北师大版七年级数学上册第四单元基本平面图形
七年级数学(北师大版)上册复习课件-第四章基本平面图形
分析:只要有一个端点不相同,就是不同的线段.
解:以A为起点的线段有AC、AD、AE、AB 四条. 以D为起点的线段且与前不重复的有DE、DC、 DB三条. 以E为起点的线段且与前不重复的有EC、EB二条. 以C为起点的线段并且与前不重复的有BC一条.
因此图中共有4+3+2+1=10条线段.
17.如图,用字母A、B、C 表示∠α、∠β. 答案:∠CAB或∠BAC 表示∠α; ∠CBA或∠ABC表示 ∠β.
18.引水渠从M向东流250米到N处, 转向东北方向300米到C 处,再转向 北偏西30°方向,流200米到D处,试
用1 cm表示100米,画出相应的图形.
D
C
M
N
1.一条线段有__两___个端点.
2.用度表示:30°45′=_3_0_._7_5.° 3.时钟4点20分,时针和分针所夹的锐角
的度数是_1_0__°_.
4.图中小于平角的角 的个数有__6___个.
5.下列说法,正确说法的个数是( C )
①直线AB和直线BA是同一条直线;②射线
AB与射线BA是同一条射线;③线段AB和线
14.圆
O
B
绳子扫过的区
域是什么形状?
A
平面上,一条线段绕着它固定的一个端点旋转一周,另一 个端点形成的图形叫做圆(circle).固定的端点O称为圆心 (center of a circle),线段OA称为半径(radius).
圆上A,B两点之间的部分叫做圆弧(arc),
由一条弧和经过这条弧的端点的两条半径所组成的图形叫 做扇形(sector).定点在圆心的角叫做圆心角
12.如图所示,点C是线段AB上一点, AC<CB,M、N分别是AB、CB 的中点, AC=8,NB = 5,求线段MN4的长是_____.
北师大版七年级数学上册第四章基本平面图形线段、 射线、 直线课件
6. 射线可以用两个大写英文字母表示,并且表示端点的字母必须写在 前面 . 7. 直线可以用 两 个大写英文字母表示,也可以用一个小写英文字母表示,表 示直线的大写英文字母不分顺序.
1. 下列说法中,正确的是( B )
A. 射线比线段短
B. 两点确定一条直线
C. 两点确定一条射线
D. 两点间的连线叫线段
(1)有不在同一直线上的三点A,B,C,每两点连一条线段,则可以连3条线段. (2)有四个点A,B,C,D,且每三点都不在同一直线上,每两点连一条线段,则 可以连6条线段. (3)5×(5-1)÷2=10(场), 故需要举行10场比赛.
3. 如图,点A,B在A. 线段AB和线段BA是同一条线段 B. 直线AB和直线BA是同一条直线 C. 射线AB和射线BA是同一条射线 D. 图中以点A 为端点的射线有两条 4. 手电筒、探照灯所射出的光线可以近似地看做 射线 .
5. 如图,图中线段有 6 条,直线有 3 条, 以点D为端点的射线有 2 条.
6. 往返于M,N两地的客运火车,中途停靠三个站(所有站近似地看做在同一 条直线上,如图所示),假设该车只有硬座.
(1)最多有多少种不同的票价? (2)要准备多少种车票?
(1)数线段时,从左到右,以每个端点为开始向后数,如题中的线段有: 从点M开始数有线段MA,线段MB,线段MC,线段MN共4条;从点A开始数有线段 AB,线段AC,线段AN共3条;从点B开始数有线段BC,线段BN共2条;从点C开 始数有线段CN共1条.图中共有10条线段,所以最多可有10种票价.
图中共有10条线段,分别是线段AB, 线段AC,线段AD,线段AE,线段BE,线段 BD,线段BC,线段CE,线段CD,线段DE.
【基础训练】
最新北师大版七年级数学上册第四单元基本平面图形知识点
第四章:基本平面图形知识梳理一、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
: 联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分。
2、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
3、直线的性质(1)直线公理:经过两个点有且只有一条直线。
简称两点确定一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
4、线段的比较(1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。
5、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=21AB 或AB=2AC=2BC 。
二、角1、角的概念:(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着它的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。
北师大版七年级数学上册第四章基本平面图形全套教学课件
例 已知线段AB,用尺规作一条线段等于已知线段 AB.
AB ①先作一条射线A 'C ';
A'
C'
②用圆规量取已知线段AB的长度;
③在射线上截取A 'B ' =AB,线段A 'B '就是 所求的线 段.
探究新知
4.1 线段、射线、直线/
画一画
在直线上画出线段 AB=a ,再在 AB 的延长线
上画线段BC=b,线段AC 就是 a 与 b 的和,记作
(3) 画直线AB,交线段DC的延长线于点E;
(4) 连接线段AD,并将其反向延长.
A
解:如图所示
B
F
E
D
C
课堂检测
拓广探索题
往返于A、B两地的客车,中途停靠三个站,每
两站间的票价均不相同,问: (1)有多少种不同的票价? (2)要准备多少种车票?
解:画出示意图如下:
A CDE B
(1)图中一共有10条线段,故有10种不同的票价.
(4) 图中有几条射线?写出以点B为端点的射线.
AA
BB
C
解:(1) 1条,直线AB或直线AC或直线BC; (2) 3条,线段AB,线段BC,线段AC; (3) 是; (4) 6条.以B为端点的射线有射线BC、射线BA.
课堂检测
能力提升题
2. 如图,在平面上有四个点A,B,C,D ,根据下
列语句画图:(1) 做射线BC;(2) 连接线段AC,BD交于点F;
探究新知
4.1 线段、射线、直线/
讨论 你们平时是如何比较两个同学的身高的?
你能从比身高的方法中得到启示来比较两条线
段的长短吗?
170cm
北师大版数学七年级上册第四章基本平面图形线段、射线、直线课件
解:(1)如答图4-1-2,直线AB即为所求;
(2)如答图4-1-2,线段AC,BD即为所求; (3)如答图4-1-2,射线AD,BC即为所求.
典例精析
【例5】开会前工作人员进行会场布置,在主席台上由两人 拉着一条绳子,然后以“准绳”为基准摆放茶杯,这样做 的理由是( B ) A. 两点之间线段最短 B. 两点确定一条直线 C. 两点之间,直线最短 D. 过一点可以作无数条直线 思路点拨:两点确定一直线.
谢谢
典例精析
【例2】射线OA,OB表示同一条射线,下列图形正确的是 ( D)
举一反三
2. 如图4-1-1,则下列表示方法( D )
A. 都错误 C. 只有一个正确
B. 都正确 D. 有两个正确
典例精析
【例3】图4-1-2中共有线段( B )
A.8条
B.9条
C.10条
D.12条
举一反三
3. 如图4-1-3,不同的线段共有_____6___条.
举一反三
5. 下列现象:①用两个钉子就可以把木条固定在墙上;②
从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树
时,只要确定两棵树的位置,就能确定同一行树所在的直线
;④把曲折的公路改直,就能缩短路程. 其中能用“两点确
定一条直线”来解释的现象有(B )
A. ①②
B. ①③
C. ②④ D. ③④
图4-1-3
典例精析
【例4】如图4-1-4,平面上四个点A,B,C,D,根据下列 语句作图:画直线AB;画射线BC;画线段CD;连接AD. (不 写作法)
解:如答图4-1-1.
思路点拨:线段、射线、直线的区分在于线段有两个 端点,射线有一个端点,直线没有端点.
北师大版七年级上册数学课件第四章 基本平面图形
线
直
向两方无限延伸
0
线
能否度量
联系
能 不能 不能
线段、射线是 直线上的一部
分
当堂小练
1.平面上有A、B、C三个点,过其中的任两点作直线, 小敏说能作三条;小聪说只能作一条;小真说都有可 能;你认为他们三人谁的说法对?
分析:
A
B
C
(1) 可以画三条直线
A
B
C
(2) 只能画一条直线
当堂小练
2.指出下图中线段、射线、直线分别有多少条?
可否度量 可度量 不可度量
不可度量
新课讲解
典例分析
例 1.如图中,共有几条线段?
分析:以A为左端点的线段有:线段AC、线段 AD、线段AB,以C为左端点的线段有: 线段CD、线段CB,以D为左端点的线段 有:线段DB.
解:共有6条线段.
新课讲解
知识点2 直线的基本事实
讨论
如果将细木条抽象成直线,将钉子抽象为点,你可 以得出什么结论?
0 11
22
33
44
55
66
77 88
新课讲解
知识点2 作一条线段等于已知线段
尺规作图:在数学中,我们常限定用无刻度的直尺和圆规 作图,这就是尺规作图,利用尺规作图可以将一条线段移 到另一条线段上.用直尺(无刻度)和圆规作一条线段等于 已知线段的步骤:
(1)利用直尺(无刻度)作一条射线AB;
新课讲解
课堂小结
线 段 的 性 质
两点之间距离 线段的性质
线段最短 线段的长度 比较线段长度方法
当堂小练
1.把一条弯曲公路改为直路,可以缩小路程,其理由是(A )
A.两点之间线段最短
北师大版七年级数学上册第四章 基本平面图形 多边形和圆的初步认识
探究新知 练一练 下面图形是多边形的是( (1)(2)(6)( 7))
探究新知
如图,在多边形ABCDE中,
①点A,B,C,D,E是多边形的顶点;
②线段AB,BC,CD,DE,EA是多边形的边;
③∠EAB,∠ABC,∠BCD,∠CDE, ∠DEA
是多边形的内角; ④连接不相邻两个顶点的线段叫做多边形
A. 2π B. 4π
C. 12π
D.24π
课堂检测
基础巩固题
1. 如图所示的图形中,属于多边形的有几个( A )
A.3个
B.4个
C.5个
D.6个
课堂检测
基础巩固题
2. 一个多边形从一个顶点最多能引出三条对角线,这个多边形 是( D ) A. 三角形 B. 四边形 C. 五边形 D. 六边形
3. 在同一个圆中,扇形A,B,C,D的面积之比为1∶1∶3∶4,
探究新知
知识点 4 扇形的面积
(1)如图,将一个圆分成三个大小相同的扇形,你能 算出它们的圆心角的度数吗?你知道每个扇形的面积和 整个圆的面积的关系吗?小组交流.
120°,120°,120°; 每个扇形的面积是圆形面积的三分之一
(2)圆心角的度数与周角的比与扇形的面积 与圆的面积比有怎样的关系?
结论:扇形的圆心角与周角的比等于扇形面积与圆的面积比.
360°×2+32+3+4=60°, 360°×2+33+3+4=90°, 360°×2+33+3+4=90°, 360°×2+34+3+4=120°. 因此,最大扇形的圆心角为120°.
连接中考
1. 下列图形为正多边形的是( D )
北师大版七年级数学第四章----- 基本平面图形
第四章 基本平面图形思维导图形图面平本基⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧=︒⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧︒︒︒︒︒"=''=︒⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧)(36036018090909006016012为扇形的半径为圆心角的度数,π扇形面积:—用扇形所占百分比乘—圆心角的度数相关计算角叫做圆心角圆心角:顶点在圆心的形径所组成的图形叫做扇这条弧的端点的两条半扇形:由一条弧和经过的部分叫做圆弧圆弧:圆上任意两点间点形成的图形点旋转一周,另一个端段绕着它固定的一个端定义:平面上,一条线圆做正多边形各角也相等的多边形叫正多边形:各边相等,两个顶点的线段边形中,连接不相邻的多边形的对角线:在多图形次相连组成的封闭平面一直线上的线段首尾顺定义:由若干条不在同多边形大小比较线射线叫做这个角的平分的角,这条把这个角分成两个相等顶点引出的一条射线,角平分线:从一个角的的角,小于钝角:大于的角直角:等于的角,小于锐角:大于小于平角的角的分类,角的单位换算:希腊字母表示一个阿拉伯数字或一个字母或一个大写字母或表示方法:用三个大写而成的射线绕着它的端点旋转角也可以看成是由一条顶点的公共端点是这个角的的射线组成,两条射线角由两条具有公共端点定义角长短比较之间线段的长度两点之间的距离:两点最短性质:两点之间,线段点段分成两条相等线段的线段的中点:把一条线字母表示表示,也可用一个小写的两个端点的大写字母表示方法:用表示线段看做线段板的边沿都可以近似地定义:绷紧的琴弦、黑线段倒字母写在前面,不能颠字母表示,表示端点的表示方法:用两个大写限延长就形成了射线定义:将线段向一方无射线有一条直线性质:经过两点有且只个小写字母表示意两点的大写字母或一表示方法:用直线上任了直线个方向无限延长就形成定义:将线段向两个两直线扇形R n R n S考点精讲考点一线段、射线、直线线段、射线、直线的概念1.线段:期紧的琴弦、黑板的边沿都可以近似地看做线段.线段有两个特征:一是直的;二是有两个端点.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯所射出的光线可以近似地看做射线.射线有三个特征:一是直的;二是有一个端点三是向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线,直线有三个特征:一是直的;二是没有端点;三是向两方无限延伸.线段、射线、直线的表示方法名称图例表方方法线段用一个小写字母表示,如:线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).射线用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA直线用一个小写字母表示,如:直线l;用直线上的两个大写字母表示,如直线AB(或直线BA).线段、射线、直线的区别与联系名称线段射线直线不同点端点个数2个1个无伸展性不可延长只能向一方无限延长向两方无限延长度量可以度量不可度量不可度量联系将线段向一个方向无限延长就形成了射线,向两个方向无限延长就形成了直线,线段和射线都可以看做直线的一部分共同点都是直的,不是曲的拓展:线段的延长线是有方向的,作延长线时要特别注意表示线段的字母的顺序,以便确定延长的方向.“线段BA”与“线段AB”是同一条线段,但“线段AB的延长线”与“线段BA的延长线”却不是同一条.如图,图中,线段AB的延长线如图(1),线段BA的延长线如图(2).直线的性质1.画直线的常用工具是直尺,经过一点A可以画出无数条直线.2.直线的基本性质:经过两点有且只有一条直线(这一事实可以简述为:两点确定一条直线)线段的性质两点的所有连线中,线段最短.简单说成:两点之间的所有连线中,线段最短.可简称为“两点之间线段最短”两点之间的距离两点之间线段的长度,叫做这两点之间的距离.特别提醒:考点二比较线段的长短(1)线段是一个图形;两点间的距离是指线段的长度,是一个数值.(2)线段的长度可用刻度尺测量.比较两条线段的长短已知线段AB和CD.1.叠合法:把它们放在同一条直线上比较.具体作法如下:画一条直线l,在l上先作出线段AB,再作出线段CD,并使点C与点A重合,点D与点B位于点A的同侧,则:(1)如果点D与点B重合,就说线段AB与线段CD相等,记作AB=CD,如图①所示;(2)如果点D在线段AB内部,就说线段AB大于线段CD,记作AB>CD,如图②所示;(3)如果点D在线段AB外部,就说线段AB小于线段CD,记作AB<CD,如图③所示.2.度量法:先用刻度尺量出线段AB与线段CD的长度,再进行比较.特别提醒:用测量法比较线段的长短时,要采用相同的测量标准,单位要统一.作一条线段等于已知线段如图所示,作图步骤为:(1)作一条射线AB;(2)用圆规量出已知线段的长度(记作a);(3)用圆规在射线AB上截取AC=a.则线段AC就是所求作的线段.线段的中点特别提醒:(1)线段的中点必须在线段上,线段的中点只有一个,三等分点有两个,四等分点有三个.(2)利用线段的中点可以写出线段相等或成倍分关系的等式.(3)若点C是线段AB的中点,则AC=BC;但若AC=BC,则点C不一定是线段AB的中点.角的定义1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边.构成角的两个基本条件;一是角的顶点,二是角的边.如图所示,角的顶点是点O,角的边是射线OA,OB.考点三角2.从运动的观点看,角也可以看成是由一条射线绕着它的端点旋转而成的图形.如图所示,∠BAC可以看成是以A为端点的射线,从AB的位置绕点A旋转到AC的位置而成的图形.3.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.如图(1)所示,射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所成的角叫做平角:如图(2)所示,射线OA绕它的端点旋转一周所成的角叫做周角.在小学数学中,我们已经知道:1平角=180°,1周角=360°.拓展:平角与直线、周角与射线的区别:平角是一个角,它的始边和终边在同一条直线上,但方向相反;直线是一条线,没有端点,可以向两边无限延长,这是两个不同的概念,不能说“一条直线就是平角”或“平角是一条直线”.同样,周角是始边旋转360°后与终边重合而构成的角,这时构成角的两条边的两条射线重合,同样也不能说“一条射线是周角”或“周角是一条射线”.特别提醒:(1)平角和周角都是“角”,而不是”线”因此不能说“一条直线就是平角”,也不能说“一条射线就是周角.(2)没有特殊说明,我们只讨论大于等于0且小于等于180°的角.角的表示方法角的几何符号是“∠”,角的表示方法有以下几种:图例记法适用范围及注意事项用三个大写字母表示,如∠AOB或∠BOA任何情况都适用,用此方法表示角时,顶点的字母必须写在中间用一个大写字母表示,如∠O以这一点为顶点的角只有一个时才适用用数字1,2,3,…表示,如∠AOB可记作∠1任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边用小写希腊字母α,β,…表示,如∠BOC可记作∠α任何情况都适用,用此方法表示角时,要用小弧线表示出角的范围,即从哪边到哪边考点三角特别提醒:当以某一点为顶点的角较多时,不能只用表示顶点的大写字母表示角,一般可用数字或希腊字母表示.角的分类小于平角的角可按大小分成三类:当一个角等于平角的一半时,这个角叫直角;大于零度角且小于直角的角叫锐角;大于直角且小于平角的角叫钝角.1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°.角的度量及换算1.角的度量单位角的度量单位主要有度、分、秒,符号分别是“°”“′”“″”.把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.以度、分、秒为单位的角的度量制,叫做角度制.此外,还有其他度量角的单位制.2.角度制的换算1周角=360°,1平角=180°,1°=60′,1′=160⎛⎫⎪⎝⎭,1′=60″,1″=160''⎛⎫⎪⎝⎭.3.角的度量方法最常用的量角的工具是量角器.用量角器量角时要注意对中(顶点对中心)、重合(一边与量角器的零刻度线重合)、读数(读出另一边所对的度数)这三点.考点四角的比较角的大小比较名称方法举例度量法用量角器量出两个角的度数,度数大的角大,度数小的角小,度数相等的角相等用量角器量得∠1=50°,∠2=45°,所以∠1>∠2.叠合法把两个角的一条边和顶点叠合在一起,另一条边在叠合边的同侧,通过观察另一条边的位置来比较两个角的大小如果EF与BC重合,如图),那么∠DEF等于∠ABC,记作∠DEF=∠ABC.如果EF落在∠ABC的外部,如图,那么∠DEF大于∠ABC,记作∠DEF>∠ABC.如果EF落在∠ABC的内部,如图,那么∠DEF小于∠ABC,记作∠DEF<∠ABC.注意:(1)角的大小与角的两边的长短、粗细无关,只与角的两边张开的程度有关;考点四角的比较(2)角的大小一旦确定,它的大小就不因图形的位置,图形的放大或缩小而改变.特别提醒:(1)比较角的大小时,有时也可用估测法,即直接通过观察的方法,比较角的大小.此方法较为直观,但不够准确,适用于角度差别较大或精确度要求不高的角的大小的比较.(2)“测量法”中角的大小关系和角的度数大小关系是一致的,是从“数的方面”来比较角的大小.“叠合法”中比较角的大小时,一定要使两个角的顶点及一边重合,将角的另一边落在重合的边的同侧,这是从“形”的方面来比较角的大小.两者比较大小的结果是一致的.角的平分线定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如图所示,射线OC是∠BOA的平分线,则∠BOC=∠COA=21∠BOA,∠BOA=2∠BOC=2∠C0A.特别提醒:(1)角的平分线是一条射线,不是线段,也不是直线.(2)若OC是∠AOB的平分线,则OC必然在∠AOB的内部.考点五多边形和圆的初步认识多边形的有关概念1.多边形:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形,组成多边形的各条线段叫做多边形的边,相邻两条边的公共端点叫做多边形的顶点,相邻两条边所组成的角叫做多边形的内角,简称多边形的角.特别提醒:多边形的特征:①多边形是平面图形,要和立体图形区分开;②多边形是由不在同一直线上的线段组成的封闭图形;③组成多边形的各条线段首尾顺次相连.2.多边形的对角线:在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线. 拓展:从n边形每一个顶点都能引出(n-3)条对角线,共有n个顶点,但每条对角线都重复计算了一次,从而对角线共有2)3(nn条.正多边形各边相等,各角也相等的多边形叫做正多边形.如图所示的多边形分别是正三角形、正四边形(正方形)、正五边形、正六边形、正八边形.拓展:多边形可分为凸多边形和凹多边形,如没有特别说明,本书所说的多边形都是指凸多边形,即多边形总在任何一条边所在直线的同一侧,凸多边形的每个内角都小于180°.圆、圆弧、扇形、圆心角的概念1.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径(如图所示)2.圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作.读作圆弧AB 或“弧AB ”(现阶段一般研究小于半圆的弧)3.由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形;顶点在圆心的角叫做圆心角.如图所示的阴影部分就是扇形AOB .∠AOB 就是圆中的一个圆心角,∠AOB 也可记作∠1.特别提醒:圆心和半径是确定一个圆的两个必须条件.圆心确定圆的位置,半径确定圆的大小,二者缺一不可.圆心角的度数(1)一个圆可以分割成若干个扇形,这些扇形的面积的和等于圆的面积(2)因为一个周角为360°,所以分成的几个扇形的圆心角的度数之和=360,每一个扇形圆心角的度数=360°×(每一个扇形圆心角占周角的百分比)拓展:半径为R 的圆,其面积S =πR 2,将圆等分为360个小扇形,则每个圆心角为1°的小扇形的面积是3602R π,所以圆心角为n 的扇形的面是3602R n π.。
北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义
角
角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义
圆
弧 扇形
圆心角
知识回顾
伸
是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.
北师大版数学七年级上册 第四章 基本平面图形 知识点总结
第四章 基本平面图形 知识点知识点一:基本图形特点(1)线段 两个端点 可测量 线段CD 或线段DC ,或者线段m 。
(2)射线 一个端点 不可测量 射线DE ,其中D 点是端点(3)直线 没有端点 不可测量 直线EF 或直线FE ,或直线Ɩ 。
(4)角的表示方法:①用三个大写字母;如∠ABC (顶点字母在中间) ②用一个大写字母,如∠B (以这个点为顶点的角只有一个) ③用一个数字,如∠1;④用一个希腊字母,如∠ α 。
知识点二:(1)将一根细木条固定在墙上,至少需要钉 2个钉子,理由: 两点确定一条直线 。
(3)过平面内三个点中的任意两个点可作 1条或者3条 直线。
(2)若一条直线上有n 个点,则有 条线段、 2n 条射线和 1条直线。
(4)平面内n 条直线两两相交,有 个交点。
(5)平面内一个点O 发出n 条射线,那么角的个数为 个角。
知识点三:方位角方法:视角互换,度数不变,位相反。
如:操场上,小明对小亮说:“你在我的北偏东30°方向上”,那么小亮可以对小明说:“你在我的 A 方向上”( )A .南偏西30°B .北偏东30°C .北偏东60°D .南偏西60°2)1(-n n 2)1(-n n 2)1(-n nA B O 知识点四:时钟指针夹角 (1)一圈360° (2)一大格360÷12=30°(3)m 点整时,时针与分针夹角: 30m º 当度数大于180º时,再用(4)m 点n 分时,时针与分针夹角: |5.5n -30m |º 360º减去。
知识点五:度的换算(一)法则: 大单位化小单位乘以 进率60 。
小单位化大单位除以 进率60 。
(二)题型: ①45°= 87′ = 5220″②1800″= 30 分= 0.5 度 ③( )°= 15 ′④ 47.43°= 47 ° 25 ′ 48 ″。
北师大版数学七年级上册《 第四章 基本平面图形 》说课稿
北师大版数学七年级上册《第四章基本平面图形》说课稿一. 教材分析北师大版数学七年级上册《第四章基本平面图形》这一章节,主要介绍了多边形的概念、分类及性质。
本章内容是学生继学习三角形、四边形之后,进一步拓展对平面图形的认识。
通过本章的学习,使学生能够掌握多边形的性质,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。
二. 学情分析面对七年级的学生,他们在之前的学习过程中已经掌握了三角形、四边形的基本概念和性质,具备了一定的数学基础。
但是,对于多边形的理解,还需要进一步的引导和培养。
此外,学生的空间想象能力和逻辑思维能力还有待提高,因此,在教学过程中,需要注重启发引导,激发学生的学习兴趣,培养学生的数学思维。
三. 说教学目标根据新课程标准的要求和学生的实际情况,本节课的教学目标设定如下:1.知识与技能目标:使学生掌握多边形的概念、分类及性质,能够运用所学知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、表达等过程,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和创新精神。
四. 说教学重难点本节课的教学重点是多边形的概念、分类及性质的理解和运用。
教学难点是对于多边形性质的推理论证,以及学生空间想象能力的培养。
五. 说教学方法与手段为了实现本节课的教学目标,我将以“引导探究,合作学习”的教学方法为主,结合多媒体教学手段,引导学生观察、操作、思考、表达,激发学生的学习兴趣,培养学生的数学思维。
六. 说教学过程1.导入新课:通过回顾三角形、四边形的基本概念和性质,引出多边形的概念,激发学生的学习兴趣。
2.探究多边形的性质:引导学生通过观察、操作、思考、表达等过程,探索多边形的性质,总结出多边形的基本性质。
3.分类讨论:引导学生对多边形进行分类,了解不同类型多边形的特点,加深对多边形性质的理解。
4.应用拓展:通过一些实际问题,让学生运用所学知识解决问题,提高学生的应用能力。
北师大版初一(上)数学讲义第四章:基本平面图形
第四章:基本平面图形◆4.1 线段、射线、直线1.线段、射线、直线的概念(1)线段概念:铅笔、人行横道线和路旁的电线杆都可以近似地看做线段,下图就是一条线段.线段的特征:①线段是直的;②线段有2个端点;③线段的长度是有限的,可度量.线段可以向两方无限延长;线段是没有粗细之分的.(2)射线概念:射线可以看做由线段向一个方向无限延长形成的图形.如图,把线段AB向一个方向无限延伸,就是一条射线.射线的特征:①射线是直的;②射线有一个端点;③因射线向一个方向无限延长,所以射线没有长短,不可测量.射线可以反向延长;射线没有粗细之分.(3)直线概念:直线可以看做由线段向两个方向无限延长形成的.直线的特征:①直线是直的;②直线没有端点;③向两个方向无限延长,没有长短,不可测量.因为直线是线段向两个方向无限延长形成的,所以我们不能说延长某条直线,即直线不能延长.【例1】下列说法正确的有( ).①画一条射线等于5 cm;②线段AB为直线AB的一部分;③在直线、射线、线段中,线段最短;④射线与其反向延长线形成一条直线.A.1个B.2个C.3个D.4个2.线段、射线、直线的表示方法(1)线段的表示方法①用两个表示端点的大写字母来表示.如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”.②用一个小写字母来表示.如线段AB也可记作“线段a”.(2)射线的表示方法用两个大写字母表示.一条射线可用它的端点和射线上的另一点来表示,如图中的射线,可记作“射线AB”(端点必须在前面).射线的识别:判断两条射线是否是同一条射线,首先看端点是否相同,再看延伸方向是否相同,如果这两点都符合,那么这两条射线是同一条射线.①端点相同,延伸方向也相同的射线是同一条射线,如图射线MB,MC,MN都表示同一条射线.②端点相同,但延伸方向不相同的射线不是同一条射线,如图中射线AB,AC就不是同一条射线.③端点不同的射线不是同一条射线,如图中的射线BN,CN的延伸方向一致,但端点不同,所以不是同一条射线.【例2-1】射线OA,OB表示同一条射线,下面的图形正确的是( ).(3)直线的表示方法直线有两种表示方法:①可以用表示这条直线上任意两个点的大写字母来表示,注意表示直线上任意两个点的字母没有顺序性.如图甲中的直线可记作“直线AB”或“直线BA”;②可用一个小写字母来表示,如图乙中的直线可记作“直线l”.图甲图乙辨误区线段、射线、直线的联系①表示线段、射线、直线时,都要在字母前面注明“线段、射线或直线”;②用两个大写字母表示线段和直线时,两个字母没有顺序性,可以交换位置,如“线段BA”和“线段AB”表示同一条线段,“直线AB”和“直线BA”表示同一条直线;③表示射线的两个大写字母有一定的顺序,表示端点的字母必须写在前面.【例2-2】如图所示,下列说法( ).A.都错误 B.都正确C.只有一个正确D.有两个正确3.直线的性质(1)经过两点有且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个交点.【例3】工人师傅要将一块长条钢板固定在机器上,则至少要用__________个螺钉.4.射线、线段的计数方法射线和线段可以看做直线的一部分,因此在一条直线上,取一些点时,会出现射线和线段.(1)点数与射线的条数射线向一方无限延伸,因此射线的条数是由端点的个数决定的.在直线上,以一个点为端点的射线有2条,若直线上有n个点,则共有2n条射线.(2)点数与线段的条数线段有两个端点,直线上每两个点之间的部分就是一条线段.因此,数线段时,只要判断这些点共有多少种组合即可.析规律数线段条数的方法确定线段的条数时,可以先固定第一个点为一个端点,再以其余的点为另一个端点组成线段,然后固定第二个点为一个端点,与其余的点(第一个点除外)组成线段……,依此类推,直到找出最后的线段为止.【例4】画出线段AB:(1)如图(1),在线段AB上画出1个点,这时图中共有几条线段?(2)如图(2),在线段AB上画出2个点,这时图中共有几条线段?(3)如图(3),在线段AB上画出3个点,这时图中共有几条线段?(4)如图(4),在线段AB上画出n个点时,猜一猜:图中共有几条线段?5.直线性质的应用生活中的很多实际问题要用到直线的性质,如木工师傅在锯木料之前,先在木板上画出两个点,然后过这两个点弹条墨线,就是利用了直线的“两点确定一条直线”的性质,沿着这条线能锯成直的,而不会歪斜.【例5】建房屋垒墙时,建筑工人都要在墙的两端固定绳子,请利用所学的知识,说明其中道理.6.与直线有关的规律探究 (1)两点确定一条直线,在同一平面内,不同的点可以确定不同的直线.当任意三点均不在同一直线上时,点数与直线条数的关系见下表:点的个数 最多直线条数2 13 3 46 … …n (n >1) n (n -1)2(2)平面上若有n (n >1)条直线两两相交,则交点个数最多有12n (n -1)个.【例6】平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出另外三种不同情 况的图形.………………………………………………………………………………………………………………………◆4.2比较线段的长短1.线段的性质(1)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
北师大版七年级数学上册第四章基本平面图形(教案)
在今天的教学过程中,我发现学生们对于基本平面图形的概念和分类掌握得还不错,但是在具体的案例分析中,部分学生在辨别角的类型和识别四边形特性时遇到了一些困难。这让我意识到,理论知识虽然重要,但将理论知识与实际应用结合起来,让学生在实际情境中去感受和理解这些概念,才是他们真正消化和吸收知识的关键。
最后,总结回顾环节,我通过提问的方式检验了学生们对今天所学知识的掌握情况,总体来说,他们对重点知识的掌握还算扎实。但是,我也意识到,对于难点的理解和运用,还需要在后续的课堂中继续巩固和强化。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平面图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在讲授新课的过程中,我尽量用生活中的实例来解释角、三角形和四边形的性质,这样做的效果是明显的,学生们能够更直观地理解这些抽象的几何概念。不过,我也注意到,对于一些空间想象力较弱的学生来说,仅凭语言描述和静态图形展示可能还不够,今后我需要寻找更多直观的教学工具,比如动态模型或者互动软件,来帮助他们更好地理解和记忆。
-重点二:三角形的定义及特性。掌握不等边三角形、等腰三角形、等边三角形的性质。
-举例:通过实际操作,让学生观察和比较不同三角形的边长和角度特点。
-重点三:四边形的定义及特性。理解矩形、正方形、平行四边形、菱形的性质。
-举例:分析生活中的四边形物体(如桌面、书籍、窗户等),让学生直观感受四边形的特性。
-重点四:周长的计算方法。掌握三角形和四边形周长的计算公式。
北师大版七年级数学上册第四章《基本平面图形》教案
第四章基本平面图形1 线段、射线、直线1.了解线段的描述性概念,了解射线、直线的概念,了解线段、射线、直线之间的区别与联系.2.掌握线段、射线、直线的表示方法.3.通过操作活动了解两点确定一条直线等事实,积累操作活动经验,培养学生的观察能力.4.能使学生积极参与到数学活动中来,感受图形世界的丰富多彩,激发学生的学习兴趣.【教学重点】线段、射线与直线的概念及表示方法【教学难点】直线的性质的发现、理解及应用.一、情境导入,初步认识线段、射线、直线对大家而言并不陌生,在小学里我们对它已有了了解.现在我们继续学习线段、射线,直线的相关知识.【教学说明】学生通过回忆小学里学过的知识,加深印象,激发学生探求新知的欲望.二、思考探究,获取新知1.线段、射线、直线的概念问题1生活中,有哪些物体可以近似地看做线段、射线,直线?【教学说明】学生很容易从生活中找到线段、射线、直线的例子,通过观察,加深对线段、射线、直线概念的理解.教材第106页“议一议”上面的内容.【归纳总结】线段、射线都是直线的一部分,射线、直线不可度量,线段可以度量.2.线段、射线、直线的表示方法.问题2线段、射线、直线该怎样表示呢?【教学说明】学生通过观察,了解并掌握线段、射线、直线的表示方法.我们可以用以下方式分别表示线段、射线、直线:【归纳结论】线段、射线、直线都可以用两个大写字母表示,也可以用一个小写字母表示.注意:表示射线时,端点字母必须写在前面.3.直线的性质问题3教材第107页上面的“做一做”.【教学说明】学生通过动手操作,进一步掌握直线的性质,体会数学与生活的密切联系,激发学生的积极性和主动性.【归纳结论】经过两点有且只有一条直线.这一事实可以简述为:两点确定一条直线.4.几何画图问题4按下列语句画图:(1)点P不在直线l上;(2)线段a、b相交于点P;(3)直线a经过点A,而不经过点B;(4)直线l和线段a、b分别交于A、B两点.【教学说明】学生通过动手操作,理解相应几何语句的意义,同时能结合语句画出正确的几何图形.【归纳结论】规范画图是学好几何的基础,要养成规范画图,画图完毕即标上表示点或线的字母的良好习惯.三、运用新知,深化理解1.下列语句错误的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于P点D.直线AB向两方无限延伸,所以不能延长直线AB2.举出一个能反映“经过两点有且只有一条直线”的实例.3.指出下图中的直线、射线、线段,并一一表示出来.4.作图题:已知平面上四点A、B、C、D,如图.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.【教学说明】学生自主完成,加深对教学知识的理解,检测本节课内容的掌握情况,为后面的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.如栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线.3.直线AB(或直线AC,直线BC);射线AB,射线BC,射线CB,射线BA;线段AB,线段AC,线段BC.4.四、师生互动,课堂小结1.师生共同回顾线段、射线、直线的有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题4.1”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解线段、射线、直线的概念及表示方法到探究直线的性质和通过动手操作,培养学生动手、动脑习惯,激发学生学习兴趣.2 比较线段的长短1.了解“两点之间线段最短”的性质;能借助尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段;理解线段中点的概念,会用数量关系表示中点及进行相应的计算.2.感受用类比的思想比较两条线段的大小,经过体会由感性认识上升到理性认识的过程,发展学生的符号感和数感;发展几何图形意识和探究意识.3.在积极参与、合作交流中体验到教学活动中充满着探索和创造,在学习中获得成功的经验,提高学习数学的兴趣.【教学重点】线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.【教学难点】叠合法比较两条线段大小;会画一条线段等于已知线段.一、情境导入,初步认识把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?【教学说明】通过生活中常见的例子,体会数学与生活的紧密联系,激发学生学习兴趣.二、思考探究,获取新知1.线段公理问题1 教材第110页图4—6及有关图的内容.【教学说明】学生通过观察,实际操作,很容易得出正确的结论.【归纳结论】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间,线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.2.线段的比较问题2 教材第110页的“议一议”.【教学说明】学生通过实物的比较到线段的比较,归纳比较两条线段长短的方法.【归纳结论】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.3.作一条线段等于已知线段问题3 如图,已知线段AB,用尺规作一条线段等于已知线段AB.【教学说明】学生通过操作,掌握作一条线段等于已知线段的方法.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所求作的线段.4.线段中点的定义及表示方法如图,点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点,这时AM=BM=12AB(或AB=2AM=2BM).5.线段中点性质的运用问题4 在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段AC的中点,那么线段OB的长度是多少?【教学说明】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质.【归纳结论】线段的和,差,中点计算时,应注意数形结合,根据已知条件画出图形再加以分析.三、运用新知,深化理解1.如图,从A到B有3条路径,最短的路径是()A.①B.②C.③D.都一样第1题图第2题图2.如图,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BDB.AC=BDC.AC <BDD.不能确定3.已知线段AB=8cm,在直线AB上取点C,使BC=2cm,则线段AC的长是___cm.4.教材第112页上方的“随堂练习”第1题.5.教材第112页上方的“随堂练习”第2题.6.已知点A、B、C是同一直线上的三个点,且AC=9cm,BC=5cm,求线段AB和BC的中点间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测线段的比较,线段的中点等知识的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.A3.10或64.可用刻度尺量出AB各线段的长度,再量出线段A′B′的长度.将AB各线段和与A′B′长度作比较,也可用尺规作图法将AB的每段长度移到线段A′B′上,再做判断.5.6. 4.5cm四、师生互动,课堂小结1.师生共同回顾线段的公理,线段的比较,线段的中点等有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题4.2”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究线段的公理,线段的比较方法,线段的中点的表示方法,到运用线段中点的性质解决具体问题等方面,培养学生动手、动脑习惯,提高学生解决问题的能力.3 角1.通过实际情境,理解角的有关概念,掌握角的表示方法.2.会进行角的度量,以及度、分、秒的互化.3.进一步认识锐角、钝角、直角、平角、周角及其大小关系.4.通过问题情境,认识角、表示角、度量角、进行角的互化,经历角的静态定义到动态定义的形成过程,体会运动变化的思想方法.发展学生的符号感和数感.5.结合本课教学特点,教育学生热爱生活,热爱学习,激发学生学习兴趣.【教学重点】理解角的概念与表示方法,学会角度的测量,以及度、分、秒的互化.【教学难点】度、分、秒的互化.一、情境导入,初步认识教材第114页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的图形中找到角.初步感受角的形象,体会角与生活的紧密联系.二、思考探究,获取新知1.角的概念与表示方法问题1 角是由什么图形组成的?角有哪些表示方法?【教学说明】学生在小学对角的概念与表示方法有一定的了解,此时教师加以规范,有助于学生进一步掌握角的概念及表示方法.【归纳结论】角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线是角的两边.角的表示方法常见的有三种:(1)用三个或一个大写的英文字母表示;(2)用一个小写的希腊字母表示;(3)用数学标注.注意:顶点处只有一个角时才能用一个大写的英文字母表示.问题2 教材第114页下方“做一做”.【教学说明】学生通过观察,分析,进一步掌握角的表示方法.2.用旋转的观点描述角及认识平角,周角问题3 教材第115页“议一议”.【教学说明】学生通过观察,从旋转的角度体会角的形成.【归纳结论】角可以看成是由一条射线绕着它的端点旋转而成的.3.角的度量及度、分、秒的换算问题4 在小学数学中,我们已知道:1平角=180°,1周角=360°.度量角的单位除了度,还有哪些?相邻单位间的进率又是多少呢?【教学说明】教师引导学生了解角的度量单位,掌握相邻单位间的进率.【归纳结论】为了更精密地度量角,我们规定:问题5 计算:(1)1.45°等于多少分?等于多少秒?(2)1800″等于多少分?等于多少度?【教学说明】学生通过计算,与同伴进行交流,熟练掌握度、分、秒的计算.问题6 教材第116页“做一做”.【教学说明】学生通过观察,动手操作,进一步掌握角的表示方法和角的度量,会用角度来表示方位.三、运用新知,深化理解1.下列说法正确的是()A.平角是一条直线B.一条射线是一个周角C.两边成一条直线时组成的角是平角D.一个角不是锐角就是钝角2.教材第116页下方的“随堂练习”第1题.3.教材第116页下方的“随堂练习”第2题.【教学说明】学生自主完成,检测对角的有关知识的掌握情况,加深对新学知识的理解,对学生的疑惑、教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.(1)北偏东90°(2)虎豹园在南偏东0°(正南方),猴山在北偏东0°(正北方),大象馆在北偏东45°;(3)图略.∠AOC=∠AOB=90°,∠AOD=∠BOD=45°,∠COD=135°,∠BOC=180°;(4)锐角有∠BOD、∠AOD、∠AOC,钝角为∠COD、∠BOC,直角为∠AOB、∠AOC,平角为∠BOC.3.(1)15 ′,900″;(2)45′,0.75°.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.3”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解角的概念及表示方法,到角的度量及度、分、秒的换算,培养学生动手动脑习惯,激发学生学习兴趣.4 角的比较1.运用类比的方法,会比较两个角的大小.2.认识角的平分线,掌握角的和、差、倍、分关系.3.通过类比线段大小的比较,掌握角的大小比较方法,认识角的平分线及表示方法,发展学生的符号感和数感,发展几何图形意识和探究意识.4.在积极参与,合作交流中体验到教学活动充满着探索和创造,提高学生学习数学的兴趣.【教学重点】会比较角的大小,会分析图中角的和差关系,能熟练运用角的平分线.【教学难点】角的和、差、倍、分关系.一、情境导入,初步认识还记得怎样比较线段的长短吗?类似地,你能比较角的大小吗?【教学说明】通过类比线段大小的比较方法,学生很容易得到角的大小比较方法.二、思考探究,获取新知1.角的大小比较问题1 怎样比较角的大小呢?【教学说明】学生通过类比线段大小的比较方法,再与同伴交流,归纳角的大小比较方法.【归纳结论】与比较线段的长短类似,如果直接观察难以判断,我们可以有两种方法对角进行比较:一种方法是用量角器量出它们的度数,再进行比较,即度量法;另一种方法是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比较大小,即叠合法.问题2 教材第119页上方的“做一做”.【教学说明】学生通过观察、分析,与同伴进行交流,进一步掌握角的大小比较方法.3.角的平分线定义及表示方法教材第119页上方的“做一做”.问题 3 已知EOF为一直线,∠AOB=90°,OE平分∠COB,∠EOC=15°,求∠AOF的度数.【教学说明】学生观察、分析,与同伴交流,通过计算,进一步掌握角的平分线的性质及角的和差关系.【归纳结论】在进行角的和、差、倍、分计算时,往往结合图形来分析数量关系.4.估量角的度数问题4 (1)如图估计∠AOB,∠DEF的度数.(2)量一量,验证你的估计.【教学说明】学生先估量,再用量角器量一量,验证自己的估计是否正确.三、运用新知,深化理解1.∠AOB的内部任取一点C,作射线OC,那么下列各式中正确的是()A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOCD.∠BOC>∠AOC2.教材第120页上面“随堂练习”第1题.3.教材第120页上面“随堂练习”第2题.4.如图所示,OB是∠AOC的平分线,DO平分∠COE,若∠AOE=128°,求∠BOD的度数.【教学说明】学生自主完成,加深对新学知识的理解,检测对角的大小比较,角的平分线性质的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A2.(1)135°,135°,45°(2)图中两个钝角相等,一个钝角和一个锐角的和为180°.3.45°,30°,60°4.64°四、师生互动,课堂小结1.师生共同回顾角的大小比较,角的平分线性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究角的大小比较方法,角的平分线定义及性质,到运用角的和、差、倍、分解决具体问题,培养学生应用知识的能力,激发学生学习的兴趣.5 多边形和圆的初步认识1.在具体情境中认识多边形和圆,了解与多边形和圆有关的概念.2.会计算扇形圆心角的度数.3.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中训练发散思维和逻辑思维.4.结合本课教学特点,教育学生热爱生活,热爱学习,体验数学与生活的密切联系,激发学生学习数学的兴趣.【教学重点】掌握正多边形的边、角特点和扇形圆心角的求法.【教学难点】多边形对角线条数计算公式的推导.一、情境导入,初步认识教材第122页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的例子找到多边形和圆,使学生有一个初步认识.二、思考探究,获取新知1.多边形及有关概念教材第122页彩图下方的内容.问题1 (1)n边形有多少个顶点、多少条边、多少个内角?(2)过n边形的每一个顶点有几条对角线?【教学说明】学生通过观察,动手操作,与同伴进行交流,找出一般规律.【归纳结论】n边形有n个顶点,n条边,n个内角.过n边形的每一个顶点有(n-3)条对角线.n边形一共有32n n()条对角线.问题2 各边相等,各角也相等的多边形叫做正多边形.【教学说明】学生通过观察、比较、度量,验证自己的猜测. 【归纳结论】各边相等,各角也相等的多边形叫做正多边形.2.圆及有关概念问题3 教材第123页下方的“做一做”.【教学说明】学生通过观察生活中的例子,再通过画图,初步认识圆和扇形.【归纳结论】平面上,一条线段,绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径.圆上任意两点A,B间的部分叫做圆弧,简称弧.记作AB,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形,顶点在圆心的角叫做圆心角.3.求扇形的圆心角和扇形面积问题4 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数.【教学说明】学生通过计算,掌握扇形圆心角的求法.【归纳结论】把一个圆分成若干个扇形,这些扇形的圆心角度数之和为360°.问题5(1)将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流.(2)画一个半径是2cm的圆,并在其中画一个圆心角为60°的扇形,你会计算这个扇形的面积吗?与同伴进行交流.【教学说明】学生通过思考、分析,进一步掌握扇形圆心角和扇形面积的求法.三、运用新知,深化理解1.从六边形的一个顶点出发可引____条对角线,它们将这个六边形分割成___个三角形.六边形一共有___条对角线.2.教材第124页下方的“随堂练习”第1题.3.教材第124页下方的“随堂练习”第2题.【教学说明】学生自主完成,加深对新学知识的理解,检测对多边形和圆的有关知识的掌握情况,对学生的疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.3,4,92.如地板砖是正方形,蜂巢是正六边形.3.∠AOB=72°,∠AOC=108°,∠BOC=180°.四、师生互动,课堂小结1.师生共同回顾多边形和圆及有关概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解多边形和圆的相关概念,到计算扇形圆心角的度数,培养学生分析问题、解决问题的能力,激发学生学习兴趣.章末复习1.掌握本章重要知识,能灵活运用所学知识解决具体问题.2.通过梳理本章知识,感受图形世界的丰富多彩,回顾解决问题中所涉及的分类和类比思想.体会由感性认识上升到理性认识的过程,发展学生的符号感和数感.3.在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用本章相关知识解决具体问题教学过程.一、知识框图,整体把握二、释疑解感,加深理解1.直线的性质经过两点有且只有一条直线,即两点确定一条直线.2.线段公理两点之间的所有连线中,线段最短,即两点之间,线段最短.3.线段的中点把线段分成相等的两条线段的点,叫做线段的中点.4.角的平分线从一个角的顶点引出一条射线,把这个角分成两个相等的角.这条射线叫做这个角的平分线.三、典例精析,复习新知例1过平面内的四个点中的任意两个点可以画直线的条数是().A.4B.6C.4或6D.1,4或6【分析】平面内的四个点的位置关系有三种:①四个点在同一直线上,②有三个点在同一直线上,③任意三个点都不在同一直线上,所以应分三种情况讨论,故选D.例2 如图,从A到B最短的路线是().A.A—G—E—BB.A—C—E—BC.A—D—G—E—BD.A—F—E—B【分析】从A到B,EB这一段是必走的,关键是看从A到E哪条路最近,由“两点之间线段最短”可知应选D.例3计算:(1)47°53′43″+53°47′42″;(2)22°30′16″×6;(3)92°56′3″-46°57′54″;(4)176°52′÷3.【分析】角之间的运算是60进制,加减运算要将度与度、分与分、秒与秒之间分别加减;分、秒相加时逢60要进位,相减时要借1当60;乘法运算要用乘数分别与度、分、秒相乘,然后逢60进位;除法运算要用除数分别去除度、分、秒,度、分的余数乘60分别化为分、秒,一般除到秒,然后四舍五入.解:(1)47°53′43″+53°47′42″=(47°+53°)+(53′+47′)+(43″+42″)=100°+100′+85″=101°41′25″;(2)22°30′16″×6;=(22°+30′+16″)×6=132°+180′+96″=135°1′36″;(3)92°56′3″-46°57′54″;=(91°-46°)+(115′-57′)+(63″-54″)=45°+58′+9″=45°58′9″;(4)176°52′÷3=58°+(2°+52′)÷3=58°+172′÷3=58°+57′+1′÷3=58°57′20″.例4 在同一个小学的小明、小伟、小红三位同学住在A、B、C三个在住宅区,如图所示:A、B、C三点共线,且AB=60m,BC=100m.他们打算合租一辆车去上学,准备只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在_____________.【分析】若设在A处,三人步行路程之和为60+(60+100)=220m;若设在B处,则三人步行路程之和为60+100=160m;若设在C处,三人步行路程之和为(60+100)+100=260m.解:B处例5 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长度.【分析】题中说明A、B、C三点共线,但无法判断点C是线段AB上,还是在AB 的延长线上,所以要分两种情况,求AM的长.例6 如图所示,已知AB为一条直线,O是AB上一点,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=13∠BOD,∠COE=72°,求∠EOB的度数.【分析】本题主要考查角的平分线与角的和、差、倍分问题的应用,找准各角之间的关系,列等式解决.四、复习训练,巩固提高1.如图,A,B,C三点共线,图中有___条线段,___条射线,能用字母表示的射线有____条.第1题图第2题图2.比较如图所示的线段的长度:(1)DC_____AC;(2)AD+DC_____AC;(3)AD+BD______AB.其依据是___________________________.3.下列说法中,错误的是().A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段4.如图所示,如果∠AOD>∠BOC,那以下列说法正确的是().A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠COD与∠AOB的大小关系不能确定5.已知:如图所示,点A、B、C、D,按下列要求画图:(1)射线AD,直线BC;(2)射线BA,射线CD;(3)连接AC,并延长AC.第5题图第6题图6.如图所示,已知线段a、b、c,用圆规和直尺画线段.使它等于2a+b-c.(只需画图,不要求写画法).7.计算:(1)43°25′+54°46′;(2)90°3′-57°21′44″;(3)33°15′6″×4;(4)176°52′÷3.8.半径为6的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积(结果保留π).9.如图,已知点C为线段AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点,求DE的长.【教学说明】这部分安排了几个比较典型的重点题型,加深对本章知识的理解,进一步提高学生综合运用所学知识的能力,前几题可由学生自主完成,最后两题可由师生共同探讨得出结论.【答案】1. 3 6 42. <= >两点之间,线段最短3.C4.B5.6.如图所示,线段AE就是所求作的线段2a+b-c.7.(1)98°11′(2)32°41′16″(3)133°24″(4)58°57′20″8.如图,扇形∠AOB的面积为:π×62×150360=15π.五、师生互动,课堂小结本课堂你能完整地回顾本章所学的有关知识吗?你学会了哪些与本章有关的数学思想方法?你还有哪些困惑与疑问?【教学说明】学生回顾本章知识,积极与同伴交流,对于学生的困惑与疑问,教师应及时指导.1.布置作业:从教材“复习题4”中选取.2.完成练习册中本章复习课的练习.。
七年级数学上册(北师大版2024)第四章基本平面图形4.2角的认识
(2) 180°-126°34′23″ =(179-126)°+(59-34)′+(60-23)″ =53°25′37″
课堂检测
1.(1)请用字母表示图6中的 每个城市. (2)请用字母分别表示以北京 为中心的每两个城市之间的夹 角.
B A E
C D
能力提升
如图,下列各图中分别各有多少角?
3个角
北师大版七年级上册
第四章 基本平面图形
4.2 角的认识
学习目标 1.理解角的概念,掌握角的表示方法.(重点) 2.会正确使用量角器,认识角的常用度量单位. 3.会进行度、分、秒的简单换算(难点)
﹙
﹙
探究新知
角的定义
角是由两条具有公共端点的射线组成的图形。
边
射线
顶点
射线
边
B 角的定义(动态)
终边
(整数化小数)
巩固练习
1. 用度表示37°12′18″
解:37°12′18″ =37°+12′+(18÷60)' =37°+12.3' =37°+(12.3÷60)° =37.205°.
典例解析
例4 计算: (1)32°19′+16°53′35″
(2)180°-126°34′23″
解: (1)32°19′+16°53′35″ =(32+16) °+(19+53) ′+35″ =48°+72′+35″ =49°12°35″
(2) 78.43° =78°+0.43°
=45°+0.6×60′ =45°36′
=78°+0.43×60′ =78°+25.8′ =78°25′+0.8×60′ =78°25′48″
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:基本平面图形
知识梳理
一、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。
线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。
射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。
直线无法量出长度。
结论:直线、射线、线段之间的区别:
联系:射线是直线的一部分。
线段是射线的一部分,也是直线的一部分 2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理:过两点有且只有一条直线。
简称两点确定一条直线。
4、线段的比较 (1)叠合比较法;(2)度量比较法。
5、线段公理:“两点之间,线段最短”。
连接两点的线段的长度,叫做这两点的距离。
6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C 是线段AB 的中点,则:AC=BC=
2
1
AB 或AB=2AC=2BC 。
例题:
1、如果线段AB=5cm ,BC= 3cm ,那么A 、C 两点间的距离是( )
A .8 cm
B 、2㎝
C .4 cm
D .不能确定
解:D 点拨:A 、B 、C 三点位置不确定,可能共线,也可能不共线.
2、已知线段AB=20㎝,C 为 AB 中点,D 为CB 上一点,E 为DB 的中点,且EB=3 ㎝,则CD= ____cm .
解:4 点拨:由题意,BC=0.5AB=10cm ,DB=2 EB=6cm ,则CD=BC -DB =10-6=4(cm )
3、平面上有三个点,可以确定直线的条数是( )
A 、1
B .2
C .3
D .1或 3
二、角
1、角的概念:
(1)角可以看成是由两条有共同端点的射线组成的图形。
两条射线叫角的边,共同的端点叫角的顶点。
(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法:角用“∠”符号表示
(1)分别用两条边上的两个点和顶点来表示。
(顶点必须在中间) (2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。
(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。
(4)直接用一个大写英文字母来表示。
3、角的度量:会用量角器来度量角的大小。
4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。
度、分、秒的换算:1°=60′,1′=60″。
5、锐角、直角、钝角、平角、周角的概念和大小 (1)平角:角的两边成一条直线时,这个角叫平角。
(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。
(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。
6、画两个角的和,以及画两个角的差
(1)用量角器量出要画的两个角的大小,再用量角器来画。
(2)三角板的每个角的度数,30°、60°、90°、45°。
7、角的平分线
从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。
若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=2
1
∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算,练习:
1.已知αβ是两个钝角,计算1
6
(α+β)的值,甲、乙、丙、丁四种不同的答案分别是24°,48°,76°,
86°,其中只有一个答案是正确的,则正确的答案是( ) A .86° B .76° C .48° D .24°
2.如图1―4-5所示,AC 为一条直线,O 是AC 上一点,∠AOB =120° ,OE 、OF 分别平分∠AOB 和∠BOC . (1)求∠EOF 的大小;
(2)当OB 绕O 旋转时,OE 、OF 仍为∠AOB 和∠BOC 平分线, 问:OF 、OF 有怎样的位置关系?为什么?
基础练习
1.下列说法正确的是( )
A. 两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C. 若AP=BP, 则P 是线段AB 的中点
D. 两点之间的线段叫做者两点之间的距离 2.如果线段AB=5cm,线段BC=4cm,那么A,C 两点之间的距离是( ) A. 9cm B.1cm C.1cm 或9cm D.以上答案都不对
3.在直线L 上依次取三点M,N,P, 已知MN=5,NP=3, Q 是线段MP 的中点,则线段QN 的长度是( ) A. 1 B. 1.5 C. 2.5 D. 4
4.已知点C 是线段AB 上的一点,M,N 分别是线段AC,BC 的中点,则下列结论正确的是( ) A. MC=
21AB B. NC=21AB C.MN=21AB D.AM=2
1AB 5. 已知线段AB=6cm,C 是AB 的中点,C 是AC 的中点,则DB 等于( )
A. 1.5cm
B. 4.5 cm C3 cm. D.3.5 cm
6.把两条线段AB 和CD 放在同一条直线上比较长短时,下列说法错误的是( ) A. 如果线段AB 的两个端点均落在线段CD 的内部,那么AB<CD B. 如果A,C 重合,B 落在线段CD 的内部,那么AB<CD
C. 如果线段AB 的一个端点在线段CD 的内部,另一个端点在线段CD 的外部,那么AB 〉CD
D. 如果B ,D 重合,A ,C 位于点B 的同侧,且落在线段CD 的外部,则AB 〉CD
7.如图,量一量线段AB,BC,CA 的长度,就能得到结论( )
A. AB=BC+CA
B. AB<BC+CA
C. AB < BC CA -
D. AB=BC CA - 8. 如图,BC=4 cm,BD=7 cm , D 是AC 的中点,则AC= cm , AB= cm
9. 如图,从甲地到乙地有四条道路,其中最短的路线是 ,最长的路线是 。
10、如右图,点C 分AB 为2∶3,点D 分AB 为1∶4, 若AB 为5 cm,则AC=____cm, BD=____cm,CD=_____cm.
11、若线段AB=a,C 是线段AB 上任一点,MN 分别是AC 、BC 的中点, 则MN=_______+_______=_______AC+_______BC=_______.
13、 已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,再在BA 的延长线上取一点D ,使DA=AC ,则线段DC=______AB ,BC=_____CD
14、 已知线段AB=10㎝,点C 是AB 的中点,点D 是AC 中点,则线段CD=_________㎝。
15、计算=
45.1______度 ______分______秒 , =''0180______度______分______秒 =______度 16、观察图中的图形,并阅读图形下面的相关文字:
(1)像这样,10条直线相交,最多交点的个数是( ) A.40个 B.45个 C.50个 D.55个
(2)像这样, n 条直线相交,最多交点的个数是 ( )个
17、平面上有四个点,过其中每两点画直线,可以画多少条?(画图说明)
四条直线相交,最多有6个交点.
三条直线相交,最多有3个交点.
两条直线相交,最多有1个交点.。