实际问题与一元二次方程(3)1.C 2.B 3.B 4.D 5.10% 6.10% 问题探究:a 215- 观察与猜想——一元二次方程根与系数的关系1.-2,21- 2.23- 3.24 4.c a +-2 5.C 6.B 7.B 8.D 9.(1)29(2)3 10.21-问题探究:m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意数学活动(1)(1)(x -3)(x +23) (2)(6x +7)(4x -5) (3))251)(251(--+-x x (4))233)(233(2--+-x x 数学活动(2)1.标枪出手时的速度约为19.8m/s . 2.每件衬衫应降价20元 3.这种存款的年利率大约为1.44%数学活动(3)略复 习新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

九年级数学上册-第二十二章-一元二次方程同步练习-新人教版

九年级数学上册-第二十二章-一元二次方程同步练习-新人教版

第二十二章 一元二次方程一。

填空题1、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。

2、若方程02=++q px x 的两个根是2-和3,则q p ,的值分别为 .3、若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

4、已知1322++x x 的值是10,则代数式1642++x x 的值是 .5、对于方程23520x x -+=,a = ,b = ,c = , 24b ac -= 此方程的解的情况是 。

6、当t 时,关于x 的方程032=+-t x x 可用公式法求解。

7、设1x 、2x 是方程23520x x -+=的两个根,则1x +2x = ,12x x ⋅=8、已知关于x 的一元二次方程022=++m x x 有两个不相等的实数根,则m9、 当_________k 时,方程0)12(22=+-++k k x k x 有实数根;10、当_________m 时,方程032)1(2=+++-m mx x m 有两个实数根;二、选择题(1.下列方程中是一元二次方程的是( )。

A.xy +2=1 B 。

09212=-+x x C 。

x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 3.若1762+--x x x 的值等于零,则x 的值是( ) A 7或—1 B -7或1 C 7 D —14.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0 B 。

1 C 。

—1 D. 25、若12+x 与12-x 互为倒数,则实数x 为( )(A )±21 (B )±1 (C )±22 (D )±2 6.若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )(A )1- (B)1 (C)21- (D )21 7、.关于x 的一元二次方程02=++m nx x 的两根中只有一个等于0,则下列条件正确的是( )(A)0,0==n m (B)0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m8.关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤09、等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( )A .8B .10C .8或10D . 不能确定10、.若关X 的一元二次方程036)1(2=++-x x k 有实数根,则实数k 的取值范围( )A 。

湘教版九年级数学上册《2.2 一元二次方程的解法》同步练习(附答案)

湘教版九年级数学上册《2.2 一元二次方程的解法》同步练习(附答案)

湘教版九年级数学上册《2.2 一元二次方程的解法》同步练习(附答案)一、选择题1.一元二次方程x2﹣4=0的解是( )A.x=2B.x=﹣2C.x1=2,x2=﹣2 D.x1=2,x2=﹣ 22.若方程x2=m的解是有理数,则实数m不能取下列四个数中的( )A.1B.4C.14 D.123.用配方法解方程x2+1=8x,变形后的结果正确的是( )A.(x+4)2=15B.(x+4)2=17C.(x-4)2=15D.(x-4)2=174.用配方法解3x2﹣6x=6配方得( )A.(x﹣1)2=3B.(x﹣2)2=3C.(x﹣3)2=3D.(x﹣4)2=35.用公式法解方程3x2+4=12x,下列代入公式正确的是( )A.x1、2= B.x1、2=C.x1、2= D.x1、2=6.方程x(x﹣2)+x﹣2=0的解是( )A.x1=0,x2=0 B.x1=﹣1,x2=﹣2C.x1=﹣1,x2=2 D.x1=0,x2=﹣27.下列说法正确的是( )A.x2+4=0,则x=±2B.x2=x的根为x=1C.x2﹣2x=3没有实数根D.4x2+9=12x有两个相等的实数根8.若关于x的一元二次方程x2+mx+n=0的两个实根分别为5,﹣6,则二次三项式x2+mx+n 可分解为( )A.(x+5)(x﹣6)B.(x﹣5)(x+6)C.(x+5)(x+6)D.(x﹣5)(x﹣6)9.对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是( )A.非正数B.非负数C.正数D.负数10.已知实数m,n同时满足m2+n2-12=0,m2-5n-6=0,则n的值为( )A.1B.1,-6C.-1D.-6二、填空题11.方程:(2x﹣1)2﹣25=0的解为______.12.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.13.用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=______,k=______.14.用配方法解一元二次方程x2+2x﹣3=0 时,方程变形正确的是(填序号)①(x﹣1)2=2 ②(x+1)2=4 ③(x﹣1)2=1④(x+1)2=7.15.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为________.16.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .三、解答题17.解方程:2x2﹣4x+1=0(配方法)18.解方程:2x2-6x-1=0(公式法)19.解方程:x(x+4)=﹣3(x+4)(因式分解法).20.已知方程x2﹣4x+m=0的一个根为﹣2,求方程的另一根及m的值.21.用公式法解方程:2x2+7x=4.解:∵a=2,b=7,c=4∴b2-4ac=72-4×2×4=17.∴x=-7±174即x1=-7+174,x2=-7-174.上述解法是否正确?若不正确,请指出错误并改正.22.解答下列各题:(1)当x为何值时,x2-10x+12的值为-13?(2)当x为何值时,x2-7x-13的值与2x-13的值相等?23.如图,有一块长方形空地ABCD,要在中央修建一个长方形花圃EFGH,使其面积为这块空地面积的一半,且花圃四周道路的宽相等.现无测量工具,只有一条无刻度且足够长的绳子,则该如何确定道路的宽?24.已知下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0②x2+x﹣2=0③x2+2x﹣3=0…(n)x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程①、②、③、(n);(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.答案1.C.2.D3.C4.A.5.D6.C.7.D.8.B9.D.10.A11.答案为:3,﹣2.12.答案为:﹣2.13.答案为:34 116. 14.答案为:②.15.答案为:1616.答案为:﹣0.5或1.17.解:(1)2x 2﹣4x +1=02x 2﹣4x =﹣1x 2﹣2x =﹣12 (x ﹣1)2=12x ﹣1=±22解得x 1=1﹣22,x 2=1﹣22; 18.解:a =2,b =-6,c =-1Δ=b 2-4ac =(-6)2-4×2×(-1)=44.∴x=6±2114.∴x1=3+112,x2=3-112.19.解:x(x+4)+3(x+4)=0 (x+4)(x+3)=0x+4=0或x+3=0所以x1=﹣4,x2=﹣3.20.解:把x=﹣2代入方程x2﹣4x+m=0得:4+8+m=0解得:m=﹣12即方程为x2﹣4x﹣12=0设方程的另一个根为a,则a+(﹣2)=4即得:a=6即方程的另一根为6,m=﹣12.21.解:不正确.错误原因:没有将方程化成一般形式,造成常数项c的符号错误. 正解:移项,得2x2+7x-4=0∵a=2,b=7,c=-4∴b2-4ac=72-4×2×(-4)=81.∴x=-7±812×2=-7±94.即x1=-4,x2=12.22.解:(1)由题意,得x2-10x+12=-13 ∴x2-10x+25=0,(x-5)2=0∴x1=x2=5∴当x=5时,x2-10x+12的值为-13.(2)由题意,得x2-7x-13=2x-13∴x2-9x=0∴x(x-9)=0∴x1=0,x2=9∴当x=0或9时,x2-7x-13的值与2x-13的值相等.23.解:设道路的宽为x, AD=a, AB=b不妨设a<b,则x<a 2 .由题意,得(a﹣2x)(b﹣2x)=12ab解方程,得x=a+b±a2+b24.当x=a+b+a2+b24时,4x=a+b+a2+b2>a+b>2a,∴x>a2∴x=a+b+a2+b24不合题意,舍去∴x=a+b-a2+b24.又∵BD=a2+b2∴x=14(AB+AD﹣BD).具体做法:先用绳子量出AB和AD的长度之和,并减去BD的长,再将AB+AD﹣BD对折两次,即得道路的宽x=14(AB+AD﹣BD).24.解:(1)①(x+1)(x﹣1)=0所以x1=﹣1,x2=1②(x+2)(x﹣1)=0所以x1=﹣2,x2=1;③(x+3)(x﹣1)=0所以x1=﹣3,x2=1;(n)(x+n)(x﹣1)=0所以x1=﹣n,x2=1(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等等.。

数学:人教版九年级上 第22章 一元二次方程(同步练习)

数学:人教版九年级上 第22章 一元二次方程(同步练习)

第22章一元二次方程复习题双基演练一、选择题1.下面关于x的方程中①ax2+bx+c=0;②3<x-9)2-<x+1)2=1;③x+3=;④<a2+a+1)x2-a=0;④=x-1.一元二次方程的个数是< )A.1 B.2 C.3 D.42.要使方程<a-3)x2+<b+1)x+c=0是关于x的一元二次方程,则< )A.a≠0 B.a≠3C.a≠1且b≠-1 D.a≠3且b≠-1且c≠03.若<x+y)<1-x-y)+6=0,则x+y的值是< )A.2 B.3 C.-2或3 D.2或-34.若关于x的一元二次方程3x2+k=0有实数根,则< )A.k>0 B.k<0 C.k≥0 D.k≤05.下面对于二次三项式-x2+4x-5的值的判断正确的是< )A.恒大于0 B.恒小于0 C.不小于0 D.可能为06.下面是某同学在九年级期中测试中解答的几道填空题:<1)若x2=a2,则x= a ;<2)方程2x<x-1)=x-1的根是 x=0 ;<3)若直角三角形的两边长为3和4,则第三边的长为 5 .•其中答案完全正确的题目个数为< )GC8ZJaQQrLA.0 B.1 C.2 D.37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,•而按原定价的九折出售,将赚20元,则这种商品的原价是< )GC8ZJaQQrLA.500元 B.400元 C.300元 D.200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,•则第二季度共生产零件< )GC8ZJaQQrLA.100万个 B.160万个 C.180万个 D.182万个二、填空题9.若a x2+bx+c=0是关于x的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x的方程x2+3x+k2=0的一个根是-1,则k=_______.11.若x=2-,则x2-4x+8=________.12.若<m+1)+2mx-1=0是关于x的一元二次方程,则m 的值是________.13.若a+b+c=0,且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是_______.GC8ZJaQQrL14.若矩形的长是6cm,宽为3cm,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.GC8ZJaQQrL15.若两个连续偶数的积是224,则这两个数的和是__________.三、计算题<每题9分,共18分)16.按要求解方程:<1)4x2-3x-1=0<用配方法); <2)5x2-x-6=0<精确到0.1)GC8ZJaQQrL17.用适当的方法解方程:<1)<2x-1)2-7=3<x+1); <2)<2x+1)<x-4)=5;GC8ZJaQQrL<3)<x2-3)2-3<3-x2)+2=0.能力提升18.若方程x2-2x+<2-)=0的两根是a和b<a>b),方程x-4=0的正根是c,试判断以a、b、c为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.GC8ZJaQQrL19.已知关于x的方程<a+c)x2+2bx-<c-a)=0的两根之和为-1,两根之差为1,•其中a,b,c是△ABC的三边长.GC8ZJaQQrL<1)求方程的根;<2)试判断△ABC的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?GC8ZJaQQrL21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11•公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N<N<12)是多少元.GC8ZJaQQrL聚焦中考22.方程的根是< )A B C D23.某种商品零售价经过两次降价后的价格为降价前的,则平均每次降价< )A.B.C.D.24.关于x的一元二次方程的根的情况是< ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定25.已知a 、b 、c 分别是三角形的三边,则方程(a + b>x2 +2cx + (a + b>=0的根的情况是< )GC8ZJaQQrL A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根26.关于的一元二次方程的一个根为1,则方程的另一根为 .27.小华在解一元二次方程x2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____.GC8ZJaQQrL 28.在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形<图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

《22.2二次函数与一元二次方程》同步练习(有答案)

《22.2二次函数与一元二次方程》同步练习(有答案)

人教版数学九年级上册三年中考真题同步练习22.2 二次函数与一元二次方程一.选择题(共16小题)1.(2020•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁2.(2020•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B (3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1 B.2 C.3 D.43.(2020•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.34.(2020•莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2 5.(2020•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限6.(2020•广安)如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3其中正确的有()个.A.1 B.2 C.3 D.47.(2020•随州)对于二次函数y=x2﹣2mx﹣3,下列结论错误的是()A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小8.(2020•恩施州)如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B 作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);=5,⑤S四边形ABCD其中正确的个数有()A.5 B.4 C.3 D.29.(2020•盘锦)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A.2个 B.3个 C.4个 D.5个10.(2020•枣庄)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大11.(2020•徐州)若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<112.(2020•苏州)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0 13.(2020•朝阳)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3 B.﹣2或﹣3 C.1或﹣2或3 D.1或﹣2或﹣3 14.(2020•永州)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣215.(2020•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1 16.(2020•贵阳)若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x ﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<a<b<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二.填空题(共8小题)17.(2020•自贡)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m 的值为.18.(2020•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a >0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.19.(2020•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.20.(2020•乐山)对于函数y=x n+x m,我们定义y'=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y'=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.21.(2020•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.22.(2020•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.23.(2020•大连)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.24.(2020•荆州)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.三.解答题(共8小题)25.(2020•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.26.(2020•云南)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.27.(2020•杭州)设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).(1)判断该二次函数图象与x轴的交点的个数,说明理由.(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.28.(2020•兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.29.(2020•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.30.(2020•荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.31.(2020•牡丹江)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)32.(2020•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.参考答案一.选择题(共16小题)1.B.2.B.3.C.4.A.5.C.6.B.7.C.8.C.9.B.10.D.11.A.12.A.13.C.14.A.15.C.16.D.二.填空题(共8小题)17.﹣1.18.﹣2.19.x1=﹣2,x2=1.20.且.21.m>9.22.<a<或﹣3<a<﹣2.23.(﹣2,0).24.﹣1或2或1.三.解答题(共8小题)25.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.26.解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).27.解:(1)由题意△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴二次函数图象与x轴的交点的个数有两个或一个(2)当x=1时,y=a+b﹣(a+b)=0∴抛物线不经过点C把点A(﹣1,4),B(0,﹣1)分别代入得解得∴抛物线解析式为y=3x2﹣2x﹣1(3)当x=2时m=4a+2b﹣(a+b)=3a+b>0①∵a+b<0∴﹣a﹣b>0②①②相加得:2a>0∴a>028.解:(1)∵顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0),∴点C的坐标为(﹣1,0),设抛物线的解析式为y=a(x﹣3)(x+1),把A(1,﹣4)代入,可得﹣4=a(1﹣3)(1+1),解得a=1,∴抛物线的解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.29.解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.30.(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.31.解:(1)∵抛物线y=x2+bx+c经过点(﹣1,8)与点B(3,0),∴解得:∴抛物线的解析式为:y=x2﹣4x+3(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴P(2,﹣1)过点P作PH⊥Y轴于点H,过点B作BM∥y轴交直线PH于点M,过点C作CN ⊥y轴叫直线BM于点N,如下图所示:S△CPB=S矩形CHMN﹣S△CHP﹣S△PMB﹣S△CNB=3×4﹣×2×4﹣﹣=3即:△CPB的面积为332.解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.。

人教版九年级数学上第22章二次函数22.2《二次函数与一元二次方程》同步练习(含答案)

人教版九年级数学上第22章二次函数22.2《二次函数与一元二次方程》同步练习(含答案)

22.2《二次函数与一元二次方程》同步练习一、选择题1.已知抛物线y=ax2+bx+c的图象如图,则一元二次方程ax2+bx+c=0( )A.没有实根B.有两个实根,且一根为正,一根为负C.只有一个实根D.有两个实根,且一根小于1,一根大于22.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点3.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根4.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( )A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<05.直线y=4x+1与抛物线y=x2+2x+k有唯一交点,则k是( )A.0 B.1 C.2 D.-16.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )A.有两个交点B.有一个交点C.没有交点D.可能有一个交点7.y=x2+kx+1与y=x2-x-k的图象相交,若有一个交点在x轴上,则k值为( )1A.0 B.-1 C.2 D.48.已知二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根9.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( ) A .a x b ay +=2B .a x b a y +-=22 C .a x ba y --=22 D .a x bay -=2210.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( ) A .m <a <b <n B .a <m <n <b C .a <m <b <nD .m <a <n <b二、填空题11.二次函数y =ax 2+bx +c (a ≠0)与x 轴有交点,则b 2-4ac ______0;若一元二次方程ax 2+bx +c =0两根为x 1,x 2,则二次函数可表示为y =________. 12.若二次函数y =x 2-3x +m 的图象与x 轴只有一个交点,则m =______. 13.若二次函数y =mx 2-(2m +2)x -1+m 的图象与x 轴有两个交点,则m 的取值范围是______.14.若二次函数y =ax 2+bx +c 的图象经过P (1,0)点,则a +b +c =______. 15.若抛物线y =ax 2+bx +c 的系数a ,b ,c 满足a -b +c =0,则这条抛物线必经过点______.16.关于x 的方程x 2-x -n =0没有实数根,则抛物线y =x 2-x -n 的顶点在第______象限.1.二次函数y=-x 2+4x -3的图象交x 轴于A 、B 两点,交y 轴于C 点,则△ABC 的面积为( )A .6B . 4C .3D .117.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.18.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98 三、解答题19.已知抛物线y =ax 2+bx +c 与x 轴的两个交点的横坐标是方程x 2+x -2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.20.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如下表:(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x③252,02121<<<<-x x④223,21121<<-<<-x x22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.参考答案1.D . 2.B . 3.C . 4.D .5.C . 6.A . 7.C . 8.D . 9.B . 0.A . 11.≥0,y =a (x -x 1)(x -x 2). 12.⋅4913.31->m 且m ≠0. 1 4.0. 15.(-1,0). 1 6.一.12.45665182-+-=x x y 或y =2x 2+2x -4. 17.4,(1,9). 18.⋅9819.y =2x 2+2x -4.20.21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当=1+4m ≥0,即41-≥m 时两线有公共点.(2)当=1+4m <0,即41-<m 时两线无公共点.24.(1)=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6.。

22.1一元二次方程(第一课时)同步练习

22.1一元二次方程(第一课时)同步练习

21.1一元二次方程(第一课时)同步练习题一、填空题1.一元二次方程中,只含有_____个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为____ ___,二次项系数为______,一次项系数为______,常数项为______.3.把方程2(21)(1)(1)x x x x 化成一般形式是.4.把(x +3)(2x +5)-x(3x -1)=15化成一般形式为______,a=______,b=______,c=______.5.关于x 的方程2(1)230m xmx 是一元二次方程,则m 的取值范围是.6. 若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.7.若x x m -m 222)(-3=0是关于x 的一元二次方程,则m 的值是______.8.如果两个连续奇数的积是323,求这两个数,如果设其中较小奇数为x ,? 则可列方程为:.9.如图,在宽为20m ,长30m 的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为5002m ,若设路宽为x 则可列方程为:.10.有一面积为542m 的长方形,将它的一边剪短5m ,另一边剪短2m ,恰好变成一个正方形,求这个正方形的边长?设正方形的边长为m x ,则可列方程为.二、选择题1.下列关于x 的方程:①20ax bx c ;②2430x x ;③2540xx ;④23x x 中,一元二次方程的个数是()A .1个 B .2个C .3个D .4个2.如果关于x 的方程03372x x mm 是关于x 的一元二次方程,那么m 的值为() A .±3 B .3 C .-3 D .都不对3.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,?全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是() A .1821x x B .1821x x C .18212x x D.21821x x三、解答题1.若关于x 的方程05531x m x mm 是一元二次方程,试求m 的值,?并计算这个方程的各项系数之和.2.求方程422322x x 的二次项系数,一次项系数及常数项的积.3.若关于x 的方程051422x k x k 是一元二次方程,求k 的取值范围.。

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

二次函数与一元二次方程的关系同步练习题一、单选题(每小题3分,共66分)1.抛物线y=x 2﹣2x+1与坐标轴交点个数为( )A . 无交点B . 1个C . 2个D . 3个2.抛物线y=2(x+1)2﹣2与y 轴的交点的坐标是( )A . (0,﹣2)B . (﹣2,0)C . (0,﹣1)D . (0,0)3.若二次函数y=x 2+bx+c 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,且过点(5,5),则关于x 的方程x 2+bx+c=5的解为( )A .x 1=0或x 2=4B .x 1=1或x 2=5C .x 1=﹣1或 x 2=5D .x 1=1或x 2=﹣54.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c>0的解集是( ).A .B .C . 且D . 或5.二次函数与 的图像与x 轴有交点,则k 的取值范围是( )A .B . 且C .D . 且6.如图,二次函数 的图象交 轴于 , 两点,交 轴于 ,则 的面积为( )A .B .C .D .7.抛物线 的对称轴是( )A .B .C .D .8.二次函数 2y ax bx =+ 的图象如图,若一元二次方程2ax bx k 0++= 有实数解,则k 的最小值为( ) A . -4 B . -6 C . -8 D . 09.已知二次函数y =x 2-2x +c 的图象与x 轴的一个交点为(-3,0),则方程x 2-2x +c =0的两个根是( )A . -3,1B . 5,-3C . 4,-3D . 3,-310.若二次函数y =x 2+(m +1)x -m 的图象与坐标轴只有两个交点,则满足条件 的m 的值有( )A . 1个B . 2个C . 3个D . 4个11.在-3≤x≤0范围内,二次函数y=ax 2+bx+c(a≠0)的图像如图所示.在这个范围内,下列结论:①y 有最大值1,没有最小值;②当-3<x<-1时,y 随着x 的增大而增大;③方程ax 2+bx+c-12=0有两个不相等的实数根 .其中正确结论的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个12.若抛物线y=x 2-6x+m-2(m 是常数)与x 轴只有一个交点A ,则点A 坐标为( )A . (-3,0)B . (-2,0)C . (3,0)D . (6,0)13.如果二次函数2y ax bx c =++(a>0)的顶点在x 轴的上方,那么( )A .240b ac -≥B .240b ac -<C .240b ac ->D .240b ac -=14.将二次函数y =2 x 2-4x -1的图像向右平移3个单位,则平移后的二次函数的 顶点是( )A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)15.函数y=ax 2﹣2x+1和y=ax+a (a 是常数,且a≠0)在同一直角坐标系中的图象 可能是( )16.如图是二次函数y=ax 2+bx+c 的图象,其对称轴为x=1,下列结论:①abc >0; ②2a+b=0;③4a+2b+c <0;④若 , , , 是抛物线上两点,则y 1<y 2其中结论正确的是( )A .①②B .②③C .②④D .①③④17.如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c <0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( )A . 1个B . 2个C . 3个D . 4个18.二次函数y=ax 2+bx+c 的图象如图所示对称轴是x=-1以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A . 1B . 2C . 3D . 419.一次函数 与二次函数在同一个坐标系中的图象可能是( )20.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()21.二次函数y=x2+bx﹣1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t ≥﹣2 B.﹣2≤t<7 C.﹣2≤t<2 D.2<t<722.如果二次函数的图象在轴的下方,则的取值范围为()A.B.C.D.二、填空题(每小题3分,共24分)23.已知抛物线与轴一个交点的坐标为,则一元二次方程ax2-2ax+c=0的根为__________.24.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则关于x的方程ax2+bx+c=0的两个根是_____.25.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为.26.若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是_____.27.如图所示,抛物线y=ax2+bx+c(a0)与轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是___________.28.抛物线与轴的交点坐标是________,与轴的交点坐标是________.29.直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是_____.30.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(每小题10分,共30分)31.已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2) 设该二次函数图象的对称轴与x轴交于点C,连接BA,BC,求ABC的面积和周长.32.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相=kx+b经过点B,C.交于点C,直线y(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.33.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的解析式;(2)设P为对称轴上一动点,求APC周长的最小值;(3)求△ABC的面积.二次函数与一元二次方程的关系同步练习题参考答案1.C 2.D 3.C 4.A 5.D 6.C 7.B 8.A 9.B 10.C 11.C 12.C 13.B 14.C 15.C.16.C 17.B 18.C 19.D 20.C.21.B 22.A 23.x1=-1、x2=324.x1=﹣1,x2=3 25.﹣3.26.m>927.x<-1或x>2 28.,,29.1<x<2.30.②⑤.31.(1)二次函数的解析式是y=-x2+4x-6;(2) S△ABC=6,△ABC的周长= 2+2+2.32.(1)y=x-3;(2)当y1>y2时,x<0和x>3.33.(1)y=x2-4x+3;(2)△APC的周长=3;(3)S△ABC=3.。

数学:22.2《解一元二次方程》同步练习(人教版九年级上)

数学:22.2《解一元二次方程》同步练习(人教版九年级上)

数学:22.2《解一元二次方程》同步练习(人教版九年级上) 学习目标:
选择合适的方法解一元二次方程
学习过程:
一、自主学习:解下列方程:
1. 270x
x -= 2. 21227x x += 3、X (x-2)+X-2=0
4. 224x
x +-= 5、5x 2-2X-41 =x 2-2X+43 6. 224(2)9(21)x x +=-
二、归纳总结:
1、解一元二次方程的基本思路是:
2、一元二次方程主要有四种解法,它们的理论根据和适用范围如下表:
3、一般考虑选择方法的顺序是:
三、巩固练习:习题
四、课堂检测
1、方程2(4)5(4)x x x -=-的根是( )
A. 52x =
B.4x =
C.152x =-24x =
D. 52
x =- 2、一元二次方程24210x x +-=的根是__________________________.
3、当x =____________时,代数式21230x x ++的值等于3.
4、两个数的和为-7,积为12,这两个数是_____________________.
5、解下列方程:
(1) (23)(4)(32)(15)x x x x -+=-- (2) 2156042
x x +-=
(3) 2(21)
(63)x x x -=- (4) 2670x x +-=
6、一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,这次会议到会的人数是多少?。

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学一元二次方程 (2)第1课时一元二次方程 (2)答案 (3)第2课时一元二次方程 (5)答案 (6)第3课时花边有多宽 (7)答案 (9)同步练习一元二次方程第1课时一元二次方程1、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。

2、方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范畴是。

3、关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,那么m= 。

4、关于x的一元二次方程(k-1)x2+2x-k2-2k+3=0的一个根为零,那么k= 。

5、关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,假设原方程是一元一次方程,那么m的取值范畴是。

6、关于x的方程(m2-1)x2+(m+1)x+m-2=0是一元二次方程,那么m的取值范畴是;当m= 时,方程是一元二次方程。

7、把方程a(x2+x)+b(x2-x)=1-c写成关于x的一元二次方程的一样形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。

8、关于x的方程(m+3)x2-mx+1=0是几元几次方程?9、210.01 4y=10、53x0.22=-11、(x+3)(x-3)=912、(3x+1)2-2=013、(x+2)2=(1+2)214、0.04x2+0.4x+1=015、(2x-2)2=616、(x-5)(x+3)+(x-2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。

18、方程:①2x 2-3=0;②1112=-x;③131212=+-yy;④ay2+2y+c=0;⑤(x+1)(x-3)=x2+5;⑥x-x2=0 。

其中,是整式方程的有,是一元二次方程的有。

22.2-二次函数与一元二次方程-同步练习(含答案)

22.2-二次函数与一元二次方程-同步练习(含答案)

22.2二次函数与一元二次方程学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,抛物线()²0y ax bx c a =++≠与x 轴交于点A ,B ,对称轴为直线2x =-,若点A 的坐标为()50-,,则下列结论:①点B 的坐标为()10,;②420a b c ++<;③4a b =;④点()()x y x y ₁,₁,₂,₂在抛物线上,当2x x <<-₁₂时,则y y >₁₂,其中正确的个数为( )A .1个B .2个C .3个D .4个2.如图,顶点为(3,6)--的抛物线2(0)y ax bx c a =++≠经过点(1,4)--,则下列结论中正确的是( )A .240b ac -<B .若点(2,),(4,)--m n 在抛物线上,则m n >C .当3x <-时,y 随x 的增大而减小D .关于x 的一元二次方程27(0)++=-≠ax bx c a 有两个不相等的实数根3.下列抛物线中,过原点的抛物线是( )A .y =4x 2- 1B .y =4x 2+ 1C .y = 4(x + 1) 2D .y = 4x 2+ x4.无论k 为何值,直线22y kx k =-+与抛物线223y ax ax a =--总有公共点,则a 的取值范围是( )A .0a >B .23a ≤-C .23a ≤-或0a >D .23a ≥-5.二次函数y=mx 2+x ﹣2m (m 是非0常数)的图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1个或2个6.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:①方程20ax bx c ++=的两根之和大于0; ②;y ③随x 的增大而增大;④,⑤2a-b>0. 其中正确的个数( )A .4个B .3个C .2个D .1个7.已知二次函数2y x bx c =++的顶点为()2,1,那么关于x 的一元二次方程20x bx c ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定8.如图是二次函数的部分图象,由图象可知不等式的解集是( )A .B .C .D .9.已知二次函数22y x x k =-+(k 为常数)的图象与x 轴的一个交点是()10-,,则关于x 的一元二次方程220x x k -+=的两个实数根是( )A .11x =-,23x =-B .11x =,23x =C .11x =-,23x =D .11x =,23x =-10.如图1,抛物线y=-x 2+bx+c 的顶点为P ,与x 轴交于A ,B 两点.若A ,B 两点间的距离为m ,n 是m 的函数,且表示n 与m 的函数关系的图象大致如图2所示,则n 可能为( )A .PA+AB B .PA-ABC .AB PAD .PA AB11.已知二次函数()220y ax ax c a =++≠图象经过点()34,,则关于x 的方程()()2212214a x a x c ++++=的两个根是( )A .3或5-B .1或1-C .3或0.5-D .1或3-12.如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,甲、乙、丙、丁得出如下结论:甲:abc >0;乙:方程ax 2+bx +c =﹣2有两个不等实数根;丙:3a +c >0;丁:当x ≥0时,抛物线y =ax 2+bx +c 既有最大值,也有最小值.则以上正确的是( )A .甲、乙B .乙、丙C .甲、丁D .乙、丙、丁二、填空题13.如图,某运动员推铅球,铅球行进高度(m)y 与水平距离(m)x 之间的关系是21162025y x x =-++,则此运动员将铅球推出的距离是m .14.抛物线2y ax bx c =++(a ,b ,c 是常数),且0a b c ++=,有下列结论:①该抛物线经过点(1,0);②若a b =,则抛物线经过点(-2,0);③若a ,c 异号,则抛物线与x 轴一定有两个不同的交点;④点()()1122,,,A x y B x y 在抛物线上,且121x x <<,若0a c <<,则12y y <.其中所有正确结论的序号是 .15.如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:0abc <①;1030a b c ++>②;③抛物线经过点()14,y 与点()23,y -,则12y y >;④方程20cx bx a ++=的一个解是1x =;20am bm a ++≥⑤,其中所有正确的结论是 .的三、解答题18.已知二次函数y=x 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:x…-11234…y …830-103…(1)求该二次函数的解析式;(2)当x 为何值时,y 有最小值,最小值是多少?(3)若A (m,y 1),B(m+2,y 2)两点都在该函数的图象上,计算当m 取何值时,12y y >?19.定义:将二次函数20y ax bx c a =++>()在x 轴下方部分沿x 轴向上翻折,翻折后部分与原来末翻折部分形成一个新的函数G ,那么称函数G 为原二次函数的有趣函数.(1)二次函数223y x x =++_______________(有/没有)有趣函数.(2)已知二次函数与x 轴交于点(1,0),(5,0),与y 轴交于点()0,5A ,求拋物线的解析式,并在坐标系中画出函数图像.(3)在(2)的条件下:①过点A 作x 轴的平行线与抛物线交于点B ,求线段AB 的长度.②若函数G 为原二次函数的有趣函数,画出函数G 的图像并求解当函数G 的函数值大于2时,自变量x 的取值范围(直接写出答案).20点(1)(2)(3)),当21在点,点,A B 在抛物线上,,OA OB 关于轴对称.4OC =分米,点A 到轴的距离是2分米,,A B 两点之间的距离是12分米.(1)求抛物线的解析式(不要求写自变量x 取值范围);(2)如图③,分别延长,AO BO 交拋物线于点,E F ,请直接写出,E F 两点间距离的值;(3)如图③,以拋物线与坐标轴的三个交点为顶点的三角形面积为1S ,将拋物线向左平移(0)m m >个单位,得到一条新拋物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为2S .若2112S S =,求m 的值.22.利用二次函数的图象求一元二次方程22150x x +-=的近似根.23.已知二次函数21y x bx c =+++的图象过点()21P -,(1)求证:26c b =--;(2)求证:此二次函数的图象与x 轴必有两个交点;(3)若二次函数的图象与x 轴交于点()10A x ,、()20B x ,,4AB =,求b 的值.24.已知函数y =(m +14)x 2+(2m ﹣1)x ﹣3.求证:不论m 为何值,该函数图象与x 轴必有交点.参考答案:题号12345678910答案B C D C C B C D C C 题号1112 答案DB1.B 2.C 3.D 4.C 5.C 6.B 7.C 8.D 9.C 10.C 11.D 12.B 13.1214.①②③15.②⑤16.x <-1或x >317.11x =-,23x =18.(1)y=x 2-4x+3;(2)当x=2时,y min =-1;(3)m <1.19.(1)没有(2)265y x x =-+(3)①6;②3x <33x <<3x >20.(1)()()()()4,4,3,3,4,4,3,3----(2)1t <<-1(3)48m ≤≤21.(1)21418y x =-+(2)24分米(3)6m =或m =22.13x =-,252x =23.(1)略;(2)略;(3)14b =,24b =-;24.略.。

2022年人教版《一元二次方程》同步练习附答案题

2022年人教版《一元二次方程》同步练习附答案题

人人教版九年级数学上册第21章《一元二次方程》同步练习1带答案◆随堂检测1、判断以下方程,是一元二次方程的有____________.〔1〕32250x x -+=; 〔2〕21x =; 〔3〕221352245x x x x --=-+; 〔4〕22(1)3(1)x x +=+;〔5〕2221x x x -=+;〔6〕20ax bx c ++=. 〔提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.〕2、以下方程中不含一次项的是〔〕A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.4、1、以下各数是方程21(2)23x +=解的是〔〕 A 、6 B 、2 C 、4 D 、05、根据以下问题,列出关于x 的方程,并将其化成一元二次方程的一般形式. 〔1〕4个完全相同的正方形的面积之和是25,求正方形的边长x .〔2〕一个矩形的长比宽多2,面积是100,求矩形的长x .〔3〕一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长x . ◆典例分析关于x 的方程22(1)(1)0m x m x m --++=.〔1〕x 为何值时,此方程是一元一次方程?〔2〕x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。

分析:此题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解. 解:〔1〕由题意得,21010m m ⎧-=⎨+≠⎩时,即1m =时, 方程22(1)(1)0m x m x m --++=是一元一次方程210x -+=.〔2〕由题意得,2(1)0m -≠时,即1m ≠±时,方程22(1)(1)0m x m x m --++=21m -、一次项系数是(1)m -+、常数项是m .◆课下作业●拓展提高1、以下方程一定是一元二次方程的是〔 〕A 、22310x x+-= B 、25630x y --= C 、220ax x -+= D 、22(1)0a x bx c +++=2、2121003m x x m -++=是关于x 的一元二次方程,那么x 的值应为〔 〕 A 、m =2 B 、23m =C 、32m =D 、无法确定 3、根据以下表格对应值:x2ax bx c ++ 1 3判断关于x 的方程20,(0)ax bx c a ++=≠的一个解x 的范围是〔〕A 、xB 、3.24<xC 、5<xD 、<x4、假设一元二次方程20,(0)ax bx c a ++=≠有一个根为1,那么=++c b a _________;假设有一个根是-1,那么b 与a 、c 之间的关系为________;假设有一个根为0,那么c=_________.5、下面哪些数是方程220x x --=的根?-3、-2、-1、0、1、2、3、6、假设关于x 的一元二次方程012)1(22=-++-m x x m 的常数项为0,求m 的值是多少?●体验中考1、〔2021年,武汉〕2x =是一元二次方程220x mx ++=的一个解,那么m 的值是〔 〕A .-3B .3C .0D .0或3〔点拨:此题考查一元二次方程的解的意义.〕2、〔2021年,日照〕假设(0)n n ≠是关于x 的方程220x mx n ++=的根,那么m n +的值为〔 〕A .1B .2C .-1D .-2〔提示:此题有两个待定字母m 和n ,根据条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.〕参考答案:◆随堂检测1、〔2〕、〔3〕、〔4〕 〔1〕中最高次数是三不是二;〔5〕中整理后是一次方程;〔6〕中只有在满足0a ≠的条件下才是一元二次方程.2、D 首先要对方程整理成一般形式,D 选项为2250x -=.应选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式231170x x --=,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B 能使等式成立.应选B.5、解:〔1〕依题意得,2425x =,化为一元二次方程的一般形式得,24250x -=.〔2〕依题意得,(2)100x x -=,化为一元二次方程的一般形式得,221000x x --=.〔3〕依题意得,222(2)10x x +-=, 化为一元二次方程的一般形式得,22480x x --=.◆课下作业●拓展提高1、D A 中最高次数是三不是二;B 中整理后是一次方程;C 中只有在满足0a ≠的条件下才是一元二次方程;D 选项二次项系数2(1)0a +≠恒成立.故根据定义判断D.2、C 由题意得,212m -=,解得32m =.应选D. 3、B 当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.应选B.4、0;b a c =+;0 将各根分别代入简即可.5、解:将3x =-代入方程,左式=2(3)(3)20----≠,即左式≠3x =-不是方程220x x --=的根.同理可得2,0,1,3x =-时,都不是方程220x x --=的根.当1,2x =-1,2x =-都是方程220x x --=的根. 6、解:由题意得,21010m m ⎧-=⎨-≠⎩时,即1m =-时,012)1(22=-++-m x x m 的常数项为0.●体验中考1、A 将2x =带入方程得4220m ++=,∴3m =-.应选A.2、D 将x n =带入方程得220n mn n ++=,∵0n ≠,∴20n m ++=,∴2m n +=-.应选D. 第二套 《随机事件与概率》同步练习及答案知识点⒈在一定条件下可能发生的事件,叫随机事件。

九年级(上)第22章《一元二次方程》同步练习(二)

九年级(上)第22章《一元二次方程》同步练习(二)

九年级(上)第22章《一元二次方程》同步练习(二)一、填空题1.若关于的一元二次方程的一个根是,则另一个根是______.2.当 时,分式的值为零;当x=______时,代数式3x 2-6x 的值等于12.3.方程(3)(1)3x x x -+=-的解是 .方程的解是 . 4.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m 的值是________.5.已知关于x 的一元二次方程有两个不相等的实数根,则实数m 的取值范围是 ;关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根,则实数k的取值范围是 ;已知一元二次方程4x 2+mx+9=0有两个相等的实数根, 则m= ,此时相等的两个实数根为6.等腰三角形的底和腰是方程2680x x -+=的两根,则这个三角形的周长为 。

7.要用一条长为24cm 的铁丝围成一个斜边长是10cm 的直角三角形,则两条直角边的长 分别为 。

8.在一次同学聚会时,大家一见面就相互握手。

有人统计了一下,大家一共握了45次手, 参加这次聚会的同学共有 人。

9.某县农民人均年收入为7 800元,计划到,农民人均年收入达到9 100元.设人均年收入的平均增长率为,则可列方程 .10.某果农的年收入为5万元,由于党的惠农政策的落实,年收入增加到7.2 万元,则平均每年的增长率是__________.11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由 原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分 率为,则根据题意可列方程为 .12.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.若某小组共有个队,共赛了90场,则列出正确的方程是 。

13.某超市经销一种成本为40元/kg 的水产品,市场调查发现,按50元/kg 销售, 一个月能售出500kg ,销售单位每涨1元,月销售量就减少10kg , 针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,设销售单价为x 元,则x 应满足的方程是________.14.要给一幅长30cm ,宽25cm 的照片配一个镜框,要求镜框的四条边宽度相等, 且镜框所占面积为照片面积的四分之一,设镜框边的宽度为xcm , 则依据题意列出的方程是_____.x 2(3)0x k x k +++=2-x =2233x x x ---0)3(2)3(2=-+-x x x 02=--m x x x x x15.在中,为的中点,动点从点出发,以每秒1的速度沿的方向运动.设运动时间为,那么当 秒时,过、两点的直线将的周长分成两个部分,使其中一部分是另一部分的2倍.16.在一块长为35m ,宽26m 的矩形绿地上有宽度相同的两条路,如图所示, 其中绿地面积为850m ,小路的宽为__________.二、选择题1.下列方程中,两根是-2和-3的方程是( ).A .x 2-5x+6=0B .x 2-5x -6=0C .x 2+5x -6=0D .x 2+5x+6=02.关于的一元二次方程的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 3.如果x 2+x -1=0,那么代数式x 3+2x 2-7的值是( ).A .6B .8C .-6D .-84.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传 染的人数为( ) A .8人 B .9人 C .10人 D .11人 4.某种品牌的衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是( )A. 20% B. 27% C. 28% D. 32%5.方程的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定6.用配方法解方程,则方程可变形为( )A .B .C .D . 7.一元二次方程x 2+3x -1=0的根的情况为( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.如果关于x 的方程ax 2+x–1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14且a ≠09.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠10.已知关于的一元二次方程的两个实数根是,且,则的值是( ) A .8 B .C .6D .5ABC △12cm 6cm AB AC BC D ===,,BC P B cm B A C →→t t =D P ABC △x 02322=-+-m x x 29180x x -+=23610x x -+=21(3)3x -=213(1)3x -=2(31)1x -=22(1)3x -=x 2610x x k -++=12x x ,2212x x +=24k 7-11.关于的方程有实数根,则整数的最大值是( ) A .6B .7C .8D .912.如图所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m 2的矩形临时仓库, 仓库一边靠墙,另三边用总长为76 m 的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程 中,符合题意的是( )A .x (76-x )=672;B .x (76-2x )=672;C .x (76-2x )=672;D . x (76-x )=672. 13.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .B .C .D .14.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( ) (A )1 (B )2(C )-1 (D )-215.如图,在 ABC 中, ABC =90°,AB =8cm ,BC =6cm .动点P 、Q 分别从点A 、B 同 时开始移动,点P 的速度为1 cm /秒,点Q 的速度为2 cm /秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使 PBQ 的面积为15cm 2 的是( ) A .2秒钟 B .3秒钟 C . 4秒钟 D . 5秒钟 三、解答题1.m 为何值时关于x 一元二次方程(m+1)x 2-(2m -3)x=-m -1. (1) 有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?2.关于x 的方程kx 2+(k+1)x+=0有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,请说明理由.3.某企业盈利1500万元,克服全球金融危机的不利影响,仍实现盈 利2160万元.从到,如果该企业每年盈利的年增长率相同,求: (1)该企业盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计盈利多少万元?x 2(6)860a x x --+=a 21214kA BCD BACP Q4.常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的 工业企业完成工业总产值440亿元,如果要在达到743.6亿元,那么年到的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》 确定走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可 以完成?5.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.6.在一块长16 m 、宽12 m 的矩形荒地上,要建造一个花园,并使花园所占的面积为荒地 面积的一半。

人教版九年级上册数学:《一元二次方程》同步练习

人教版九年级上册数学:《一元二次方程》同步练习

22.1 一元二次方程1、若 px 2- 3x +p 2- q = 0 是对于 x 的一元二次方程,则 ()A .p =1B .p >0C .p ≠0D . p 为随意实数2、对于 x 的一元二次方程 (k - 2)x 2+x +k 2- 4= 0 的一个根是 0,则 k 的值为 () A .2B .- 2C .2 或-2D .3、以下各数- 4,- 3,- 2,- 1,0,1, 2,3 中,是方程 x(x - 1) =2 根的有 ________.4、若对于 x 的方程 (m +2)x |m| +2x - 1= 0 是一元二次方程,则 m = ________.5、将以下方程化为一般形式,并指出二次项系数、一次项系数、常数项分别是多少?(1)4x 2 =81;(2)5x 2 -1=4x ;(3)(3x -2)(x +1) =8x - 3.、一元二次方程 x 2+ x - = 0的解是( ) 5 3 4 . x 1 = ,x 2=- 4 . x 1=- ,x 2= 4 A 1 B 1 . x 1 =- ,x 2=- 4 . x 1= , x 2= 4 C 1 D 1、已知方程 x 2+bx +a = 0 有一个根是- a (a ≠ ),则以下代数式的值恒为常数的是 ( )6 0 .ab B .C . a + b . a - b AD7、已知对于 x 的一元二次方程 ax 2+bx + c =0(a ≠0) 有一个根为 1,一个根为- 1,则 a +b +c =________, a - b + c =________.8、对于 x 的方程 (a - 3)x 2+4x - 8= 0 是一元二次方程,那么 a 的取值范围是 ________. 9、若方程 (m + 3)x |m|-1+3mx =0 是对于 x 的一元二次方程,求 m 的值.10、已知对于 x 的方程 (m2-1)x 2+ (m-2)x - 2m+1=0.(1)m 为何值时,此方程是一元一次方程?求出该一元一次方程的解.(2)m 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.11、以下说法正确的选项是 ()A.方程 ax2+bx+ c= 0 是对于 x 的一元二次方程B.方程 3x2=4 的常数项是 4C.若一元二次方程的常数项为0,则 0 必是它的一个根D.当一次项系数为0 时,一元二次方程总有非零解12、对于 x2=- 2 的说法,正确的选项是 ()A.因为 x2≥0,故 x2不行能等于- 2,所以这不是一个方程B.x2=- 2 是一个方程,但它没有一次项,所以不是一元二次方程C.x2=- 2 不是一个一元二次方程D.x2=- 2 是一个一元二次方程,可是没有解13、以- 2 为根的一元二次方程可能是()A.x2+2x-2=0B.x2-x-2=0C. x2+x+2=0D. x2+x-2=0 14、已知x= 2 是方程x2+2x+ a= 0 的一个根,则方程的另一个根为()A.- 2B.- 4C. 2D. 415、请你写出一个有一根为 1 的一元二次方程:________.16、若方程是对于x 的一元二次方程,则m= ________.17、若对于 x 的方程 (k + 1)x 2-(k - 2)x -5+k=0 只有独一的一个解,则k=________,此方程的解为 ________.18、如图,在宽为20 m,长为 30m的矩形场所上,修建相同宽的两条道路,余下的部分作2为耕地,要使耕地的面积为500 m,若设路宽为 x m,列出方程,并将其化成一元二次方程一般形式,写出它的二次项系数、一次项系数及常数项.19、已知对于 x 的方程( k2-1) x2+( k+ 1)x-2=0.(1)当 k 取何值时,此方程为一元一次方程?并求出它的根;(2)当 k 取何值时,此方程为一元二次方程?写出这个方程的二次项系数,一次项系数和常数项.20、已知方程 x2- 5x+5=0 的一个根为 m,求的值.21、如下图,在一幅长为80cm,宽为 50cm的矩形景色画的四周镶一条相同宽度的金色2纸边,制成一幅矩形挂图,假如要使整个挂图的面积是5400cm,设金色纸边的宽为xcm,求 x 知足的方程.并化为一般形式,再利用估量法,求出长和宽各是多少.22.2 降次──解一元二次方程 、方程 x 2= 16 的解是 ( ) 1A . x =±4 .x =4 . x =- 4. x =16BC D 2、方程 x 2- = 0 的根是( )3A . x =3B . x 1 x 2 =- 3 x=D . x 1 = , x 2=-=3, C .3、方程 (x +1) 2=9 的解是 ( )A .2B .- 4C .2 或-4D .±3、方程 x 2+ = 2 的解是 . 4 1________5、方程2=n(n 为正数 ) 的解是 ________.(x -m)、用配方法解一元二次方程 x 2-4 x =5 的过程中,配方正确的选项是( )6.( x + )2 = 1 B .( x - )2= 1.( x + )2= 9.( x - )2= 9A 2 2 C 2 D 2 、用配方法将二次三项式 a 2+ a + 5 变形,结果是( )7 4A . ( a - )2+ 1 . ( a + )2+ 1 . ( a + ) 2-1 . ( a - ) 2- 12 B 2 C 2 D 2 、若 x 取全体实数,则代数式 x 2- 6 x + 4 的值( )8 3 A . 必定为正B . 必定为负C . 可能是 0D . 正数、负数、 0 都有可能9、用配方法解方程. (1)2x 2-7x +6=0;(2)x2-2x -2=0.10、用配方法证明:代数式 x 2+8x +17 的值恒大于零.11、求代数式 2x 2-7x -2 的最小值.、方程 x 2+x - = 0 的一个根是( )12 1A .B .C .D .13、对于一元二次方程 ax 2+bx +c =0(a ≠0),以下表达正确的选项是().A .方程总有两个实数根B .只有当 b 2- 4ac ≥0时,方程才有两个实数根C .当 b 2-4ac <0 时,方程只有一个实数根D .当 b 2-4ac =0 时,方程无实数根14、方程 x 2-3x + 1= 0 的解是 ________.用公式法解方程 4x 2- 12x =3,获得( )A . x = .x = . x =. x =BCD、设方程 x 2-x - = 0 的较小根为 x 1 ,下边对 x 1 的估计正确的选项是()1522A . -2< x 1<- 1 . - <x 1< 0 .< x 1< 1 . < x 1< 2 B 1 C 0D 1 、若对于 x 的一元二次方程 kx 2- x - = 0有两个不相等的实数根,则 k 的取值范围是 16 2 1 ( ). k >- 1. k >- 1 且 k ≠0 . k < 1. k < 1 且 k ≠0 AB C D17、已知对于 x 的一元二次方程 x 2- x + a = 0 有实数根,则 a 的取值范围是 ( )2A . a ≤1 .a < 1 . a ≤- 1 . a ≥1B C D18、已知直角三角形的两条直角边的长恰巧是方程 x 2-5x +6=0 的两根,则它的斜边长为( )A .B . 3C .D .、对于 x 的一元二次方程 有实根,则 k 的取值范围是________.1922 = 无实数根,则 m 的取值范围是、对于 x 的一元二次方程- x+( m + )x + -m0202 1 1________.21、已知对于 x 的一元二次方程 x 2-4x + m - 1= 0 有两个相等的实数根,求 m 的值及方程 的根.、若 m 为不等于零的实数,则方程22的根的状况是( )x + m x -m =22A . 有两个相等的实数根B . 有两个不相等的实数根C . 有两个实数根D . 没有实数根、对于 x 的一元二次方程 x 2- x -k = 0 有两个不相等的实数根 . ( )求 k 的取值范围. 233 1(2)请选择一个 k 的负整数值,并求出方程的根 .、方程 x ( x + )= 0 的根是( )24 2. x = 2 . x = 0 . x 1= , x 2=- 2 . x 1= , x 2=2 A BC 0D 0 、一元二次方程 x 2- x = 0的解是( )25 5 2. x 1 = ,x 2=B . x 1=0,x 2 =C . x 1= 0, x 2=. x 1 = , x 2 =A 0D 0、方程( x - )( x + )= (x + )的根是________.261 22227、解方程:( x-3)2+2x(x-3)= 0.28、已知方程 x2- 4x+m=0 的一个根为- 2,求方程的另一根及m的值.29、方程 3x(x + 1) =3x+3 的解为 ()A.x=1B. x=- 1C.x=0,x =- 1D. x=1,x =- 1121230、方程 (x -5)(x-6) = (x -5) 的解是 ()A.x=5B.x=5 或 x=6C. x= 7D. x= 5 或 x=7x(x-)=的解是31、方程 x(x -1) = 0 的解为 ________.32、方程 230________.33、用因式分解法解以下方程.(1)(x- 1)(x - 2) =0;(2)x2-3x= 0;(3)x 2-4x+4=0;(4)x2- 5x+4=0.、三角形的每条边的长都是方程x2-x+=0的根,则三角形的周长是________.346835、为解方程 (x 2-1) 2-5(x 2-1) +4=0,我们能够将 x2-1 视为一个整体,而后设x2-122-1)22-5y+ 4= 0,解此方程,得 y = 1,y=4.当 y=1 时,=y,则 y =(x,原方程化为 y12x2-1=1,x2= 2,∴.当 y=4 时, x2-1=4,x2=5,∴.∴原方程的解为,,,.以上方法就叫换元法,达到了降次的目的,表现了转变的思想. (1) 运用上述方法解方程: x4- 3x2- 4= 0; (2) 既然能够将 x2- 1 看作一个整体,你能直接运用因式分解法解 (1) 中的方程吗?36、一元二次方程A.-1x2+x-2=0 的两根之积是(B.-2C.1)D.237、假如对于 x 的一元二次方程x2+px+ q= 0 的两根分别为 x1=2,x2=1,那么 p,q 的值分别是()A.-3,2B. 3,-2C. 2,-3D. 2,3、已知方程 x2-x+=0的两个解分别为 x1、x2,则 x1+x2-x1·x2的值为()3852A.-7B.-3C. 7D. 339、方程 x2=2x- 1 的两根之和等于 ________.40、方程 x2-2x- 1= 0 的两个实数根分别为x1、x2,则( x1-1)( x2- 1)= ________.41、对于x的一元二次方程x2mx m x1、x2,且= 7,-+2- 1= 0 的两个实数根分别是则( x1-x2)2的值是()A.1B.12C. 13D. 25、若一元二次方程x2-(a+)x+ a=0的两个实数根分别是b,则a+b=.42223,________2 243、已知对于 x 的一元二次方程 x +( 2m -1)x +m =0 有两个实数根 x 1 和 x 2.( 1)务实数 m 的取值范围;( 2)当 - =0 时,求 m 的值.44、解方程 x - ) 2= ( x - )最适合的方法是()2(5 1 3 5 1A . 直接开方法B . 配方法C . 公式法D . 因式分解法45、不解方程,判断所给方程:①x 2+ 3x +7=0; ②x 2+4=0; ③x 2+x -1=0 中,有实数根的方程有 ( )A .0 个B .1 个C .2 个D .3 个22m 的值是()46、若 x + 6x +m 是一个完整平方式,则A . 3B . -3C . ±3D . 以上都不对 、对于 x 的一元二次方程( a - )x 2+x + a 2+ a - = 0 有一个实数根是 x = ,则 a 的 47 1 3 4 0 值为()A .1 或- 4B .1C .- 4D .-1 或 4222222)48、( m -n )( m-n - )-= ,则 m - n 的值是(2 8 0A .4B .- 2C .4 或-2D .-4 或 2、无论 x 、 y 是什么实数,代数式 x 2+y 2+ x - 4 y + 7的值( )49 2 A . 总不小于 2B . 总不小于 7C . 能够为任何实数D . 可能为负数50、已知 a 、 b 、 c 是△ ABC 的三边长,且方程的两根相等,则△ABC 为()A .等腰三角形B .等边三角形C .直角三角形D .随意三角形51、方程( x- 1)( x-2)= 0 的两根为 x1和 x2,且 x1> x2,则 x1-2x2=________.52、假如 a、 b 为实数,知足那么ab的值是________.53、若,则的值为________.54、先化简,再求值:,此中a是方程的根.55、已知对于 x 的方程 x2- 2(k -3)x +k2- 4k-1=0.(1) 若这个方程有实数根,求k 的取值范围; (2) 若这个方程有一个根为1,求 k 的值.2256、若 0 是对于 x 的方程( m- 2) x +3x+ m+2m- 8= 0 的解,务实数 m的值,并议论此方程解的状况.22.3 实质问题与一元二次方程1、两个连续奇数中,设较大一个为x ,那么另一个为 ()A .x +1B .x +2C . 2x +1D . x - 22、有一人患了流感,经过两轮传染后共有100 人患了流感,那么每轮传染中均匀一个人传染的人数为().A .8 人B .9 人C .10 人D .11 人3、某生物兴趣小组的学生将自己采集的标本向本组其余成员各赠予一件,全组共互赠了182 件,假如全组有x 名同学,那么依据题意列出的方程是()A .x (x +1)= 182B . x ( x - 1)= 182C .2 x ( x + )=. x ( x - )= ×21182D1 1824、参加中秋晚会的每两个人都握了一次手, 全部人共握手 66 次,则有 ______人参加聚会.5、某养鸡场一只患禽流感的小鸡经过两天的传染后使鸡场共有 169 只小鸡生病,那么在每天传染中均匀一只小鸡传染了几个小鸡?6、从正方形的铁片上,截去 2 cm 宽的一条长方形,余下的而积是48 cm 2,则本来的正方形铁片的面积为(). 2 . 2. 228 cm cm 16cmD . 36 cmA B 64C 7、三个连续的奇数,它们的平方和是 251,则这三个数是 ()A .7、9、11B . 9、 11、13 或- 13、- 11、- 9C .- 11、- 9、- 7D . 7、 9、 11 或- 11、- 9、- 78、庆“五一”,市工会组织篮球竞赛,赛制为单循环形式(每两队之间都赛一场),共进行了45 场竞赛,此次有________队参加竞赛.()A .12B .11C . 9D . 109、一个直角三角形的三边为三个连续偶数,则它的三边长分别为________.10、某年的中超联赛中共有16 支队伍进行单循环赛,共要竞赛________场.11、在一次青少年足球邀请赛中,每两队之间进行一场竞赛,共进行15 场竞赛,则起码要邀请 ________支球队参赛.12、有一人患了红眼病,经过两轮传染后共有144 人患了红眼病,那么每轮传染中均匀一个人传染的人数为 ________人.13、有一种传染性疾病,延伸速度极快,据统计,在人群密集的某城市里,往常状况下,每日一人能传染给若干人,经过计算回答以下问题 . (1)现有一人患了这类疾病,开始两天共有 225 人患上此病,求每日一人传染了几人;( 2)两天后,人们有所察觉,这样平均一个人一天以少流传五人的速度在递减,求再过两天共有多少人患有此病.14、为解决民众看病贵的问题,相关部门决定降低药价,对某种原价为289 元的药品进行连续两次降价后为256 元,设均匀每次降价的百分率为x,则下边所列方程正确的选项是 () A.289(1 - x) 2= 256B. 256(1 -x) 2=289x=256.- x=289C.289(1 - 2 ) D 256(1 2 )15、某种商品零售价经过两次降价后的价钱为降价前的81%,则均匀每次降价()A.10%B.19%C. 9.5 %D. 20%16、某商场销售额 3 月份为 16 万元, 5 月份为 25 万元,该商场这两个月销售额的均匀增长率是 ________.17、某种商品原价是120 元,经两次降价后的价钱是100 元,求均匀每次降价的百分率.设均匀每次降价的百分率为x,可列方程为 ________.18、一种药品经过两次降价,药价从本来每盒60 元降至此刻48.6 元,则均匀每次降价的百分比是 _____.19、某商场礼物柜台春节时期购进大批拜年卡,一种拜年卡均匀每日可售出500 张,每张盈余0.3 元 . 为了赶快减少库存,商场决定采纳适合的降价举措. 检查发现,假如这类拜年卡的售价每降价0.1 元,那么商场均匀每日可多售出100 张. 商场要想均匀每日盈余120元,每张拜年卡应降价多少元?20、某农机厂四月份生产部件50 万个,第二季度共生产部件182 万个.设该厂五、六月份均匀每个月的增添率为x,那么x 知足的方程是()A.50( 1+ x)2=182B. 50+50(1+x )+ 50(1+x)2=182 C.50( 1+ 2x)= 182D. 50+50(1+x )+ 50(1+2x)= 182、某商品原价为180元,连续两次抬价 x 后售价为300元,以下所列方程正确的选项是()21%A.180(1+x%)= 300B. 180(1+x%)2=300C.180(1-x%)= 300D. 180(1-x%)2=30022、某县政府 2011 年投资 0.5 亿元用于保障性房建设,计划到2013 年投资保障性房建设的资本为0.98 亿元.假如从2011 年到2013 年投资此项目资本的年增添率相同,那么年增添率是 ()A.30%B.40%C. 50%D. 60%23、某企业在2011 年的盈余额为200 万元,估计2013 年的盈余额将达到242 万元,若每年比上一年盈余额增添的百分率相同,那么该企业在2012 年的盈余额为________万元.24、小明家为响应节能减排呼吁,计划利用两年时间,将家庭每年人均碳排放量由当前的3 125 kg 降至 2 000 kg(全世界人均碳排放量),则小明家将来两年人均碳排放量均匀每年需降低的百分率是 ________.25、某商品连续两次降价10%后的价钱为 a 元,该商品的原价为多少元?26、有两块木板,第一块长是宽的 2 倍,第二块的长比第一块的长少 2 m,宽是第一块宽的 3 倍,已知第二块木板的面积比第一块大2).108 m,这两块木板的长和宽分别是(A.第一块木板长18 m,宽 9 m,第二块木板长16 m,宽 27 mB.第一块木板长12 m,宽 6 m,第二块木板长10 m,宽 18 mC.第一块木板长9 m,宽 4.5 m,第二块木板长7 m,宽 13.5 mD.以上都不对27、在长为 a m,宽为 b m 的一块草坪上修了一条 1 m宽的笔挺小道,如图( 1),则余下草坪的面积可表示为2现为了增添美感,把这条小道改为宽恒为m的曲折小道,m1________ .如图(),则此时余下草坪的面积为2m2________ .28、在一幅长 50cm,宽 30cm的景色画的四周镶一条金色纸边,制成一幅矩形挂图,如图2所示,假如要使整个挂图的面积是1800cm,设金色纸边的宽为xcm,那么 x 知足的方程为________.29、如图①,在一幅矩形地毯的四周镶有宽度相同的花边,如图②,地毯中央的矩形图案长 6 米、宽 3 米,整个地毯的面积是40 平方米,求花边的宽.30、如下图,利用一面墙,用80 米长的篱笆围成一个矩形场所.(1)如何围才能使矩形场所的面积为 750 平方米?(2)可否使所围的矩形场所的面积为 810 平方米?为何?31、如图,在宽为20 米、长为 30 米的矩形地面上修建两条相同宽的道路,余下部分作为耕地.若耕地面积需要 551 米2,则修建的路宽应为 ()A.1 米B.1.5 米C.2 米D. 2.5 米32、如图,在宽为20 米、长为 32 米的矩形地面上修筑相同宽的道路(图中暗影部分),余下部分栽种草坪.要使草坪的面积为540 平方米,则道路的宽为()A.5 米B.3米C.2米D.2米或5米33、要给一幅长30 cm,宽 25 cm的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的,设镜框边的宽度为x cm,则依照题意列出的方程是________.234、有一面积为150 m 的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用篱笆笆围成,假如篱笆笆的长为35m,则鸡场的长与宽分别为m和m.________________35、在一块长 12m,宽 8m的长方形平川中央,划出地方砌一个面积为28m的长方形花坛,要使花坛四周的宽度相同,则这个宽度为________.36、将一块长比宽多 3cm的长方形铁皮四角各剪去一个边长为4cm的小正方形,做成一个3无盖的盒子.已知盒子的体积是 280cm,求原铁皮的边长.37、如图,是一个矩形花园,花园的长为100 米,宽为 50 米,在它的四角各建一个相同大小的正方形参观歇息亭,四周建有与参观歇息亭等宽的参观大道,其余部分(图内暗影部分)栽种的是不一样花草.已知栽种花草部分的面积为 3 600 米2,那么花园各角处的正方形参观歇息亭的边长为多少米?38、某商品原价 200 元,经连续两次降价后售价为148 元,设均匀每次降价的百分率为x,则下边所列方程正确的选项是()A.200(1 - x) 2= 148B. 148(1 -x) 2=200C.200(1 - 2x) =148D. 148(1 -2x)= 20039、如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,四周是正三角形和正方形的地板砖.从里向外的第 1 层包含 6 个正方形和 6 个正三角形,第2 层包含 6 个正方形和 18 个正三角形,依此递推,第8 层中含有正三角形的个数是()A.54 个B.90个C. 102 个D. 114 个40、 23,33和 43分别能够按如下图方式“分裂”成2 个、3 个和4 个连续奇数的和, 63也能按此规律进行“分裂”,则 63“分裂”出的奇数中最大的是 ()A.41B.39C. 31D. 29 41、一个多边形有35 条对角线,则这个多边形有 ________条边.42、某市 2011 年末人口为 20 万人,人均住宅面积29m,估计 2012 年、2013 年两年内均匀每年增添人口为 1 万,为使到 2013 年末人均住宅面积达到210m,则该市两年内住宅均匀增添率一定达到 ________.(,,精准到 1% )43、某人在银行存了 400 元钱,两年后连本带息一共取款484 元,设年利率为 x,则列方程为 ________,解得年利率是 ________.(不考虑实质状况)44、如下图,在长和宽分别是a、 b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用 a,b,x 表示纸片节余部分的面积;(2)当 a=6,b=4,且剪去部分的面积等于节余部分的面积时,求正方形的边长.45、汽车家产的发展,有效地促使了我国现代化建设,某汽车销售企业2006 年盈余 1 500万元,到 2008 年盈余 2 160 万元,且从 2006 年到 2008 年,每年盈余的年增添率相同.(1)该企业 2007 年盈余多少万元?( 2)若该企业盈余的年增添率保持不变,估计 2009 年盈余多少万元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= . b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= .b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________. 2.完成下面的解题过程:用因式分解法解方程:x 2解:移项,得 .因式分解,得 . 于是得 或 , x 1= ,x 2= .3.用因式分解法解下列方程:(1)x 2+x=0;(2)4x 2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、 、、 . 2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 .开平方,得 , x 1= ,x 2= .(2)用配方法解方程:3x 2-x-4=0;解:移项,得 . 二次项系数化为1,得.配方 , . 开平方,得 ,x 1= ,x 2= .(3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.=_________,x 1= ,x 2= .(4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 ,x 1= ,x 2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.文档说明(Word 文档可以删除编辑)专注于可以编辑的精品文档:小学试卷教案合同协议施工组织设计、期中、期末等测试中考、高考、数学语文英语试卷、高中复习题目、本文档目的是为了节省读者的工作时间,提高读者的工作效率,读者可以放心下载文档进行编辑使用.由于文档太多,审核有可能疏忽,如果有错误或侵权,请联系本店马上删除。

相关文档
最新文档