升压式直流斩波电路

合集下载

升压直流斩波电路

升压直流斩波电路

〈〈电力电子技术》课程设计说明书升压直流斩波电路设计院、部:电气与信息工程学院学生姓名: _____________________指导教师:职称专业:电气工程及其白动化班级: ________________________完成时间: _____________________电力电子课程设计课题任务书电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。

电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。

该设计将主要介绍其中的DC-DC变换器。

随着半导体工业的发展,DC/DC^换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处丁不断地发展之中。

其中升压直流斩波电路是输出电压高丁电源电压的一种斩波电路,主要运用丁直流电动机传动、单相功率因数校正以及交直流电源中。

该设计中,运用了单相桥式全控整流电路和升压斩波电路结合,从而实现升压直流斩波。

通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路功能。

由丁知识浅薄,该课程设计说明书里还存在不少批漏和错误,殷切希望老师和同学们的批评指正。

关键词:直流;斩波;升压1绪论 (1)1.1电力电子技术的介绍 (1)1.2电力电子技术的应用 (1)1.3直流直流变流技术 (2)1.4设计要求 (2)2 系统总体方案设计 (2)2.1总体电路设计框图 (2)2.2整流电路选择 (2)3主电路设计 (5)3.1整流电路 (5)3.1.1 整流电路图及工作波形 (5)3.1.2 整流电路工作原理 (6)3.2升压斩波电路 (6)3.2.1升压斩波电路及工作波形 (6)3.2.2升压斩波电路工作原理 (7)3.3元器件参数及选型 (7)3.3.1 晶闸管的选型 (7)3.3.2绝缘栅双极晶体管(IGBD选型 (9)4控制电路及驱动电路 (11)4.1控制电路 (11)4.1.1 SG3525控制芯片介绍 (11)4.1.2 SG3525外部引脚功能 (12)4.2驱动电路 (13)4.3控制和驱动电路原理图 (13)5保护电路设计 (15)5.1过电流保护 (15)5.2过电压保护 (15)6仿真电路图及结果 (16)6.1 MATLAB仿真软件 (16)6.2整流电路仿真及部分参数设置 (16)6.2.1 整流电路仿真模型 (16)6.2.2部分参数设置 (17)6.3升压斩波电路仿真模型 (19)6.4总电路仿真模型 (19)6.5仿真波形及波形分析 (20)7设计总结 (21)参考文献 (22)致谢 (23)附录 (24)附录A升压直流斩波总电路图 (24)附录B元件活单 (25)1绪论1.1电力电子技术的介绍电力电子技术是一门新兴的应用丁电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTQ IGBT等)对电能进行变换和控制的技术。

升压斩波(boost+chopper)电路设计

升压斩波(boost+chopper)电路设计

电力电子技术课程设计报告题目:升压斩波(boost chopper)电路设计学院:专业:学号:姓名:指导老师:时间:目录前言******************************************************* ****2MATlAB仿真设计***********************************************6硬件实验******************************************************* **14参考文献******************************************************* **19附录一设计任务书*************************************20 附录二PROTEL简介****************************************21 附录三MATLAB简介****************************************24升压斩波电路(Boost Chopper )设计 一、前言1.Boost Chopper 工作原理:图 1.1升压斩波电路图图 1.1中假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I 1,同时C 的电压向负载供电,因C 值很大,输出电压u o 为恒值,记为U o 。

设V 通的时间为t o n ,此阶段L 上积蓄的能量为E I 1t o nV 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为t o f f ,则此期间电感L 释放能量为()o f f o t I E U 1- 稳态时,一个周期T 中L 积蓄能量与释放能量相等()off o on t I E U t EI 11-=化简得:E t T E t t t U offoffoffon o =+=(1)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。

升压斩波电路波形电感

升压斩波电路波形电感

升压斩波电路波形电感
升压斩波电路(Boost Converter)是一种电力电子转换器,用于将输入电压提高到输出电压。

斩波(chopping)是指开关元件(通常为MOSFET)周期性地开关以实现电压转换。

在升压斩波电路中,电感起到了重要的作用。

下面是升压斩波电路中电感的一般波形描述:
1.输入电流波形:在升压斩波电路中,当开关(通常是MOSFET)关闭时,电流通过电感线圈,从电源吸收能量。

在开关打开时,电感中的电流会继续流动,但是此时电感的磁能量转移到输出端。

因此,输入电流波形通常是脉冲状的,具有周期性的脉冲。

2.电感电流波形:电感的电流波形通常是一个锯齿波形。

当开关关闭时,电感储存能量,电流增加。

然后,当开关打开时,电感释放储存的能量,电流减小。

这导致了电感电流波形呈锯齿状。

3.输出电压波形:输出电压通常是一个平稳的直流电压,因为升压斩波电路的目标是提高输入电压。

然而,在转换过程中,可能会有一些纹波(ripple)存在,这与电感电流波形的锯齿形状有关。

4.开关波形:开关波形描述了开关元件(比如MOSFET)的状态,即何时开启和何时关闭。

这个波形通常是一个方波,表明开关以一定的频率进行开关操作。

在设计和分析升压斩波电路时,理解这些波形是很重要的,因为它们有助于评估电路性能、效率和稳定性。

值得注意的是,实际的波形特征可能会受到电路参数、元件特性和工作条件的影响。

直流升压斩波电路仿真实验心得

直流升压斩波电路仿真实验心得

直流升压斩波电路仿真实验心得
本人在进行直流升压斩波电路仿真实验期间,深刻体会到该电路的重要性以及实现过程中需要注意的几个关键点。

首先,该电路是一种非常常见的电路,在实际工程中经常被使用。

其作用是将输入的低电压直流电信号,通过斩波器和升压变压器的作用,将输出电压升高到一定程度,以满足实际工作所需的电压水平。

其次,该电路的实现过程需要注意的几个关键点是:
1.斩波管的正反极性必须正确,否则可能会导致电路无法正常工作。

2.升压变压器的绕组匝数需要根据实际需要计算,否则输出电压可能会偏差较大。

3.在选择升压变压器时需要考虑参数匹配,以确保电路能够稳定工作。

综上所述,直流升压斩波电路具有重要性,其实现过程需要注意几个关键点。

通过实验实践,我对该电路的实现过程及原理有了更深刻的理解,也提高了自己的实验操作能力。

降压式直流斩波电路

降压式直流斩波电路

实验一降压式直流斩波电路(Buck)一、原理图在控制开关VT导通ton期间,二极管VD反偏,电源E通过电感L向负载R供电,此间iL增加,电感L的储能也增加,导致在电感两端有一个正向电压Ul=E-u0,左正右负,这个电压引起电感电流iL的线性增加。

2)在控制开关VT关断toff期间,电感产生感应电势,左负右正,使续流二极管VD导通,电流iL经二极管VD续流,uL=-u0,电感L向负载R供电,电感的储能逐步消耗在R上,电流iL线性下降,如此周而复始周期变化。

如图1-1。

图1-1 电路图二、建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,如图1-2。

图1-2 仿真电路图(截图)仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间10,如图1-3。

图1-3 (截图)电源参数,电压100v,如图1-4。

图1-4 (截图)晶闸管参数,如图1-5。

图1-5 (截图)电感参数,如图1-6。

图1-6 (截图)电阻参数,如图1-7。

图1-7 (截图)二极管参数设置,如图1-8。

图1-8 (截图)电容参数设置,如图1-9。

图1-9 (截图)三、仿真参数设置设置触发脉冲占空比α分别为20%、50%、70%、90%。

与其产生的相应波形分别如图1-10图1-11图1-12图1-13。

在波形图中第一列波为输出电压波形,第二列波为输入电压波形。

图1-10 α=20%(截图)图1-11 α=50%(截图)图1-12 α=70%(截图)图1-13 α=90%(截图)四、小结(1)在降压式直流斩波电路(Buck)中,电感和电容值设置要稍微大一点。

(2)注意VT的导通和关断时间,电容的充放电规律和电感的作用。

(3)输出电压计算公式:U0=DE。

实验二升压式直流斩波电路(Boost)一、工作原理1)当控制开关VT导通时,电源E向串联在回路中的L充电储能,电感电压uL左正右负;而负载电压u0上正下负,此时在R与L之间的续流二极管VD 被反偏,VD截至。

直流升压斩波电路电感 电容的确定

直流升压斩波电路电感 电容的确定

直流升压斩波电路电感电容的确定第1章绪论1. 电力电子技术的简介所谓电力电子技术就是应用于电力领域的电子技术。

电子技术包括信息电子技术和电力电子技术两大分支。

具体地说,电力电子技术就是使用电力电子器件对电能进行变换和控制的技术。

电力电子技术是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。

通常所用的电力有直流(DC)和交流(AC)两大类。

从公用电网直接得到电力是交流,从蓄电池和干电池得到的电力是直流。

从这些电源得到的电力往往不能直接满足要求,需要进行电力变换。

电力变换通常可分为四种类型:交流变直流(AC-DC)变换:将交流电转换为直流电。

直流变交流(DC-AC)变换:将直流电转换为交流电。

交流变交流(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。

直流变直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。

2. 电力电子技术的发展电力电子器件的发展对电力电子技术的发展起着决定性作用。

电力电子技术的发展史是以电力电子器件的发展史为纲。

1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。

70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。

控制电路经历了分立元件到集成电路的发展阶段。

现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。

3. 电力电子技术的应用电力电子技术的应用范围十分广泛。

它不仅应用于一般工业,也广泛用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调等家用电器及其他领域也有着广泛的应用。

例如:(1) 优化电能使用。

通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。

实验三 直流斩波电路的性能研究

实验三 直流斩波电路的性能研究

实验三直流斩波电路的性能研究
一.实验目的
1.熟悉直流斩波电路的工作原理。

2.熟悉各种直流斩波电路的组成及工作特点。

3.了解PWN控制与驱动电路的原理机器常用的集成芯片。

二.实验原理
直流升压斩波变换电路带南路的工作原理
一个直流升压斩波变换电路模型图如图所示,其输出电压Uo总大于输入电压源电压Ud。

当开关S闭合时,二极管受电容C上电压影响反向断开,于是将输出级隔离,由输入端电源向电感供应能量。

当开关S断开时,二极管正向导通,输出级吸收来自电感与输入端电源的能量。

在进行稳态分析时,假定输出滤波器足够大,以确保以恒定的输出电压Uo(t)=Uo。

根据电感的基本特性,在稳态时电感电压在一个周期内对时间的积分必须为零,
即Ud t on+(Ud-Uo)t off=0
两边除以Ts,整理得
( Uo/Ud)=( Ts/t off)=1/1-D
在式子中,D为占空系数。

当输入电压Ud保持不变时,改变D即可改变输出电压Uo。

其实验电路如图所示。

三,实验仿真
直流升压斩波变换电路仿真
启动MATLAB6.1进入SIMULINK后新建文档,绘制直流升压斩波变换电路模型图如图所示。

双击各个模块,在出现的对话框内设置相应的参数。

1,直流电压源参数设置:直流电压源电压为100V
2,电阻,带内容参数设置:C=0.7*0.00001F,L=10Mh,R=10欧姆
3,脉冲发生器模块的参数设置:在本次实验中设置为1V,周期为0.002S,脉宽为20%
设置好各模块参数后,单击工具栏的START命令仿真。

双击示波器模块,得
到仿真结果。

升降压斩波电路

升降压斩波电路

升降压斩波电路一、问题输入电压20V ,输出电压10V~40V ,纹波电压%,开关频率20kHz,负载10Ω,电感电流连续,求L,C;二、电路分析1、 工作原理:可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量;同时,电容C 维持输出电压基本恒定并向负载R 供电;电感电流的增量为011on t L i Edt TE L Lα+∆==⎰ 使V 关断,电感L 中储存的能量向负载释放,负载电压上负下正,与电源电压极性相反;电感电流的减小量为011(1)off t L o o i U dt TU L Lα-∆==-⎰当电流连续处于稳态时,L L i i +-∆=∆;输出电压为1o U E αα=- 2、 电感电流连续临界条件: 电感电流及电源的平均值分别为1122LB L I i TE Lα+=∆=E LB I I α=如果V 、VD 为没有损耗的理想开关时,则输出功率与输入功率相等;2o E U EI R=从而得到电感的临界值为21(1)2L RT α=-3、 纹波电压:电压的最大变化量和纹波电压分别为01o U Q U T C C Rα∆∆== 00U T U RCα∆= 三、计算:1、占空比:1o U E αα=- 1110201V V αα=- 2240201V V αα=- 113α= 223α=2、电感值:21(1)2L RT α=-119L mH = 2136L mH =为保持电流连续性,取较高电感值L=; 3、电容值:00U TU RCα∆= 156C mF = 253C mF =四、电路图图1升降压斩波电路图五、仿真结果U U I波形图图2 降压电路,,L o oU U I波形图图3 升压电路,,L o o。

直流升压斩波电路

直流升压斩波电路

安阳师范学院课程实践报告书电力电子课程实践——直流升压斩波电路作者系(院)物理与电气工程学院专业电气工程及其自动化(专升本)年级 2014级学号指导教师日期 2014摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 .直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

关键词:直流;升压斩波;IGBT目录摘要 (1)1 升压斩波电路 (3)1.1 升压斩波电路的基本原理 (3)1.2 斩波电路的控制方式 (4)2.升压斩波电路的典型应用 (5)3 结果分析 (9)4 小结 (10)参考文献 (11)1 升压斩波电路1.1 升压斩波电路的基本原理升压斩波电路(Boost Chopper)的原理及工作波形如图1-1所示。

该电路中也是一个全控型器件。

图1-1直流升压斩波电路原理图首先假设电路中电感L值很大,电容C值也很大,当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C值很大,基本保持输出电压uo为恒定值。

记为U。

设V处于通态的时间为ton,此阶段电感L上积蓄的能量为EI1ton。

当V处于断态时,电源E和电感L同时向电容C充电并向负载提供能量。

设V处于断态的时间为toff,则此期间电感L释放能量为:(U-E)I1toff。

当电路工作与稳态时,一个周期T中电感L积蓄能量与释放能量相等,即EI1ton=(U-E)I1toff(1-1)化简得U 0 = ( t on + t off /t off ) E= ( T /t off ) E (1-2)式中 T /t off >= 1 ,输出电压高于电源电压,故称该电路升压斩波电路。

电力电子课程升压斩波电路

电力电子课程升压斩波电路

电力电子学课程设计报告书题目: 升压斩波电路设计专业:电子信息科学与技术班级:学号:学生姓名:指导教师:2012 年 05 月 09日信息工程学院课程设计任务书学生姓名王哲学号030841004 成绩设计题目升压斩波电路设计设计内容直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.直流波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

本次需要设计一个升压斩波电路,并符合下面的设计要求。

设计要求1、输入直流电压:Ud=40V2、开关频率100KHz3、输出电压范围80V-120V4、输出电压纹波:小于1%5、最大输出电流:5A6、具有过流保护功能,动作电流:6A7、具有稳压功能8、效率不低于70%时间安排参考资料[1]陈坚. 电力电子学—电力电子变换和控制技术(第二版)北京:高等教育出版社,2004[2]王兆安,刘进军.电力电子技术(第5版).北京:机械工业出版社,2009.5[3]林飞,杜欣. 电力电子应用技术的MATLAB仿真.北京:中国电力出版社,2008[4] 赵良炳.现代电力电子技术基础.北京:清华大学出版社,1995[5]贾好来. EXB841对IGBT的过流保护研究. 太原理工大学学报,1007-9432(1999)06-0610-04[6] 纪相普,于谅.基于SIMULINK的BUCK型PFC装置仿真上海大学学报(自然科学版) 1007-2861(2001)05-0461-04目录目录 (2)摘要 (3)1 设计任务与方案 (4)1.1设计任务 (4)1.2设计方案 (4)2 总体设计 (5)2.1 主电路设计 (5)2.1.1原理分析 (5)2.2.2参数计算 (6)2.2 保护电路 (7)3 SimPowerSystem仿真 (8)3.1仿真波形 (9)3.1.1占空比为50% (9)3.1.2占空比为58.33% (10)3.1.3占空比为66.67% (10)3.2 结果分析 (11)4 总结 (12)参考文献 (13)附录: (14)仿真报告 (14)元器件清单 (15)摘要直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic 斩波电路,Zeta斩波电路,前两种是最基本电路。

升压斩波电路

升压斩波电路

升压斩波电路(总15页) -本页仅作为预览文档封面,使用时请删除本页-目录引言.......................................................................... 错误!未定义书签。

1 升压斩波工作原理................................................ 错误!未定义书签。

主电路工作原理.............................................. 错误!未定义书签。

2 升压斩波电路的典型应用.................................... 错误!未定义书签。

3 设计内容及要求 ................................................... 错误!未定义书签。

3.1输出值的计算........................................... 错误!未定义书签。

4硬件电路 ............................................................... 错误!未定义书签。

控制电路 ........................................................... 错误!未定义书签。

触发电路和主电路........................................... 错误!未定义书签。

.元器件的选取及计算....................................... 错误!未定义书签。

5.仿真....................................................................... 错误!未定义书签。

6.结果分析 ........................................................... 错误!未定义书签。

简述升降压斩波电路的工作原理

简述升降压斩波电路的工作原理

升降压斩波电路的工作原理介绍升降压斩波电路是一种用于交流电源供电的电力电子设备。

它通过对输入电压进行升降压变换并对电压波形进行裁剪,以达到输出电压稳定的目的。

本文将详细介绍升降压斩波电路的工作原理。

第一部分:升降压变换原理升降压斩波电路通过变换输入电压来实现输出电压的升降。

这一过程主要依靠电力电子器件(如晶闸管、可控硅等)对输入电压进行开关控制。

1.输入相在升降压斩波电路中,输入电压通常是交流电,即具有正负半周的电压。

输入相是输入电压的一部分,用于控制系统的开关动作。

2.电力电子器件电力电子器件是升降压斩波电路中的核心部件,它们具有开关特性,可以在不同时间段内导通或截断电流。

常用的电力电子器件有晶闸管、可控硅等。

电力电子器件的开关状态由控制电路控制。

3.控制电路控制电路是用于控制电力电子器件开关状态的电路,它根据输入相的信号对电力电子器件进行驱动,实现对输入电压的变换。

第二部分:斩波原理斩波是将输入电压波形经过裁剪,使得输出波形更加平滑的一种控制方法。

斩波电路通常由滤波电路和控制电路组成。

1.滤波电路滤波电路用于将电压波形的高频成分滤除,以获得稳定的直流输出。

滤波电路可以采用电容、电感等元件建立,常见的滤波方式包括一阶滤波、二阶滤波等。

2.控制电路控制电路用于根据输入相的信号对斩波电路进行开关控制,实现对电压波形的裁剪。

通常,输入相的信号经过整流、运算放大器等电路处理后,对斩波电路的开关进行控制。

第三部分:升降压斩波电路的工作过程1.升压当输入电压低于所需输出电压时,升压斩波电路会使用升压变压器实现输入电压的升压。

升压变压器通常由输入线圈和输出线圈构成,输入线圈的匝数较少,而输出线圈的匝数较多,通过线圈的变换比例,将输入电压升高。

2.降压当输入电压高于所需输出电压时,降压斩波电路会通过开关电源的方式实现输入电压的降压。

开关电源利用电力电子器件的开关特性,将输入电压分成多个窄脉冲,通过变换比例将输出电压降低。

(完整word版)直流升压斩波电路课程设计

(完整word版)直流升压斩波电路课程设计

辽宁工业大学电力电子技术课程设计(论文)题目:升压直流斩波电路实验装置院(系):电气工程学院专业班级:学号:学生姓名:指导教师:起止时间:2013-12-30至2014—1-10院(系):电气工程学院教研室:电气注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta 斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等.利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路.关键字:直流斩波;升压斩波;变压器目录第1章绪论 (1)第2章直流升压斩波电路的设计思想 (3)2.1直流升压斩波电路原理 (3)2.2参数计算 (4)第3章直流升压斩波电路驱动电路设计 (5)第4章直流升压斩波电路保护电路设计 (6)4。

1过电流保护电路 (6)4.2过电压保护电路 (6)第5章直流升压斩波电路总电路的设计 (8)第6章直流升压斩波电路仿真 (9)6.1仿真模型的选择 (9)6。

2仿真结果及分析 (9)第7章设计总结 (12)参考文献 (13)附录:元件清单 (15)第1章绪论直流升压电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

【优】升压斩波变换电路最全PPT资料

【优】升压斩波变换电路最全PPT资料
①3 升压T变导换电通路 时为电感L储能阶段, 此时电源不向负载提供能量, BOOST变换器的工作分为两个阶段:
ton工作期间:二极管反偏 3 升压变换电路
负待载工靠作储。于电容C的能量维 ② T阻断时,电源和电感共同向负载供电,同时给电容C充电。 ② T阻断时,电源和电感共同
向负载供电,同时给电容C 充电。
2L 下降,从I2下降到零;
O
当实际负载电流I >I 时,电感电流连续。 1 直流变换电路的工作原理
首先给开关管T施加驱动信号,当开关管o T导通期ck间时,电感L中的电流从零线性增加到I2;当开关管T关断期2下降实到零际;负载电流Io = Ick时,电感电流处于临界
升压变换电路及其波形
3.3 升压变换电路
(2)电感电流断续
首先给开关管T施加驱动信 号,当开关管T导通期间时,电
感L中的电流从零线性增加到I2;
当开关管T关断期间时,电感L
中的电流线性下降,从I2下降 到零;
升压变换电路在电感 电流断续时的波形图
3.3 升压变换电路
3、输出纹波电压 ① Boost电路对电源的输人电流(也即通过二极管D的电流)就 是升压电感L电流,电流平均值为:I0=(I2-I1)/2。
d
D
可得:
式0≤中D占<空1的比变D=化t范on/围TS内,当UoD≥=0U时in,U0=Ud,但D不能为1,因此在
i 3.3 升压变换电路 2、电感电流 当实际负载电流Io = Ick时,电感电流处于临界
根据在理想状态下,电路的输L 出功率等于输
定义:直流输出电压的平均值高于输入电压的变换电路称为升压变换电路,又叫Boost电路。
电流临界连续时的负载电流平均值为: ① T导通时为电感L储能阶段,此时电源不向负载提供能量,负载靠储于电容C的能量维待工作。

直流升压斩波电路课程设计

直流升压斩波电路课程设计

直流升压斩波电路课程设计介绍如下:
直流升压斩波电路是一种能够将直流电源输出电压升高的电路,其基本结构包括斩波电路和升压电路。

在本次课程设计中,我们将设计一种直流升压斩波电路,并通过实验验证其性能。

设计需求:
1.输入电压:12V直流电源;
2.输出电压:至少24V;
3.斩波电路:使用快速二极管;
4.升压电路:使用升压变压器;
5.输出电压稳定性:±2%;
6.负载变化时输出电压稳定性:±5%。

设计步骤:
1.根据设计需求,选择适合的二极管和变压器。

在实验中我们选择快速二极管1N4148
以及3:1的升压变压器;
2.根据升压电路的特点,需要选择合适的升压交流电压。

一般情况下,将输入交流电
压直接升高三倍的场合比较适宜。

根据实验需要,我们选择将输入电压升高2倍,即使用3:1的升压变压器;
3.设计斩波电路。

斩波电路是直流升压斩波电路的关键。

为了避免斩波电路对输出电
压的影响,我们选择快速二极管1N4148作为斩波管,将其正向的承受电压设为12V 即可;
4.设计升压电路。

升压电路是直流升压斩波电路的另一个重要组成部分。

根据设计需
求,我们选择将输入电压升高2倍,因此需要选用3:1的升压变压器;
5.组装电路并测试。

将斩波电路和升压电路组装在一起,接入12V直流电源。

使用示
波器检测电路输出电压波形,并进行输出稳定性测试,最终得出该直流升压斩波电路的性能。

通过以上设计步骤,我们可以设计出一款简单的直流升压斩波电路,并通过实验验证其性能。

升压斩波电路

升压斩波电路

直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。

习惯上,DC-DC变换器包括以上两种情况。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。

一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。

利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。

全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET 的优点,具有良好的特性。

目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。

所以,此课程设计选题为:功率为500w CUK直流输出电压为50V,直流输出电压在10-100V直流斩波器主电路的设计。

1 前言1.1课题背景随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。

所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。

但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。

直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波电路工作原理分析

直流斩波电路工作原理分析

直流斩波电路工作原理分析直流斩波电路的主要是实现直流电能的变换,对直流电的电压或电流进行控制。

按照输入电压与输出电压之间的关系,可以分为六种不同的形式,分别为降压斩波电路(BUCK )、升压斩波电路(BOOST )、升降压斩波电路(BUCK-BOOST )、Cuk 斩波电路、Sepic 斩波电路和Zeta 斩波电路。

下面分别对它们的工作原理进行简单的介绍。

一.降压斩波电路降压斩波(BUCK )电路的拓扑结构图如1-1所示。

U io图1-1 BUCK 电路拓扑结构分析在开关器件导通和关断时,电路的动态工作过程。

图1-1中实线部分表示开关器件导通时的回路,虚线部分表示器件关断时的续流回路。

在续流过程中,根据电感中的电流的不同分为,电感电流连续(CCM )和断续(DCM )两种情况。

由此可以得到降压斩波电路的动态工作过程如图1-2所示。

U ioa) S 导通时等效电路oCob) S 关断,i L ≠0时等效电路c) S 关断,i L =0时等效电路图1-2 BUCK 电路动态工作过程在工作过程中,驱动信号以及电感上的电压和电流波形如图1-2所示。

u Su Li Li La) 电感电流连续时波形b) 电感电流断续时波形图1-3 BUCK 电路的工作原理图由电感器件的伏秒平衡原理,可以得出在电流连续和断续两种情况下,BUCK 斩波电路的输出电压。

a) 电感电流连续时,有()(1)0i o o U U D U D ---= (1-1)化简可得o i U DU = (1-2)b) 电感电流断续时,有1()0i o o U U D U --∆= (1-3)化简可得1o i DU U D =+∆ (1-4) 由此可以看出,电感电流断续情况下的输出电压更高。

二.升压斩波电路升压斩波(BOOST )电路的拓扑结构如图2-1所示。

U iLo图2-1 BOOST 电路拓扑结构在图2-1中,实线部分表示开关器件导通时的回路,虚线部分表示开关器件关断时的回路,由此可以得到升压斩波电路的动态工作过程如图2-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

升压式直流斩波电路
1.电路的结构与工作原理 1.1电路结构
U L
R
U0
+-
+
-
图1 升压式直流斩波电路的电路原理图
1.2 工作原理
假设电路输出端的滤波电容器足够大,以保证输出电压恒定,电感L 的值也很大。

1)当控制开关VT 导通时,电源E 向串联在回路中的电感L 充电储能,电感电压u L 左证右负;而负载电压u 0上正下负,此时在R 于L 之间的续流二极管VD 被反偏,VD 截止。

由于电感L 的横流作用,此充电电流基本为恒定值I1.另外,VD 截止时C 向负载R 放电,由于正常工作C 已经被充电,且C 容量很大,所以负载电压基本保持为一恒定值,记为u 0。

假设VT 的导通时间为t on ,则此阶段电感L 上的储能可以表示为EI 1t on
2)在控制开关VT 关断时,储能电感L 两端电势极性变成左负右正,续流二极管VD 转为正偏,储能电感L 与电源E 叠加共同向电容C 充电,向负载R 提供能量。

如果VT 的关断时间为t off ,则此段时间内电感L 释放的能量可以表示为(U 0-E )I 1t off 。

1.3基本数量关系
a.一个周期内灯光L 储存的能量与释放的能量相等:

b.输出电流平均值
11()on
o off EI t U E I t =-E
t T E t t t U off
off off on o =+=
2.建模
在MA TLAB 新建一个Model ,命名为jiangya ,同时模型建立如下图所示:
图 1 升压式直流斩波电路的MATLAB 仿真模型
2.1模型参数设置
a 电源参数,电压100v :
b.同步脉冲信号发生器参数 振幅1V ,周期0.001,占空比20%
R
E
R U I β1o o ==
c.负载电阻参数
d.电容参数设置
e.二极管参数设置
f.电感参数
G.IGBT参数
f.示波器参数
示波器五个通道信号依次是:电源电流、负载电流、IGBT电流电压、负载电压、电源电压。

3 仿真结果与分析
a. 占空比α=20,MATLAB仿真波形如下:
图 2 α=20升压式直流斩波电路
b. 占空比α=50,MATLAB仿真波形如下:
图9 α=50升压式直流斩波电路
c. 占空比α=80,MATLAB仿真波形如下:
图10 α=80升压式直流斩波电路
4小结
对于升压斩波电路,要输出电压高于输入电源电压应满足两个假设两个条件,即电路中电感的L值很大,电容的C值也很大。

只有在上述条件下,L在储能之后才具有使电压泵升的作用,C在L储能期间才维持住电压不变。

但实际上假设条件不可嫩够满足,即C值不可能无穷大,U0必然会有所下降。

相关文档
最新文档