第1课时 实数的有关概念优秀课件

合集下载

实数的有关概念及实数的分类PPT课件

实数的有关概念及实数的分类PPT课件

,则7.卫9星1绕0地3 米球运秒行
1.6 106
例9:[02潍坊]若
( 3与 a)2

2 的值为
ab
互为b相反1 数,
。 3 1
第8页/共10页
课堂练习: 《全解》P5
小结:
⑴要注意绝对值概念的正确应用。因为互为相反数的绝对值相等,因此绝对值等于 一个正数的数有两个,它们是一对互为相反数,不可漏掉其中任何一个。
第5页/共10页
6、方根的有关概念:
⑴平方根: 如果
x(2 a ),a那么0x 叫做 a 的平方根(二次方根),记
作 正数有两,个其平中方根x ,叫它做们aa互的为算相术反平数方;根零a。的平方根是零(一个)。负数没有平方
根。
⑵立方根:如果
x(3a为a一切实数),那么 x 叫做 a 的立方根(三次方根), 记
第3页/共10页
四、倒数:
⑴倒数:1除以一个不等于零的数的商叫做这个数的倒数。
⑵ a、b互为倒数 <====> ab=1
a、b互为负倒数 <====> ab=-1
零没有倒数
五、绝对值: ⑴绝对值:一个正数的绝对值是它本身,一 个负数的绝对值是它的相反数,零的绝对值 是零。
⑵一个数的绝对值就是表示这个数的点离开原 点的距离。
实数有理数整数正整数自然数负整数分数正分数负分数无理数正无理数负无理数负无理数负分数负整数负有理数负实数正无理数正分数正整数正有理数正实数实数例1在实数a2个b3个c4个d5个4644ctgctg45cos二数轴
教学目的:通过概念的复习和典型例题评析,使 学生掌握实数的有关概念和实数的分类,并通过 适当的练习得到提高。 教学重点:典型例型评析。 教学难点:学生综合能力的提高。

中考数学总复习 第一单元 数与式 第01课时 实数的有关概念课件

中考数学总复习 第一单元 数与式 第01课时 实数的有关概念课件

根火柴棒.
图案②需火柴棒:8+7=15(根);
图案③需火柴棒:8+7+7=22(根);

∴图案 需火柴棒:8+7(n-1)=(7n+1)
图 1-5
根.
[方法模型] 解决图形变化类的题目关键在于在图形变化过程
中准确抓住不变的部分和变化的部分,弄清楚变化部分是以何
∴图案⑦需 50 根火柴棒,故答案为
50.
-8
2. [2018·徐州 10 题] 我国自主研发的某型号手机处理器采用
10 nm 工艺,已知 1 nm=0.000000001 m,则 10 nm 用科学记数法
可表示为
m.
3. [2016·徐州 10 题] 某市 2016 年中考考生约为 61500 人,该人数
用科学记数法表示为
2021/12/9
a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=
例 5 (1)[2017·扬州] 在一列数:a1,a2,a3,…,an 中,a1=3,a2=7,从
3,a8=7,通过观察可以发现每 6 个数
第三个数开始,每一个数都等于它前两个数之积的个位数字,
则这一列数中的第 2017 个数是
A.1
2021/12/9
第三页,共二十六页。
课前双基巩固
考点二
实数的有关(yǒuguān)概念
1. 数轴:规定了①
原点
、正方向和单位长度(chángdù)的直线.数轴上的点
与实数一一对应.
2. 相反数:a的相反数是②
3. 倒数:若a,b互为倒数,则ab=④
图1-1
-a
,0的相反数是③
0
,若a,b互为相反数

4.3 实数(第1课时)(课件)八年级数学上册(苏科版)

4.3  实数(第1课时)(课件)八年级数学上册(苏科版)

(2)分数(如− 、 、 )


(3)无理数(如 、 、 )
这些点没有“填满”数轴
这些点没有“填满”数轴
再添加像π、0.1010010001⋯这样的无理数
数轴上所有表示有理数、无理数的点把数轴“填满”了
概念学习
实数的概念:
有理数和无理数统称为实数.
即实数可分为有理数和无理数.
A.无理数都是无限小数
B.无限小数都是无理数
C.带根号的数都是无理数
D.无理数与数轴上的点是一一对应的
2. 和数轴上的点一一对应的是
( D )
A.整数
C.无理数
B.有理数
D.实数
新知巩固
3.关于 ,下列说法正确的是( D )A.是整数
C.是有理数
B.是分数
D.是无理数
4. 下列各数中无理数有 ( B )
活动二 画图 在方格纸中分别画出长度为 、 、 ⋯ ⋯的线段.



数学实验室
活动三 用图
(1)按如图所示的方法画下去,想一想所画出的图形形状.
(2)分别求出图中线段a1、a2、a3、a4、a5、⋯ ⋯的长.
a2=
a1=
a3=
1
a5=
a4=
(3)在数轴上分别标出表示数a1、a2、a3、a4、
小组讨论、交流,说说自己的想法.
数学实验室
活动一 读图 如图,方格纸中的小正方形边长为1,求出下列线段的长:
(1) 线段AB的长是________.

A
(2) 线段AC的长是________.

(3) 线段DE的长是________.

B
C
D

(中考复习)第1讲 实数的有关概念 公开课获奖课件

(中考复习)第1讲 实数的有关概念 公开课获奖课件

对接点一:有理数与无理数
常考角度:1.实数的分类,无理数的定义; 2.算术平方根、零指数、负整数指数的直接计算; 3.特殊角的三角函数值.
【例题 1】 (2013·湖州)实数π ,15,0,-1 中,无理数

()
A.π
1 B.5
Hale Waihona Puke C.0D.-1解析 根据常见的无理数的三种形式判断,只有π
是无理数.
-1,∴a2 013=(-1)2 013=-1.
答案 B
对接点三:科学记数法、近似数与有效数字
常考角度:1.用科学记数法表示一个数及单位换算;
2.根据要求取近似数和保留有效数字;
3.近似数精确到的位数.
【例题3】 (2013·嘉兴)据统计,1959年南湖革命纪念馆成
立以来,约有2 500万人次参观了南湖红船(中共一大会
-1 在 3 和 4 之间.
答案 C
【名师课堂】
1.两边逼近法:用能开的尽方的两个正数的算术平方根逼 近:如(1) 9< 13< 16,即 3< 13<4;(2) 2.42< 6<
2.52,2.4< 6<2.5. 2.要特别注意算术平方根和平方根的区别和联系.
【预测4】 实数-27的立方根是____________. 解析 ∵(-3)3=-27,∴-27的立方根是-3. 答案 -3
第一板块 基础知识梳理
第一部分 数与式 第一讲 实数的有关概念
考纲要求
1.理解有理数的意义,能用数轴上的点表示有理数; b 2.理解相反数和绝对值的意义,会求有理数的相反数、 b
倒数和绝对值(绝对值符号内不含字母); 3.了解无理数和实数的概念,知道实数与数轴上的点的 a
一一对应关系; 4.了解平方根、算术平方根、立方根的概念;知道开方 a

《实数的概念》课件

《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:

实数的有关概念PPT课件

实数的有关概念PPT课件

8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字.
9.科学记数法是把一个大于10或小于l的正数记成 a 10n 的形式,其
中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法.
10.实数的分类
整数
有理数
实数
分数
(有限小数或无限循环小数 )
无理数 (无限不循环小数)
各实数的绝对值之间的大小关系,进而判定带绝对值符号的代数式的值是
正、是负还是零,然后再根据绝对值的意义,去掉绝对值符号.
例3 2005年l0月12日,我国“神舟六号”载人航天一举成功升天,历时5 天共飞行3250000km,这个飞行距离用科学计数法表示正确的是( ).
(A)3.25104 km;(B)3.25105 km;(C)3.25106 km;(D)3.25107 km.
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数
(4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数

,属于负实数集合的是
,属于整实数集
合的是
,属于分数集合的是
,属于有理数集
合的是
,属于无理数集合的是
·
(2)若m、n互为相反数.则 m+n= ;若m、n互为倒数,则 mn= 。

实数的有关概念PPT教学课件

实数的有关概念PPT教学课件

以月寄托相思之情,抒发思乡怀人之感
在远离家乡,远离亲人者的眼里,月亮这一意 象或是寄托恋人间的苦苦相思,或是蕴含对故乡和 亲人朋友的无限思念。在众多的咏月古诗词中,这 一类是最多的。
布置作业
1、背诵《十五夜望月》和《水调歌 头》。 2、完成《训练三部曲》第十三课。
答:指月光满地。《静夜思》“床前明月光,疑是地上 霜。”
答:请看课文注释③:秋天的情思,这里指怀人的思绪。 答:一个“落”字,新颖妥帖,不同凡响,它给人以动的 形象的感觉,仿佛那秋思随着银月的清辉,一齐洒落人间 似的。 而“在”字,就显得平淡寡味了。
思考: 诗人是通过什么方法表现他的秋思的?
诗人怅然于家人离散,因而由月宫的凄清引出 了入骨的相思,然而在表现的时候,诗人却用一种 委婉的疑问语气来发问。明明是自己在怀人,却说 “不知秋思落谁家?”把诗人对曰怀远的情思表现 的蕴藉深沉。
艾青(1910——1996), 现代诗人,原名蒋海澄。浙江省金 华人。他的第一本诗集《大堰河》 1936年在上海出版。
《我的思念是圆的》,写于 1983年9月21日,是作者艾 青晚期的作品。由于经历了太多的 飘零磨难,“文革”结束后,原本 在艾青心中比较淡漠的亲情变得浓 郁起来。这首诗正表达了诗人心中 的感触。
月下起舞,清影随人,直令词人陶醉。 这境遇没有月宫的高寒,却有人间的温暖。 此时作者的思想由天上的幻境回到了人间 现实,表现了对人间生活的赞美和热爱。
2.作这首词时,苏轼正逢仕途失意,文中哪一句体 现他消极遁世,幻想超脱尘世的念头?
3.苏轼是一个心胸豁达、积极乐观的人,文中哪里 体现他积极乐观的生活情趣?

感 久,千里共婵娟。
水调歌头
苏轼 丙辰中秋,欢饮达旦,大醉,作此篇,兼怀子由。

1 实数的有关概念课件

1 实数的有关概念课件

三.知识要点
x 5.非负数:正实数与零的统称 (表示为: ≥ 0 ) 非负数:正实数与零的统称.(表示为: 非负数
a 2 (a 为一切实数 常见的非负数形式有: ① 常见的非负数形式有: a (a 为一切实数 a (a ≥ 0 )
) )
性质:若干个非负数的和为0, ② 性质 : 若干个非负数的和为 , 则所有非负数均为 0.
三.知识要点
11.实数的运算法则: 实数的运算法则: 实数的运算法则
①加法运算法则: 加法运算法则: A.同号两数相加,取相同的符号,并把绝对值相加; 同号两数相加, 同号两数相加 取相同的符号,并把绝对值相加; B.异号两数相加, 绝对值相等的和为 ; 绝对值不等 , 取绝对 异号两数相加, 异号两数相加 绝对值相等的和为0;绝对值不等, 值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 值较大的加数的符号,并用较大的绝对值减去较小的绝对值 减法运算法则:减去一个数,等于加上这个数的相反数. ②减法运算法则:减去一个数,等于加上这个数的相反数 即 a − b = a + (− b ) ; 乘法运算法则:两数相乘,同号得正,异号得负, ③乘法运算法则:两数相乘,同号得正,异号得负,并把绝对 值相乘. 值相乘 除法运算法则:两数相除,同号得正,异号得负, ④除法运算法则:两数相除,同号得正,异号得负,并把绝对 值相除;0除以任何一个非 除以任何一个非0数 都得0. 值相除 除以任何一个非 数,都得 除以一个数,等于乘以这个数的倒数. 除以一个数,等于乘以这个数的倒数 1 即 a ÷ b = a ⋅ (b ≠ 0 ) ; b
三.知识要点 12.实数的运算法则: 实数的运算法则: 实数的运算法则
⑤乘方运算性质: 乘方运算性质: A.正数的任何次幂都是正数 ; 负数的偶次幂是正数 ; 正数的任何次幂都是正数; 正数的任何次幂都是正数 负数的偶次幂是正数; 负数的奇次幂是负数; 负数的奇次幂是负数; B.任何数的偶次幂都是非负数; 任何数的偶次幂都是非负数; 任何数的偶次幂都是非负数 C.1 的任何次幂都是 ;0 的任何次幂都是 ;- 的 的任何次幂都是1; 的任何次幂都是0;- ;-1的 偶次幂是1;- 的奇次幂是- ;-1的奇次幂是 偶次幂是 ;- 的奇次幂是-1. 开方运算: 主要针对开平方运算 主要针对开平方运算) ⑥开方运算:(主要针对开平方运算

专题01 实数(课件)-2023年中考数学一轮复习(全国通用)

专题01 实数(课件)-2023年中考数学一轮复习(全国通用)

①掌握实数的加、减、乘、
除、乘方及简单的混合运算( 运算法则、运算顺序的理解、运用
实数的混合 以三步为主);②理解实数的 和计算的准确性、迅速性.
5
运算
运算律,能运用运算律简化 以选择题、填空题为主,有时也以
运算,并能运用实数的运算 简单解答题的形式命题.
解决简单的问题.
思维导图
知识点1 :实数的有关概念
2
2
故选:A.
知识点1 :实数的有关概念
典型例题
【例6】(3分)(2021•天津6/25)估计 17 的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【考点】估算无理数的大小 【分析】本题需先根据 17 的整数部分是多少,即可求出它的范围. 【解答】解:∵ 17 4.12 , ∴ 17 的值在4和5之间. 故选:C. 【点评】本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即 可解决问题.
a<b .
知识点梳理
知识点1 :实数的有关概念
7.非负数:
非负数:正数和 0 统称非负数. 若几个非负数的和等于0,则这几个非负数都等于 0 , 即若A≥0,B≥0,C≥0,A+B+C=0, 则A=B=C=0.
典型例题
知识点1 :实数的有关概念
【例1】(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义
知识点梳理
知识点1 :实数的有关概念
4.绝对值:
数轴上表示数a的点与原点的距离,记作|a|,离原点越远的数的绝对值越大.
|a|=
a , a ,
a≥0 , a 0.
5.倒数:
当a≠0时,a与
1 a
互为倒数,即a、b互为倒数⇔ab=1.

1.第一节 实数的相关概念(PPT课件)

1.第一节  实数的相关概念(PPT课件)

m,1 nm=10-9 m,1吨=103千克=106克
一个非零数前所有零的个数(包括小数 点前的零)或小数点移动的位数
四川6年真题精选(2012-2017)
考点特训营
精练版
温馨提示:有计数(量)单位并需转换单位的科学记数 法,先把计数(量)单位转化为数字,再用科学记数法 表示.常考的计数单位有:1亿=1×108,1千万=1×107,
1万=1×104;常考的计量单位有:1 mm=10-3 m,1 μm=10-6
四川6年真题精选(2012-2017)
考点特训营
精练版
1 1.⑩______ ≤a< 11 ______ 10
科 学 记 数 2.n的确定 法
(形式: a × 10 n)
(1)当原数大于10时,n为正整数,n等 于原数的整数位数减1 (2)当原数大于0且小于1时,n为
⑫ ______ ,n的绝对值等于原数左起第 负整数
第一部分
四川中考考点研究
第一章
数与式
第一节 实数的相关概念
四川6年真题精选(2012-考点特训营
考点精讲
实数的分类
数轴 实数的相关概念 相反数 绝对值 倒数 科学记数法
四川6年真题精选(2012-2017)
考点特训营
精练版
按定义分
整数 有理数 分数:有限小数 或无限循环小数 无理数:① 无限不循环小数 _________________
四川6年真题精选(2012-2017)
考点特训营
精练版
1 1.非零实数a的倒数为⑦____ a
,0没有倒数,
倒数等于它本身的数是⑧______ ±1 倒 数
2.实数a、b互为倒数

ab=⑨______ 1

《实数的有关概念》课件 (5)

《实数的有关概念》课件 (5)
b c 0 a
化简: 化简:a a + b − c − b − c
2
4、如图,数轴上表示 、 2的对应 、如图,数轴上表示1、 点分别是A、 , 关于点A的对称 点分别是 、B,点B关于点 的对称 关于点 点为C, 点所表示的数是( ) 点为 ,则C点所表示的数是 点所表示的数是 A C
2 −1 2− 2
实数的相关概念 平方 绝对值 平方
非 负 性
a ≥ 0 ⇒(
2)Biblioteka 2≥0a ≥0⇒ ≥0
a ≥0 a≥0
实数与数轴 数轴三要素: 数轴三要素: 原点、正方向、 原点、正方向、单位长度
-4 -3 -2 -1 0 1 2 3 4 5
实数与数轴上的点一一对应
2、实数a在数轴上的对应如图所示: 、实数 在数轴上的对应如图所示 在数轴上的对应如图所示:
平方根:a平方根是± a 平方根:
1 3、 − 3 的倒数是 的倒数是( 、
) B D
3 −3
A C
1 3 1 − 3
5、8的立方根与 的算术平方根的和 、 的立方根与 的立方根与4的算术平方根的和 ) 是( A 0 B 4 C -4 D 0或-4 或
6、已知:a、b互为相反数,c、d互 、已知: 、 互为相反数 、 互 互为相反数, 为倒数, 的绝对值等于 的绝对值等于1, 为倒数,x的绝对值等于 ,求 a+b+x2-cdx的值。 的值。 的值
实数的相关概念 代数 相反数: 相反数 意义 几何 ) a(a > 0 代数 绝对值: 绝对值: ( ) 意义 a = 0 a = 0 几何 − a( < 0 a ) 1 倒数: 倒数:a与 互为倒数 a 平方根:a平方根是± a 平方根:

实数的有关概念课件

实数的有关概念课件

VS
详细描述
实数的乘法运算具有结合律和分配律,即 (ab)c=a(bc),a(b+c)=ab+ac。乘法运 算在实数轴上表示为标量积,即结果向量 的长度为两个向量长度乘积的绝对值。
除法运算
总结词
实数的除法运算是将一个实数除以另一个非 零实数,得到商的操作。
详细描述
除法运算可以理解为乘上倒数,即 a/b=a*1/b。除法运算在实数轴上表示为向 量缩放,即结果向量的长度为被除数向量长 度除以除数向量的长度。
03
实数的运算
加法运算
要点一
总结词
实数的加法运算是指将两个实数相加,得到另一个实数的 操作。
要点二
详细描述
实数的加法运算具有交换律和结合律,即a+b=b+a, (a+b)+c=a+(b+c)。加法运算在实数轴上表示为向量相加 ,即求得两个向量终点坐标的和作为结果向量的终点坐标 。
减法运算
总结词
整数与小数
整数
整数包括正整数、零和负整数,如1、0、-1、200等。整数是数学中基本的计数 系统,具有封闭性,即任意两个整数的四则运算结果仍为整数。
小数
小数是一种特殊的实数,可以表示为有限小数或无限循环小数,如0.5、0.333... 等。小数可以用来表示精确度或比例,如测量时的精确数值或价格的比例关系。
02
数轴上的点与实数一一对应,可以用实数表示点的 位置,也可以用点表示实数的值。
03
数轴上的点可以按照大小关系进行排列,从而将实 数也按照大小关系进行排列。
02
实数的分类
有理数与无理数
有理数
有理数是可以表示为两个整数之比的数,包括整数、有限小数和无限循环小数。有理数在数轴上表示为两点之间 的线段。

《实数的有关概念》课件

《实数的有关概念》课件

除法
总结词
实数除法的定义与性质
详细描述
实数除法是通过乘法和减法来实现的,即a/b=a*(1/b)或a/b=a+(-b)。实数除法同样遵循结合律、交 换律和分配律。在几何上,实数除法可以理解为面积的变换。
乘方与开方
总结词
实数乘方与开方的定义与性质
详细描述
实数乘方是指数的连乘,记作a^n(n为正整数),其性质包括乘方的交换律、结合律和 指数法则。开方则是乘方的逆运算,表示求一个数的平方根。实数的开方具有非负性,
实数与数轴上的点
实数是数轴上点的集合,数轴是实数的几何表示。
实数的有序性表现在数轴上就是点的有序性,即任意两个不同的实数在数轴上都有 明确的左右关系。
实数的连续性表现在数轴上就是点的连续性,即任意两个不同的实数在数轴上都只 被一个点所分隔。
实数的大小比较
在数轴上,右边的点表示的实数比左 边的点表示的实数大。
即对于任意实数a,有√a^2=a。
03
实数与数轴
数轴的表示
实数在数轴上表示为一个个的点 ,每个实数对应数轴上的一个点 ,数轴上的每个点也对应一个实
数。
正数、负数和零在数轴上都有各 自的位置,正数在零的右边,负 数在零的左边,零既不是正数也
不是负数。
数轴上还包括无穷大和无穷小的 概念,表示实数的极限情况。
物理定律的数学表达
许多物理定律可以用实数表示,如牛顿第二定律 F=ma,爱因斯坦 的相对论等。
数据分析和预测
通过测量和实验得到的物理数据通常为实数,对这些数据进行统计 分析可以帮助我们预测和解释物理现象。
在日常生活中的应用
金融和经济学
01
在金融和经济学中,实数被用来表示货币、资产价值、成本等

实数的有关概念 课件

实数的有关概念 课件
1 C.±2015 D.2015
回归教材
考点聚焦
考向探究
第一单元┃ 数与式
(3)[2015·六盘水] 下列说法正确的是( D )
A.|-2|=-2 B.0的倒数是0 C.4的平方根是2 D.-3的相反数是3
回归教材
考点聚焦
考向探究
第一单元┃ 数与式
探究3 科学记数法 命题角度:
1.用科学记数法表示实际问题中较大或较小的数;
第一单元┃ 数与式
(2)[2016·泰安] 国家统计局的相关数据显示,2015年我
国国内生产总值(GDP)约为67.67万亿元,将这个数据用科学记
数法表示为( A )
A.6.767×1013元 B.6.767×1012元 C.6.767×1012元 D.6.767×1014元
回归教材
考点聚焦
考向探究
考向探究
第一单元┃ 数与式
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数正零整数

负整数

分数负正分分数数有循限环小小数数或无限小数
回归教材
第一单元┃ 数与式
方法模型 科学记数法的表示形式为a×10n,其中1≤|a|<10,n为 整数.确定n的值时分两种情形: (1)当原数的绝对值大于或等于1时,n是正整数,n等于原 数的整数位数减1; (2)当原数的绝对值小于1时,n是负整数,n的绝对值等于 从左边起第一个不是0的数字前0的个数(包含小数点前面的 0). 失分盲点 当原数带有计数单位时,必须先将计数单位转化为数字, 如1万=104,1亿=108.
理数;用三角函数符号表示的数也不一定是无理数,如sin30
°,tan45°是有理数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点 4 乘方、开方
1.正数的任何次幂是__正__数_;负数的偶次幂是__正_数_,负数的奇次幂是_负__数_;0的任何 正数次幂是_0___。 2. 实数a(a≥0)的平方根是_____ ,算数平方根是_____;实数a的立方根是_____。
第8页
第9页
第10页
第11页
第12页
第13页
(1)实数 0 (既不是正数,也不是负数)
返回思维导图
负数(<0)
(2)正负数的意义
正负数可以用于表示相反意义的量.如:规定“盈(+)”则“亏(-)”,“胜(+)”则“负 (-)”,“收入(+)”则“支出(-)”,“零上(+)”则“零下(-)”,“上升(+)”则“下降(- )”等.
考点 2
1. 数轴 (1)三要素:
3.绝对值 a(a>0)
(1)|a|= 0(a=0) -a (a<0)
返回思维导图
(2)几何意义:数轴上表示这个数的点到原点的距离, 离原点越远的数的绝对值越
____大____.
4((12. ))倒实非数数零实a、数b互a的为倒倒数数是⇔__a_b_=1_______._1_特_.别注意:0没有倒数,倒数是它本身的数是
数轴、相反数、绝对值、倒数
返回思维导图
(2)实数与数轴上的点是一 一对应的. 2. 相反数 (1)非零实数a的相反数为___-__a___,特别地,0的相反数为0; (2)实数a,b互为相反数⇔a+b=____0____; (3)几何意义:互为相反数的两个数分别位于数轴上原点的两侧,且到原点的距离 ___相__等___;
第1课时 实 数的有关概念
按定义分 实数的分类
按大小分
科学记数法
数轴 相反数 绝对值
数轴、相反数、 绝对值、倒数
倒数
实数
幂 乘方和开方 平方根,立方根的概念
考点 1 实数的分类
1.按定义分类 整数 有理数 分数 有限小数或 无限循环 小数
实数
返回思维导图
无理数:__无__限__不__循__环___小数
第14页
第15页
第16页
第17页
第18页
第19页
第20页
第21页
第22页
第23页
【提分要点】常见的四种无理数类型: ((12))π开及方化开简不后尽含的π数的:数如:如2 π,,3π,等5;等; ((34))有一规些律含的有无根限式不的循三环角小函数数:值3如,如0.0s1in06001°00,01t…an(相30邻°两等个.1之间依次多一个0)等;
2. 按大小分 正数(>0)
±1.
a
考点 3 科学记数法
返回思维导图
表示形式:aBiblioteka 10n,其中___1___≤|a|<___1_0__,n是整数.
1. 对于一个绝对值大于10的数,n是正整数,它的值等于原数的整数位数减1或原数 变为a时,小数点移动的位数.如:1950000000用科学记数法表示为 1.95×109 , 249530亿用科学记数法表示为 2.4953×1013 . 2. 对于一个绝对值大于0且小于1的数,n是负整数,它的绝对值等于原数左起第一个 非零数字前零的个数或原数变为a时,小数点移动的位数.如:0.000067用科学记数 法表示为 6.7×10-5 .
相关文档
最新文档