模电课程设计-波形发生器

合集下载

课程设计——波形发生器

课程设计——波形发生器

波形发生器设计一.摘要本文以AT89C51单片机为核心,采用C语言的编程方法,外加DAC0832数模转换模块与集成运放模块,构成了函数波形发生器。

可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择输出波形。

其中运用软硬件结合的方法实现设计功能,具有线路简单、结构紧凑、性能优越等特点。

关键词:51单片机;DAC;函数波形发生器二.设计要求1.产生正弦波、方波、三角波;2.幅度可以设定;3.出频率能达到1MHZ。

4. 发挥部分(自选)三.设计目的1、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决实际课题设计的能力。

2、培养针对课题需要,选择和查阅有关手册、图表及文献资料的能力,提高组成系统、编程、调试的动脑动手能力。

3、通过对课题设计方案的分析、选择、比较,熟悉运用单片机系统开发、软硬件设计的方法内容及步骤。

4,掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的单片机应用系统功能器件。

四.设计方案波形发生器的实现方法通常有以下几种:方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。

但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。

方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。

方案三:采用AT89S52单片机和DAC0832芯片,直接连接键盘和显示。

该种方案主要对AT89S52单片机的各个I/O口充分利用。

P1口是连接键盘, P2口接显示电路,P0口连接DAC0832输出波形。

这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本。

也对按照系统便携式低频信号发生器的要求所完成。

占用空间小,使用芯片少,低功耗。

综合考虑,方案三各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案三。

波形产生器课程设计

波形产生器课程设计

目录目录 01.1波形发生器的进展状况 01.2国内外波形发生器产品比较 (1)5.1 主流程图 (6)5.2正弦波仿真图 (6)5.4 方波仿真图 (7)1.波形发生器概况在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和运算机等技术领域,常常需要用到各类各样的信号波形发生器。

随着集成电路的迅速进展,用集成电路可很方便地组成各类信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相较,其波形质量、幅度和频率稳固性等性能指标,都有了专门大的提高。

1.1波形发生器的进展状况波形发生器是能够产生大量的标准信号和用户概念信号,并保证高精度、高稳固性、可重复性和易操作性的电子仪器。

函数波形发生器具有持续的相位变换、和频率稳固性等长处,不仅能够模拟各类复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通信,组成自动测试系统,因此被普遍用于自动控制系统、震动鼓励、通信和仪器仪表领域。

在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常常利用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方式。

那个时期的波形发生器多采用模拟电子技术,而且模拟器件组成的电路存在着尺寸大、价钱贵、功耗大等缺点,而且要产生较为复杂的信号波形,则电路结构超级复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。

到了二十一世纪,随着集成电路技术的高速进展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的进展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。

波形发生器课程设计vhdl

波形发生器课程设计vhdl

波形发生器课程设计vhdl一、教学目标本课程旨在通过学习VHDL(硬件描述语言),让学生掌握波形发生器的设计与仿真。

通过本课程的学习,学生应能理解VHDL的基本语法和编程技巧,能够运用VHDL设计简单的数字电路,特别是波形发生器。

此外,通过课程实践,培养学生分析问题、解决问题的能力,以及团队合作和沟通交流的能力。

具体来说,知识目标包括:1.掌握VHDL的基本语法和编程技巧。

2.理解波形发生器的工作原理和设计方法。

技能目标包括:1.能够运用VHDL设计简单的数字电路。

2.能够独立完成波形发生器的设计与仿真。

情感态度价值观目标包括:1.培养学生的创新意识和实践能力。

2.培养学生团队合作和沟通交流的能力。

二、教学内容本课程的教学内容主要包括VHDL基本语法、数字电路设计方法和波形发生器的设计与仿真。

1.VHDL基本语法:包括数据类型、信号声明、实体和架构、过程和函数、线网和赋值语句等。

2.数字电路设计方法:包括组合逻辑电路、时序逻辑电路和触发器的设计方法。

3.波形发生器的设计与仿真:包括正弦波、方波、三角波等波形发生器的设计方法,以及相应的仿真测试。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、案例分析法、实验法和讨论法等。

1.讲授法:用于讲解VHDL基本语法和数字电路设计方法。

2.案例分析法:通过分析实际案例,让学生学会波形发生器的设计与仿真。

3.实验法:让学生动手实践,独立完成波形发生器的设计与仿真。

4.讨论法:在课堂上引导学生进行思考和讨论,培养团队合作和沟通交流的能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数字电路设计与VHDL编程》等。

2.参考书:《VHDL完全学习手册》、《数字电路与逻辑设计》等。

3.多媒体资料:包括PPT课件、教学视频、在线课程等。

4.实验设备:计算机、VHDL仿真软件(如ModelSim)、示波器等。

模拟电路课程设计--多用途波形发生器

模拟电路课程设计--多用途波形发生器

模拟电路课程设计--多用途波形发生器课程题目:多用途波形发生器一、设计目的·掌握运算放大器的工作原理。

·掌握波形产生电路组成及设计方法。

二、设计任务和要求。

1.设计制作一台能产生方波、三角波、锯齿波和正弦波的波形发生器。

;2.①输出波形频率范围为0.02Hz~20kHz且连续可调;②正弦波幅值为±10V,失真度小于2%;③方波幅值为10V;④三角波峰-峰值为20V;⑤各种波形幅值均连续可调;⑥设计电路所需的直流电源。

⑦出集成运放、二极管、电阻、电容、电位器、转换开关等全部元件的清单三、方案选择与论证。

3.1方案1:1、结构图见图1:图中共有四个主要部分: 1.正弦波发生器如图:C450%50%50% C1、C2与两个滑动变阻器构成选频网络,开始时,D2、D3与R3并联,电阻约为R3,AF>1,之后D2与D3将R3短路,AF=1,振荡产生正弦波。

2.方波与三角波发生器R4200kΩ当R8取50%时,电路振荡产生方波与三角波,否则产生矩形波与锯齿波。

波形频率有R6调节,R4可以调节波形和幅度。

C2与R9接地可以使波形减少失真。

3.电源1kΩ利用桥型整流,结合C7~C12滤波,将交流电变成直流,产生正负电源为运算放大器提供电源4.放大器R15200kΩKey=AAD549JH是高阻抗运算放大器,将产生的波形放大。

四.用到的元器件741、AD549JH运算放大器电解电容、可变电容1N4001GP、1N1204C二极管05AZ2.2稳压管TS-PQ4-10变压器220V、50Hz电阻若干五.心得通过本次课程设计,将课本所学知识联系到日常生活中,加深了我们对课本内容的认识和应用,也更让我们了解到了生活中即使是随便看得到一个光控路灯,也有着不简单的内容,让我们重新感悟,从生活中学习,着心于观察生活,才能做到不空读书,从而将生活中的所观所感融入到学习中,进而学会更多。

此外,通过团队的合作,更让我们发现了各自所学的不足,大家取长补短,互相为师,加深了对彼此的了解,增进了友谊。

模拟电子技术课程设计波形发生器

模拟电子技术课程设计波形发生器

烟台南山学院模拟电子技术课程设计题目波形发生器姓名:孙道坤所在学院:计算机与电气自动化学院所学专业:自动化班级自动化1202学号 201202022021指导教师:刘新红完成时间: 2013年12月模电课程设计任务书一、基本情况学时:40学时学分:1学分课程设计代码:07120102适应班级:电气工程、自动化二、进度安排本设计共安排1周,合计40学时,具体分配如下:实习动员及准备工作:2学时总体方案设计:4学时查阅资料,讨论设计:24学时撰写设计报告:8学时总结:2学时教师辅导:随时三、基本要求1、课程设计的基本要求模电课程设计是在学习完模拟电子技术课程之后,按照课程教学要求,对学生进行综合性训练的一个实践教学环节。

主要是培养学生综合运用理论知识的能力,分析问题和解决问题的能力,以及根据实际要求进行独立设计的能力。

初步掌握模拟电子线路的安装、布线、焊接、调试等基本技能;熟练掌握电子电路基本元器件的使用方法,训练、提高读图能力;掌握组装调试方法。

其中理论设计包括总体方案选择,具体电路设计,选择元器件及计算参数等,课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。

2、课程设计的教学要求模电课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。

做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到6节以上,或者迟到、早退累计达到8次以上的学生,该课程考核按不及格处理。

在实训期间需要外出查找资料,必须在指定的时间内方可外出。

课程设计的任务相对分散,每3名学生组成一个小组,完成一个课题的设计。

小组成员既有分工、又要协作,同一小组的成员之间可以相互探讨、协商,可以互相借鉴或参考别人的设计方法和经验。

但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰写设计报告,设计报告雷同率超过50%的课程设计考核按不及格处理。

四、设计题目及控制要求设计制作一台能产生方波、三角波和正弦波的波形发生器。

模电课设_函数信号发生器

模电课设_函数信号发生器

模电课设_函数信号发生器
模电课设_函数信号发生器,也称为波形发生器,是一种用于产生指定波形信号的仪器。

它可以产生常用的正弦波、方波、三角波、锯齿波等周期性波形,它还可以产生高斯信号、半正弦波、脉冲组合波等非周期性波形,具有较好的信号准确度和幅度精度。

一般来说,函数信号发生器都由电路盒、外壳和控制面板组成。

电路盒里装有一个外接电压调节电路、频率调节电路、波形选择电路以及多种功能电路,控制面板上有多个旋钮,可以根据需要来调节所需的信号参数,如频率、幅度、相位等。

函数信号发生器在实验室、工厂和实际应用中被广泛使用,用于对系统的响应特性测试,以及各种电子设备的调试和检测。

模拟电子课程设计--波形信号发生器

模拟电子课程设计--波形信号发生器

模拟与数字电子技术课程设计报告设计课题:波形信号发生器专业班级:电子信息工程1002学生姓名:指导教师:设计时间:题目:信号发生器摘要信号发生器又称为波形发生器,是一种能产生标准信号的电子仪器,是工业生产和电工电子实验室中经常使用的电子仪器之一。

信号发生器可以有多种实现方法,而频率越高产生波形越多的信号发生器越好,可以从信号发生器的制作条件及使用领域方面考虑其实现方法数字系统中需要的特殊信号,如方波、三角波等,例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

波形发生器广泛地应用于各大院校和科研场所。

随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。

关键词:正弦波;方波;三角波;低频信号源引言:信号发生器是科研、教学、制造业中一种最常用的通用仪器,输出波形一般固定为正弦波、三角波、锯齿波和方波,不能实现有时在实验或工程应用中需要的特殊信号给用户使用带来不便。

虽然目前市场上的高性能的任意信号发生器已经出现,但是价格昂贵,对于一般机电控制的用户而言频带不需要很宽。

所以一种既能满足一定频率和波形性能要求又价格低廉的超低频任意信号发生器就成为了一种需求。

本课题提出一种既能满足使用要求又价格低廉的原理样机设计方案,并对原理样机的性能提出了改进方案。

1设计任务与要求(1)具有产生正弦波、方波、三角波三种周期性波形的功能;(2)正弦波幅值±10V,方波幅值±10V;(3)三角波峰-峰值20V,各种输出波形幅值在一定范围内可调;(4)输出波形工作频率范围为100HZ~10KHZ,且连续可调。

2方案设计与论证方案一∶采用传统的直接频率合成器。

波形发生器课程设计

波形发生器课程设计

1.设计题目:波形发生电路2.设计任务和要求:要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。

基本指标:输出频率分别为:102HZ 、103HZ;输出电压峰峰值VPP≥20V3.整体电路设计1)信号发生器:信号发生器又称信号源或振荡器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。

通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。

2)电路设计:整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。

理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。

RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。

反相输入的滞回比较器:矩形波产生的重要组成部分。

积分电路:将方波变为三角波。

3)整体电路框图:为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。

三角波进入积分电路,得出的波形为所求的三角波。

其电路的整体电路框图如图1所示:图14)单元电路设计及元器件选择 a ) 方波产生电路根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。

电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。

滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。

图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。

多种波形发生器课程设计

多种波形发生器课程设计

多种波形发生器课程设计一、课程目标知识目标:1. 学生能够理解并掌握多种波形发生器的原理及其功能。

2. 学生能够识别并描述方波、三角波、正弦波等基本波形的特点。

3. 学生能够解释波形发生器在电子技术中的应用。

技能目标:1. 学生能够运用所学知识,设计简单的波形发生器电路图。

2. 学生能够操作示波器等实验设备,观察并分析不同波形的特点。

3. 学生能够通过小组合作,完成波形发生器的搭建和调试。

情感态度价值观目标:1. 学生能够认识到波形发生器在科技发展中的重要性,增强对电子技术的兴趣。

2. 学生在学习过程中,培养合作精神、探究精神和创新意识。

3. 学生能够遵循实验操作规范,树立安全意识,养成严谨的科学态度。

课程性质:本课程为电子技术课程的一部分,旨在帮助学生了解并掌握波形发生器的原理和应用。

学生特点:学生为高中年级,具备一定的电子基础知识和实验操作能力。

教学要求:结合学生特点和课程性质,通过理论讲解、实验演示和小组合作,使学生能够达到上述课程目标。

在教学过程中,注重培养学生的动手能力、思考能力和创新能力,将知识目标、技能目标和情感态度价值观目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容1. 理论知识:- 波形发生器的原理及其分类- 方波、三角波、正弦波等基本波形的数学表达式和特点- 波形发生器在电子电路中的应用实例2. 实践操作:- 示波器的使用方法- 波形发生器电路图设计- 波形发生器电路的搭建与调试3. 教学大纲:- 第一课时:波形发生器原理及分类介绍,示波器使用方法讲解- 第二课时:方波、三角波、正弦波等基本波形特点及数学表达式分析- 第三课时:波形发生器应用实例分析,电路图设计方法讲解- 第四课时:小组合作,进行波形发生器电路搭建与调试4. 教材章节:- 教材第四章:波形发生器- 教材第五章:示波器及其应用教学内容根据课程目标进行选择和组织,确保科学性和系统性。

在教学过程中,教师需按照教学大纲安排教学内容和进度,结合教材章节,使学生在掌握理论知识的同时,能够进行实践操作,提高学生的综合能力。

proteus波形发生器课程设计

proteus波形发生器课程设计

proteus波形发生器课程设计一、课程目标知识目标:1. 理解波形发生器的原理,掌握Proteus软件中波形发生器的使用方法;2. 学会分析波形发生器的电路图,并能够描述各部分功能;3. 掌握如何调整波形发生器的参数,以实现不同波形(如正弦波、方波、三角波等)的输出。

技能目标:1. 能够运用Proteus软件设计并搭建简单的波形发生器电路;2. 学会使用示波器等工具观察波形发生器输出的波形,并进行分析;3. 能够针对实际需求,调整波形发生器的参数,实现特定波形的输出。

情感态度价值观目标:1. 培养学生对电子电路的兴趣,激发学习热情;2. 增强学生的团队合作意识,培养在团队中沟通、协作的能力;3. 引导学生认识到波形发生器在电子技术中的应用价值,提高学生的创新意识和实践能力。

课程性质:本课程为电子技术实践课程,以实验操作和实际应用为主,注重培养学生的实际操作能力和创新能力。

学生特点:学生为高年级电子专业或相关专业的学生,具有一定的电子电路基础和实际操作能力。

教学要求:结合Proteus软件和实际电路,引导学生从理论到实践,逐步掌握波形发生器的原理和应用。

在教学过程中,注重启发式教学,鼓励学生思考、提问、创新,提高学生的综合素养。

通过课程学习,使学生能够独立完成波形发生器的设计与搭建,为后续相关课程和实际工作打下基础。

二、教学内容1. 波形发生器原理介绍:讲解波形发生器的概念、种类、工作原理及其在电子电路中的应用。

- 教材章节:第二章第二节“波形发生器的基本原理”- 内容列举:正弦波、方波、三角波等常见波形的产生原理,集成波形发生器的特点。

2. Proteus软件使用:介绍Proteus软件的基本功能,重点讲解波形发生器的搭建、参数设置和仿真操作。

- 教材章节:第三章“Proteus软件的使用”- 内容列举:软件界面、基本操作、波形发生器组件、仿真分析等。

3. 波形发生器电路分析与设计:- 教材章节:第四章“波形发生器电路分析与设计”- 内容列举:电路图分析、各部分功能、参数调整、波形观察与调试。

模电课程设计-波形发生器(130619)

模电课程设计-波形发生器(130619)

模电课程设计-波形发生器()院系:电子工程系姓名:巫金生学号:设计项目名称:波形发生器实验所属课程:模拟电子技术教程设计实验室(中心):模拟电子实验室指导教师:郭彩萍设计完成时间:2013 年06 月19目录本实验主体报告分为5个部分1、成员介绍…………………………….2、波形发生器功能介绍………………………3、原理图、PCB图及参数计算……………….4、仿真结果…………………………………….5、心得体会…………………………………….6、参考文献……………………………………..Ps:如有纰漏,敬请谅解- 2 -知行合一行胜于言太原工业学院 第 - 9 - 页 共 9 页一.成员介绍: ①、刘毅②、董敏 ③、崔宇 ④、巫金生二.波形发生器功能介绍: 此波形发生器由两个LM358 集成运算放大器及其周边电路构成,可以发生方波、三角波、锯齿波和正弦波。

①方波:利用输入端的RC 自激振荡电路,反相输入迟滞电路而形成,反馈网路增加一个电位器以调节占空比。

正向输入端连接一个电位器可以调节方波的频率。

输出电路利用一个5V 双向稳压管接地来稳幅。

②三角波:以方波为输入信号,输入到积分电路。

同时为了提高三角波的负载能力并且减少方波频率对三角波幅值的影响,将积分电路的输出反馈给滞回比较器的输入。

通过改变方波的频率改变三角波的频率。

③锯齿波:以方波为输入信号,利用二极管的单向导电性是积分电路中C 充放电的回路不同,输入到一并联的二极管模块再输入到积分电路,以调节锯齿波的斜率。

为减少对其他电路的干扰,这里为并联的二极管设计了一个与其并联的开关,当想要输出三角波的时候开关闭合,并联二极管模块短路;当想要输出锯齿波的时候开关断开,接通并联二极管电路。

正弦波:实际是一个一阶反相输入的低通滤波器。

在积分电路中的电容上并联一个电阻来降低通带放大倍数。

三.原理图、PCB 及参数计算 1、原理图:2、PCB图:3、模块详细分析⑴、自激震荡部分:- 2 -知行合一行胜于言太原工业学院第 - 9 - 页 共 9 页没有接通时,0c V =,滞回比较器0z V V =+,则集成运放同相输入端212*i zR V V R R =+,同时0z V V =+给C 充电,使R V 由0上升,在R V >i V 之前,0z V V =+不变;当R V >i V 时,0V 跳变到z V -。

模拟电子技术课程设计报告(正弦波、方波—三角波波形发生器)

模拟电子技术课程设计报告(正弦波、方波—三角波波形发生器)

模拟电⼦技术课程设计报告(正弦波、⽅波—三⾓波波形发⽣器)模拟电⼦技术课程设计报告设计题⽬:正弦波、⽅波—三⾓波波形发⽣器专业班级学号学⽣姓名同组成员指导教师设计时间教师评分⽬录1、概述 (3)1.1、⽬的 (3)1.2、课程设计的组成部分 (3)2、正弦波、⽅波、三⾓波设计的内容 (3)3、总结 (4)3.1、课程设计进⾏过程及步骤 (4)3.2、所遇到的问题及是怎样解决这些问题的 (10)3.3、体会收获及建议 (10)3.4、参考资料 (10)4、教师评语 (11)5、成绩 (11)1、概述1.1、⽬的课程设计的⽬的在于巩固和加强电⼦技术理论学习,促进其⼯程应⽤,着重于提⾼学⽣的电⼦技术实践技能,培养学⽣综合运⽤所学知识分析问题和解决问题的能⼒,了解开展科学实践的程序和基本⽅法,并逐步形成严肃、认真、⼀丝不苟、实事求是的科学作风和⼀定的⽣产观、经济观和全局观。

1.2、课程设计的组成部分(1)、RC正弦波振荡电路(2)、⽅波—三⾓波产⽣电路2、正弦波、⽅波—三⾓波设计的内容(1)、RC正弦波振荡电路设计⼀个RC正弦波振荡电路,其正弦波输出为:a.振荡频率: 1592 Hzb.振荡频率测量值与理论值的相对误差<+5%c.振幅基本稳定d.振荡波形对称,⽆明显⾮线性失真(2)、⽅波—三⾓波产⽣电路设计⼀个⽤集成运算放⼤器构成的⽅波—三⾓波产⽣电路。

指标要求如下:⽅波 a.重复频率:4.35*103 Hzb.相对误差<+5%c.脉冲幅度 +(6--8)V三⾓波 a.重复频率:4.35*103 Hzb.相对误差<+5%c.幅度:6—8V3、总结3.1、课程设计进⾏过程及步骤1、正弦波实验参考电路如图(1)、根据已知条件和设计要求,计算和确定元件参数。

并在实验电路板上搭接电路,检查⽆误后接通电源,进⾏调试。

(2)、调节反馈电阻R4,使电路起振且波形失真最⼩,并观察电阻R4的变化对输出波形V o的影响。

波形发生器(课程设计)

波形发生器(课程设计)

波形发生器的设计1.设计目的(1)掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。

(2)学会安装与调试由分立器件与集成电路组成的多级电子电路小系统。

2.设计任务设计一台波形信号发生器,具体要求如下:(1)输出波形:正弦波、方波、三角波。

(2)频率范围:3Hz -30Hz ,30Hz -300Hz ,300Hz -3KHz ,3KHz -30KHz 等4个波段。

(3)频率控制方式:通过改变RC 时间常数手控信号频率。

(4)输出电压:方波峰—峰值V U pp 24≤;三角波峰-峰值V 8U pp =,正弦波峰-峰V 1U pp >。

3.设计要求(1)完成全电路的理论设计(2)参数的计算和有关器件的选择(3)PCB 电路的设计(4)撰写设计报告书一份;A3 图纸2张。

报告书要求写明以下主要内容:总体方案的选择和设计 ;各个单元电路的选择和设计;PCB 电路的设计4、参考资料(l )李立主编. 电工学实验指导. 北京:高等教育出版社,2005(2)高吉祥主编. 电子技术基础实验与课程设计. 北京:电子工业出版社,2004(3)谢云,等编著.现代电子技术实践课程指导.北京:机械工业出版社,2003目录一. 设计的方案的选择与论证 (3)1.1 设计方案 (3)1.1.1 设计方案1 (3)1.1.2 设计方案2 (4)1.1.3 设计方案3 (5)1.2 方案选择 (6)二. 单元电路的设计 (6)2.1 方案设计 (6)2.1.1 正弦波电路 (6)2.1.2 方波电路 (11)2.1.3 三角波电路 (12)2.2 参数的选择 (13)三、仿真 (14)3.1 软件介绍 (14)3.2 仿真的过程与结果 (15)四、PCB制版 (15)4.1 软件简介 (15)4.2 PCB电路板设计步骤 (20)五、总结与心得 (21)六、附录 (22)6.1 材料清单 (22)6.2 原理图 (23)6.3 PCB板图 (24)七、参考文献 (25)一.设计方案的选择与论证产生正弦波、三角波、方波的电路方案有多种。

模电课程设计(波形发生器)

模电课程设计(波形发生器)

课程设计课程名称模拟电子技术基础课程设计题目名称波形发生电路_学生学院物理与光电工程学院专业班级电子科学与技术(5)班学号学生指导教师2013-12-10一、题目:波形发生电路二、设计任务与技术指标要求:设计并制作用分立元件和集成运算放大器组成的能产生正弦波、方波和三角波的波形发生器。

基本指标:1、输出的各种波形基本不失真;2、频率围为50H Z~20KH Z,连续可调;3、方波和正弦波的电压峰峰值V PP>10V,三角波的V PP>20V。

三、电路设计及其原理1)方案的提出方案一①用RC桥式振荡器产生正弦波。

②正弦波经过一个过零比较器产生方波。

③方波通过积分运算产生三角波。

方案二①由滞回比较器和积分运算构成方波和三角波发生电路。

(如图1所示)②再由低通滤波把三角波转成正弦波。

方案三①由滞回比较器和积分运算构成方波和三角波发生电路。

(同方案二)②利用折线法把三角波转换成正弦波。

(如图2所示)图1 图3图22)方案的比较方案一中以RC 串并联网络为选频网络和正反馈网络、并引入电压串联负反馈,从而产生正弦波。

为了稳定正弦波幅值,一般要在反馈电阻一边串联一对反向的并联二极管,但这样会使正弦波出现交越失真。

R1/R2=2时,起振很慢;R1/R2>2时,正弦波会顶部失真。

调试困难。

还有,RC 桥式振荡器对同轴电位器的精确度要求较高,否则,正弦波很容易失真。

方案二的低通滤波产生正弦波适宜在三角波频率固定或变化小时使用,而本次课程设计要求频率50Hz-20KHz,显然不适合。

方案三滞回比较器和积分比较器首尾相接形成正反馈闭环系统,这样就形成方波发生器和三角波发生器。

滞回比较器输出的方波经积分产生三角波,三角波又触发比较器自动翻转成方波。

另外,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。

而且折线法不受频率围的限制,便于集成化。

虽然反馈网络中电阻的匹配困难,但可以通过理论计算出每个电阻阻值后再调试。

模拟电子技术实验:集成运算放大器的基本应用─波形发生器

模拟电子技术实验:集成运算放大器的基本应用─波形发生器

实验九 集成运算放大器的基本应用(Ⅳ)─ 波形发生器 ─一、实验目的1、 学习用集成运放构成正弦波、方波和三角波发生器。

2、 学习波形发生器的调整和主要性能指标的测试方法。

二、实验原理由集成运放构成的正弦波、方波和三角波发生器有多种形式,本实验选用最常用的,线路比较简单的几种电路加以分析。

1、 RC 桥式正弦波振荡器(文氏电桥振荡器)图11-1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W 及二极管等元件构成负反馈和稳幅环节。

调节电位器R W ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率2πRC1f O起振的幅值条件1fR R ≥2 式中R f =R W +R 2+(R 3 // r D ),r D — 二极管正向导通电阻。

调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大R f 。

如波形失真严重,则应适当减小R f 。

改变选频网络的参数C 或 R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

图11-1 RC 桥式正弦波振荡器2、方波发生器由集成运放构成的方波发生器和三角波发生器,一般均包括比较器和RC 积分器两大部分。

图11-2所示为由滞回比较器及简单RC 积分电路组成的方波—三角波发生器。

它的特点是线路简单,但三角波的线性度较差。

主要用于产生方波,或对三角波要求不高的场合。

电路振荡频率式中 R 1=R 1'+R W ' R 2=R 2'+R W "方波输出幅值 U om =±U Z三角波输出幅值调节电位器R W (即改变R 2/R 1),可以改变振荡频率,但三角波的幅值也随之变化。

调频波形发生器课程设计

调频波形发生器课程设计

调频波形发生器课程设计一、课程目标知识目标:1. 学生能够理解调频波形发生器的基本原理,掌握其工作流程。

2. 学生能够运用所学知识,分析并设计简单的调频波形发生器电路。

3. 学生掌握调频技术的基本概念,了解其在通信领域的应用。

技能目标:1. 学生能够运用示波器、信号发生器等实验设备进行调频波形发生器的调试与测试。

2. 学生具备独立设计、搭建和调试简单调频波形发生器的能力。

3. 学生能够通过实际操作,提高解决实际问题的能力和动手实践能力。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索未知、勇于创新的科学精神。

2. 学生通过小组合作,培养团队协作意识,增强沟通与表达能力。

3. 学生能够认识到调频波形发生器在实际应用中的价值,增强社会责任感和使命感。

课程性质:本课程为电子技术学科的一门实践性较强的课程,旨在让学生通过理论学习和实践操作,掌握调频波形发生器的原理和应用。

学生特点:学生处于高中年级,具有一定的电子技术基础,对实际操作和动手实践有较高的兴趣。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践能力,培养创新意识和团队协作精神。

通过本课程的学习,使学生能够将所学知识应用于实际电路设计,提高解决实际问题的能力。

二、教学内容1. 理论知识:- 调频原理及其在通信系统中的应用- 调频波形发生器的电路结构和工作原理- 调频信号的特点及其调制与解调方法2. 实践操作:- 使用信号发生器产生调频信号- 搭建并测试简单的调频波形发生器电路- 利用示波器观察调频信号的波形及其特性3. 教学大纲:- 第一周:调频原理及其在通信系统中的应用- 第二周:调频波形发生器的电路结构和工作原理- 第三周:调频信号的特点及其调制与解调方法- 第四周:实践操作一,使用信号发生器产生调频信号- 第五周:实践操作二,搭建并测试简单的调频波形发生器电路- 第六周:实践操作三,利用示波器观察调频信号的波形及其特性4. 教材关联:- 教科书第四章第二节:调频技术及其应用- 教科书第五章第三节:波形发生器及其设计教学内容注重科学性和系统性,结合课程目标,合理安排教学进度。

模拟电子技术课程设计--波形发生器

模拟电子技术课程设计--波形发生器

模拟电子技术课程设计--波形发生器目录1概述 (3)1.1 课程计的目的 (3)1.2课程设计的任务与要求 (3)1.3 课程设计的技术指标 (3)(1) 2 各部分电路设计 (3)2.1正弦波波发生器的电路和工作原理 (3)2.2 方波发生电路的工作原理 (4)2.3矩形波的工作原理 (5)2.4三角波发生器的工作原理 (6)2.5方波---三角波转换电路的工作原理 (8)2.6三角波---正弦波转换电路的工作原理 (12)2.7电路的参数选择及计算 (13)2.8 总电路图 (14)3 电路仿真调试 (16)3.1 方波---三角波发生电路的仿真 (16)3.2 三角波---正弦波转换电路的仿真 (17)3.3 方波---三角波发生电路调试 (18)3.4 三角波---正弦波转换电路调试 (19)3.5 矩型波的调试 (20)5 实验总结及感想及参考文献 (21)一、概述1.1课程设计的目的1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力。

2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3.学会运用Multisim11仿真软件对所作出的理论设计进行仿真测试,并能进一步完善设计。

1.2任务和要求本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成3个项目的电路设计与仿真。

完成该次课程设计后,学生应达到以下要求:1、巩固和加深对《电子技术2》课程知识的理解;2、会根据课题需要选学参考书籍、查阅手册和文献资料;3、掌握仿真软件Multisim的使用方法;4、掌握简单模拟电路的设计、仿真方法;5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反应设计和仿真结果。

1.3 主要技术指标●要求所设计的函数信号发生器能产生方波、三角波、正弦波;●要求该函数信号发生器能够实现频率可调;●函数发生器以集成运放及分立元件为核心进行设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计题目
波形发生电路
二、设计任务和要求
要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。

指标:输出频率分别为:102H Z、103H Z和104Hz;输出电压峰峰值V PP≥20V 三、原理电路设计:
(1)方案的提出
方案一:
①先由文氏桥振荡产生一个正弦波信号(右图)
②把文氏桥产生的正弦波通过一个过零比较器
从而把正弦波转换成方波。

③把方波信号通过一个积分器。

转换成三角波。

方案二:
①由比较器和积分器构成方波三角波产生电路。

(下图)
②然后通过低通滤波把三角波转换成正弦波信号。

方案三:
①由比较器和积分器构成方波三角波产生电路。

(电路图与方案二相同)
②用折线法把三角波转换成正弦波。

(下图)
(2)方案的比较与确定
方案一:
文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。

当R1=R2、时,F=1/3、Au=3。

然而,起振条件为Au略大于3。

实际操作时,C1=C2。

即f=f
如果要满足振荡条件R4/R3=2时,起振很慢。

如果R4/R3大于2时,正弦波信号顶部失真。

调试困难。

RC串、并联选频电路的幅频特性不对称,且选择性较差。

因此放弃方案一。

方案二:
把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。

比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。

通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。

然而,指标要求输出频率分别为102H Z、103H Z和104Hz。

因此不满足使用低通滤波的条件。

放弃方案二。

方案三:
方波三角波发生器原理如同方案二。

比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。

因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。

而且折线法不受频率范围的限制,便于集成化。

综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。

(3)单元电路设计
运算放大器U5A与R17、R15构成一个放大系数为10的反相比例运算放大电路。

通过反相放大而达到峰峰值大于20V。

运算放大U4B构成三角波转换正弦波的三段折线法。

当三角波幅值为0-0.28V时,反馈电阻为R8=27K。

当三角波幅值增大到0.28到0.84V之间时。

反馈电阻为R8//R16=11K。

当三角波幅值大于0.84V时,反馈电阻为R8//R16//R7=80Ω。

因此,通过电容C3的隔直与电位器R11的分压,选择幅值约为1.2V左右的三角波输入运算放大器U4B,再由三段折线法转换成近似与正弦波的折线化波形。

(由计算机计算分析表明,三段折线法的折线化波形与正弦波相似95%)。

由仿真软件得输出正弦波幅值约为1.25V。

最后,运算放大U3A为反相比例运算放大。

由折线法转换得来的正弦波经过运算放大U3A的反相放大得到峰值为10.5V左右的正弦波。

(4)元件选择:
①选择集成运算放大器
由于方波前后沿与用作开关的器件U1A的转换速率SR有关,因此当输出方波的重复频率较高时,集成运算放大器A1应选用高速运算放大器。

集成运算放大器U2B的选择:积分运算电路的积分误差除了与积分电容的质量有关外,主要事集成放大器参数非理想所致。

因此为了减小积分误差,应选用输入失调参数(VI0、Ii0、△Vi0/△T、△Ii0/△T)小,开环增益高、输入电阻高,开环带较宽的运算放大器。

反相比例运算放大器要求放大不失真。

因此选择信噪比低,转换速率SR高的运算放大器。

经过芯片资料的查询,TL082双运算放大转换速率SR=14V/us。

符合方波产生电路。

而U2B选择通用型的LM741.两个反相比例运算放大选择号称“音响之皇”的NE5532低噪运算放大器。

该双运算放大转换速率SR=9V/us。

②选择稳压二极管
稳压二极管Dz的作用是限制和确定方波的幅度,因此要根据设计所要求的
方波幅度来选稳压管电压Dz。

为了得到对称的方波输出,通常应选用高精度的双向稳压管
③电阻为1/4W的金属薄膜电阻。

④电容为普通瓷片电容与电解电容。

⑤开关为自锁式单刀三掷开关。

四、电路调试过程与结果:
波形频率:
通过精确电位器R5、R19、R20使得三种波形频率连续可调。

因此频率100、1000、10000Hz都正确无误。

通过实际电路测试,波形在50-24000Hz频率范围内不失真。

波形峰峰值:
波形理论值
/V
实测值
/V
方波25.114 24.3
三角波26.773 28.2
正弦波26.599 24.4
理论设计数据方波峰峰值实测方波峰峰值理论设计数据三角波峰峰值:实测三角波峰峰值:
理论设计数据正弦波峰峰值:实测正弦波峰峰值:
误差分析
a.电阻的误差为5%,这是造成误差主要原因。

b.仿真所加电压18V,实测时芯片所加电压为16V。

c.示波器读数时的误差。

五、总结
优点:①设计作品输出波形基本不失真
②波形频率达到100、1000、10000Hz。

并且在100-10000Hz的范围
内连续可调。

③波形峰峰值皆大于20V。

符合了设计要求的全部指标。

④焊接板排版缜密,焊接没有跳线。

缺点:①方波在频率为10000Hz时峰峰值转换时差为5-6us。

导致方波出现了失真。

②正弦波由折线法把三角波折线而来。

导致了其还存在一定的差别。

③电路的电源输入由于没有保护电路。

在调试时正负电源接反而把芯
片烧了。

针对3个缺点各自的改进方案:
缺点1:把方波产生电路的运算放大换成超高转速的集成运算放大
器。

例如:LM318H
缺点2:本设计是由三段折线法把三角波转换成正弦波的。

为使产生
的折线化波形更加接近正弦波,可以用4段折线法或者5
段甚至6段。

缺点3:在电源接入端加上二极管保护电路(右图),
这样即可以保证正负电源接反时不导通,
又可以在把直流电源电错接成交流电时起
整流桥的作用。

电路以后可改进方案:
①通过以下电路(修改反馈电阻),实现方波占空比可调。

②通过以下电路实现三角波、锯齿波产生电路。

六、心得体会:
“失败乃成功之母”从一开始时的调试到最后完成课程设计。

我焊接、拆除重复接近了10次。

在这10次的过程中我明白了成功是建立在以前失败经验的基础上的。

还有,做啥事都不能半途而废。

用永不放弃的精神在自己选择的道路上坚持走下去,成功就离我不远啦!
在这次设计过程中,体现出自己单独设计的能力以及综合运用知识的能力,体会了学以致用。

并且从设计中发现自己平时学习的不足和薄弱环节,从而加以弥补。

同时,这次模拟电子课程设计也让我认识到以前所学知识的不深入,基础不够扎实,以致于这次在设计电路图的时候,需要重复翻阅课本的知识。

我深深知道了知识连贯运用的重要性。

七、主要参考书目:
1、童诗白、华成英,《模拟电子技术基础》
2、吴慎山,《电子技术基础实验》
3、周誉昌、蒋力立,《电工电子技术实验》
4、广东工业大学实验教学部,《Multisim电路与电子技术仿真实验》
八、附录:
①完整的电路图
②完整物品清单
③主要芯片基本参数
NE5532。

相关文档
最新文档