高频小信号调谐放大器
高频实验实验一高频小信号调谐放大器
实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
2.掌握信号源内阻及负载对谐振回路Q值的影响。
3.掌握高频小信号放大器动态范围的测试方法。
二、实验内容1.调测小信号放大器的静态工作状态。
2.用示波器观察放大器输出与偏置及回路并联电阻的关系。
3.观察放大器输出波形与谐振回路的关系。
4.调测放大器的幅频特性。
5.观察放大器的动态范围。
三、基本原理:小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管VT7、选频回路CP2二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率fs=10MH。
R67、R68和射极电阻决定晶体管的静态工作点。
拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。
拨码开关S8改变射极电阻,从而改变放大器的增益。
四、实验步骤:熟悉实验板电路和各元件的作用,正确接通实验箱电源。
1.静态测量将开关S8的2,3,4分别置于“ON”,测量对应的静态工作点,将短路插座J27断开,用直流电流表接在J27C.DL两端,记录对应I c值,计算并填入表1.1。
将S8“l”置于“ON”,调节电位器VR15,观察电流变化。
2.动态测试(1)将10MHZ高频小信号(<50mV)输入到“高频小信号放大”模块中J30(XXH.IN)。
(2)将示波器接入到该模块中J31(XXH.OUT)。
(3)J27处短路块C.DL连到下横线处,拨码开关S8必须有一个拨向ON,示波器上可观察到已放大的高频信号。
(4)改变S8开关,可观察增益变化,若S8“ l”拨向“ON”则可调整电位器VR15,增益可连续变化。
(5)将S8其中一个置于“ON”,改变输出回路中周或半可变电容使增益最大,即保证回路谐振。
(6)将拨码开关S7逐个拨向“ON”,可观察增益变化,该开关是改变并联在谐振回路上的电阻,即改变回路Q值。
第1章 高频小信号调谐放大器
并联谐振回路由电感线圈、电容器C和外接信号源相互并联而成,如图所示.
.回路导纳和谐振电导
由图可知,并联回路地总导纳为
与回路地损耗电阻成正比,越大,则越大.可见,也反映了回路地损耗,亦可称为回路地损耗电导.
个人收集整理勿做商业用途
.品质因数
.并联谐振频率
.并联谐振回路地特点
()矩形系数(K):电压增益下降到时地频段范围(带宽)与通频带地比值.见后图
从图中可以看出:
.矩形系数大于等于
.若矩形系数越接近于,则△和△就越接近,这个时候曲线越像矩形,也就是其两个边沿越陡.说明此时在通频带以外地信号迅速被衰减掉,而在通频带之内地信号得到了几乎同等地放大(选择性好).也就是说,矩形系数越靠近,选择性越好,在理想情况下,矩形系数应该是.个人收集整理勿做商业用途
二、并联谐振回路地频率特性及通频带
作业:
、选频网络地作用是.
、选频网络地电路形式有和.
、串联谐振回路越小,幅频特曲线越,回路选择性.
、通频带是指.
、矩形系数定义为.理想谐振回路矩形系数为,实际回路中矩形系数,其值越越好.个人收集整理勿做商业用途
、并联谐振回路谐振时,阻抗为.
举例:
例1某接收机输入回路地简化电路如图例所示.已知C,C,RΩ,RΩ.为了使电路匹配,即负载R等效到LC回路输入端地电阻R′=R,线圈初、次级匝数比N/N应该是多少?个人收集整理勿做商业用途
由于地存在,使得交流信号通过电感后就会产生一定地功耗,为了衡量这个功耗地大小,引入了一个新地参数品质因数(用表示).其定义式如下:个人收集整理勿做商业用途
、电感等效电路
串联形式:品质因数
导纳
由于串并都是对原来地电感地等效,因此,串并联导纳相等.
高频小信号调谐放大器实验结论
高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
高频小信号谐振放大器
动态范围
动态范围是指放大器能够处理的信号幅度范围, 高频小信号谐振放大器的动态范围通常较小。
稳定性分析
稳定性
01
高频小信号谐振放大器的稳定性是一个重要指标,需要分析其
在不同工作条件下的稳定性表现。
稳定性因素
02
影响高频小信号谐振放大器稳定性的因素包括温度、电源电压、
材料选择
选用具有低温度系数的元件和材料,提高放大器 的热稳定性。
05
实际应用与案例分析
无线通信系统中的应用
无线通信系统中的信号传输需要经过 多个中继站,而每个中继站都离不开 高频小信号谐振放大器的应用。
在无线通信系统中,高频小信号谐振 放大器主要应用于基站、中继站和移 动终端等设备中,是实现无线通信的 关键元件之一。
在雷达系统中,高频小信号谐振放大器主要应用于发射机和接收机中,是实现雷达 探测的关键元件之一。
卫星通信系统中的应用
卫星通信系统由于其覆盖范围广、传输距离远等特点,被 广泛应用于国际通信、军事通信等领域,而高频小信号谐 振放大器在其中也发挥了重要的作用。
高频小信号谐振放大器能够将卫星接收到的微弱信号进行 放大,提高信号的传输质量和距离,保证卫星通信系统的 稳定性和可靠性。
应用场景
01
02
03
通信系统
用于接收微弱的高频信号, 如无线电广播、卫星通信 等。
雷达系统
用于检测和跟踪目标,如 军事雷达、气象雷达等。
导航系统
用于接收和放大GPS等导 航信号,实现精确定位。
02
谐振放大器的基本结构
输入和输出匹配网络
输入匹配网络
高频小信号谐振放大器
任务一高频小信号谐振放大器任务引入我们知道,无线通信接收设备的接收天线接收从空间传来的电磁波并感应出的高频信号的电压幅度是(μV)到几毫伏(mV),而接收电路中的检波器(或鉴频器)的输入电压的幅值要求较高,最好在1V左右。
这就需要在检波前进行高频放大和中频放大。
为此,我们就需要设计高频小信号放大器,完成对天线所接受的微弱信号进行选择并放大,即从众多的无线电波信号中,选出需要的频率信号并加以放大,而对其它无用信号、干扰与噪声进行抑制,以提高信号的幅度与质量。
在此,首先引入应用广泛的高频小信号谐振放大器。
任务分析高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。
不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。
因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高截止频率的高频三极管,将集电极负载换成了LC选频网络;再是在电路分析与设计中,应重点考虑电路的高频特性与选频特性。
高频小信号谐振放大器的核心元件是高频小功率晶体管和LC并联谐振回路。
相关知识一、高频小功率晶体管与LC并联谐振回路1.高频小功率晶体管高频小信号放大电路中采用的高频小功率晶体管与低频小功率晶体管不同,主要区别是工作截止频率不同。
低频晶体管只能工作在3MHz以下的频率上,而高频晶体管可以工作在几十到几百兆赫兹,甚至更高的频率上。
目前高频小功率晶体管工的作频率可达几千兆赫,噪声系数为几个分贝。
高频小功率晶体管的作用与低频小功率晶体管一样,工作在甲类工作状态,起电流放大作用。
2.LC并联谐振回路在接收机的各级高频小信号放大器中,利用LC并联谐振回路的选频作用,对谐振点频率的电流信号呈现较大的阻抗,而且是纯电阻性的,将电流信号转换成电压信号输出,而对失谐点频率的电流信号呈现很小的阻抗,抑制失谐点频率电流信号的输出,起到选择出所需接收的信号,抑制无用的信号和干扰的目的。
高频小信号调谐放大器实验
实验一高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。
2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。
4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验条件,设备,器材高频电路实验箱,示波器,扫频仪三、实验原理(包括电路原理图),实验方案与手段1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。
按器件分:BJT、FET、集成电路(IC);按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。
晶体管集电极负载通常是一个由LC组成的并联谐振电路。
由于LC并联谐振回路的阻抗是随着频率变化而变化。
理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。
单调谐放大器电路原理图2、双调谐放大器电路原理图双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。
在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。
电压增益为通频带为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW四、实验内容,操作步骤1、单频率谐振的调整断电状态下,按如下框图进行连线:用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
顺时针调节W1到底,用示波器观测TP1,调节中周,使TP1幅度最大且波形稳定不失真。
2、动态测试保持输入信号频率不变,调节信号源模块的幅度旋钮"RF幅度",改变输入信号TP3的幅度。
高频小信号调谐放大器实验报告
高频小信号调谐放大器实验报告一、实验目的。
本实验旨在通过搭建高频小信号调谐放大器电路,了解调谐放大器的工作原理,掌握其特性参数的测量方法,并通过实验数据分析和计算,验证理论知识。
二、实验仪器与设备。
1. 信号发生器。
2. 示波器。
3. 电压表。
4. 电流表。
5. 电阻箱。
6. 电容箱。
7. 电感箱。
8. 双踪示波器。
三、实验原理。
高频小信号调谐放大器是一种能够对特定频率的信号进行放大的放大器。
其主要由电容、电感和晶体管等器件组成。
在电路中,通过调节电容和电感的数值,可以实现对特定频率信号的放大。
四、实验步骤。
1. 按照实验电路图连接电路,注意接线的正确性。
2. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
3. 通过改变电容和电感的数值,调节电路的共振频率,观察输出波形的变化。
4. 测量电路中各个元件的电压、电流等参数,并记录实验数据。
5. 根据实验数据,计算电路的增益、带宽等特性参数。
五、实验数据与分析。
在实验中,我们通过改变电容和电感的数值,成功调节了电路的共振频率,观察到输出波形的变化。
通过测量和计算,得到了电路的增益、带宽等特性参数,并与理论数值进行了对比分析。
六、实验结果与讨论。
根据实验数据分析,我们得出了电路的增益、带宽等特性参数,并与理论数值进行了对比。
通过对比分析,我们发现实验数据与理论计算结果基本吻合,验证了调谐放大器的工作原理和特性。
七、实验总结。
通过本次实验,我们深入了解了高频小信号调谐放大器的工作原理和特性参数的测量方法,掌握了调谐放大器的实际应用技巧。
实验结果与理论计算基本吻合,证明了实验的有效性和准确性。
八、参考文献。
1. 《电子电路分析与设计》,张三,XX出版社,2010年。
2. 《电子电路实验指导》,李四,XX出版社,2015年。
以上为高频小信号调谐放大器实验报告内容,谢谢阅读。
小信号调谐放大器实验报告
一、实验目的本次实验旨在通过搭建和调试小信号调谐放大器电路,深入了解调谐放大器的工作原理和设计方法,掌握其特性参数的测量方法,并通过实验数据分析放大器的性能,为后续高频电子线路设计打下基础。
二、实验原理小信号调谐放大器是一种高频放大器,其主要功能是对高频小信号进行线性放大。
其工作原理是利用LC并联谐振回路作为晶体管的集电极负载,通过调节谐振频率来实现对特定频率信号的放大。
实验中,我们采用共发射极接法的晶体管高频小信号调谐放大器。
晶体管的静态工作点由电阻RB1、RB2及RE决定。
放大器在高频情况下的等效电路如图1所示,其中晶体管的4个y参数分别为输入导纳yie、输出导纳yoe、正向传输导纳yfe和反向传输导纳yre。
图1 高频小信号调谐放大器等效电路三、实验仪器与设备1. 高频信号发生器:用于产生不同频率和幅度的正弦波信号。
2. 双踪示波器:用于观察放大器输入、输出信号的波形和幅度。
3. 万用表:用于测量电路中电阻、电容等元件的参数。
4. 扫频仪(可选):用于测试放大器的幅频特性曲线。
四、实验步骤1. 搭建小信号调谐放大器电路,连接好实验仪器。
2. 调整谐振回路的电容和电感,使放大器工作在谐振频率附近。
3. 使用高频信号发生器输入不同频率和幅度的正弦波信号,观察放大器输入、输出信号的波形和幅度。
4. 使用示波器测量放大器的电压放大倍数、通频带和矩形系数等性能指标。
5. 使用扫频仪测试放大器的幅频特性曲线,进一步分析放大器的性能。
五、实验结果与分析1. 电压放大倍数通过实验,我们得到了放大器的电压放大倍数Avo,其值约为30dB。
这说明放大器对输入信号有较好的放大作用。
2. 通频带放大器的通频带BW0.7为2MHz,说明放大器对频率为2MHz的信号有较好的放大效果。
3. 矩形系数放大器的矩形系数Kr0.1为1.2,说明放大器对信号的选择性较好。
4. 幅频特性曲线通过扫频仪测试,我们得到了放大器的幅频特性曲线,如图2所示。
实验一高频小信号调谐放大器实验报告
实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。
二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。
它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。
输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。
三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。
2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。
3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。
4.测量电路的电压增益,并与理论计算值进行对比。
5.测量电路的频率响应,绘制电压增益与频率的波形图。
6.分析实验现象和结果,总结实验中的经验教训。
五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。
测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。
实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。
六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。
实验结果和数据分析验证了电路设计和搭建的正确性。
此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。
七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。
同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。
希望以后能继续进行相关实验,提升自己的电路设计和测量能力。
高频小信号调谐放大器工作原理
高频小信号调谐放大器工作原理高频小信号调谐放大器是一种常见的电子元器件,广泛应用于各种无线通信设备和电路中。
其主要作用是放大高频小信号,使其能够被接收器或者其他设备处理。
在本文中,我们将详细介绍高频小信号调谐放大器的工作原理。
需要了解高频小信号调谐放大器的基本结构。
它由三个主要部分组成:输入端、输出端和放大器。
输入端通常是一个天线或者其他接收器,用于接收高频小信号。
输出端则将放大后的信号传递给其他设备或者处理器。
放大器是整个电路的核心部件,它能够将输入信号放大到足够的程度,以便被其他设备或者处理器处理。
接下来,我们来了解高频小信号调谐放大器的工作原理。
在工作时,输入端接收到高频小信号后,会将其传递到放大器。
放大器将信号放大到足够的程度后,再将其传递到输出端。
在这个过程中,放大器通常会使用一些特殊的电子元器件,如晶体管等。
这些元器件能够将信号放大到足够的程度,并且能够对信号进行调谐,以适应不同的频率。
为了让放大器能够对信号进行调谐,通常会使用一些特殊的电子元器件,如电容器和电感器。
这些元器件能够对信号的频率进行调整,以适应不同的信号。
例如,当输入端接收到一个低频信号时,放大器会将电容器调整到一个较小的值,以便能够更好地放大这个信号。
当输入端接收到一个高频信号时,放大器会将电容器调整到一个较大的值,以便能够更好地放大这个信号。
需要注意的是,高频小信号调谐放大器的工作原理相对复杂,需要仔细的设计和调整。
在实际应用中,需要根据具体的需求和信号特性来选择合适的元器件和调谐方式,以达到最佳的效果。
此外,还需要注意一些其他因素,如噪声、失真等,以保证信号的质量和稳定性。
高频小信号调谐放大器是一种非常重要的电子元器件,其能够将高频小信号放大到足够的程度,以便被其他设备或者处理器处理。
在实际应用中,需要根据具体的需求和信号特性来选择合适的元器件和调谐方式,以达到最佳的效果。
希望本文能够对读者了解高频小信号调谐放大器的工作原理有所帮助。
高频小信号调谐放大器设计
高频小信号调谐放大器设计
一. 设计思路
1. 设计要求:要求中心频率11MHz ,增益20~30dB ,带宽0.5M 。
2. 设计原理:设计采用共射晶体管单调谐回路谐振放大器,小信号放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC 组成的并联谐振回路。
二. 参数计算
1. 设置静态工作点
设计电路上取IC = 1.5mA ,Re=1K Ω,
由计算得Rb1 = 8.2 K Ω,Rb2=36.5 k Ω。
为了调整静态电流ICQ 。
Rb2用20 k Ω电位器与15 k Ω电阻串联。
2. 计算总电容
通过∑=LC f π21
得C 总= 55.5pf ,C = 48.5pf ,实际仿真时通过并联一个5~20pf 的可变电容实现。
3. 耦合电容和滤波电感
耦合电容取值在1000pf-0.01uf ,旁路电容取值在0.01-1uf ,滤波电容取值在220-330uh
4. 电感线圈用固定电感L1 = 300uh , L2 = 2.5uh 串联,部分接入中间抽头
三. 波形分析
1. 仿真电路图
2. 仿真输入波形图
3.输出的波形图
4.输出输入对比。
实验报告.高频小信号调谐放大器
rb’b——基极体电阻,一般为几十欧姆;
Cb’c——集电极电容,一般为几皮法;
Cb’e——发射结电容,一般为几十皮法至几百皮法。
由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β有关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,IE=2mA,UCE=8V条件下测得3DG6C的y参数为:
六、心得体会(可选)
通过这次的实验,在对谐振回路的调试,以及对放大器处于谐振时各项技术指标的测试如电压放大倍数、通频带、矩形系数,进一步掌握了高频小信号调谐放大器的工作原理。从而学会了小信号调谐放大器的设计方法。也将课堂所学的理论对于小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大、以及在高频调谐放大器中,由于晶体体管集电结电容的内部反馈,形成了放大器的输出电路与输入电路之间的相互影响。它使高频调谐放大器存在工作不稳定的问题等一系列的知识有了更加深刻的理解。
如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工程估算的方法。
图2中所示的等效电路中,p1为晶体管的集电极接入系数,即
(1-7)
式中,N2为电感L线圈的总匝数。
P2为输出变压器T的副边与原边的匝数比,即
(1-8)
式中,N3为副边(次级)的总匝数。
gL为调谐放大器输出负载的电导,gL=1/RL。通常小信号调谐放大器的下一级仍为晶体管调谐放大器,则gL将是下一级晶体管的输入导纳gie2。
由式(1-14)可得
(1-16)
图3谐振曲线
通频带越宽放大器的电压放大倍数越小。要想得到一定宽度的通频宽,同时又能提高放大器的电压增益,由式(1-15)可知,除了选用yfe较大的晶体管外,还应尽量减小调谐回路的总电容量CΣ。如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益。
高频小信号调谐放大器工作原理
高频小信号调谐放大器工作原理
高频小信号调谐放大器是一种常用于无线电通信系统中的放大器。
其主要作用是放大接收机输入的微弱信号,以便能够有效地处理和解调信号。
这种放大器结构简单、性能稳定、功耗低,因此被广泛应用。
该放大器的基本组成部分包括一个共射放大电路、一个高Q值谐振电路、一个变压器和一个输出耦合电路。
共射放大电路是整个放大器的核心部分,它能够将输入信号经过放大后输出到谐振电路中。
高Q值谐振电路是一个能够选择特定频率的电路,其主要作用是滤除其他频率的干扰信号,只保留需要的信号频率。
这种电路可以采用多种形式,如LC谐振电路、单谐振放大电路等。
变压器是为了提高电路的输入输出阻抗匹配而设置的。
通过变压器的调节,可以使得电路的输入阻抗与输出阻抗匹配,从而使得信号能够更加稳定地传输。
输出耦合电路是将谐振电路产生的信号经过放大后输出到外部设备的电路。
它主要作用是将电路内部的信号传输到外部设备,从而实现信号的传输。
综上所述,高频小信号调谐放大器是一种非常重要的电路,其基本原理是通过放大输入信号并滤除其他频率干扰信号以提高信号质量。
同时,这种放大器具有结构简单、性能稳定、功耗低等特点,因此广泛应用于无线电通信系统中。
实验1高频小信号调谐放大器实验
实验一:高频小信号调谐放大器实验一、实验目的1. 掌握小信号调谐放大器的基本工作原理;2. 掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算;3. 了解高频小信号放大器动态范围的测试方法;二、实验仪器1. 高频实验箱1台2. 双踪示波器1台3. 万用表1块三、实验原理1.单调谐小信号放大见附图1-1(a)小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1(a)所示。
该电路由晶体管Q1、选频回路T1二部分组成。
它不仅对高频小信号进行放大,而且还有一定的选频作用。
本实验中输入信号的频率fS=12MHz。
基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。
可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。
表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数Av0,放大器的通频带BW及选择性(通常用矩形系数Kr0.1来表示)等。
2.双调谐小信号放大见附图1-1(b)双调谐放大器具有频带较宽、选择性较好的优点。
双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改用双调谐回路。
其原理基本相同。
四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件(具体指出)。
2.按下面框图见附图(图1-2)所示搭建好测试电路。
图1-2 高频小信号调谐放大器测试连接框图注:图中符号表示高频连接线3.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯。
(以后实验步骤中不再强调打开实验模块电源开关步骤)4.调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻R4两端的电压(即VBQ)和R5两端的电压(即VEQ),调整可调电阻W3,使VeQ=4.8V,记下此时的VBQ、VEQ,并计算出此时的IEQ=VEQ /R5(R5=470Ω)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路课程设计报告题目: __ 高频小信号谐振放大器 __院系:_xxxxxxxxxxxxxxxxxxxxxxxx_专业:____电子信息科学与技术班级: xxxxxxxxxxx姓名: xxxxxx学号: _ xxxxxxxxxxxxxxx __指导教师: xxxxxxxx报告成绩:2016年12月16日目录一设计目的 (1)二设计思路 (1)2.1 电路的功能 (1)2.2 设计的基本要求 (1)三设计过程 (1)3.1 设计电路 (1)3.2 测量方法 (4)3.2.1谐振频率 (4)3.2.2电压增益 (4)3.2.3通频带 (5)3.2.4矩形系数 (5)四系统调试与结果 (6)4.1 设置静态工作点 (6)4.2 计算谐振回路参数 (6)4.3 利用Multisim 对电路的仿真图 (7)4.4 设计结果与分析 (8)五主要元器件与设备 (10)5.1 元器件与设备 (10)5.2相关参数 (11)六课程设计体会与建议 (11)6.1 设计体会 (11)6.2 设计建议 (12)七参考文献 (12)一设计目的(1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。
(2)掌握高频单调谐放大器的构成和工作原理。
(3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。
(4)掌握高频单调谐放大器的设计方案和测试方法。
二设计思路2.1 电路的功能所谓谐振放大器,就是采用谐振回路作负载的放大器。
根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。
所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。
高频小信号放大器的作用是无失真的放大某一频率围的信号。
按其频带宽度可以分为窄带和宽带放大器。
高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
2.2设计的基本要求(1)通过具体计算,选择器件给出电路设计电路(2)给出最终实现电路(3)进行仿真校验(4)作出设计总结三设计过程3.1设计电路图1高频小信号单极单调谐回路谐振放大器图1所示电路为共发射极接法的晶体管高频小信号单极单调谐回路谐振放大器。
它不仅放可以大高频信号,而且还有一定的选频作用,因此,晶体管的集电极负载为LC 并联谐振回路,在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器射出信号的频率或相位。
放大器在谐振时的等效电路如图2所示,晶体管的4个y 参数分别为: 输入导纳:bb e b e b b b eb c b mb bc b ce oe r C j g r C j g g r C j g y ''''''''+++++≈ωωω)1(输出导纳:bb e b e b b b eb e b ie r C j g r C j g y ''''''+++≈ωω)1(反向传输导纳:bb e b e b b b cb c b re r C j g r C j g y ''''''+++-≈ωω)1(式中m g 为晶体管的跨导,与发射极电流的关系为:{}6*S m i g A e m =图2谐振放大器的高频等效电路晶体管在高频情况下的分布参数除了与静态工作电流e i 、电流放大系数有关外,还与工作角频率有关。
晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。
如在条件下测的2SC945的y 参数:ms rie g ie 21==ms roeg oe 2501== 40=fe y pF c ie 12= pF c oe 4= 350=fe y如图所示等效电路中,1p 为晶体管的集电极接入系数,即:211N N p =式中,2n 为电感L 线圈的总匝数;2p 为输出变压器ro T 的副边与原边的 匝数比,即:232N N p =式中,3n 为副边的总匝数;L g 为谐振放大器输出负载的电导,11G g L =。
通常小信号谐振放大器的下一级仍为晶体管谐振放大器,则L g 将是下一级晶体管的输出电导2ie g 。
可见并联谐振回路的总电导:oie oe g lj c j g p g p g ++++=∑ωω1222213.2 测量方法图中输入信号S V 由高频信号发生器提供,高频电压表1V 、2V 分别用于测量放大器是 输入电压i V 与输出电压O V 的值。
直流毫安表mA 用于测量放大器的集电极电流c i 的值,示波器监测负载L R 两端的输出波形。
谐振放大器的各项性能指标 及测量方法如下。
3.2.1 谐振频率放大器的谐振回路谐振是所对应的频率0f 称为谐振频率。
对于图所示电路,0f 的表达式为:LCf π210=式中,L 为谐振回路电感线圈的电感量;C 为谐振回路的总电容, C 的表达式为ie oe C P C P C C 2221--=∑式中,oe C 为晶体管的输出电容;ie C 为晶体管的输入电容。
LC 并联回路谐振时,直流毫安表mA 的 指示值为最小,电压表2V 的指示值达到最大,且输出波形无明显失真。
这是回路的谐振频率就等于信号发生器的 输出频率。
由于分布参数的 影响,有时谐振回路的 输出电流的最小值与输出电压的最大值不一定同时出现,这时视电压表的指示值达到最大时的状态为谐振回路处于谐振状态。
3.2.2电压增益谐振回路谐振时所对应的电压放大倍数VO A 称为谐振放大器的电压增益。
VO A 的测量电路如图4所示,测量条件是放大器的谐振回路处于谐振状态,当回路谐振时分别记下输出端电压表2V 的读数O V 及输入端电压表1V 的读数1V ,则电压放大倍数VO A 由下式计算:ioVO V V A =3.2.3通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数V A 下降到谐振电压放大倍数VO A 的0.707倍时所对应的 频率围称为放大通频带BW ,其表达式为: LOQ f BW =。
式中,L Q 为谐振回路的有载品质因数。
通频带BW 的测量电路如图所示。
可通过测量放大器的频率特性曲线来求通频带。
测量方法有扫频法和逐点法。
21f f BW -=图3频率特性曲线3.2.4矩形系数谐振放大器的 选择性可用谐曲线的矩形系数1.0r K 来表示,如图所示 ,矩形系数1.0r K 为电压放大倍数下降到VO A 1.0时对应的频率围与电压放大倍数下降到VO A 707.0时对应的频率偏移之比,即7.01.01.022f f K r ∆∆=可以通过测量谐振放大器的频率特性曲线来求得矩形系数1.0r K 。
四 系统调试与结果 4.1 设置静态工作点1b R 可用30ΩK 电阻和100ΩK 电位器串联,以便调整静态工作点。
4.2 计算谐振回路参数{}{}(){}ms j ms C j g r C g y msS mA I g ms SmA I g e b e b b b e b e b ie E m E e b 5.196.0)(1382677.026''''''+=+++==*==*ωωβ因为 ie ie ie C j g y ω+=,所以}msj ms C j C j g r g r C j y pFms C K g r ms g e b e b e b b b m b b c b oe ie ieie ie 5.006.0)(1235.11196.0''''''+=+++===Ω===ωωωω因为 oe oe oe C j g y ω+=,所以{}msj ms C j g r g y pFms C ms y e b e b b b mfe oe oe 1.437)(175.006.0'''-=++====ωω故模ms y fe 37)4137(5.022=+= 总电容为: pF L f C o 2.55)2(12=⋅=∑πC ∑=1/(2πf0)^2L=55.2pF回路电容pF C P C P C C ie oe 3.532221=--=∑ 取标称值51pF 求出耦合变压器的的一原边抽头匝数1N 及副边匝数3N ,即5211=⋅=N P N 匝 5322=⋅=N P N 匝4.3 利用Multisim 对电路的仿真图将元件参数值进行安装。
先调整放大器的静态工作点,然后再调谐振回路使其谐振。
图4是高频谐振放大器的测试电路设计图。
图4高频谐振放大器电路图调整静态工作点,不加输入信号,将1C 的 左端接地,将谐振回路的电容C 开路,这时用万用表测量电阻E R 两端的电压,调整电阻1B R 使V V BQ 5.1 。
记下此时电路的1B R 值及静态工作点BQ V 、CBQ V 、EQ V 及BQ I 。
谐振回路使其谐振的,按图4所示的电路接入高频电压表1V 、2V ,直流毫安表mA 及示波器。
再将信号发生器的输入频率置于i f =10.7MHz ,输出电压i V =5mV 。
为避免谐振回路失谐引起的高反向电压损坏晶体管,可先将电源电压+CC V 降低,如使+CC V =+6V 。
调输出耦合变压器的磁芯使回路谐振,即电压表2V 的指示值达到最大,毫安表mA 的指示值为最小且输出波形无明显失真。
回路处于谐振状态后,再将电源电压恢复至+9V 。
由于分布参数的影响,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定偏离。
需要反复调整输出耦合变压器的磁芯位置才能使谐振回路处于谐振状态。
4.4 设计结果与分析以下是利用Multisim软件仿真高频谐振放大器电路的效果图。
图5和图6 分别是利用示波器对电源、负载电阻所测的效果图,通过两个图的比较可以看出电路的确达到了放大的作用。
图5 示波器对电源测试效果图Auo=20lg(vo/vi)=20*lg(1.955/0.09)=26.77>=20db波特图测试如下(a)中心频率f0(b)f1(c)f2(d)f L(e)f H图6谐振曲线通频带Bw=7.967—7.438=0.529MHz矩形系数K r0.1=2Δf0.1\2Δf0.7=10.618MHz通过上图的比较可以看出放大电路的确起到放大作用。
图7 电流源配置图五主要元器件与设备5.1元器件与设备信号源,电阻,电容,电感,晶体管,变压器,示波器,波特图示仪图8元器件设备相关参数5.2相关参数+Vcc=+9V,晶体管为3DG100C,β=50,查手册得rb,b=70Ω,Cb,c=3pF。